1
|
de Castro YS, Nascimento LS, da Silva JA, da Conceição Souza R, Araújo GN, de Oliveira SC, Nahn Junior EP, Peixoto-Rangel AL. Increased CD8 dim and Decreased CD8 bright T Cells as Immunological Signature for Multibacilary Leprosy Patients. Immunology 2025. [PMID: 40325949 DOI: 10.1111/imm.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Leprosy, a chronic infectious disease caused by Mycobacterium leprae, manifests in a spectrum of clinical forms and severity. This study investigated the percentage of CD8+ T cells and their subpopulations (CD8bright and CD8dim T cells) in leprosy patients stratified by clinical forms, bacterial load, and age. No significant differences were observed in the overall percentage of CD8+ T cells among healthy controls and leprosy patients. However, an increased percentage of CD8dim T cells and a decreased percentage of CD8bright T cells were associated with severe multibacillary and lepromatous forms of leprosy, independent of bacillary load. Further, these cellular profiles correlated more strongly with disease severity than with age, in spite of elderly multibacillary patients exhibiting significant reductions in CD8bright T cells and increases in CD8dim T cells compared to young or middle-aged paucibacillary patients, but not compared to young and middle-aged multibacillary patients. These findings suggest that CD8bright and CD8dim T cell profiles are critical indicators of disease progression and severity in leprosy, highlighting their potential as biomarkers for clinical evaluation.
Collapse
Affiliation(s)
- Yuri Scheidegger de Castro
- Laboratório de Biologia Do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes City, Brazil
| | - Letícia Silva Nascimento
- Laboratório de Biologia Do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes City, Brazil
| | - Juliana Azevedo da Silva
- Laboratório de Biologia Do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes City, Brazil
| | - Rebeka da Conceição Souza
- Laboratório de Biologia Do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes City, Brazil
| | - Gabriel Nogueira Araújo
- Laboratório de Biologia Do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes City, Brazil
| | | | | | - Alba Lucínia Peixoto-Rangel
- Laboratório de Biologia Do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual Do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes City, Brazil
| |
Collapse
|
2
|
Saito M, McDonald KA, Grier AK, Meghwani H, Rangel-Moreno J, Becerril-Villanueva E, Gamboa-Dominguez A, Bruno J, Beck CA, Proctor RA, Kates SL, Schwarz EM, Muthukrishnan G. Immune Checkpoint Molecules as Biomarkers of Staphylococcus aureus Bone Infection and Clinical Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630837. [PMID: 39803468 PMCID: PMC11722373 DOI: 10.1101/2024.12.30.630837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments don't exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3). Importantly, these proteins are upregulated in the serum and the bone marrow of S. aureus PJI patients. A multiparametric nomogram combining high serum immune checkpoint protein levels with low proinflammatory cytokine levels (IFN-γ, IL-2, TNF-α, IL-17) revealed that TIM-3 was highly predictive of adverse disease outcomes (AUC=0.89). Hence, T cell impairment in the form of immune checkpoint expression and exhaustion could be a functional biomarker for S. aureus PJI disease outcome, and blockade of checkpoint proteins could potentially improve outcomes following surgery.
Collapse
Affiliation(s)
- Motoo Saito
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Katya A. McDonald
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex K. Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Himanshu Meghwani
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Enrique Becerril-Villanueva
- Psychoimmunology laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz.” Mexico City, Mexico
| | - Armando Gamboa-Dominguez
- Deparment of Pathology, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jennifer Bruno
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Tseng YH, Pan SW, Huang JR, Lee CC, Hung JJ, Hsu PK, Chen NJ, Su WJ, Chen YM, Feng JY. Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:278. [PMID: 39081906 PMCID: PMC11287217 DOI: 10.15698/mic2024.07.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of Mycobacterium tuberculosis (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of PD-L1, DNMT3b, TET1, TET2, and lower expression of DNMT1, compared to that in the non-TB subjects. The expression of PD-L1 and TET-1 was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and TET-1 knockdown in human macrophages increased and decreased PD-L1 expression, respectively. Overall, PD-L1 expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating PD-L1 expression in human macrophages.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Jhong-Ru Huang
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Hospital, Ministry of Health and WelfareTaichungTaiwan
| | - Chang-Ching Lee
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
| | - Jung-Jyh Hung
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General HospitalTaipei, 112Taiwain
| | - Po-Kuei Hsu
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General HospitalTaipei, 112Taiwain
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Wei-Juin Su
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Chest Medicine, China Medical University Hospital, Taipei BranchTaipei, 114Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| |
Collapse
|
4
|
Abuelazm MT, Elzeftawy MA, Kamal MA, Badr H, Gamal M, Aboulgheit M, Abdelazeem B, Abd-Elsalam S, Abouzid M. Protective efficacy and safety of radiation-attenuated and chemo-attenuated Plasmodium Falciparum sporozoite vaccines against controlled and natural malaria infection: a systematic review and meta-analysis of randomized controlled trials. Infection 2024; 52:707-722. [PMID: 38319556 DOI: 10.1007/s15010-024-02174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/01/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Despite the significant burden of Plasmodium falciparum (Pf) malaria and the licensure of two vaccines for use in infants and young children that are partially effective in preventing clinical malaria caused by Pf, a highly effective vaccine against Pf infection is still lacking. Live attenuated vaccines using Pf sporozoites as the immunogen (PfSPZ Vaccines) hold promise for addressing this gap. Here we review the safety and efficacy of two of the most promising PfSPZ approaches: PfSPZ Vaccine (radiation attenuated PfSPZ) and PfSPZ-CVac (chemo-attenuated PfSPZ). METHODS We conducted a systematic review and meta-analysis by searching PubMed, EMBASE, SCOPUS, CENTRAL, and WOS until 22nd December 2021. We included randomized controlled trials (RCTs) of these two vaccine approaches that measured protection against parasitaemia following controlled human malaria infection (CHMI) in malaria-naive and malaria-exposed adults or following exposure to naturally transmitted Pf malaria in African adults and children (primary outcome) and that also measured the incidence of solicited and unsolicited adverse events as indicators of safety and tolerability after vaccination (secondary outcome). We included randomized controlled trials (RCTs) that measured the detected parasitaemia after vaccination (primary outcome) and the incidence of various solicited and unsolicited adverse events (secondary outcome). The quality of the included RCTs using the Cochrane ROB 1 tool and the quality of evidence using the GRADE system were evaluated. We pooled dichotomous data using the risk ratio (RR) for development of parasitemia in vaccinees relative to controls as a measure of vaccine efficacy (VE), including the corresponding confidence interval (CI). This study was registered with PROSPERO (CRD42022308057). RESULTS We included 19 RCTs. Pooled RR favoured PfSPZ Vaccine (RR: 0.65 with 95% CI [0.53, 0.79], P = 0.0001) and PfSPZ-table (RR: 0.42 with 95% CI [0.27, 0.67], P = 0.0002) for preventing parasitaemia, relative to normal saline placebo. Pooled RR showed no difference between PfSPZ Vaccine and the control in the occurrence of any solicited adverse event (RR: 1.00 with 95% CI [0.82, 1.23], P = 0.98), any local solicited adverse events (RR: 0.73 with 95% CI [0.49, 1.08], P = 0.11), any systemic solicited adverse events (RR: 0.94 with 95% CI [0.75, 1.17], P = 0.58), and any unsolicited adverse event (RR: 0.93 with 95% CI [0.78, 1.10], P = 0.37). CONCLUSION PfSPZ and PfSPZ-CVacs showed comparable efficacy. Therefore, they can introduce a promising strategy for malaria prophylaxis, but more large-scale field trials are required to sustain efficacy and yield clinically applicable findings.
Collapse
Affiliation(s)
| | | | | | - Helmy Badr
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Basel Abdelazeem
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | | | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
5
|
Shah SA, Oakes RS, Jewell CM. Advancing immunotherapy using biomaterials to control tissue, cellular, and molecular level immune signaling in skin. Adv Drug Deliv Rev 2024; 209:115315. [PMID: 38670230 PMCID: PMC11111363 DOI: 10.1016/j.addr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Immunotherapies have been transformative in many areas, including cancer treatments, allergies, and autoimmune diseases. However, significant challenges persist in extending the reach of these technologies to new indications and patients. Some of the major hurdles include narrow applicability to patient groups, transient efficacy, high cost burdens, poor immunogenicity, and side effects or off-target toxicity that results from lack of disease-specificity and inefficient delivery. Thus, there is a significant need for strategies that control immune responses generated by immunotherapies while targeting infection, cancer, allergy, and autoimmunity. Being the outermost barrier of the body and the first line of host defense, the skin presents a unique immunological interface to achieve these goals. The skin contains a high concentration of specialized immune cells, such as antigen-presenting cells and tissue-resident memory T cells. These cells feature diverse and potent combinations of immune receptors, providing access to cellular and molecular level control to modulate immune responses. Thus, skin provides accessible tissue, cellular, and molecular level controls that can be harnessed to improve immunotherapies. Biomaterial platforms - microneedles, nano- and micro-particles, scaffolds, and other technologies - are uniquely capable of modulating the specialized immunological niche in skin by targeting these distinct biological levels of control. This review highlights recent pre-clinical and clinical advances in biomaterial-based approaches to target and modulate immune signaling in the skin at the tissue, cellular, and molecular levels for immunotherapeutic applications. We begin by discussing skin cytoarchitecture and resident immune cells to establish the biological rationale for skin-targeting immunotherapies. This is followed by a critical presentation of biomaterial-based pre-clinical and clinical studies aimed at controlling the immune response in the skin for immunotherapy and therapeutic vaccine applications in cancer, allergy, and autoimmunity.
