1
|
de Moura Gomes A, L Petkau T, J Korecki A, Fornes O, Galvan A, Lu G, M Hill A, Ling Lam S, Yao A, A Farkas R, W Wasserman W, Smith Y, M Simpson E, R Leavitt B. New MiniPromoter Ple389 (ADORA2A) drives selective expression in medium spiny neurons in mice and non-human primates. Sci Rep 2024; 14:28194. [PMID: 39548191 PMCID: PMC11568231 DOI: 10.1038/s41598-024-79004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Compact cell type-specific promoters are important tools for basic and preclinical research and clinical delivery of gene therapy. In this work, we designed novel MiniPromoters to target D1 and D2 type dopaminoceptive medium spiny neurons in the striatum by manually identifying candidate regulatory regions or employing the OnTarget webserver. We then empirically tested the designs in rAAV-PHP.B for specificity and robustness in three systems: intravenous injection in mice, intracerebroventricular injection in mice, and intracerebroventricular injection in non-human primates. Twelve MiniPromoters were designed from eight genes: seven manually and five using OnTarget. When delivered intravenously in mice, three MiniPromoters demonstrated highly selective expression in the striatum, with Ple389 (ADORA2A) showing high levels of dopamine D2-receptor cell co-localization. The same three MiniPromoters also displayed enriched expression in the striatum when delivered intracerebroventricularly in mice with high levels of DARPP32 co-localization. Finally, Ple389 (ADORA2A) was intracerebroventricularly injected in non-human primates and showed enriched expression in the striatum as in the mouse. Ple389 (ADORA2A) demonstrated expression in the medium spiny neurons in all three systems tested and exhibited the highest level of D2-MSNs and DARPP32 co-labeling in mice, demonstrating its potential as a tool for gene therapy approaches for Parkinson and Huntington disease treatment.
Collapse
Affiliation(s)
- Alissandra de Moura Gomes
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Polymorphic BioSciences, Vancouver, BC, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, V6T 1Z3, Canada
- Genentech, South San Francisco, CA, USA
| | - Adriana Galvan
- Udall Center of Excellence for Parkinson's Disease and Department of Neurology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Ge Lu
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Austin M Hill
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Anqi Yao
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Rachelle A Farkas
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Yoland Smith
- Udall Center of Excellence for Parkinson's Disease and Department of Neurology, Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics at British Columbia Children's Hospital, The University of British Columbia, 2028-950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- The Djavad Mowafaghian Center for Brain Health, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC, V6T 2B5, Canada.
- Department of Medical Genetics, The University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Chawla R, Tom JKA, Boyd T, Tu NH, Bai T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. Nat Commun 2024; 15:9258. [PMID: 39462120 PMCID: PMC11513989 DOI: 10.1038/s41467-024-53469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The inorganic biopolymer polyphosphate (polyP) occurs in all domains of life and affects myriad cellular processes. A longstanding observation is polyP's frequent proximity to chromatin, and, in many bacteria, its occurrence as magnesium (Mg2+)-enriched condensates embedded in the nucleoid region, particularly in response to stress. The physical basis of the interaction between polyP, DNA and Mg2+, and the resulting effects on the organization of the nucleoid and polyP condensates, remain poorly understood. Here, using a minimal system of polyP, Mg2+, and DNA, we find that DNA can form shells around polyP-Mg2+ condensates. These shells show reentrant behavior, that is, they form within a window of Mg2+ concentrations, representing a tunable architecture with potential relevance in other multicomponent condensates. This surface association tunes condensate size and DNA morphology in a manner dependent on DNA length and concentration, even at DNA concentrations orders of magnitude lower than found in the cell. Our work also highlights the remarkable capacity of two primordial inorganic species to organize DNA.
Collapse
Affiliation(s)
- Ravi Chawla
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Chakra Techworks Inc., San Diego, CA, USA
| | - Jenna K A Tom
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas H Tu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanxi Bai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Lisa R Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
3
|
Kojima L, Seiriki K, Rokujo H, Nakazawa T, Kasai A, Hashimoto H. Optimization of AAV vectors for transactivator-regulated enhanced gene expression within targeted neuronal populations. iScience 2024; 27:109878. [PMID: 38799556 PMCID: PMC11126825 DOI: 10.1016/j.isci.2024.109878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/03/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Adeno-associated virus (AAV) vectors are potential tools for cell-type-selective gene delivery to the central nervous system. Although cell-type-specific enhancers and promoters have been identified for AAV systems, there is limited information regarding the effects of AAV genomic components on the selectivity and efficiency of gene expression. Here, we offer an alternative strategy to provide specific and efficient gene delivery to a targeted neuronal population by optimizing recombinant AAV genomic components, named TAREGET (TransActivator-Regulated Enhanced Gene Expression within Targeted neuronal populations). We established this strategy in oxytocinergic neurons and showed that the TAREGET enabled sufficient gene expression to label long-projecting axons in wild-type mice. Its application to other cell types, including serotonergic and dopaminergic neurons, was also demonstrated. These results demonstrate that optimization of AAV expression cassettes can improve the specificity and efficiency of cell-type-specific gene expression and that TAREGET can renew previously established cell-type-specific promoters with improved performance.
Collapse
Affiliation(s)
- Leo Kojima
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroki Rokujo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Atsushi Kasai
- Systems Neuropharmacology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871, Japan
- Institute for Datability Science, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Hu SW, Lv J, Wang Z, Tang H, Wang H, Wang F, Wang D, Zhang J, Zhang L, Cao Q, Chen Y, Gao Z, Han Y, Wang W, Li GL, Shu Y, Li H. Engineering of the AAV-Compatible Hair Cell-Specific Small-Size Myo15 Promoter for Gene Therapy in the Inner Ear. RESEARCH (WASHINGTON, D.C.) 2024; 7:0341. [PMID: 38665848 PMCID: PMC11045262 DOI: 10.34133/research.0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
Adeno-associated virus (AAV)-mediated gene therapy is widely applied to treat numerous hereditary diseases in animal models and humans. The specific expression of AAV-delivered transgenes driven by cell type-specific promoters should further increase the safety of gene therapy. However, current methods for screening cell type-specific promoters are labor-intensive and time-consuming. Herein, we designed a "multiple vectors in one AAV" strategy for promoter construction in vivo. Through this strategy, we truncated a native promoter for Myo15 expression in hair cells (HCs) in the inner ear, from 1,611 bp down to 1,157 bp, and further down to 956 bp. Under the control of these 2 promoters, green fluorescent protein packaged in AAV-PHP.eB was exclusively expressed in the HCs. The transcription initiation ability of the 2 promoters was further verified by intein-mediated otoferlin recombination in a dual-AAV therapeutic system. Driven by these 2 promoters, human otoferlin was selectively expressed in HCs, resulting in the restoration of hearing in treated Otof -/- mice for at least 52 weeks. In summary, we developed an efficient screening strategy for cell type-specific promoter engineering and created 2 truncated Myo15 promoters that not only restored hereditary deafness in animal models but also show great potential for treating human patients in future.
