1
|
Rodriguez Pena MDC, Papke DJ. When Is It Important to Sequence Sarcomas and Other Mesenchymal Neoplasms? A Practical Guide to Molecular Testing. Hematol Oncol Clin North Am 2025:S0889-8588(25)00039-5. [PMID: 40374391 DOI: 10.1016/j.hoc.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The increasingly widespread availability of next-generation sequencing has led to its incorporation as a diagnostic tool in pathology and a modality for identifying targetable alterations. However, sequencing is still a somewhat expensive and time-consuming. Here, we discuss tumor types for which (1) molecular testing is not generally indicated, (2) surrogate immunohistochemical markers have rendered molecular testing unnecessary, or (3) sequencing is important for diagnostic and therapeutic purposes. We also provide a practical framework to assist in decision-making for molecular testing of both classified and unclassified mesenchymal neoplasms, reflecting our practice in a tertiary sarcoma referral center.
Collapse
Affiliation(s)
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Ma Y, Wang Y, Wang S, Wang H, Zhao Y, Peng C, Liu X, Yang J. Regulatory roles of non-coding RNAs in programmed cell death pathways and drug resistance in gastrointestinal stromal tumors. Clin Exp Med 2025; 25:150. [PMID: 40347390 PMCID: PMC12065685 DOI: 10.1007/s10238-025-01667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/02/2025] [Indexed: 05/12/2025]
Abstract
Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the gastrointestinal tract, primarily driven by KIT or PDGFRA mutations. Programmed cell death (PCD), including apoptosis, autophagy, and ferroptosis, plays a crucial role in GIST pathogenesis, progression, and treatment response. Non-coding RNAs (ncRNAs) have emerged as key regulators of PCD pathways, influencing GIST proliferation, metastasis, and drug resistance, particularly in response to tyrosine kinase inhibitors (TKIs) such as imatinib. Apoptosis suppression is strongly associated with poor prognosis, while autophagy contributes to tumor dormancy and TKI resistance. Ferroptosis, a novel iron-dependent cell death pathway, represents a promising therapeutic target. Recent evidence suggests that ncRNAs modulate these PCD pathways through interactions with key molecular regulators such as miR-494, miR-30a, and lncRNAs, which affect signaling networks including PI3K/AKT, MAPK, and mTOR. Furthermore, ncRNAs have mediated secondary resistance to imatinib by promoting autophagic flux and altering ferroptosis sensitivity. Understanding the molecular interplay between ncRNAs and PCD in GIST provides novel insights into disease mechanisms and offers potential therapeutic strategies to overcome drug resistance. Targeting ncRNA-mediated regulation of apoptosis, autophagy, and ferroptosis may enhance treatment efficacy and improve patient outcomes. Future research should focus on elucidating the mechanistic roles of ncRNAs in PCD pathways to develop innovative diagnostic and therapeutic approaches for GIST.
Collapse
Affiliation(s)
- Yuxuan Ma
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuhao Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Shu Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
| | - Haoyuan Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Zhao
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Chaosheng Peng
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Liu
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianjun Yang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changlexi Road, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
3
|
Choi JH. Inflammatory Myofibroblastic Tumor: An Updated Review. Cancers (Basel) 2025; 17:1327. [PMID: 40282503 PMCID: PMC12026078 DOI: 10.3390/cancers17081327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/12/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm that is characterized by a proliferation of myofibroblastic and fibroblastic spindle cells, accompanied by an inflammatory infiltrate that is abundant in plasma cells, lymphocytes, and eosinophils. IMT can arise in various anatomical locations but most commonly occurs in the abdominal cavity, retroperitoneum, and lung, particularly in children and young adults. IMT typically demonstrates local invasion or recurrence, whereas metastasis is rare. IMTs pose a diagnostic challenge because of their overlapping morphological characteristics with a heterogeneous group of nonneoplastic and neoplastic lesions. Precise diagnosis is crucial for optimal management and accurate prognostication. Despite recent advancements in IMT diagnosis and treatment, its biological complexity and clinical management remain challenging due to significant histological heterogeneity and molecular genetic diversity. This review provides comprehensive updates on the clinical, molecular, and pathological characteristics of IMT, highlighting the diagnostic approaches and key differential diagnoses.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, Daegu 42415, Republic of Korea
| |
Collapse
|
4
|
Dedousis D, Gadra E, Van Galen J, von Mehren M. Recent Advances in Succinate Dehydrogenase Deficient Gastrointestinal Stromal Tumor Systemic Therapies. Curr Treat Options Oncol 2025; 26:227-240. [PMID: 40045030 DOI: 10.1007/s11864-025-01304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 04/02/2025]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumors (GIST) are the most common gastrointestinal soft tissue sarcomas, with an incidence of about 15 cases per million person-years. Approximately 15% of GIST develop due to succinate dehydrogenase deficiency (SDH-Def), and such tumors do not respond well to the tyrosine kinase inhibitors (TKIs) used to treat other GIST. Due to its indolent nature SDH-Def GIST can often be surveilled if asymptomatic. In our current practice we typically treat advanced symptomatic SDH-Def GIST with the anti-angiogenic TKIs, sequentially treating with sunitinib, regorafenib and pazopanib. This practice is based on limited data. This systematic review provides an update on new data (12/21/2021 to 9/26/2024) for systemic treatment of SDH-Def GIST, both with agents generally used to treat other GIST subtypes and with agents approved in other malignancies. Olverembatinib and rogaratinib have shown promising activity in pre-clinical models and small SDH-Def GIST cohorts. Other agents whose benefits are explored here include the immune checkpoint inhibitors (ICI) ipilimumab and nivolumab and temozolomide, whether as monotherapy or in combination with INBRX-109 (a pro-apoptotic antibody) or olaparib. Additional research into TKI agents with anti-vascular endothelial growth factor receptor (VEGFR) and anti-fibroblast growth factor receptor (FGFR) activity in this clinical setting is needed. Patients with SDH-Def will benefit more broadly from ongoing explorations of treatments with alternative mechanisms of action, especially those that exploit cellular pathways involved in SDH-Def GIST tumorigenesis.