Collapse
Affiliation(s)
- Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA
| | - Robert S Oakes
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD 21201, USA; Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD 20742, USA; Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, 22 S. Greene Street, Suite N9E17, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Bradley D, Deng T, Shantaram D, Hsueh WA. Orchestration of the Adipose Tissue Immune Landscape by Adipocytes. Annu Rev Physiol 2024; 86:199-223. [PMID: 38345903 DOI: 10.1146/annurev-physiol-042222-024353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Obesity is epidemic and of great concern because of its comorbid and costly inflammatory-driven complications. Extensive investigations in mice have elucidated highly coordinated, well-balanced interactions between adipocytes and immune cells in adipose tissue that maintain normal systemic metabolism in the lean state, while in obesity, proinflammatory changes occur in nearly all adipose tissue immune cells. Many of these changes are instigated by adipocytes. However, less is known about obesity-induced adipose-tissue immune cell alterations in humans. Upon high-fat diet feeding, the adipocyte changes its well-known function as a metabolic cell to assume the role of an immune cell, orchestrating proinflammatory changes that escalate inflammation and progress during obesity. This transformation is particularly prominent in humans. In this review, we (a) highlight a leading and early role for adipocytes in promulgating inflammation, (b) discuss immune cell changes and the time course of these changes (comparing humans and mice when possible), and (c) note how reversing proinflammatory changes in most types of immune cells, including adipocytes, rescues adipose tissue from inflammation and obese mice from insulin resistance.
Collapse
Affiliation(s)
- David Bradley
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Pennsylvania State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA;
| | - Tuo Deng
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Dharti Shantaram
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| | - Willa A Hsueh
- Diabetes and Metabolism Research Center, Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
7
|
Ishina IA, Kurbatskaia IN, Mamedov AE, Shramova EI, Deyev SM, Nurbaeva KS, Rubtsov YP, Belogurov AA, Gabibov AG, Zakharova MY. Genetically engineered CD80-pMHC-harboring extracellular vesicles for antigen-specific CD4 + T-cell engagement. Front Bioeng Biotechnol 2024; 11:1341685. [PMID: 38304104 PMCID: PMC10833362 DOI: 10.3389/fbioe.2023.1341685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
The identification of low-frequency antigen-specific CD4+ T cells is crucial for effective immunomonitoring across various diseases. However, this task still encounters experimental challenges necessitating the implementation of enrichment procedures. While existing antigen-specific expansion technologies predominantly concentrate on the enrichment of CD8+ T cells, advancements in methods targeting CD4+ T cells have been limited. In this study, we report a technique that harnesses antigen-presenting extracellular vesicles (EVs) for stimulation and expansion of antigen-specific CD4+ T cells. EVs are derived from a genetically modified HeLa cell line designed to emulate professional antigen-presenting cells (APCs) by expressing key costimulatory molecules CD80 and specific peptide-MHC-II complexes (pMHCs). Our results demonstrate the beneficial potent stimulatory capacity of EVs in activating both immortalized and isolated human CD4+ T cells from peripheral blood mononuclear cells (PBMCs). Our technique successfully expands low-frequency influenza-specific CD4+ T cells from healthy individuals. In summary, the elaborated methodology represents a streamlined and efficient approach for the detection and expansion of antigen-specific CD4+ T cells, presenting a valuable alternative to existing antigen-specific T-cell expansion protocols.
Collapse
Affiliation(s)
- Irina A. Ishina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Inna N. Kurbatskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Azad E. Mamedov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Elena I. Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Biomarker Research Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
| | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- N. N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation (NN Blokhin NMRCO), Moscow, Russia
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
8
|
Firdessa Fite R, Bechi Genzano C, Mallone R, Creusot RJ. Epitope-based precision immunotherapy of Type 1 diabetes. Hum Vaccin Immunother 2023; 19:2154098. [PMID: 36656048 PMCID: PMC9980607 DOI: 10.1080/21645515.2022.2154098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Antigen-specific immunotherapies (ASITs) address important clinical needs in treating autoimmune diseases. However, Type 1 diabetes is a heterogeneous disease wherein patient characteristics influence responsiveness to ASITs. Targeting not only disease-relevant T cell populations, but also specific groups of patients using precision medicine is a new goal toward achieving effective treatment. HLA-restricted peptides provide advantages over protein as antigens, however, methods for profiling antigen-specific T cells need to improve in sensitivity, depth, and throughput to facilitate epitope selection. Delivery approaches are highly diverse, illustrating the many ways relevant antigen-presenting cell populations and anatomical locations can be targeted for tolerance induction. The role of persistence of antigen presentation in promoting durable antigen-specific tolerance requires further investigation. Based on the outcome of ASIT trials, the field is moving toward using patient-specific variations to improve efficacy, but challenges still lie on the path to delivering more effective and safer treatment to the T1D patient population.
Collapse
Affiliation(s)
- Rebuma Firdessa Fite
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Camillo Bechi Genzano
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Roberto Mallone
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France.,Assistance Publique Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Hôpitaux Universitaires de Paris Centre-Université de Paris, Paris, France
| | - Remi J Creusot
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
9
|
Edwards C, Shah SA, Gebhardt T, Jewell CM. Exploiting Unique Features of Microneedles to Modulate Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302410. [PMID: 37380199 PMCID: PMC10753036 DOI: 10.1002/adma.202302410] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Microneedle arrays (MNAs) are small patches containing hundreds of short projections that deliver signals directly to dermal layers without causing pain. These technologies are of special interest for immunotherapy and vaccine delivery because they directly target immune cells concentrated in the skin. The targeting abilities of MNAs result in efficient immune responses-often more protective or therapeutic-compared to conventional needle delivery. MNAs also offer logistical benefits, such as self-administration and transportation without refrigeration. Thus, numerous preclinical and clinical studies are exploring these technologies. Here the unique advantages of MNA, as well as critical challenges-such as manufacturing and sterility issues-the field faces to enable widespread deployment are discussed. How MNA design parameters can be exploited for controlled release of vaccines and immunotherapies, and the application to preclinical models of infection, cancer, autoimmunity, and allergies are explained. Specific strategies are also discussed to reduce off-target effects compared to conventional vaccine delivery routes, and novel chemical and manufacturing controls that enable cargo stability in MNAs across flexible intervals and temperatures. Clinical research using MNAs is then examined. Drawbacks of MNAs and the implications, and emerging opportunities to exploit MNAs for immune engineering and clinical use are concluded.
Collapse
Affiliation(s)
- Camilla Edwards
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shrey A Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Thomas Gebhardt
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC, 3000, Australia
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- US Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, 21201, USA
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, 21201, USA
| |
Collapse
|
10
|
Yang D, Zou J, Guan G, Feng X, Zhang T, Li G, Liu H, Zheng H, Xi J, Yu G, Dai L, Lu F, Chen X. The A1762T/G1764A mutations enhance HBV replication by alternating viral transcriptome. J Med Virol 2023; 95:e29129. [PMID: 37772469 DOI: 10.1002/jmv.29129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
The A1762T/G1764A mutations, one of the most common mutations in the hepatitis B virus basal core promoter, are associated with the progression of chronic HBV infection. However, effects of these mutations on HBV replication remains controversial. This study aimed to systematically investigate the effect of the mutations on HBV replication and its underlying mechanisms. Using the prcccDNA/pCMV-Cre recombinant plasmid system, a prcccDNA-A1762T/G1764A mutant plasmid was constructed. Compared with wild-type HBV, A1762T/G1764A mutant HBV showed enhanced replication ability with higher secreted HBV DNA and RNA levels, while Southern and Northern blot indicated higher intracellular levels of relaxed circular DNA, single-stranded DNA, and 3.5 kb RNA. Meanwhile, the mutations increased expression of intracellular core protein and decreased the production of HBeAg and HBsAg. In vitro infection based on HepG2-NTCP cells and mice hydrodynamic injection experiment also proved that these mutations promote HBV replication. 5'-RACE assays showed that these mutations upregulated transcription of pregenomic RNA (pgRNA) while downregulating that of preC RNA, which was further confirmed by full-length transcriptome sequencing. Moreover, a proportion of sub-pgRNAs with the potential to express polymerase were also upregulated by these mutations. The ChIP-qPCR assay showed that A1762T/G1764A mutations created a functional HNF1α binding site in the BCP region, and its overexpression enhanced the effect of A1762T/G1764A mutations on HBV. Our findings revealed the mechanism and importance of A1762T/G1764A mutations as an indicator for management of CHB patients, and provided HNF1α as a new target for curing HBV-infected patients.