Collapse
Affiliation(s)
- Shao Wei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Jun Lv
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Zijing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Honghai Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Hui Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Fang Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Juan Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Longlong Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Qi Cao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Yuxin Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Ziwen Gao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Yu Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Wuqing Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Geng-lin Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science,
Fudan University, Shanghai, 200031, China
- Institute of Biomedical Science,
Fudan University, Shanghai, 200032, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200032, China
| |
Collapse
|
5
|
Araujo VG, Dias MS, Hauswirth WW, Linden R, Petrs-Silva H. rAAV-compatible human mini promoters enhance transgene expression in rat retinal ganglion cells. Exp Eye Res 2024; 239:109758. [PMID: 38123011 DOI: 10.1016/j.exer.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Recombinant adeno-associated viral vectors (rAAV) are the safest and most effective gene delivery platform to drive the treatment of many inherited eye disorders in well-characterized animal models. The use in rAAV of ubiquitous promoters derived from viral sequences such as CMV/CBA (chicken β-actin promoter with cytomegalovirus enhancer) can lead to unwanted side effects such as pro-inflammatory immune responses and retinal cytotoxicity, thus reducing therapy efficacy. Thus, an advance in gene therapy is the availability of small promoters, that potentiate and direct gene expression to the cell type of interest, with higher safety and efficacy. In this study, we used six human mini-promoters packaged in rAAV2 quadruple mutant (Y-F) to test for transduction of the rat retina after intravitreal injection. After four weeks, immunohistochemical analysis detected GFP-labeled cells in the ganglion cell layer (GCL) for all constructs tested. Among them, Ple25sh1, Ple25sh2 and Ple53 promoted a widespread reporter-transgene expression in the GCL, with an increased number of GFP-expressing retinal ganglion cells when compared with the CMV/CBA vector. Moreover, Ple53 provided the strongest levels of GFP fluorescence in both cell soma and axons of retinal ganglion cells (RGCs) without any detectable adverse effects in retina function. Remarkably, a nearly 50-fold reduction in the number of intravitreally injected vector particles containing Ple53 promoter, still attained levels of transgene expression similar to CMV/CBA. Thus, the tested MiniPs show great potential for protocols of retinal gene therapy in therapeutic applications for retinal degenerations, especially those involving RGC-related disorders such as glaucoma.
Collapse
Affiliation(s)
- Victor G Araujo
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana S Dias
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - William W Hauswirth
- Retinal Gene Therapy Group, Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Rafael Linden
- Laboratory of Neurogenesis, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Laboratory of Gene Therapy and Viral Vector, Carlos Chagas Filho Institute of Biophysics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Naguib S, Backstrom JR, Artis E, Ghose P, Stahl A, Hardin R, Haider AA, Ang J, Calkins DJ, Rex TS. NRF2/ARE mediated antioxidant response to glaucoma: role of glia and retinal ganglion cells. Acta Neuropathol Commun 2023; 11:171. [PMID: 37875948 PMCID: PMC10594672 DOI: 10.1186/s40478-023-01663-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is associated with age and sensitivity to intraocular pressure (IOP). We have shown that elevated IOP causes an early increase in levels of reactive oxygen species (ROS) in the microbead occlusion mouse model. We also detected an endogenous antioxidant response mediated by Nuclear factor erythroid 2-Related Factor 2 (NRF2), a transcription factor that binds to the antioxidant response element (ARE) and increases transcription of antioxidant genes. Our previous studies show that inhibiting this pathway results in earlier and greater glaucoma pathology. In this study, we sought to determine if this endogenous antioxidant response is driven by the retinal ganglion cells (RGCs) or glial cells. We used Nrf2fl/fl mice and cell-type specific adeno-associated viruses (AAVs) expressing Cre to alter Nrf2 levels in either the RGCs or glial cells. Then, we quantified the endogenous antioxidant response, visual function and optic nerve histology after IOP elevation. We found that knock-down of Nrf2 in either cell type blunts the antioxidant response and results in earlier pathology and vision loss. Further, we show that delivery of Nrf2 to the RGCs is sufficient to provide neuroprotection. In summary, both the RGCs and glial cells contribute to the antioxidant response, but treatment of the RGCs alone with increased Nrf2 is sufficient to delay onset of vision loss and axon degeneration in this induced model of glaucoma.
Collapse
Affiliation(s)
- Sarah Naguib
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Jon R Backstrom
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Elisabeth Artis
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Purnima Ghose
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Amy Stahl
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - Rachael Hardin
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Ameer A Haider
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - John Ang
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - David J Calkins
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA
| | - Tonia S Rex
- Vanderbilt University Medical Center, Vanderbilt Eye Institute, Nashville, TN, USA.
| |
Collapse
|
7
|
Chawla R, Tom JKA, Boyd T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557044. [PMID: 37745474 PMCID: PMC10515899 DOI: 10.1101/2023.09.13.557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ancient, inorganic biopolymer polyphosphate (polyP) occurs in all three domains of life and affects myriad cellular processes. An intriguing feature of polyP is its frequent proximity to chromatin, and in the case of many bacteria, its occurrence in the form of magnesium-enriched condensates embedded in the nucleoid, particularly in response to stress. The physical basis of the interaction between polyP and DNA, two fundamental anionic biopolymers, and the resulting effects on the organization of both the nucleoid and polyP condensates remain poorly understood. Given the essential role of magnesium ions in the coordination of polymeric phosphate species, we hypothesized that a minimal system of polyP, magnesium ions, and DNA (polyP-Mg2+-DNA) would capture key features of the interplay between the condensates and bacterial chromatin. We find that DNA can profoundly affect polyP-Mg2+ coacervation even at concentrations several orders of magnitude lower than found in the cell. The DNA forms shells around polyP-Mg2+ condensates and these shells show reentrant behavior, primarily forming in the concentration range close to polyP-Mg2+ charge neutralization. This surface association tunes both condensate size and DNA morphology in a manner dependent on DNA properties, including length and concentration. Our work identifies three components that could form the basis of a central and tunable interaction hub that interfaces with cellular interactors. These studies will inform future efforts to understand the basis of polyP granule composition and consolidation, as well as the potential capacity of these mesoscale assemblies to remodel chromatin in response to diverse stressors at different length and time scales.
Collapse
Affiliation(s)
| | | | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lisa R. Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
8
|
Fornes O, Av-Shalom TV, Korecki AJ, Farkas R, Arenillas D, Mathelier A, Simpson E, Wasserman W. OnTarget: in silico design of MiniPromoters for targeted delivery of expression. Nucleic Acids Res 2023; 51:W379-W386. [PMID: 37166953 PMCID: PMC10320062 DOI: 10.1093/nar/gkad375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
MiniPromoters, or compact promoters, are short DNA sequences that can drive expression in specific cells and tissues. While broadly useful, they are of high relevance to gene therapy due to their role in enabling precise control of where a therapeutic gene will be expressed. Here, we present OnTarget (http://ontarget.cmmt.ubc.ca), a webserver that streamlines the MiniPromoter design process. Users only need to specify a gene of interest or custom genomic coordinates on which to focus the identification of promoters and enhancers, and can also provide relevant cell-type-specific genomic evidence (e.g. accessible chromatin regions, histone modifications, etc.). OnTarget combines the provided data with internal data to identify candidate promoters and enhancers and design MiniPromoters. To illustrate the utility of OnTarget, we designed and characterized two MiniPromoters targeting different cell populations relevant to Parkinson Disease.
Collapse
Affiliation(s)
- Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Tamar V Av-Shalom
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Rachelle A Farkas
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
10
|
Zin EA, Ozturk BE, Dalkara D, Byrne LC. Developing New Vectors for Retinal Gene Therapy. Cold Spring Harb Perspect Med 2023; 13:a041291. [PMID: 36987583 PMCID: PMC10691475 DOI: 10.1101/cshperspect.a041291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.