Collapse
Affiliation(s)
- Demitrios Dedousis
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA
| | - Elyse Gadra
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Joseph Van Galen
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA
| | - Margaret von Mehren
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue , Philadelphia, PA, 19111, USA.
| |
Collapse
|
5
|
Strauss G, George S. Gastrointestinal Stromal Tumors. Curr Oncol Rep 2025; 27:312-321. [PMID: 39985704 DOI: 10.1007/s11912-025-01636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/24/2025]
Abstract
PURPOSE OF REVIEW This review aims to outline the current understanding of the molecular drivers and treatment paradigms of gastrointestinal stromal tumors, with a focus on recent developments in treatment in the advanced disease setting. RECENT FINDINGS There have been recent advancements in our understanding of the molecular biology of gastrointestinal stromal tumors, including the identification of new genetic drivers and complex resistance mechanisms. We review the most recent findings in these areas, focusing on how new research insights are reshaping treatment strategies. Recent advancements in our understanding of the biology and treatment of GIST are paving the way for more personalized and effective therapeutic options. As knowledge of rare molecular subtypes, resistance mechanisms, and novel genomic techniques grows, new approaches are emerging in an effort to improve patient outcomes.
Collapse
Affiliation(s)
- Gal Strauss
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Suzanne George
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Min V, Corradini N, Macagno N, Orbach D, Reguerre Y, Petit P, Blay JY, Verschuur A. Gastrointestinal stromal tumours (GIST) in children: An update of this orphan disease. Bull Cancer 2025; 112:348-357. [PMID: 39455327 DOI: 10.1016/j.bulcan.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Gastrointestinal stromal tumours (GIST) are tumours of the digestive tract that mainly develop in adults. Recommendations for the management of GIST in pediatrics are limited. MATERIAL AND METHODS We performed an updated review of the literature serving as a basis for the development of diagnostic and therapeutic recommendations for GIST in children and young adults (YA). RESULTS GIST in pediatric population can have a sporadic presentation but occur more often in a syndromic and/or familial context. Currently more than 170 cases of sporadic GIST or in association with Carney-Stratakis syndrome or Carney's triad family cases of familial GIST have been described in children and YA. These syndromes are frequently associated with germline or somatic alterations in a sub-unit of Succinate Dehydrogenase (SDH). In contrast, the frequency of somatic KIT and PDGFRα oncogene mutations (±15%) is significantly lower as compared to adults with GIST. The recommendations for the management of children with GIST are generally comparable to those used for adult patients, although certain biological differences influence the therapeutic attitude. CONCLUSIONS International collaborations have been deployed in order to increase the clinical and biological knowledge of this orphan pathology in pediatrics.
Collapse
Affiliation(s)
- Victoria Min
- Pediatric Hematology Oncology Department, La Timone Children's Hospital, AP-HM, 264, rue St Pierre, 13385 Marseille cedex, France
| | - Nadège Corradini
- Pediatric Hematology Oncology Department, Institute of Pediatric Hematology and Oncology (IHOPe), Léon Bérard Cancer Centre, Lyon, France
| | | | - Daniel Orbach
- SIREDO Oncology Centre (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer), PSL University, Institut Curie, Paris, France
| | - Yves Reguerre
- Pediatric Oncology Department, University Hospital Center La Reunion, Saint-Denis, Reunion
| | - Philippe Petit
- Department of pediatric and prenatal radiology, La Timone Children's Hospital, Aix Marseille University, AP-HM, 264, rue St-Pierre, 13385 Marseille cedex, France
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, UNICANCER & University Lyon I, Lyon, France
| | - Arnauld Verschuur
- Pediatric Hematology Oncology Department, La Timone Children's Hospital, AP-HM, 264, rue St Pierre, 13385 Marseille cedex, France.