Collapse
Affiliation(s)
- Danli Yang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jun Zou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Research and Development Center, Shenzhen Sanyuansheng Biotechnology Co., Ltd, Shenzhen, China
| | - Guiwen Guan
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaoyu Feng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ting Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Guixin Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hui Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huiling Zheng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jingyuan Xi
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Clinical Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guangxin Yu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lizhong Dai
- Peking University-Sansure Biotech Joint Laboratory of Molecular Medicine, Sansure Biotech Co., LTD, Changsha, China
| | - Fengmin Lu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
- Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Xiangmei Chen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Employing T-Cell Memory to Effectively Target SARS-CoV-2. Pathogens 2023; 12:pathogens12020301. [PMID: 36839573 PMCID: PMC9967959 DOI: 10.3390/pathogens12020301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Well-trained T-cell immunity is needed for early viral containment, especially with the help of an ideal vaccine. Although most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected convalescent cases have recovered with the generation of virus-specific memory T cells, some cases have encountered T-cell abnormalities. The emergence of several mutant strains has even threatened the effectiveness of the T-cell immunity that was established with the first-generation vaccines. Currently, the development of next-generation vaccines involves trying several approaches to educate T-cell memory to trigger a broad and fast response that targets several viral proteins. As the shaping of T-cell immunity in its fast and efficient form becomes important, this review discusses several interesting vaccine approaches to effectively employ T-cell memory for efficient viral containment. In addition, some essential facts and future possible consequences of using current vaccines are also highlighted.
Collapse
|
12
|
Alahdal M, Elkord E. Exhaustion and over-activation of immune cells in COVID-19: Challenges and therapeutic opportunities. Clin Immunol 2022; 245:109177. [PMID: 36356848 PMCID: PMC9640209 DOI: 10.1016/j.clim.2022.109177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Exhaustion of immune cells in COVID-19 remains a serious concern for infection management and therapeutic interventions. As reported, immune cells such as T effector cells (Teff), T regulatory cells (Tregs), natural killer cells (NKs), and antigen-presenting cells (APCs) exhibit uncontrolled functions in COVID-19. Unfortunately, the mechanisms that orchestrate immune cell functionality and virus interaction are still unknown. Recent studies linked adaptive immune cell exhaustion to underlying epigenetic mechanisms that regulate the epigenetic transcription of inhibitory immune checkpoint receptors (ICs). Further to that, the over-activation of T cells accompanied by the dysfunctionality of DCs and Tregs may enhance uncontrollable alveoli inflammation and cytokine storm in COVID-19. This might explain the reasons behind the failure of DC-based vaccines in inducing sufficient anti-viral responses. This review explains the processes behind the over-activation and exhaustion of innate and adaptive immune cells in COVID-19, which may contribute to developing novel immune intervention strategies.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33 Birkat Al Mouz, Nizwa 616, Oman.
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33 Birkat Al Mouz, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom.
| |
Collapse
|
13
|
Malek-Khatabi A, Tabandeh Z, Nouri A, Mozayan E, Sartorius R, Rahimi S, Jamaledin R. Long-Term Vaccine Delivery and Immunological Responses Using Biodegradable Polymer-Based Carriers. ACS APPLIED BIO MATERIALS 2022; 5:5015-5040. [PMID: 36214209 DOI: 10.1021/acsabm.2c00638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are largely employed in the biomedical field, ranging from tissue regeneration to drug/vaccine delivery. The biodegradable polymers are highly biocompatible and possess negligible toxicity. In addition, biomaterial-based vaccines possess adjuvant properties, thereby enhancing immune responses. This Review introduces the use of different biodegradable polymers and their degradation mechanism. Different kinds of vaccines, as well as the interaction between the carriers with the immune system, then are highlighted. Natural and synthetic biodegradable micro-/nanoplatforms, hydrogels, and scaffolds for local or targeted and controlled vaccine release are subsequently discussed.
Collapse
Affiliation(s)
- Atefeh Malek-Khatabi
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zahra Tabandeh
- Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan 8731753153, Iran
| | - Akram Nouri
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Elaheh Mozayan
- Department of Cell and Molecular Biology, University of Kashan, Kashan 8731753153, Iran
| | | | - Shahnaz Rahimi
- School of Chemistry, College of Science, University of Tehran, Tehran 141556455, Iran
| | - Rezvan Jamaledin
- Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy
| |
Collapse
|
14
|
Vega-Magaña N, Muñoz-Valle JF, Peña-Rodríguez M, Viera-Segura O, Pereira-Suárez AL, Hernández-Bello J, García-Chagollan M. Specific T-Cell Immune Response to SARS-CoV-2 Spike Protein over Time in Naïve and SARS-CoV-2 Previously Infected Subjects Vaccinated with BTN162b2. Vaccines (Basel) 2022; 10:vaccines10071117. [PMID: 35891281 PMCID: PMC9319730 DOI: 10.3390/vaccines10071117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Due to the COVID-19 pandemic, the rapid development of vaccines against SARS-CoV-2 has been promoted. BNT162b2 is a lipid-nanoparticle mRNA vaccine with 95% efficacy and is the most administered vaccine globally. Nevertheless, little is known about the cellular immune response triggered by vaccination and the immune behavior over time. Therefore, we evaluated the T-cell immune response against the SARS-CoV-2 spike protein and neutralization antibodies (nAbs) in naïve and SARS-CoV-2 previously infected subjects vaccinated with BTN162b2. Methods: Forty-six BTN162b2 vaccinated subjects were included (twenty-six naïve and twenty SARS-CoV-2 previously infected subjects vaccinated with BTN162b2). Blood samples were obtained at basal (before vaccination), 15 days after the first dose, and 15 days after the second dose, to evaluate cellular immune response upon PBMC’s stimulation and cytokine levels. The nAbs were determined one and six months after the second dose. Results: SARS-CoV-2 previously infected subjects vaccinated with BTN162b2 showed the highest proportion of nAbs compared to naïve individuals one month after the second dose. However, women were more prone to lose nAbs percentages over time significantly. Furthermore, a diminished CD154+ IFN-γ+ CD4+ T-cell response was observed after the second BTN162b2 dose in those with previous SARS-CoV-2 infection. In contrast, naïve participants showed an overall increased CD8+ IFN-γ+ TNF-α+ T-cell response to the peptide stimulus. Moreover, a significant reduction in IP-10, IFN-λI, and IL-10 cytokine levels was found in both studied groups. Additionally, the median fluorescence intensity (MFI) levels of IL-6, IFNλ-2/3, IFN-𝛽, and GM-CSF (p < 0.05) were significantly reduced over time in the naïve participants. Conclusion: We demonstrate that a previous SARS-CoV-2 infection can also impact cellular T-cell response, nAbs production, and serum cytokine concentration. Therefore, the study of T-cell immune response is essential for vaccination scheme recommendations; future vaccine boost should be carefully addressed as continued stimulation by vaccination might impact the T-cell response.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - José Francisco Muñoz-Valle
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Marcela Peña-Rodríguez
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
| | - Oliver Viera-Segura
- Laboratorio de Diagnóstico de Enfermedades Emergentes y Reemergentes, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.V.-M.); (M.P.-R.); (O.V.-S.)
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Jorge Hernández-Bello
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
| | - Mariel García-Chagollan
- Instituto de Investigación de Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.F.M.-V.); (A.L.P.-S.); (J.H.-B.)
- Correspondence:
| |
Collapse
|
15
|
Zheng K, Zheng X, Yang W. The Role of Metabolic Dysfunction in T-Cell Exhaustion During Chronic Viral Infection. Front Immunol 2022; 13:843242. [PMID: 35432304 PMCID: PMC9008220 DOI: 10.3389/fimmu.2022.843242] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/07/2022] [Indexed: 02/02/2023] Open
Abstract
T cells are important components of adaptive immunity that protect the host against invading pathogens during infection. Upon recognizing the activation signals, naïve and/or memory T cells will initiate clonal expansion, trigger differentiation into effector populations and traffic to the inflamed sites to eliminate pathogens. However, in chronic viral infections, such as those caused by human immunodeficiency virus (HIV), hepatitis B and C (HBV and HCV), T cells exhibit impaired function and become difficult to clear pathogens in a state known as T-cell exhaustion. The activation and function persistence of T cells demand for dynamic changes in cellular metabolism to meet their bioenergetic and biosynthetic demands, especially the augmentation of aerobic glycolysis, which not only provide efficient energy generation, but also fuel multiple biochemical intermediates that are essential for nucleotide, amino acid, fatty acid synthesis and mitochondria function. Changes in cellular metabolism also affect the function of effectors T cells through modifying epigenetic signatures. It is widely accepted that the dysfunction of T cell metabolism contributes greatly to T-cell exhaustion. Here, we reviewed recent findings on T cells metabolism under chronic viral infection, seeking to reveal the role of metabolic dysfunction played in T-cell exhaustion.
Collapse
Affiliation(s)
- Kehong Zheng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Zheng
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei Yang
- Research Department of Medical Sciences, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Gumber D, Wang LD. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. EBioMedicine 2022; 77:103941. [PMID: 35301179 PMCID: PMC8927848 DOI: 10.1016/j.ebiom.2022.103941] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a cancer treatment with enormous potential, demonstrating impressive antitumor activity in the treatment of hematological malignancies. However, CAR T cell exhaustion is a major limitation to their efficacy, particularly in the application of CAR T cells to solid tumors. CAR T cell exhaustion is thought to be due to persistent antigen stimulation, as well as an immunosuppressive tumor microenvironment, and mitigating exhaustion to maintain CAR T cell effector function and persistence and achieve clinical potency remains a central challenge. Here, we review the underlying mechanisms of exhaustion and discuss emerging strategies to prevent or reverse exhaustion through modifications of the CAR receptor or CAR independent pathways. Additionally, we discuss the potential of these strategies for improving clinical outcomes of CAR T cell therapy.