Collapse
Affiliation(s)
- Emilia A Zin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Bilge E Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
11
|
Gilhooley MJ, Lindner M, Palumaa T, Hughes S, Peirson SN, Hankins MW. A systematic comparison of optogenetic approaches to visual restoration. Mol Ther Methods Clin Dev 2022; 25:111-123. [PMID: 35402632 PMCID: PMC8956963 DOI: 10.1016/j.omtm.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 02/06/2023]
Abstract
During inherited retinal degenerations (IRDs), vision is lost due to photoreceptor cell death; however, a range of optogenetic tools have been shown to restore light responses in animal models. Restored response characteristics vary between tools and the neuronal cell population to which they are delivered: the interplay between these is complex, but targeting upstream neurons (such as retinal bipolar cells) may provide functional benefit by retaining intraretinal signal processing. In this study, our aim was to compare two optogenetic tools: mammalian melanopsin (hOPN4) and microbial red-shifted channelrhodopsin (ReaChR) expressed within two subpopulations of surviving cells in a degenerate retina. Intravitreal adeno-associated viral vectors and mouse models utilising the Cre/lox system restricted expression to populations dominated by bipolar cells or retinal ganglion cells and was compared with non-targeted delivery using the chicken beta actin (CBA) promoter. In summary, we found bipolar-targeted optogenetic tools produced faster kinetics and flatter intensity-response relationships compared with non-targeted or retinal-ganglion-cell-targeted hOPN4. Hence, optogenetic tools of both mammalian and microbial origins show advantages when targeted to bipolar cells. This demonstrates the advantage of bipolar-cell-targeted optogenetics for vision restoration in IRDs. We therefore developed a bipolar-cell-specific gene delivery system employing a compressed promoter with the potential for clinical translation.
Collapse
Affiliation(s)
- Michael J. Gilhooley
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- The Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
- Moorfields Eye Hospital, 162, City Road, London EC1V 2PD, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, Deutschhausstrasse 1-2, Marburg 35037, Germany
| | - Teele Palumaa
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- East Tallinn Central Hospital Eye Clinic, Ravi 18, 10138 Tallinn, Estonia
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
| | - Stuart N. Peirson
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
| | - Mark W. Hankins
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Jules Thorne SCNi, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK
- Corresponding author Mark W. Hankins, Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
12
|
Applications of chemogenetics in non-human primates. Curr Opin Pharmacol 2022; 64:102204. [DOI: 10.1016/j.coph.2022.102204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022]
|
13
|
Mangold K, Mašek J, He J, Lendahl U, Fuchs E, Andersson ER. Highly efficient manipulation of nervous system gene expression with NEPTUNE. CELL REPORTS METHODS 2021; 1:100043. [PMID: 34557863 PMCID: PMC8457050 DOI: 10.1016/j.crmeth.2021.100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/07/2021] [Accepted: 06/11/2021] [Indexed: 11/03/2022]
Abstract
Genetic loss and gain of function in mice have typically been studied by using knockout or knockin mice that take months to years to generate. To address this problem for the nervous system, we developed NEPTUNE (NEural Plate Targeting by in Utero NanoinjEction) to rapidly and flexibly transduce the neural plate with virus prior to neurulation, and thus manipulate the future nervous system. Stable integration in >95% of cells in the brain enabled long-term overexpression, and conditional expression was achieved by using cell-type-specific MiniPromoters. Knockdown of Olig2 by using NEPTUNE recapitulated the phenotype of Olig2 -/- embryos. We used NEPTUNE to investigate Sptbn2, mutations in which cause spinocerebellar ataxia type 5. Sptbn2 knockdown induced dose-dependent defects in the neural tube, embryonic turning, and abdominal wall closure, previously unreported functions for Sptbn2. NEPTUNE thus offers a rapid and cost-effective technique to test gene function in the nervous system and can reveal phenotypes incompatible with life.
Collapse
Affiliation(s)
- Katrin Mangold
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Jan Mašek
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden
| | - Jingyan He
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Elaine Fuchs
- Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Emma R. Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 14183, Sweden
| |
Collapse
|
14
|
von Jonquieres G, Rae CD, Housley GD. Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies. Front Cell Neurosci 2021; 15:661857. [PMID: 34239416 PMCID: PMC8258421 DOI: 10.3389/fncel.2021.661857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System (CNS) homeostasis and function rely on intercellular synchronization of metabolic pathways. Developmental and neurochemical imbalances arising from mutations are frequently associated with devastating and often intractable neurological dysfunction. In the absence of pharmacological treatment options, but with knowledge of the genetic cause underlying the pathophysiology, gene therapy holds promise for disease control. Consideration of leukodystrophies provide a case in point; we review cell type – specific expression pattern of the disease – causing genes and reflect on genetic and cellular treatment approaches including ex vivo hematopoietic stem cell gene therapies and in vivo approaches using adeno-associated virus (AAV) vectors. We link recent advances in vectorology to glial targeting directed towards gene therapies for specific leukodystrophies and related developmental or neurometabolic disorders affecting the CNS white matter and frame strategies for therapy development in future.
Collapse
Affiliation(s)
- Georg von Jonquieres
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis 2021; 153:105314. [PMID: 33636385 DOI: 10.1016/j.nbd.2021.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
The granulin protein (also known as, and hereafter referred to as, progranulin) is a secreted glycoprotein that contributes to overall brain health. Heterozygous loss-of-function mutations in the gene encoding the progranulin protein (Granulin Precursor, GRN) are a common cause of familial frontotemporal dementia (FTD). Gene therapy approaches that aim to increase progranulin expression from a single wild-type allele, an area of active investigation for the potential treatment of GRN-dependent FTD, will benefit from the availability of a mouse model that expresses a genomic copy of the human GRN gene. Here we report the development and characterization of a novel mouse model that expresses the entire human GRN gene in its native genomic context as a single copy inserted into a defined locus (Hprt) in the mouse genome. We show that human and mouse progranulin are expressed in a similar tissue-specific pattern, suggesting that the two genes are regulated by similar mechanisms. Human progranulin rescues a phenotype characteristic of progranulin-null mice, the exaggerated and early deposition of the aging pigment lipofuscin in the brain, indicating that the two proteins are functionally similar. Longitudinal behavioural and neuropathological analyses revealed no significant differences between wild-type and human progranulin-overexpressing mice up to 18 months of age, providing evidence that long-term increase of progranulin levels is well tolerated in mice. Finally, we demonstrate that human progranulin expression can be increased in the brain using an antisense oligonucleotide that inhibits a known GRN-regulating micro-RNA, demonstrating that the transgene is responsive to potential gene therapy drugs. Human progranulin-expressing mice represent a novel and valuable tool to expedite the development of progranulin-modulating therapeutics.
Collapse
|
16
|
Korecki AJ, Cueva-Vargas JL, Fornes O, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Zhou M, Wasserman WW, Di Polo A, Simpson EM. Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Müller glial, and PAX6 cells. Gene Ther 2021; 28:351-372. [PMID: 33531684 PMCID: PMC8222000 DOI: 10.1038/s41434-021-00227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Small and cell-type restricted promoters are important tools for basic and preclinical research, and clinical delivery of gene therapies. In clinical gene therapy, ophthalmic trials have been leading the field, with over 50% of ocular clinical trials using promoters that restrict expression based on cell type. Here, 19 human DNA MiniPromoters were bioinformatically designed for rAAV, tested by neonatal intravenous delivery in mouse, and successful MiniPromoters went on to be tested by intravitreal, subretinal, intrastromal, and/or intravenous delivery in adult mouse. We present promoter development as an overview for each cell type, but only show results in detail for the recommended MiniPromoters: Ple265 and Ple341 (PCP2) ON bipolar, Ple349 (PDE6H) cone, Ple253 (PITX3) corneal stroma, Ple32 (CLDN5) endothelial cells of the blood-retina barrier, Ple316 (NR2E1) Müller glia, and Ple331 (PAX6) PAX6 positive. Overall, we present a resource of new, redesigned, and improved MiniPromoters for ocular gene therapy that range in size from 784 to 2484 bp, and from weaker, equal, or stronger in strength relative to the ubiquitous control promoter smCBA. All MiniPromoters will be useful for therapies involving small regulatory RNA and DNA, and proteins ranging from 517 to 1084 amino acids, representing 62.9-90.2% of human proteins.