Collapse
Affiliation(s)
- Diana Gumber
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States
| | - Leo D Wang
- Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Beckman Research Institute, Duarte CA, United States; Department of Immunooncology, City of Hope National Medical Center, Beckman Research Institute, Duarte, CA, United States; Department of Pediatrics, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
17
|
PD-L1 Expression in Monocytes Correlates with Bacterial Burden and Treatment Outcomes in Active Pulmonary Tuberculosis. Int J Mol Sci 2022; 23:ijms23031619. [PMID: 35163542 PMCID: PMC8836118 DOI: 10.3390/ijms23031619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 01/02/2023] Open
Abstract
The PD-1/PD-L1 pathway is critical in T cell biology; however, the role of the PD-1/PD-L1 pathway in clinical characteristics and treatment outcomes in pulmonary tuberculosis (PTB) patients is unclear. We prospectively enrolled PTB, latent TB infection (LTBI), and non-TB, non-LTBI subjects. The expression of PD-1/PD-L1 on peripheral blood mononuclear cells (PBMCs) was measured and correlated with clinical characteristics and treatment outcomes in PTB patients. Immunohistochemistry and immunofluorescence were used to visualize PD-1/PD-L1-expressing cells in lung tissues from PTB patients and from murine with heat-killed MTB (HK-MTB) treatment. A total of 76 PTB, 40 LTBI, and 28 non-TB, non-LTBI subjects were enrolled. The expression of PD-1 on CD4+ T cells and PD-L1 on CD14+ monocytes was significantly higher in PTB cases than non-TB subjects. PTB patients with sputum smear/culture unconversion displayed higher PD-L1 expression on monocytes. PD-L1-expressing macrophages were identified in lung tissue from PTB patients, and co-localized with macrophages in murine lung tissues. Mycobacterium tuberculosis (MTB) whole cell lysate/EsxA stimulation of human and mouse macrophages demonstrated increased PD-L1 expression. In conclusion, increased expression of PD-L1 on monocytes in PTB patients correlated with higher bacterial burden and worse treatment outcomes. The findings suggest the involvement of the PD-1/PD-L1 pathway in MTB-related immune responses.
Collapse
|
18
|
Nguyen J, Pettmann J, Kruger P, Dushek O. Quantitative contributions of TNF receptor superfamily members to CD8 + T-cell responses. Mol Syst Biol 2021; 17:e10560. [PMID: 34806839 PMCID: PMC8607805 DOI: 10.15252/msb.202110560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
T-cell responses to infections and cancers are regulated by co-signalling receptors grouped into the binary categories of co-stimulation or co-inhibition. The co-stimulation TNF receptor superfamily (TNFRSF) members 4-1BB, CD27, GITR and OX40 have similar signalling mechanisms raising the question of whether they have similar impacts on T-cell responses. Here, we screened for the quantitative impact of these TNFRSFs on primary human CD8+ T-cell cytokine production. Although both 4-1BB and CD27 increased production, only 4-1BB was able to prolong the duration over which cytokine was produced, and both had only modest effects on antigen sensitivity. An operational model explained these different phenotypes using shared signalling based on the surface expression of 4-1BB being regulated through signalling feedback. The model predicted and experiments confirmed that CD27 co-stimulation increases 4-1BB expression and subsequent 4-1BB co-stimulation. GITR and OX40 displayed only minor effects on their own but, like 4-1BB, CD27 could enhance GITR expression and subsequent GITR co-stimulation. Thus, different co-stimulation receptors can have different quantitative effects allowing for synergy and fine-tuning of T-cell responses.
Collapse
Affiliation(s)
- John Nguyen
- SirWilliam Dunn School of PathologyUniversity of OxfordOxfordUK
| | | | - Philipp Kruger
- SirWilliam Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Omer Dushek
- SirWilliam Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
19
|
Braun C, Weichhart T. mTOR-dependent immunometabolism as Achilles' heel of anticancer therapy. Eur J Immunol 2021; 51:3161-3175. [PMID: 34648202 DOI: 10.1002/eji.202149270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/07/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022]
Abstract
Immune cells are important constituents of the tumor microenvironment and essential in eradicating tumor cells during conventional therapies or novel immunotherapies. The mechanistic target of rapamycin (mTOR) signaling pathway senses the intra- and extracellular nutrient status, growth factor supply, and cell stress-related changes to coordinate cellular metabolism and activation dictating effector and memory functions in mainly all hematopoietic immune cells. In addition, the mTOR complex 1 (mTORC1) and mTORC2 are frequently deregulated and become activated in cancer cells to drive cell transformation, survival, neovascularization, and invasion. In this review, we provide an overview of the influence of mTOR complexes on immune and cancer cell function and metabolism. We discuss how mTOR inhibitors aiming to target cancer cells will influence immunometabolic cell functions participating either in antitumor responses or favoring tumor cell progression in individual immune cells. We suggest immunometabolism as the weak spot of anticancer therapy and propose to evaluate patients according to their predominant immune cell subtype in the cancer tissue. Advances in metabolic drug development that hold promise for more effective treatments in different types of cancer will have to consider their effects on the immune system.
Collapse
Affiliation(s)
- Clarissa Braun
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
21
|
Rahman MA, Islam MS. Early approval of COVID-19 vaccines: Pros and cons. Hum Vaccin Immunother 2021; 17:3288-3296. [PMID: 34283001 PMCID: PMC8437465 DOI: 10.1080/21645515.2021.1944742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The development of safe and effective vaccines has been an overriding priority for controlling the 2019-coronavirus disease (COVID-19) pandemic. From the onset, COVID-19 has caused high mortality and economic losses and yet has also offered an opportunity to advance novel therapeutics such as DNA and mRNA vaccines. Although it is hoped that the swift acceptance of such vaccines will prevent loss of life, rejuvenate economies and restore normal life, there could also be significant pitfalls. This perspective provides an overview of future directions and challenges in advancing promising vaccine platforms to widespread therapeutic use.
Collapse
Affiliation(s)
- Md Arifur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Division of Virology, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Japan
| |
Collapse
|
22
|
Wang S, Zissler UM, Buettner M, Heine S, Heldner A, Kotz S, Pechtold L, Kau J, Plaschke M, Ullmann JT, Guerth F, Oelsner M, Alessandrini F, Blank S, Chaker AM, Schmidt‐Weber CB, Jakwerth CA. An exhausted phenotype of T H 2 cells is primed by allergen exposure, but not reinforced by allergen-specific immunotherapy. Allergy 2021; 76:2827-2839. [PMID: 33969495 DOI: 10.1111/all.14896] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/09/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Studies show that proallergic TH 2 cells decrease after successful allergen-specific immunotherapy (AIT). It is likely that iatrogenic administration of allergens drives these cells to exhaustion due to chronic T-cell receptor stimulation. This study aimed to investigate the exhaustion of T cells in connection with allergen exposure during AIT in mice and two independent patient cohorts. METHODS OVA-sensitized C57BL/6J mice were challenged and treated with OVA, and the development of exhaustion in local and systemic TH 2 cells was analyzed. In patients, the expression of exhaustion-associated surface markers on TH 2 cells was evaluated using flow cytometry in a cross-sectional grass pollen allergy cohort with and without AIT. The treatment effect was further studied in PBMC collected from a prospective long-term AIT cohort. RESULTS The exhaustion-associated surface markers CTLA-4 and PD-1 were significantly upregulated on TH 2 cells upon OVA aerosol exposure in OVA-allergic compared to non-allergic mice. CTLA-4 and PD-1 decreased after AIT, in particular on the surface of local lung TH 2 cells. Similarly, CTLA-4 and PD-1 expression was enhanced on TH 2 cells from patients with allergic rhinitis with an even stronger effect in those with concomitant asthma. Using an unbiased Louvain clustering analysis, we discovered a late-differentiated TH 2 population expressing both markers that decreased during up-dosing but persisted long term during the maintenance phase. CONCLUSIONS This study shows that allergen exposure promotes CTLA-4 and PD-1 expression on TH 2 cells and that the dynamic change in frequencies of exhausted TH 2 cells exhibits a differential pattern during the up-dosing versus the maintenance phases of AIT.
Collapse
|
23
|
Abstract
In this essay, we show that 3 distinct approaches to immunological exhaustion coexist and that they only partially overlap, generating potential misunderstandings. Exploring cases ranging from viral infections to cancer, we propose that it is crucial, for experimental and therapeutic purposes, to clarify these approaches and their interconnections so as to make the concept of exhaustion genuinely operational.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | - Maël Lemoine
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| | - Thomas Pradeu
- ImmunoConcept, CNRS & University of Bordeaux, Bordeaux, France
| |
Collapse
|
24
|
Abstract
Radiation is a known immune modulator that drives both local and systemic immunologic effects. There is increasing interest and investigation into harnessing the pro-immunogenic effects of radiation for patients with metastatic cancer to improve systemic disease control and clinical outcomes. Here, we review fundamental immunology concepts in the context of our current understanding of both the pro-immunogenic and the less well-appreciated immunosuppressive effects of radiation therapy. Our aim is to offer the radiation oncology community a lens into the progress the field has made understanding the complex interaction between tumor-directed irradiation and immune-mediated tumor control, thus promoting further discovery and translation of radio-immuno-oncology innovation.
Collapse
Affiliation(s)
- Catherine S Spina
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY
| | - Charles G Drake
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY; Department of Urology, Columbia University Irving Medical Center, New York, NY; Department of Hematology Oncology, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
25
|
Collier JL, Weiss SA, Pauken KE, Sen DR, Sharpe AH. Not-so-opposite ends of the spectrum: CD8 + T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol 2021; 22:809-819. [PMID: 34140679 PMCID: PMC9197228 DOI: 10.1038/s41590-021-00949-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
CD8+ T cells are critical mediators of cytotoxic effector function in infection, cancer and autoimmunity. In cancer and chronic viral infection, CD8+ T cells undergo a progressive loss of cytokine production and cytotoxicity, a state termed T cell exhaustion. In autoimmunity, autoreactive CD8+ T cells retain the capacity to effectively mediate the destruction of host tissues. Although the clinical outcome differs in each context, CD8+ T cells are chronically exposed to antigen in all three. These chronically stimulated CD8+ T cells share some common phenotypic features, as well as transcriptional and epigenetic programming, across disease contexts. A better understanding of these CD8+ T cell states may reveal novel strategies to augment clearance of chronic viral infection and cancer and to mitigate self-reactivity leading to tissue damage in autoimmunity.
Collapse
Affiliation(s)
- Jenna L Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston MA.,Broad Institute of MIT and Harvard, Cambridge MA
| | - Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital
| | - Debattama R Sen
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA and Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s Hospital.,Broad Institute of MIT and Harvard, Cambridge MA
| |
Collapse
|
26
|
Danelli L, Cornish G, Merkenschlager J, Kassiotis G. Default polyfunctional T helper 1 response to ample signal 1 alone. Cell Mol Immunol 2021; 18:1809-1822. [PMID: 32313208 PMCID: PMC8245500 DOI: 10.1038/s41423-020-0415-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
CD4+ T cells integrate well-defined signals from the T-cell receptor (TCR) (signal 1) and a host of costimulatory molecules (signal 2) to initiate clonal expansion and differentiation into diverse functional T helper (Th) subsets. However, our ability to guide the expansion of context-appropriate Th subsets by deploying these signals in vaccination remains limited. Using cell-based vaccines, we selectively amplified signal 1 by exclusive presentation of an optimized peptide:MHC II (pMHC II) complex in the absence of classic costimulation. Contrary to expectations, amplified signal 1 alone was strongly immunogenic and selectively expanded high-affinity TCR clonotypes, despite delivering intense TCR signals. In contrast to natural infection or standard vaccines, amplified signal 1, presented by a variety of professional and nonprofessional antigen-presenting cells (APCs), induced exclusively polyfunctional Th1 effector and memory cells, which protected against retroviral infection and tumor challenge, and expanded tumor-reactive CD4+ T cells otherwise rendered unresponsive in tumor-bearing hosts. Together, our findings uncover a default Th1 response to ample signal 1 and offer a means to selectively prime such protective responses by vaccination.
Collapse
Affiliation(s)
- Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Georgina Cornish
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Julia Merkenschlager
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
27
|
Luzuriaga MA, Shahrivarkevishahi A, Herbert FC, Wijesundara YH, Gassensmith JJ. Biomaterials and nanomaterials for sustained release vaccine delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1735. [PMID: 34180608 DOI: 10.1002/wnan.1735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022]
Abstract
Vaccines are considered one of the most significant medical advancements in human history, as they have prevented hundreds of millions of deaths since their discovery; however, modern travel permits disease spread at unprecedented rates, and vaccine shortcomings like thermal sensitivity and required booster shots have been made evident by the COVID-19 pandemic. Approaches to overcoming these issues appear promising via the integration of vaccine technology with biomaterials, which offer sustained-release properties and preserve proteins, prevent conformational changes, and enable storage at room temperature. Sustained release and thermal stabilization of therapeutic biomacromolecules is an emerging area that integrates material science, chemistry, immunology, nanotechnology, and pathology to investigate different biocompatible materials. Biomaterials, including natural sugar polymers, synthetic polyesters produced from biologically derived monomers, hydrogel blends, protein-polymer blends, and metal-organic frameworks, have emerged as early players in the field. This overview will focus on significant advances of sustained release biomaterial in the context of vaccines against infectious disease and the progress made towards thermally stable "single-shot" formulations. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Michael A Luzuriaga
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Fabian C Herbert
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardon, Texas, USA.,Department of Bioengineering, The University of Texas at Dallas, Richardon, Texas, USA
| |
Collapse
|
28
|
Tabana Y, Moon TC, Siraki A, Elahi S, Barakat K. Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations. Expert Opin Ther Targets 2021; 25:347-363. [PMID: 34056985 DOI: 10.1080/14728222.2021.1937123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction:T cell functions are altered during chronic viral infections and tumor development. This is mainly manifested by significant changes in T cells' epigenetic and metabolic landscapes, pushing them into an 'exhausted' state. Reversing this T cell exhaustion has been emerging as a 'game-changing' therapeutic approach against cancer and chronic viral infection.Areas covered:This review discusses the cellular pathways related to T cell exhaustion, and the clinical development and possible cellular targets that can be exploited therapeutically to reverse this exhaustion. We searched various databases (e.g. Google Scholar, PubMed, Elsevier, and other scientific database sites) using the keywords T cell exhaustion, T cell activation, co-inhibitory receptors, and reversing T cell exhaustion.Expert opinion:The discovery of the immune checkpoints pathways represents a significant milestone toward understanding and reversing T cell exhaustion. Antibodies that target these pathways have already demonstrated promising activities in reversing T cell exhaustion. Nevertheless, there are still many associated limitations. In this context, next-generation alternatives are on the horizon. This includes the use of small molecules to block the immune checkpoints' receptors, combining them with other treatments, and identifying novel, safer and more effective immunotherapeutic targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Jongo SA, Church LWP, Mtoro AT, Schindler T, Chakravarty S, Ruben AJ, Swanson PA, Kassim KR, Mpina M, Tumbo AM, Milando FA, Qassim M, Juma OA, Bakari BM, Simon B, James ER, Abebe Y, Kc N, Saverino E, Fink M, Cosi G, Gondwe L, Studer F, Styers D, Seder RA, Schindler T, Billingsley PF, Daubenberger C, Sim BKL, Tanner M, Richie TL, Abdulla S, Hoffman SL. Increase of Dose Associated With Decrease in Protection Against Controlled Human Malaria Infection by PfSPZ Vaccine in Tanzanian Adults. Clin Infect Dis 2021; 71:2849-2857. [PMID: 31782768 DOI: 10.1093/cid/ciz1152] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A vaccine would be an ideal tool for reducing malaria's impact. PfSPZ Vaccine (radiation attenuated, aseptic, purified, cryopreserved Plasmodium falciparum [Pf] sporozoites [SPZ]) has been well tolerated and safe in >1526 malaria-naive and experienced 6-month to 65-year-olds in the United States, Europe, and Africa. When vaccine efficacy (VE) of 5 doses of 2.7 × 105 PfSPZ of PfSPZ Vaccine was assessed in adults against controlled human malaria infection (CHMI) in the United States and Tanzania and intense field transmission of heterogeneous Pf in Mali, Tanzanians had the lowest VE (20%). METHODS To increase VE in Tanzania, we increased PfSPZ/dose (9 × 105 or 1.8 × 106) and decreased numbers of doses to 3 at 8-week intervals in a double blind, placebo-controlled trial. RESULTS All 22 CHMIs in controls resulted in parasitemia by quantitative polymerase chain reaction. For the 9 × 105 PfSPZ group, VE was 100% (5/5) at 3 or 11 weeks (P < .000l, Barnard test, 2-tailed). For 1.8 × 106 PfSPZ, VE was 33% (2/6) at 7.5 weeks (P = .028). VE of dosage groups (100% vs 33%) was significantly different (P = .022). Volunteers underwent repeat CHMI at 37-40 weeks after last dose. 6/6 and 5/6 volunteers developed parasitemia, but time to first parasitemia was significantly longer than controls in the 9 × 105 PfSPZ group (10.89 vs 7.80 days) (P = .039), indicating a significant reduction in parasites in the liver. Antibody and T-cell responses were higher in the 1.8 × 106 PfSPZ group. CONCLUSIONS In Tanzania, increasing the dose from 2.7 × 105 to 9 × 105 PfSPZ increased VE from 20% to 100%, but increasing to 1.8 × 106 PfSPZ significantly reduced VE. CLINICAL TRIALS REGISTRATION NCT02613520.
Collapse
Affiliation(s)
- Said A Jongo
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | - Ali T Mtoro
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | | | - Phillip A Swanson
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kamaka R Kassim
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Maximillian Mpina
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Anneth-Mwasi Tumbo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Florence A Milando
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Munira Qassim
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Omar A Juma
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Bakari M Bakari
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | - Beatus Simon
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | | | | | | | | - Martina Fink
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Glenda Cosi
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Linda Gondwe
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Fabian Studer
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Robert A Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, USA.,Protein Potential LLC, Rockville, Maryland, USA
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Salim Abdulla
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Bagamoyo, Tanzania
| | | |
Collapse
|
30
|
Bilich T, Nelde A, Heitmann JS, Maringer Y, Roerden M, Bauer J, Rieth J, Wacker M, Peter A, Hörber S, Rachfalski D, Märklin M, Stevanović S, Rammensee HG, Salih HR, Walz JS. T cell and antibody kinetics delineate SARS-CoV-2 peptides mediating long-term immune responses in COVID-19 convalescent individuals. Sci Transl Med 2021; 13:eabf7517. [PMID: 33723016 PMCID: PMC8128286 DOI: 10.1126/scitranslmed.abf7517] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/14/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Long-term immunological memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for the development of population-level immunity, which is the aim of vaccination approaches. Reports on rapidly decreasing antibody titers have led to questions regarding the efficacy of humoral immunity alone. The relevance of T cell memory after coronavirus disease 2019 (COVID-19) remains unclear. Here, we investigated SARS-CoV-2 antibody and T cell responses in matched samples of COVID-19 convalescent individuals up to 6 months after infection. Longitudinal analysis revealed decreasing and stable spike- and nucleocapsid-specific antibody responses, respectively. In contrast, functional T cell responses remained robust, and even increased, in both frequency and intensity. Single peptide mapping of T cell diversity over time identified open reading frame-independent, dominant T cell epitopes mediating long-term SARS-CoV-2 T cell responses. Identification of these epitopes may be fundamental for COVID-19 vaccine design.