Collapse
Affiliation(s)
- Andrea J. Korecki
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jorge L. Cueva-Vargas
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Oriol Fornes
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jessica Agostinone
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Rachelle A. Farkas
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Jack W. Hickmott
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Siu Ling Lam
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Anthony Mathelier
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Michelle Zhou
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Wyeth W. Wasserman
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Elizabeth M. Simpson
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
17
|
Mayer P, Sivakumar N, Pritz M, Varga M, Mehmann A, Lee S, Salvatore A, Magno M, Pharr M, Johannssen HC, Troester G, Zeilhofer HU, Salvatore GA. Flexible and Lightweight Devices for Wireless Multi-Color Optogenetic Experiments Controllable via Commercial Cell Phones. Front Neurosci 2019; 13:819. [PMID: 31551666 PMCID: PMC6743353 DOI: 10.3389/fnins.2019.00819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/23/2019] [Indexed: 11/13/2022] Open
Abstract
Optogenetics provide a potential alternative approach to the treatment of chronic pain, in which complex pathology often hampers efficacy of standard pharmacological approaches. Technological advancements in the development of thin, wireless, and mechanically flexible optoelectronic implants offer new routes to control the activity of subsets of neurons and nerve fibers in vivo. This study reports a novel and advanced design of battery-free, flexible, and lightweight devices equipped with one or two miniaturized LEDs, which can be individually controlled in real time. Two proof-of-concept experiments in mice demonstrate the feasibility of these devices. First, we show that blue-light devices implanted on top of the lumbar spinal cord can excite channelrhodopsin expressing nociceptors to induce place aversion. Second, we show that nocifensive withdrawal responses can be suppressed by green-light optogenetic (Archaerhodopsin-mediated) inhibition of action potential propagation along the sciatic nerve. One salient feature of these devices is that they can be operated via modern tablets and smartphones without bulky and complex lab instrumentation. In addition to the optical stimulation, the design enables the simultaneously wireless recording of the temperature in proximity of the stimulation area. As such, these devices are primed for translation to human patients with implications in the treatment of neurological and psychiatric conditions far beyond chronic pain syndromes.
Collapse
Affiliation(s)
- Philipp Mayer
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland.,Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Nandhini Sivakumar
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Pritz
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | - Matjia Varga
- Electronics Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Seunghyun Lee
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | | | - Michele Magno
- Institute for Integrated Circuits, ETH Zurich, Zurich, Switzerland
| | - Matt Pharr
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, United States
| | - Helge C Johannssen
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
18
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
19
|
Benskey MJ, Sandoval IM, Miller K, Sellnow RL, Gezer A, Kuhn NC, Vashon R, Manfredsson FP. Basic Concepts in Viral Vector-Mediated Gene Therapy. Methods Mol Biol 2019; 1937:3-26. [PMID: 30706387 DOI: 10.1007/978-1-4939-9065-8_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Today any researcher with the desire can easily purchase a viral vector. However, despite the availability of viral vectors themselves, the requisite knowledge that is absolutely essential to conducting a gene therapy experiment remains somewhat obscure and esoteric. To utilize viral vectors to their full potential, a large number of decisions must be made, in some instances prior to even obtaining the vector itself. For example, critical decisions include selection of the proper virus, selection of the proper expression cassette, whether to produce or purchase a viral vector, proper viral handling and storage, the most appropriate delivery method, selecting the proper controls, how to ensure your virus is expressing properly, and many other complex decisions that are essential to performing a successful gene therapy experiment. The need to make so many important decisions can be overwhelming and potentially prohibitive, especially to the novice gene therapist. In order to aid in this challenging process, here we provide an overview of basic gene therapy modalities and a decision tree that can be used to make oneself aware of the options available to the beginning gene therapist. This information can be used as a road map to help navigate the complex and perhaps confusing process of designing a successful gene therapy experiment.
Collapse
Affiliation(s)
- Matthew J Benskey
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Ivette M Sandoval
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
- Mercy Health Saint Mary's, Grand Rapids, MI, USA
| | - Kathryn Miller
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Rhyomi L Sellnow
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Aysegul Gezer
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Nathan C Kuhn
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Roslyn Vashon
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Fredric P Manfredsson
- Department of Translational Science and Molecular Medicine, Michigan State University, Grand Rapids, MI, USA.
- Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
20
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
21
|
Simpson EM, Korecki AJ, Fornes O, McGill TJ, Cueva-Vargas JL, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Renner LM, Stoddard J, Zhou M, Di Polo A, Neuringer M, Wasserman WW. New MiniPromoter Ple345 (NEFL) Drives Strong and Specific Expression in Retinal Ganglion Cells of Mouse and Primate Retina. Hum Gene Ther 2018; 30:257-272. [PMID: 30062914 PMCID: PMC6437624 DOI: 10.1089/hum.2018.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)–based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present.
Collapse
Affiliation(s)
- Elizabeth M Simpson
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,3 Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.,4 Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oriol Fornes
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Trevor J McGill
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.,6 Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Jorge Luis Cueva-Vargas
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Jessica Agostinone
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Rachelle A Farkas
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jack W Hickmott
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siu Ling Lam
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Mathelier
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren M Renner
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Jonathan Stoddard
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Michelle Zhou
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana Di Polo
- 7 Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Martha Neuringer
- 5 Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon.,6 Department of Ophthalmology, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon
| | - Wyeth W Wasserman
- 1 Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,2 Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
22
|
Bedbrook CN, Deverman BE, Gradinaru V. Viral Strategies for Targeting the Central and Peripheral Nervous Systems. Annu Rev Neurosci 2018; 41:323-348. [DOI: 10.1146/annurev-neuro-080317-062048] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recombinant viruses allow for targeted transgene expression in specific cell populations throughout the nervous system. The adeno-associated virus (AAV) is among the most commonly used viruses for neuroscience research. Recombinant AAVs (rAAVs) are highly versatile and can package most cargo composed of desired genes within the capsid's ∼5-kb carrying capacity. Numerous regulatory elements and intersectional strategies have been validated in rAAVs to enable cell type–specific expression. rAAVs can be delivered to specific neuronal populations or globally throughout the animal. The AAV capsids have natural cell type or tissue tropism and trafficking that can be modified for increased specificity. Here, we describe recently engineered AAV capsids and associated cargo that have extended the utility of AAVs in targeting molecularly defined neurons throughout the nervous system, which will further facilitate neuronal circuit interrogation and discovery.
Collapse
Affiliation(s)
- Claire N. Bedbrook
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Benjamin E. Deverman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
23
|
Smith CA, Chauhan BC. In vivo imaging of adeno-associated viral vector labelled retinal ganglion cells. Sci Rep 2018; 8:1490. [PMID: 29367685 PMCID: PMC5784170 DOI: 10.1038/s41598-018-19969-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/11/2018] [Indexed: 01/10/2023] Open
Abstract
A defining characteristic of optic neuropathies, such as glaucoma, is progressive loss of retinal ganglion cells (RGCs). Current clinical tests only provide weak surrogates of RGC loss, but the possibility of optically visualizing RGCs and quantifying their rate of loss could represent a radical advance in the management of optic neuropathies. In this study we injected two different adeno-associated viral (AAV) vector serotypes in the vitreous to enable green fluorescent protein (GFP) labelling of RGCs in wild-type mice for in vivo and non-invasive imaging. GFP-labelled cells were detected by confocal scanning laser ophthalmoscopy 1-week post-injection and plateaued in density at 4 weeks. Immunohistochemical analysis 5-weeks post-injection revealed labelling specificity to RGCs to be significantly higher with the AAV2-DCX-GFP vector compared to the AAV2-CAG-GFP vector. There were no adverse functional or structural effects of the labelling method as determined with electroretinography and optical coherence tomography, respectively. The RGC-specific positive and negative scotopic threshold responses had similar amplitudes between control and experimental eyes, while inner retinal thickness was also unchanged after injection. As a positive control experiment, optic nerve transection resulted in a progressive loss of labelled RGCs. AAV vectors provide strong and long-lasting GFP labelling of RGCs without detectable adverse effects.