Collapse
Affiliation(s)
- Tatjana Bilich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Annika Nelde
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Yacine Maringer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Malte Roerden
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Jens Bauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
| | - Jonas Rieth
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
| | - Marcel Wacker
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Sebastian Hörber
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - David Rachfalski
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Stevanović
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Juliane S Walz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany.
- Institute for Cell Biology, Department of Immunology, University of Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and Robert Bosch Center for Tumor Diseases (RBCT), 70376 Stuttgart, Germany
| |
Collapse
|
31
|
In Vivo Antigen Expression Regulates CD4 T Cell Differentiation and Vaccine Efficacy against Mycobacterium tuberculosis Infection. mBio 2021; 12:mBio.00226-21. [PMID: 33879592 PMCID: PMC8092222 DOI: 10.1128/mbio.00226-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis, caused by Mtb, constitutes a global health crisis of massive proportions, and the impact of the current coronavirus disease 2019 (COVID-19) pandemic is expected to cause a rise in tuberculosis-related deaths. Improved vaccines are therefore needed more than ever, but a lack of knowledge on protective immunity hampers their development. New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to gamma interferon (IFN-γ) or nutrient/oxygen deprivation of in vitro-infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analyzed their corresponding CD4 T cell phenotype and vaccine protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination, and against the overexpressing strain, vaccination with MPT70 conferred protection similar to vaccination with ESAT-6. Together, our data indicate that high in vivo antigen expression drives T cells toward terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune balance in favor of the host.
Collapse
|
32
|
Clemmensen HS, Dube JY, McIntosh F, Rosenkrands I, Jungersen G, Aagaard C, Andersen P, Behr MA, Mortensen R. In vivo antigen expression regulates CD4 T cell differentiation and vaccine efficacy against Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.02.02.429488. [PMID: 33564764 PMCID: PMC7872352 DOI: 10.1101/2021.02.02.429488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
New vaccines are urgently needed against Mycobacterium tuberculosis (Mtb), which kills more than 1.4 million people each year. CD4 T cell differentiation is a key determinant of protective immunity against Mtb, but it is not fully understood how host-pathogen interactions shape individual antigen-specific T cell populations and their protective capacity. Here, we investigated the immunodominant Mtb antigen, MPT70, which is upregulated in response to IFN-γ or nutrient/oxygen deprivation of in vitro infected macrophages. Using a murine aerosol infection model, we compared the in vivo expression kinetics of MPT70 to a constitutively expressed antigen, ESAT-6, and analysed their corresponding CD4 T cell phenotype and vaccine-protection. For wild-type Mtb, we found that in vivo expression of MPT70 was delayed compared to ESAT-6. This delayed expression was associated with induction of less differentiated MPT70-specific CD4 T cells but, compared to ESAT-6, also reduced protection after vaccination. In contrast, infection with an MPT70-overexpressing Mtb strain promoted highly differentiated KLRG1+CX3CR1+ CD4 T cells with limited lung-homing capacity. Importantly, this differentiated phenotype could be prevented by vaccination and, against the overexpressing strain, vaccination with MPT70 conferred similar protection as ESAT-6. Together our data indicate that high in vivo antigen expression drives T cells towards terminal differentiation and that targeted vaccination with adjuvanted protein can counteract this phenomenon by maintaining T cells in a protective less-differentiated state. These observations shed new light on host-pathogen interactions and provide guidance on how future Mtb vaccines can be designed to tip the immune-balance in favor of the host.
Collapse
Affiliation(s)
- Helena Strand Clemmensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Health Technology, Technical University of Denmark
| | - Jean-Yves Dube
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Fiona McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
| | - Ida Rosenkrands
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Gregers Jungersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Health Technology, Technical University of Denmark
| | - Claus Aagaard
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
- Department of Immunology and Microbiology, University of Copenhagen
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, Montréal, Canada
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| | - Rasmus Mortensen
- Department of Infectious Disease Immunology, Statens Serum Institut, Denmark
| |
Collapse
|
33
|
Trefzer A, Kadam P, Wang SH, Pennavaria S, Lober B, Akçabozan B, Kranich J, Brocker T, Nakano N, Irmler M, Beckers J, Straub T, Obst R. Dynamic adoption of anergy by antigen-exhausted CD4 + T cells. Cell Rep 2021; 34:108748. [PMID: 33567282 DOI: 10.1016/j.celrep.2021.108748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Exhausted immune responses to chronic diseases represent a major challenge to global health. We study CD4+ T cells in a mouse model with regulatable antigen presentation. When the cells are driven through the effector phase and are then exposed to different levels of persistent antigen, they lose their T helper 1 (Th1) functions, upregulate exhaustion markers, resemble naturally anergic cells, and modulate their MAPK, mTORC1, and Ca2+/calcineurin signaling pathways with increasing dose and time. They also become unable to help B cells and, at the highest dose, undergo apoptosis. Transcriptomic analyses show the dynamic adjustment of gene expression and the accumulation of T cell receptor (TCR) signals over a period of weeks. Upon antigen removal, the cells recover their functionality while losing exhaustion and anergy markers. Our data suggest an adjustable response of CD4+ T cells to different levels of persisting antigen and contribute to a better understanding of chronic disease.
Collapse
Affiliation(s)
- Anne Trefzer
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Pallavi Kadam
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Lober
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
34
|
Trendel N, Kruger P, Gaglione S, Nguyen J, Pettmann J, Sontag ED, Dushek O. Perfect adaptation of CD8 + T cell responses to constant antigen input over a wide range of affinities is overcome by costimulation. Sci Signal 2021; 14:eaay9363. [PMID: 34855472 PMCID: PMC7615691 DOI: 10.1126/scisignal.aay9363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reduced T cell responses by contrast antigen stimulation can be rescued by signals from costimulatory receptors.
Collapse
Affiliation(s)
- Nicola Trendel
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Stephanie Gaglione
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - John Nguyen
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Johannes Pettmann
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| | - Eduardo D Sontag
- Electrical and Computer Engineering & Bioengineering, Northeastern University, USA
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, UK
| |
Collapse
|
35
|
Lofano G, Mallett CP, Bertholet S, O’Hagan DT. Technological approaches to streamline vaccination schedules, progressing towards single-dose vaccines. NPJ Vaccines 2020; 5:88. [PMID: 33024579 PMCID: PMC7501859 DOI: 10.1038/s41541-020-00238-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 12/21/2022] Open
Abstract
Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.
Collapse
Affiliation(s)
- Giuseppe Lofano
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Corey P. Mallett
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Sylvie Bertholet
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| | - Derek T. O’Hagan
- GSK, Slaoui Center for Vaccines Research, Rockville, MD 20850 USA
| |
Collapse
|
36
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
37
|
Mehta NK, Pradhan RV, Soleimany AP, Moynihan KD, Rothschilds AM, Momin N, Rakhra K, Mata-Fink J, Bhatia SN, Wittrup KD, Irvine DJ. Pharmacokinetic tuning of protein-antigen fusions enhances the immunogenicity of T-cell vaccines. Nat Biomed Eng 2020; 4:636-648. [PMID: 32483299 DOI: 10.1038/s41551-020-0563-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
The formulations of peptide-based antitumour vaccines being tested in clinical studies are generally associated with weak potency. Here, we show that pharmacokinetically tuning the responses of peptide vaccines by fusing the peptide epitopes to carrier proteins optimizes vaccine immunogenicity in mice. In particular, we show in immunized mice that the carrier protein transthyretin simultaneously optimizes three factors: efficient antigen uptake in draining lymphatics from the site of injection, protection of antigen payloads from proteolytic degradation and reduction of antigen presentation in uninflamed distal lymphoid organs. Optimizing these factors increases vaccine immunogenicity by up to 90-fold and maximizes the responses to viral antigens, tumour-associated antigens, oncofetal antigens and shared neoantigens. Protein-peptide epitope fusions represent a facile and generalizable strategy for enhancing the T-cell responses elicited by subunit vaccines.