Collapse
Affiliation(s)
- Corey A Smith
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada.,Retina and Optic Nerve Research Laboratory, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Balwantray C Chauhan
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada. .,Retina and Optic Nerve Research Laboratory, Dalhousie University, 5850 College Street, PO Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada. .,Department of Ophthalmology and Visual Sciences, Dalhousie University, 1276 South Park Street, 2W Victoria, Halifax, Nova Scotia, B3H 2Y9, Canada.
| |
Collapse
|
24
|
Galvan A, Stauffer WR, Acker L, El-Shamayleh Y, Inoue KI, Ohayon S, Schmid MC. Nonhuman Primate Optogenetics: Recent Advances and Future Directions. J Neurosci 2017; 37:10894-10903. [PMID: 29118219 PMCID: PMC5678022 DOI: 10.1523/jneurosci.1839-17.2017] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Optogenetics is the use of genetically coded, light-gated ion channels or pumps (opsins) for millisecond resolution control of neural activity. By targeting opsin expression to specific cell types and neuronal pathways, optogenetics can expand our understanding of the neural basis of normal and pathological behavior. To maximize the potential of optogenetics to study human cognition and behavior, optogenetics should be applied to the study of nonhuman primates (NHPs). The homology between NHPs and humans makes these animals the best experimental model for understanding human brain function and dysfunction. Moreover, for genetic tools to have translational promise, their use must be demonstrated effectively in large, wild-type animals such as Rhesus macaques. Here, we review recent advances in primate optogenetics. We highlight the technical hurdles that have been cleared, challenges that remain, and summarize how optogenetic experiments are expanding our understanding of primate brain function.
Collapse
Affiliation(s)
- Adriana Galvan
- Yerkes National Primate Research Center and Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia 30329,
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Yasmine El-Shamayleh
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Ken-Ichi Inoue
- Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Shay Ohayon
- McGovern Institute for Brain Research, Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Michael C Schmid
- Institute of Neuroscience, Newcastle University, Newcastle, United Kingdom NE2 4HH
| |
Collapse
|
25
|
Woodsworth DJ, Dreolini L, Abraham L, Holt RA. Targeted Cell-to-Cell Delivery of Protein Payloads via the Granzyme-Perforin Pathway. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:132-145. [PMID: 29201936 PMCID: PMC5700818 DOI: 10.1016/j.omtm.2017.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
There is great potential for engineering cellular therapeutics by repurposing biological systems. Here, we report utilization of the granzyme-perforin pathway of cytotoxic lymphocytes as a cell-to-cell protein delivery module. We designed and constructed granzyme B-derived chaperone molecules fused to a fluorescent protein payload and expressed these constructs in natural killer (NK) cells. Using confocal microscopy and flow cytometry, we investigated the co-localization of the chaperones with lytic granules and the chaperone-mediated transfer of the fluorescent protein payload from NK to target cells in co-culture experiments. A synthetic chaperone consisting of the granzyme B ER signal peptide and a domain encompassing putative N-linked glycosylation sites in granzyme B is insufficient for payload transfer to target cells, whereas full-length granzyme B is sufficient for payload delivery. Combining our functional data with an analysis of the crystal structure of granzyme B suggests that the necessary motifs for granzyme B loading into lytic granules are dispersed throughout the primary amino acid sequence and are only functional when contiguous in the tertiary structure. These results illustrate that by using granzyme B as a molecular chaperone the granzyme-perforin pathway can be exploited as a programmable molecular delivery system for cell-based therapies.
Collapse
Affiliation(s)
- Daniel J. Woodsworth
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Libin Abraham
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Corresponding author: Robert A. Holt, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
26
|
Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques. Gene Ther 2017; 24:640-648. [PMID: 28771235 PMCID: PMC5658254 DOI: 10.1038/gt.2017.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or PBS. Piglets were euthanized three weeks post-injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9 treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.
Collapse
|
27
|
Eppig JT. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse. ILAR J 2017; 58:17-41. [PMID: 28838066 PMCID: PMC5886341 DOI: 10.1093/ilar/ilx013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/14/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided.
Collapse
Affiliation(s)
- Janan T. Eppig
- Janan T. Eppig, PhD, is Professor Emeritus at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
28
|
Galvan A, Caiola MJ, Albaugh DL. Advances in optogenetic and chemogenetic methods to study brain circuits in non-human primates. J Neural Transm (Vienna) 2017; 125:547-563. [PMID: 28238201 DOI: 10.1007/s00702-017-1697-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.
Collapse
Affiliation(s)
- Adriana Galvan
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA. .,Department of Neurology, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| | - Michael J Caiola
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| | - Daniel L Albaugh
- Department of Neurology, Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, GA, 30329, USA.,Udall Center of Excellence for Parkinson's Disease Research, Emory University, 954 Gatewood Road NE, Atlanta, GA, 30329, USA
| |
Collapse
|
29
|
Hickmott JW, Chen CY, Arenillas DJ, Korecki AJ, Lam SL, Molday LL, Bonaguro RJ, Zhou M, Chou AY, Mathelier A, Boye SL, Hauswirth WW, Molday RS, Wasserman WW, Simpson EM. PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Mol Ther Methods Clin Dev 2016; 3:16051. [PMID: 27556059 PMCID: PMC4980111 DOI: 10.1038/mtm.2016.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 06/13/2016] [Indexed: 12/15/2022]
Abstract
Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.
Collapse
Affiliation(s)
- Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chih-yu Chen
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Arenillas
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurie L Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
de Leeuw CN, Korecki AJ, Berry GE, Hickmott JW, Lam SL, Lengyell TC, Bonaguro RJ, Borretta LJ, Chopra V, Chou AY, D'Souza CA, Kaspieva O, Laprise S, McInerny SC, Portales-Casamar E, Swanson-Newman MI, Wong K, Yang GS, Zhou M, Jones SJM, Holt RA, Asokan A, Goldowitz D, Wasserman WW, Simpson EM. rAAV-compatible MiniPromoters for restricted expression in the brain and eye. Mol Brain 2016; 9:52. [PMID: 27164903 PMCID: PMC4862195 DOI: 10.1186/s13041-016-0232-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. METHODS For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. RESULTS The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. CONCLUSIONS Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.
Collapse
Affiliation(s)
- Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Garrett E Berry
- Gene Therapy Centre, University of North Carolina, Chapel Hill, NC, 27599, U.S.A
| | - Jack W Hickmott
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Siu Ling Lam
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Tess C Lengyell
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Lisa J Borretta
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Vikramjit Chopra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Cletus A D'Souza
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Olga Kaspieva
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Magdalena I Swanson-Newman
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Kaelan Wong
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - George S Yang
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Robert A Holt
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada
| | - Aravind Asokan
- Gene Therapy Centre, University of North Carolina, Chapel Hill, NC, 27599, U.S.A
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, 950 W 28 Ave, Vancouver, BC, V5Z 4H4, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 3N1, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada.
| |
Collapse
|
31
|
|
32
|
Manfredsson FP. Introduction to Viral Vectors and Other Delivery Methods for Gene Therapy of the Nervous System. Methods Mol Biol 2016; 1382:3-18. [PMID: 26611575 DOI: 10.1007/978-1-4939-3271-9_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The use of gene therapy in neuroscience research has become common place in many laboratories across the world. However, contrary to common belief, the practical application of viral or non-viral gene therapy is not as straightforward as it may seem. All too often investigators see their experiments fail due to low-quality third-party vectors or due to a lack of knowledge regarding the proper use of these tools. For example, researchers often find themselves performing experiments using the wrong methodology (e.g., using the wrong type of vector or mishandling the vector to the point where the efficacy is significantly reduced) resulting in experiments that potentially fail to accurately answer a hypothesis, or the generation of irreproducible data. Thus, it is important for investigators that seek to utilize gene therapy approaches to gain a basic understanding of how to apply this technology. This includes understanding how to appropriately design and execute an experiment, understanding various delivery vehicles (e.g., what virus to use), delivery methods (e.g., systemic versus intracranial injections), what expression system to use, and the time course involved with a particular expression system. This chapter is intended to present an overview of this fundamental knowledge, providing the researcher with a decision tree upon which to build their gene therapy experiment.
Collapse
Affiliation(s)
- Fredric P Manfredsson
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503-2532, USA.
- Hauenstein Neuroscience Center, Mercy Health Saint Mary's, Grand Rapids, MI, USA.
| |
Collapse
|
33
|
Abstract
This chapter outlines some general principles of transcriptional targeting approaches using viral vectors in the central nervous system. Transcriptional targeting is first discussed in the context of vector tropism and appropriate delivery. Then, some of our own attempts to restrict expression of therapeutic factors to distinct brain cell populations are discussed, followed by a detailed description of the setscrews that are available for these experiments. A critical discussion of current stumbling blocks and necessary developments to achieve clinical applicability of advanced targeted vector systems is provided.
Collapse
Affiliation(s)
- Sebastian Kügler
- Department of Neurology, Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.
| |
Collapse
|
34
|
Suarez-Mier GB, Buckwalter MS. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro 2015; 7:7/5/1759091415601636. [PMID: 26442852 PMCID: PMC4601129 DOI: 10.1177/1759091415601636] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line.
Collapse
Affiliation(s)
- Gabriela B Suarez-Mier
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, USA Stanford Neurosciences Institute, Stanford, CA, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, USA Department of Neurosurgery, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
35
|
Scalabrino ML, Boye SL, Fransen KMH, Noel JM, Dyka FM, Min SH, Ruan Q, De Leeuw CN, Simpson EM, Gregg RG, McCall MA, Peachey NS, Boye SE. Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Hum Mol Genet 2015; 24:6229-39. [PMID: 26310623 DOI: 10.1093/hmg/ddv341] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) effectively targets therapeutic genes to photoreceptors, pigment epithelia, Müller glia and ganglion cells of the retina. To date, no one has shown the ability to correct, with gene replacement, an inherent defect in bipolar cells (BCs), the excitatory interneurons of the retina. Targeting BCs with gene replacement has been difficult primarily due to the relative inaccessibility of BCs to standard AAV vectors. This approach would be useful for restoration of vision in patients with complete congenital stationary night blindness (CSNB1), where signaling through the ON BCs is eliminated due to mutations in their G-protein-coupled cascade genes. For example, the majority of CSNB1 patients carry a mutation in nyctalopin (NYX), which encodes a protein essential for proper localization of the TRPM1 cation channel required for ON BC light-evoked depolarization. As a group, CSNB1 patients have a normal electroretinogram (ERG) a-wave, indicative of photoreceptor function, but lack a b-wave due to defects in ON BC signaling. Despite retinal dysfunction, the retinas of CSNB1 patients do not degenerate. The Nyx(nob) mouse model of CSNB1 faithfully mimics this phenotype. Here, we show that intravitreally injected, rationally designed AAV2(quadY-F+T-V) containing a novel 'Ple155' promoter drives either GFP or YFP_Nyx in postnatal Nyx(nob) mice. In treated Nyx(nob) retina, robust and targeted Nyx transgene expression in ON BCs partially restored the ERG b-wave and, at the cellular level, signaling in ON BCs. Our results support the potential for gene delivery to BCs and gene replacement therapy in human CSNB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Charles N De Leeuw
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | - Ronald G Gregg
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202, USA
| | - Maureen A McCall
- Department of Ophthalmology and Visual Sciences, Department of Anatomical Sciences and Neurobiology and
| | - Neal S Peachey
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA, Cole Eye Institute, Cleveland Clinic, Cleveland, OH 44195, USA and Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Shannon E Boye
- Department of Ophthalmology and, Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA,
| |
Collapse
|
36
|
Merienne N, Delzor A, Viret A, Dufour N, Rey M, Hantraye P, Déglon N. Gene transfer engineering for astrocyte-specific silencing in the CNS. Gene Ther 2015; 22:830-9. [PMID: 26109254 DOI: 10.1038/gt.2015.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.
Collapse
Affiliation(s)
- N Merienne
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - A Delzor
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - A Viret
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - N Dufour
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - M Rey
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - P Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - N Déglon
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
37
|
Pashaie R, Anikeeva P, Lee JH, Prakash R, Yizhar O, Prigge M, Chander D, Richner TJ, Williams J. Optogenetic brain interfaces. IEEE Rev Biomed Eng 2014; 7:3-30. [PMID: 24802525 DOI: 10.1109/rbme.2013.2294796] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light. For this purpose, the cell-types of interest are genetically targeted to produce light-sensitive proteins. Once these proteins are expressed, neural activity can be controlled by exposing the cells to light of appropriate wavelengths. Optogenetics provides a unique combination of features, including multimodal control over neural function and genetic targeting of specific cell-types. Together, these versatile features combine to a powerful experimental approach, suitable for the study of the circuitry of psychiatric and neurological disorders. The advent of optogenetics was followed by extensive research aimed to produce new lines of light-sensitive proteins and to develop new technologies: for example, to control the distribution of light inside the brain tissue or to combine optogenetics with other modalities including electrophysiology, electrocorticography, nonlinear microscopy, and functional magnetic resonance imaging. In this paper, the authors review some of the recent advances in the field of optogenetics and related technologies and provide their vision for the future of the field.
Collapse
|
38
|
Serguera C, Bemelmans AP. Gene therapy of the central nervous system: general considerations on viral vectors for gene transfer into the brain. Rev Neurol (Paris) 2014; 170:727-38. [PMID: 25459120 DOI: 10.1016/j.neurol.2014.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/13/2014] [Accepted: 09/10/2014] [Indexed: 02/04/2023]
Abstract
The last decade has nourished strong doubts on the beneficial prospects of gene therapy for curing fatal diseases. However, this climate of reservation is currently being transcended by the publication of several successful clinical protocols, restoring confidence in the appropriateness of therapeutic gene transfer. A strong sign of this present enthusiasm for gene therapy by clinicians and industrials is the market approval of the therapeutic viral vector Glybera, the first commercial product in Europe of this class of drug. This new field of medicine is particularly attractive when considering therapies for a number of neurological disorders, most of which are desperately waiting for a satisfactory treatment. The central nervous system is indeed a very compliant organ where gene transfer can be stable and successful if provided through an appropriate strategy. The purpose of this review is to present the characteristics of the most efficient virus-derived vectors used by researchers and clinicians to genetically modify particular cell types or whole regions of the brain. In addition, we discuss major issues regarding side effects, such as genotoxicity and immune response associated to the use of these vectors.