Collapse
Affiliation(s)
- Naveen K Mehta
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roma V Pradhan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ava P Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Kelly D Moynihan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Adrienne M Rothschilds
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kavya Rakhra
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordi Mata-Fink
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Cambridge, MA, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA. .,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
38
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
39
|
Ghorani E, Reading JL, Henry JY, Massy MRD, Rosenthal R, Turati V, Joshi K, Furness AJS, Ben Aissa A, Saini SK, Ramskov S, Georgiou A, Sunderland MW, Wong YNS, Mucha MVD, Day W, Galvez-Cancino F, Becker PD, Uddin I, Oakes T, Ismail M, Ronel T, Woolston A, Jamal-Hanjani M, Veeriah S, Birkbak NJ, Wilson GA, Litchfield K, Conde L, Guerra-Assunção JA, Blighe K, Biswas D, Salgado R, Lund T, Bakir MA, Moore DA, Hiley CT, Loi S, Sun Y, Yuan Y, AbdulJabbar K, Turajilic S, Herrero J, Enver T, Hadrup SR, Hackshaw A, Peggs KS, McGranahan N, Chain B, Swanton C, Quezada SA. The T cell differentiation landscape is shaped by tumour mutations in lung cancer. NATURE CANCER 2020; 1:546-561. [PMID: 32803172 PMCID: PMC7115931 DOI: 10.1038/s43018-020-0066-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023]
Abstract
Tumour mutational burden (TMB) predicts immunotherapy outcome in non-small cell lung cancer (NSCLC), consistent with immune recognition of tumour neoantigens. However, persistent antigen exposure is detrimental for T cell function. How TMB affects CD4 and CD8 T cell differentiation in untreated tumours, and whether this affects patient outcomes is unknown. Here we paired high-dimensional flow cytometry, exome, single-cell and bulk RNA sequencing from patients with resected, untreated NSCLC to examine these relationships. TMB was associated with compartment-wide T cell differentiation skewing, characterized by loss of TCF7-expressing progenitor-like CD4 T cells, and an increased abundance of dysfunctional CD8 and CD4 T cell subsets, with significant phenotypic and transcriptional similarity to neoantigen-reactive CD8 T cells. A gene signature of redistribution from progenitor-like to dysfunctional states associated with poor survival in lung and other cancer cohorts. Single-cell characterization of these populations informs potential strategies for therapeutic manipulation in NSCLC.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James L Reading
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| | - Jake Y Henry
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Marc Robert de Massy
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Rachel Rosenthal
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Virginia Turati
- Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Kroopa Joshi
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Andrew J S Furness
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Assma Ben Aissa
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Sunil Kumar Saini
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sofie Ramskov
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Andrew Georgiou
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Mariana Werner Sunderland
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Yien Ning Sophia Wong
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Maria Vila De Mucha
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - William Day
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Pablo D Becker
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Imran Uddin
- Division of Infection and Immunity, University College London, London, UK
| | - Theres Oakes
- Division of Infection and Immunity, University College London, London, UK
| | - Mazlina Ismail
- Division of Infection and Immunity, University College London, London, UK
| | - Tahel Ronel
- Division of Infection and Immunity, University College London, London, UK
| | - Annemarie Woolston
- Division of Infection and Immunity, University College London, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Nicolai J Birkbak
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Gareth A Wilson
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | | | - Kevin Blighe
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Dhruva Biswas
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | | | - Tom Lund
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - David A Moore
- Department of Pathology, University College London Cancer Institute, London, UK
| | - Crispin T Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sherene Loi
- Division of Research, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
| | - Yuxin Sun
- Division of Infection and Immunity, University College London, London, UK
| | - Yinyin Yuan
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Khalid AbdulJabbar
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Samra Turajilic
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, London, UK
| | - Tariq Enver
- Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Allan Hackshaw
- Cancer Research UK and University College London Cancer Trials Centre, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
- Department of Computer Sciences, University College London, London, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
- University College London Hospitals, London, UK.
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
40
|
Prévost J, Edgar CR, Richard J, Trothen SM, Jacob RA, Mumby MJ, Pickering S, Dubé M, Kaufmann DE, Kirchhoff F, Neil SJD, Finzi A, Dikeakos JD. HIV-1 Vpu Downregulates Tim-3 from the Surface of Infected CD4 + T Cells. J Virol 2020; 94:e01999-19. [PMID: 31941771 PMCID: PMC7081912 DOI: 10.1128/jvi.01999-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/12/2020] [Indexed: 01/26/2023] Open
Abstract
Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.
Collapse
Affiliation(s)
- Jérémie Prévost
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Cassandra R Edgar
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Mitchell J Mumby
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Suzanne Pickering
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Mathieu Dubé
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
| | - Daniel E Kaufmann
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Stuart J D Neil
- Department of Infectious Disease, King's College London School of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
41
|
Marcel N, Hedrick SM. A key control point in the T cell response to chronic infection and neoplasia: FOXO1. Curr Opin Immunol 2020; 63:51-60. [PMID: 32135399 DOI: 10.1016/j.coi.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/26/2022]
Abstract
T cells able to control neoplasia or chronic infections display a signature gene expression profile similar or identical to that of central memory T cells. These cells have qualities of self-renewal and a plasticity that allow them to repeatedly undergo activation (growth, proliferation, and differentiation), followed by quiescence. It is these qualities that define the ability of T cells to establish an equilibrium with chronic infectious agents, and also preserve the ability of T cells to be re-activated (by checkpoint therapy) in response to malignant cancers. Here we describe distinctions between the forms of inhibition mediated by tumors and persistent viruses, we review the properties of T cells associated with long-term immunity, and we identify the transcription factor, FOXO1, as the control point for a program of gene expression that allows CD8+ T cells to undergo serial reactivation and self-renewal.
Collapse
Affiliation(s)
- Nimi Marcel
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, TATA Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0377, United States
| | - Stephen M Hedrick
- Molecular Biology Section, Division of Biological Sciences, Department of Cellular and Molecular Medicine, TATA Institute for Genetics and Society, University of California, San Diego, La Jolla, CA 92093-0377, United States.
| |
Collapse
|
42
|
Memory CD4 + T Cells in Immunity and Autoimmune Diseases. Cells 2020; 9:cells9030531. [PMID: 32106536 PMCID: PMC7140455 DOI: 10.3390/cells9030531] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
CD4+ T helper (Th) cells play central roles in immunity in health and disease. While much is known about the effector function of Th cells in combating pathogens and promoting autoimmune diseases, the roles and biology of memory CD4+ Th cells are complex and less well understood. In human autoimmune diseases such as multiple sclerosis (MS), there is a critical need to better understand the function and biology of memory T cells. In this review article we summarize current concepts in the field of CD4+ T cell memory, including natural history, developmental pathways, subsets, and functions. Furthermore, we discuss advancements in the field of the newly-described CD4+ tissue-resident memory T cells and of CD4+ memory T cells in autoimmune diseases, two major areas of important unresolved questions in need of answering to advance new vaccine design and development of novel treatments for CD4+ T cell-mediated autoimmune diseases.
Collapse
|
43
|
Counoupas C, Triccas JA. The generation of T-cell memory to protect against tuberculosis. Immunol Cell Biol 2019; 97:656-663. [PMID: 31127962 DOI: 10.1111/imcb.12275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) kills more individuals each year than any other single pathogen and a more effective vaccine is critical for the global control of the disease. Although there has been recent progress in the clinical testing of candidates, no new vaccine has been licensed for use and correlates of protective immunity in humans have not been defined. Prior Mycobacterium tuberculosis infection does not appear to confer long-term protective immunity in humans; thus mimicking the natural immune response to infection may not be a suitable approach to develop improved TB vaccines. Data from animal testing are used to progress vaccines through the "vaccine pipeline", but studies in animals have not been able to predict efficacy in humans. Furthermore, although the generation of conventional CD4+ T-cell responses are considered necessary to control infection with M. tuberculosis, these do not necessarily correlate with protection induced by candidate vaccines and other immune components may play a role, including donor unrestricted T cells, tissue-resident memory T cells and anti-M. tuberculosis antibodies. This review will summarize the current understanding of the protective immune responses following M. tuberculosis infection or vaccination, with a particular focus on vaccines that have recently entered clinical trials.
Collapse
Affiliation(s)
- Claudio Counoupas
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
44
|
Li J, Jin C, Wu C, Huang J. PD-1 modulating Mycobacterium tuberculosis-specific polarized effector memory T cells response in tuberculosis pleurisy. J Leukoc Biol 2019; 106:733-747. [PMID: 30861206 DOI: 10.1002/jlb.ma1118-450rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Host-pathogen interactions in tuberculosis (TB) should be studied at the disease sites because Mycobacterium tuberculosis (M.tb) is predominantly contained in local tissue lesions. T-cell immune responses are required to mount anti-mycobacterial immunity. However, T-cell immune responses modulated by programmed cell death protein 1 (PD-1) during tuberculosis pleurisy (TBP) remains poorly understood. We selected the pleural fluid mononuclear cells (PFMCs) from TBP and PBMCs from healthy donors (HD), and characterized PD-1-expresing T-cell phenotypes and functions. Here, we found that the PFMCs exhibited increases in numbers of PD-1-expressing CD4+ and CD8+ T cells, which preferentially displayed polarized effector memory phenotypes. The M.tb-specific Ag stimulation increased CD4+ PD-1+ and CD8+ PD-1+ T cells, which is in direct correlation with IFN-γ production and PD-L1+ APCs in PFMCs of these individuals. Moreover, blockage of PD-1/PD-L1 pathway enhanced the percentage of IFN-γ+ T cells, demonstrating that the PD-1/PD-L1 pathway played a negative regulation in T cell effector functions. Furthermore, CD4+ PD-1+ and CD8+ PD-1+ T-cell subsets showed greater memory phenotype, activation, and effector functions for producing Th1 cytokines than PD-1- counterparts. Thus, these PD-1+ T cells were not exhausted but appear to be central to maintaining Ag-specific effector. IL-12, a key immunoregulatory cytokine, enhanced the expression of PD-1 and restored a strong IFN-γ response through selectively inducing the phosphorylation of STAT4 in CD4+ PD-1+ T-bet+ and CD8+ PD-1+ T-bet+ T cells. This study therefore uncovered a previously unknown mechanism for T-cell immune responses regulated by PD-1, and may have implications for potential immune intervention in TBP.