Collapse
Affiliation(s)
- C Serguera
- CEA, DSV, I(2)BM, Molecular Imaging Research Center (MIRCen) and CNRS, CEA URA 2210, 18, route du Panorama, 92265 Fontenay-aux-Roses, France
| | - A-P Bemelmans
- CEA, DSV, I(2)BM, Molecular Imaging Research Center (MIRCen) and CNRS, CEA URA 2210, 18, route du Panorama, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
39
|
Decoding neuroproteomics: integrating the genome, translatome and functional anatomy. Nat Neurosci 2014; 17:1491-9. [PMID: 25349915 DOI: 10.1038/nn.3829] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
The immense intercellular and intracellular heterogeneity of the CNS presents major challenges for high-throughput omic analyses. Transcriptional, translational and post-translational regulatory events are localized to specific neuronal cell types or subcellular compartments, resulting in discrete patterns of protein expression and activity. A spatial and quantitative knowledge of the neuroproteome is therefore critical to understanding both normal and pathological aspects of the functional genomics and anatomy of the CNS. Improvements in mass spectrometry allow the profiling of proteins at a sufficient depth to complement results from high-throughput genomic and transcriptomic assays. However, there are challenges in integrating proteomic data with other data modalities and even greater challenges in obtaining comprehensive neuroproteomic data with cell-type specificity. Here we discuss how proteomics should be exploited to enhance high-throughput functional genomic analysis by tighter integration of data analyses. We also discuss experimental strategies to achieve finer cellular and subcellular resolution in transcriptomic and proteomic studies of neural tissues.
Collapse
|
40
|
Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res 2014; 43:D726-36. [PMID: 25348401 PMCID: PMC4384027 DOI: 10.1093/nar/gku967] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse–human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human–Mouse: Disease Connection, allows users to explore gene–phenotype–disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community.
Collapse
Affiliation(s)
- Janan T Eppig
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Judith A Blake
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Carol J Bult
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - James A Kadin
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
41
|
Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 2014; 11:817-39. [PMID: 25159276 PMCID: PMC4391389 DOI: 10.1007/s13311-014-0299-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current clinical treatments for central nervous system (CNS) diseases, such as Parkinson's disease and glioblastoma do not halt disease progression and have significant treatment morbidities. Gene therapy has the potential to "permanently" correct disease by bringing in a normal gene to correct a mutant gene deficiency, knocking down mRNA of mutant alleles, and inducing cell-death in cancer cells using transgenes encoding apoptosis-inducing proteins. Promising results in clinical trials of eye disease (Leber's congenital aumorosis) and Parkinson's disease have shown that gene-based neurotherapeutics have great potential. The recent development of genome editing technology, such as zinc finger nucleases, TALENS, and CRISPR, has made the ultimate goal of gene correction a step closer. This review summarizes the challenges faced by gene-based neurotherapeutics and the current and recent strategies designed to overcome these barriers. We have chosen the following challenges to focus on in this review: (1) delivery vehicles (both virus and nonviral), (2) use of promoters for vector-mediated gene expression in CNS, and (3) delivery across the blood-brain barrier. The final section (4) focuses on promising pre-clinical/clinical studies of neurotherapeutics.
Collapse
Affiliation(s)
- Casey A Maguire
- Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Molecular Neurogenetics Unit, 13th Street, Building 149, Charlestown, MA, 02129, USA,
| | | | | | | | | |
Collapse
|
42
|
Dandapat A, Bosnakovski D, Hartweck LM, Arpke RW, Baltgalvis KA, Vang D, Baik J, Darabi R, Perlingeiro RCR, Hamra FK, Gupta K, Lowe DA, Kyba M. Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene. Cell Rep 2014; 8:1484-96. [PMID: 25176645 PMCID: PMC4188423 DOI: 10.1016/j.celrep.2014.07.056] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/03/2014] [Accepted: 07/30/2014] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an enigmatic disease associated with epigenetic alterations in the subtelomeric heterochromatin of the D4Z4 macrosatellite repeat. Each repeat unit encodes DUX4, a gene that is normally silent in most tissues. Besides muscular loss, most patients suffer retinal vascular telangiectasias. To generate an animal model, we introduced a doxycycline-inducible transgene encoding DUX4 and 3' genomic DNA into a euchromatic region of the mouse X chromosome. Without induction, DUX4 RNA was expressed at low levels in many tissues and animals displayed a variety of unexpected dominant leaky phenotypes, including male-specific lethality. Remarkably, rare live-born males expressed DUX4 RNA in the retina and presented a retinal vascular telangiectasia. By using doxycycline to induce DUX4 expression in satellite cells, we observed impaired myogenesis in vitro and in vivo. This mouse model, which shows pathologies due to FSHD-related D4Z4 sequences, is likely to be useful for testing anti-DUX4 therapies in FSHD.
Collapse
Affiliation(s)
- Abhijit Dandapat
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Lynn M Hartweck
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Kristen A Baltgalvis
- Program in Physical Medicine and Rehabilitation, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Derek Vang
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine MMC 480, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - June Baik
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Radbod Darabi
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Medicine, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, USA
| | - F Kent Hamra
- Department of Pharmacology, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Kalpna Gupta
- Vascular Biology Center, Division of Hematology, Oncology, and Transplantation, Department of Medicine MMC 480, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Program in Physical Medicine and Rehabilitation, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
43
|
Agustín-Pavón C, Isalan M. Synthetic biology and therapeutic strategies for the degenerating brain: Synthetic biology approaches can transform classical cell and gene therapies, to provide new cures for neurodegenerative diseases. Bioessays 2014; 36:979-90. [PMID: 25100403 PMCID: PMC4312882 DOI: 10.1002/bies.201400094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic biology is an emerging engineering discipline that attempts to design and rewire biological components, so as to achieve new functions in a robust and predictable manner. The new tools and strategies provided by synthetic biology have the potential to improve therapeutics for neurodegenerative diseases. In particular, synthetic biology will help design small molecules, proteins, gene networks, and vectors to target disease-related genes. Ultimately, new intelligent delivery systems will provide targeted and sustained therapeutic benefits. New treatments will arise from combining ‘protect and repair’ strategies: the use of drug treatments, the promotion of neurotrophic factor synthesis, and gene targeting. Going beyond RNAi and artificial transcription factors, site-specific genome modification is likely to play an increasing role, especially with newly available gene editing tools such as CRISPR/Cas9 systems. Taken together, these advances will help develop safe and long-term therapies for many brain diseases in human patients.
Collapse
|
44
|
Chuah MK, Petrus I, De Bleser P, Le Guiner C, Gernoux G, Adjali O, Nair N, Willems J, Evens H, Rincon MY, Matrai J, Di Matteo M, Samara-Kuko E, Yan B, Acosta-Sanchez A, Meliani A, Cherel G, Blouin V, Christophe O, Moullier P, Mingozzi F, VandenDriessche T. Liver-specific transcriptional modules identified by genome-wide in silico analysis enable efficient gene therapy in mice and non-human primates. Mol Ther 2014; 22:1605-13. [PMID: 24954473 PMCID: PMC4435486 DOI: 10.1038/mt.2014.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022] Open
Abstract
The robustness and safety of liver-directed gene therapy can be substantially
improved by enhancing expression of the therapeutic transgene in the liver. To
achieve this, we developed a new approach of rational in silico vector
design. This approach relies on a genome-wide bio-informatics strategy to
identify cis-acting regulatory modules (CRMs) containing
evolutionary conserved clusters of transcription factor binding site motifs that
determine high tissue-specific gene expression. Incorporation of these
CRMs into adeno-associated viral (AAV) and non-viral vectors
enhanced gene expression in mice liver 10 to 100-fold, depending on the promoter
used. Furthermore, these CRMs resulted in robust and sustained
liver-specific expression of coagulation factor IX (FIX), validating their
immediate therapeutic and translational relevance. Subsequent translational
studies indicated that therapeutic FIX expression levels could be attained
reaching 20–35% of normal levels after AAV-based liver-directed gene
therapy in cynomolgus macaques. This study underscores the potential of rational
vector design using computational approaches to improve their robustness and
therefore allows for the use of lower and thus safer vector doses for gene
therapy, while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Marinee K Chuah
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Inge Petrus
- Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Pieter De Bleser
- Department for Molecular Biomedical Research (DMBR), VIB - Ghent University, Ghent, Belgium
| | - Caroline Le Guiner
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Gwladys Gernoux
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Oumeya Adjali
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Jessica Willems
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Hanneke Evens
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Melvin Y Rincon
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Janka Matrai
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Vesalius Research Center, VIB, Leuven, Belgium [3] University of Leuven, Leuven, Belgium
| | - Mario Di Matteo
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium
| | - Bing Yan
- 1] Vesalius Research Center, VIB, Leuven, Belgium [2] University of Leuven, Leuven, Belgium
| | - Abel Acosta-Sanchez
- 1] Vesalius Research Center, VIB, Leuven, Belgium [2] University of Leuven, Leuven, Belgium
| | - Amine Meliani
- 1] Genethon, Evry, France [2] University Pierre and Marie Curie, Paris, France
| | - Ghislaine Cherel
- 1] INSERM, U770, Le Kremlin Bicêtre, France [2] Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Véronique Blouin
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Olivier Christophe
- 1] INSERM, U770, Le Kremlin Bicêtre, France [2] Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Philippe Moullier
- 1] INSERM UMR 1089, Atlantic Gene Therapies, Université de Nantes, Nantes, France [2] CHU de Nantes, Nantes, France
| | - Federico Mingozzi
- 1] Genethon, Evry, France [2] University Pierre and Marie Curie, Paris, France
| | - Thierry VandenDriessche
- 1] Department of Gene Therapy & Regenerative Medicine, Free University of Brussels (VUB), Brussels, Belgium [2] Department of Cardiovascular Sciences, Center for Molecular & Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
45
|
de Leeuw CN, Dyka FM, Boye SL, Laprise S, Zhou M, Chou AY, Borretta L, McInerny SC, Banks KG, Portales-Casamar E, Swanson MI, D’Souza CA, Boye SE, Jones SJM, Holt RA, Goldowitz D, Hauswirth WW, Wasserman WW, Simpson EM. Targeted CNS Delivery Using Human MiniPromoters and Demonstrated Compatibility with Adeno-Associated Viral Vectors. Mol Ther Methods Clin Dev 2014; 1:5. [PMID: 24761428 PMCID: PMC3992516 DOI: 10.1038/mtm.2013.5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/05/2013] [Indexed: 01/21/2023]
Abstract
Critical for human gene therapy is the availability of small promoter tools to drive gene expression in a highly specific and reproducible manner. We tackled this challenge by developing human DNA MiniPromoters using computational biology and phylogenetic conservation. MiniPromoters were tested in mouse as single-copy knock-ins at the Hprt locus on the X Chromosome, and evaluated for lacZ reporter expression in CNS and non-CNS tissue. Eighteen novel MiniPromoters driving expression in mouse brain were identified, two MiniPromoters for driving pan-neuronal expression, and 17 MiniPromoters for the mouse eye. Key areas of therapeutic interest were represented in this set: the cerebral cortex, embryonic hypothalamus, spinal cord, bipolar and ganglion cells of the retina, and skeletal muscle. We also demonstrated that three retinal ganglion cell MiniPromoters exhibit similar cell-type specificity when delivered via adeno-associated virus (AAV) vectors intravitreally. We conclude that our methodology and characterization has resulted in desirable expression characteristics that are intrinsic to the MiniPromoter, not dictated by copy number effects or genomic location, and results in constructs predisposed to success in AAV. These MiniPromoters are immediately applicable for pre-clinical studies towards gene therapy in humans, and are publicly available to facilitate basic and clinical research, and human gene therapy.
Collapse
Affiliation(s)
- Charles N de Leeuw
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank M Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Sanford L Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Zhou
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Y Chou
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa Borretta
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Magdalena I Swanson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cletus A D’Souza
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Shannon E Boye
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Steven JM Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Robert A Holt
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Iacovino M, Roth ME, Kyba M. Rapid genetic modification of mouse embryonic stem cells by Inducible Cassette Exchange recombination. Methods Mol Biol 2014; 1101:339-51. [PMID: 24233789 DOI: 10.1007/978-1-62703-721-1_16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Embryonic stem cell (ESC) differentiation is a useful means by which to produce large quantities of cells in vitro representing early stages of embryonic development. A conditional gene expression system allows interrogation of factors at specific time points in the differentiation of ES cells to defined cell types. We have developed a method for rapidly generating conditional inducible murine ES cells by targeting genes into an Inducible Cassette Exchange (ICE) locus. The ICE locus encodes a doxycycline-inducible floxed Cre, which replaces itself with an incoming floxed gene of interest. The derivative cell lines, selected in G418, thus bear doxycycline-inducible transgenes. We provide detailed methods for performing ICE recombination and generating derivative doxycycline-inducible cell lines.
Collapse
|
47
|
|
48
|
Abstract
Fate maps, by defining the relationship between embryonic tissue organization and postnatal tissue structure, are one of the most important tools on hand to developmental biologists. In the past, generating such maps in mice was hindered by their in utero development limiting the physical access required for traditional methods involving tracer injection or cell transplantation. No longer is physical access a requirement. Innovations over the past decade have led to genetic techniques that offer means to "deliver" cell lineage tracers noninvasively. Such "genetic fate mapping" approaches employ transgenic strategies to express genetically encoded site-specific recombinases in a cell type-specific manner to switch on expression of a cell-heritable reporter transgene as lineage tracer. The behaviors and fate of marked cells and their progeny can then be explored and their contributions to different tissues examined. Here, we review the basic concepts of genetic fate mapping and consider the strengths and limitations for their application. We also explore two refinements of this approach that lend improved spatial and temporal resolution: (1) Intersectional and subtractive genetic fate mapping and (2) Genetic inducible fate mapping.
Collapse
Affiliation(s)
- Patricia Jensen
- Laboratory of Neurobiology, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | | |
Collapse
|
49
|
Schmouth JF, Castellarin M, Laprise S, Banks KG, Bonaguro RJ, McInerny SC, Borretta L, Amirabbasi M, Korecki AJ, Portales-Casamar E, Wilson G, Dreolini L, Jones SJM, Wasserman WW, Goldowitz D, Holt RA, Simpson EM. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice. BMC Biol 2013; 11:106. [PMID: 24124870 PMCID: PMC4015596 DOI: 10.1186/1741-7007-11-106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/30/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. RESULTS In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. CONCLUSIONS We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
| | - Mauro Castellarin
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Stéphanie Laprise
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Simone C McInerny
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Lisa Borretta
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Mahsa Amirabbasi
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Andrea J Korecki
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Gary Wilson
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
| | - Steven JM Jones
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Robert A Holt
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada
| |
Collapse
|
50
|
Merienne N, Le Douce J, Faivre E, Déglon N, Bonvento G. Efficient gene delivery and selective transduction of astrocytes in the mammalian brain using viral vectors. Front Cell Neurosci 2013; 7:106. [PMID: 23847471 PMCID: PMC3701857 DOI: 10.3389/fncel.2013.00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.
Collapse
Affiliation(s)
- Nicolas Merienne
- Laboratory of Cellular and Molecular Neurotherapies, Department of Clinical Neurosciences, Lausanne University Hospital Lausanne, Switzerland
| | | | | | | | | |
Collapse
|