Collapse
Affiliation(s)
- Jiangping Li
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P. R. China.,Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Chenxi Jin
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P. R. China
| | - Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jun Huang
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|
45
|
Huang Q, Hu J, Tang J, Xu L, Ye L. Molecular Basis of the Differentiation and Function of Virus Specific Follicular Helper CD4 + T Cells. Front Immunol 2019; 10:249. [PMID: 30828337 PMCID: PMC6384271 DOI: 10.3389/fimmu.2019.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
During viral infection, virus-specific follicular helper T cells provide important help to cognate B cells for their survival, consecutive proliferation and mutation and eventual differentiation into memory B cells and antibody-secreting plasma cells. Similar to Tfh cells generated in other conditions, the differentiation of virus-specific Tfh cells can also be characterized as a process involved multiple factors and stages, however, which also exhibits distinct features. Here, we mainly focus on the current understanding of Tfh fate commitment, functional maturation, lineage maintenance and memory transition and formation in the context of viral infection.
Collapse
Affiliation(s)
- Qizhao Huang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianjun Hu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianfang Tang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lifan Xu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
46
|
Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, Cheong HC, Yong YK, Larsson M, Shankar EM. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Front Immunol 2018; 9:2569. [PMID: 30473697 PMCID: PMC6237934 DOI: 10.3389/fimmu.2018.02569] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/31/2022] Open
Abstract
T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
Collapse
Affiliation(s)
- Alireza Saeidi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia
| | - Keivan Zandi
- Department of Pediatrics School of Medicine Emory University, Atlanta, GA, United States
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamidreza Saeidi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yean Kong Yong
- Center of Excellence for Research in AIDS, University of Malaya, Kuala Lumpur, Malaysia.,Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki Muthu Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
47
|
Shahbazi M, Soltanzadeh-Yamchi M, Mohammadnia-Afrouzi M. T cell exhaustion implications during transplantation. Immunol Lett 2018; 202:52-58. [PMID: 30130559 DOI: 10.1016/j.imlet.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
Exhaustion of lymphocyte function, particularly T cell exhaustion, due to prolonged exposure to a high load of foreign antigen is commonly seen during chronic viral infection as well as antitumor immune responses. This phenomenon has been associated with a determined molecular mechanism and phenotypic manifestations on the cell surface. In spite of investigation of exhaustion, mostly about CD8 responses toward viral infections, recent studies have reported that chronic exposure to antigen may develop exhaustion in CD4 + T cells, B cells, and NK cells. Little is known with respect to lymphocyte exhaustion during transplantation and its effect on aberrant anti-graft responses. Through a same mechanobiology observed during chronic exposure of foreign viral antigens, alloantigen persistence mediated by allograft could develop a favorable circumstance for exhaustion of T cells responding to allograft. However, to achieve better manipulation approaches of this event to reduce the complications during transplantation, we need to be armed with a bulk of knowledge with regard to quality and quantity of T cell exhaustion occurring in various allografts, the kinetics of exhaustion development, the impression of immunosuppressive agents on the exhaustion, and the influence of exhaustion on graft survival and immune tolerance.
Collapse
Affiliation(s)
- Mehdi Shahbazi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Soltanzadeh-Yamchi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mousa Mohammadnia-Afrouzi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Immunology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
48
|
Kerdidani D, Magkouta S, Chouvardas P, Karavana V, Glynos K, Roumelioti F, Zakynthinos S, Wauters E, Janssens W, Lambrechts D, Kollias G, Tsoumakidou M. Cigarette Smoke-Induced Emphysema Exhausts Early Cytotoxic CD8 + T Cell Responses against Nascent Lung Cancer Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:1558-1569. [PMID: 30037849 DOI: 10.4049/jimmunol.1700700] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/25/2018] [Indexed: 01/08/2023]
Abstract
Chronic obstructive pulmonary disease is a chronic inflammatory disorder with an increased incidence of lung cancer. The emphysema component of chronic obstructive pulmonary disease confers the greatest proportion to lung cancer risk. Although tumors create inflammatory conditions to escape immunity, the immunological responses that control growth of nascent cancer cells in pre-established inflammatory microenvironments are unknown. In this study, we addressed this issue by implanting OVA-expressing cancer cells in the lungs of mice with cigarette smoke-induced emphysema. Emphysema augmented the growth of cancer cells, an effect that was dependent on T cytotoxic cells. OVA-specific OTI T cells showed early signs of exhaustion upon transfer in emphysema tumor hosts that was largely irreversible because sorting, expansion, and adoptive transfer failed to restore their antitumor activity. Increased numbers of PD-L1- and IDO-positive CD11c+ myeloid dendritic cells (DCs) infiltrated emphysema tumors, whereas sorted emphysema tumor DCs poorly stimulated OTI T cells. Upon adoptive transfer in immunocompetent hosts, T cells primed by emphysema tumor DCs were unable to halt tumor growth. DCs exposed to the emphysema tumor microenvironment downregulated MHC class II and costimulatory molecules, whereas they upregulated PD-L1/IDO via oxidative stress-dependent mechanisms. T cell activation increased upon PD-L1 blockade in emphysema DC-T cell cocultures and in emphysema tumor hosts in vivo. Analysis of the transcriptome of primary human lung tumors showed a strong association between computed tomography-based emphysema scoring and downregulation of immunogenic processes. Thus, suppression of adaptive immunity against lung cancer cells links a chronic inflammatory disorder, emphysema, to cancer, with clinical implications for emphysema patients to be considered optimal candidates for cancer immunotherapies.
Collapse
Affiliation(s)
- Dimitra Kerdidani
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Sophia Magkouta
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Panagiotis Chouvardas
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Vassiliki Karavana
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Konstantinos Glynos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Fani Roumelioti
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece
| | - Spyros Zakynthinos
- Department of Intensive Care Medicine, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Els Wauters
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Wim Janssens
- Respiratory Oncology Unit, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Leuven Lung Cancer Group, University Hospitals KU Leuven, 3000 Leuven, Belgium.,Laboratory of Pneumology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, 3000 Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB, 3000 Leuven, Belgium; and.,Laboratory for Translational Genetics, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - George Kollias
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece.,Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Maria Tsoumakidou
- Division of Immunology, Biomedical Sciences Research Center 'Alexander Fleming,' 16672 Vari, Athens, Greece;
| |
Collapse
|
49
|
Danelli L, Donnarumma T, Kassiotis G. Correlates of Follicular Helper Bias in the CD4 T Cell Response to a Retroviral Antigen. Front Immunol 2018; 9:1260. [PMID: 29951052 PMCID: PMC6008654 DOI: 10.3389/fimmu.2018.01260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
CD4+ T cell differentiation is influenced by a plethora of intrinsic and extrinsic factors, providing the immune system with the ability to tailor its response according to specific stimuli. Indeed, different classes of pathogens may induce a distinct balance of CD4+ T cell differentiation programmes. Here, we report an uncommonly strong bias toward follicular helper (Tfh) differentiation of CD4+ T cells reactive with a retroviral envelope glycoprotein model antigen, presented in its natural context during retroviral infection. Conversely, the response to the same antigen, presented in different immunization regimens, elicited a response typically balanced between Tfh and T helper 1 cells. Comprehensive quantitation of variables known to influence Tfh differentiation revealed the closest correlation with the strength of T cell receptor (TCR) signaling, leading to PD-1 expression, but not with surface TCR downregulation, irrespective of TCR clonotypic avidity. In contrast, strong TCR signaling leading to TCR downregulation and induction of LAG3 expression in high TCR avidity clonotypes restrained CD4+ T cell commitment and further differentiation. Finally, stunted Th1 differentiation, correlating with limited IL-2 availability in retroviral infection, provided permissive conditions for Tfh development, suggesting that Tfh differentiation is the default program of envelope-reactive CD4+ T cells.
Collapse
Affiliation(s)
- Luca Danelli
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - Tiziano Donnarumma
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, London, United Kingdom
- Department of Medicine, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
50
|
Dhume K, McKinstry KK. Early programming and late-acting checkpoints governing the development of CD4 T-cell memory. Immunology 2018; 155:53-62. [PMID: 29701246 DOI: 10.1111/imm.12942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/25/2022] Open
Abstract
CD4 T cells contribute to protection against pathogens through numerous mechanisms. Incorporating the goal of memory CD4 T-cell generation into vaccine strategies therefore offers a powerful approach to improve their efficacy, especially in situations where humoral responses alone cannot confer long-term immunity. These threats include viruses such as influenza that mutate coat proteins to avoid neutralizing antibodies, but that are targeted by T cells that recognize more conserved protein epitopes shared by different strains. A major barrier in the design of such vaccines is that the mechanisms controlling the efficiency with which memory cells form remain incompletely understood. Here, we discuss recent insights into fate decisions controlling memory generation. We focus on the importance of three general cues: interleukin-2, antigen and co-stimulatory interactions. It is increasingly clear that these signals have a powerful influence on the capacity of CD4 T cells to form memory during two distinct phases of the immune response. First, through 'programming' that occurs during initial priming, and second, through 'checkpoints' that operate later during the effector stage. These findings indicate that novel vaccine strategies must seek to optimize cognate interactions, during which interleukin-2-, antigen- and co-stimulation-dependent signals are tightly linked, well beyond initial antigen encounter to induce robust memory CD4 T cells.
Collapse
Affiliation(s)
- Kunal Dhume
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Karl Kai McKinstry
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|