| |
Collapse
|
7
|
Florou V, Jacobs MF, Casey R, Evans D, Owens B, Raygada M, Rothschild S, Greenberg SE. A Review of Genomic Testing and SDH- Deficiency in Gastrointestinal Stromal Tumors: Getting to the GIST. Cancer Med 2025; 14:e70669. [PMID: 39927693 PMCID: PMC11808740 DOI: 10.1002/cam4.70669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Gastrointestinal Stromal Tumors (GISTs) have seen significant advancements in their diagnosis and management, driven by targeted therapeutic development and molecular testing. The identification of mutations in genes such as KIT and PDGFRA has transformed treatment approaches, particularly through targeted therapies like imatinib, which have improved patient outcomes. This review explores the critical role of genomic testing in GIST, highlighting its importance in accurate diagnosis, treatment planning, and long-term surveillance for KIT/PDGFRA negative, SDH-deficient GISTs. SDH-deficient GISTs arise from mutations or epigenetic changes affecting the succinate dehydrogenase complex. The complexity of SDH-deficient GISTs, including their association with hereditary syndromes such as Hereditary Paraganglioma-Pheochromocytoma and/or hypermethylation of the SDHC promoter, underscores the need for comprehensive germline testing. Despite the availability of guidelines, variability exists in genomic testing recommendations across different regions, necessitating a unified approach. This review proposes a simplified algorithm for the genomic workup of GIST, and suggests all individuals with SDH-deficient GIST, regardless of germline testing result, require monitoring for additional SDHx-related tumors, given the lack of widely available methylation and full gene SDHA analysis.
Collapse
Affiliation(s)
- Vaia Florou
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtahUSA
| | - Michelle F. Jacobs
- Division of Genetic Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Ruth Casey
- Department of Medical GeneticsCambridge UniversityCambridgeUK
| | | | | | - Margarita Raygada
- Pediatric Oncology and Neuro‐Oncology BranchNational Cancer Institute/National Institutes of HealthBethesdaMarylandUSA
| | | | | |
Collapse
|
8
|
He C, Wang Z, Yu J, Mao S, Xiang X. Current Drug Resistance Mechanisms and Treatment Options in Gastrointestinal Stromal Tumors: Summary and Update. Curr Treat Options Oncol 2024; 25:1390-1405. [PMID: 39441520 PMCID: PMC11541409 DOI: 10.1007/s11864-024-01272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) is characterized by well-defined oncogenes. Despite the significant improvement in treatment outcomes with adjuvant imatinib therapy for patients, drug resistance remains a major challenge for GIST therapy. This review focuses on the mechanisms contributing to drug resistance phenotype in GIST, such as primary imatinib-resistant mutants, secondary mutations, non-covalent binding of TKI to its target, tumor heterogeneity, re-activation of pro-survival/proliferation pathways through non-KIT/PDGFRA kinases, and loss of therapeutic targets in wild-type GIST. Corresponding suggestions are proposed to overcome drug-resistance phenotype of GIST. This review also summarizes the suitability of currently approved TKIs on different KIT/PDGFRA mutations and updates related clinical trials. Recent potent drugs and emerging strategies against advanced GISTs in clinical trials are presented. Additionally, metabolic intervention offers a new avenue for clinical management in GIST. A landscape of metabolism in GIST and metabolic changes under imatinib treatment are summarized based on currently published data. The OXPHOS pathway is a promising therapeutic target in combination with TKI against sensitive KIT/PDGFRA mutants. Comprehensive understanding of the above resistance mechanisms, experimental drugs/strategies and metabolic changes is critical to implement the proper therapy strategy and improve the clinical therapy outcomes for GIST.
Collapse
Affiliation(s)
- Chunxiao He
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zilong Wang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiaying Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shuang Mao
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xi Xiang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Fujii H, Hirano H, Shiraishi K, Shoji H, Hirose T, Okita N, Takashima A, Koyama T, Kato K. Comprehensive Genomic Assessment of Advanced-Stage GI Stromal Tumors Using the Japanese National Center for Cancer Genomics and Advanced Therapeutics Database. JCO Precis Oncol 2024; 8:e2400284. [PMID: 39447098 PMCID: PMC11520344 DOI: 10.1200/po.24.00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE Clinical utility of comprehensive genomic profiling (CGP) for precision medicine has become evident. Although there are several reports on the genomic landscape of GI stromal tumors (GISTs), large-scale data specific to GIST are limited, especially in Asia. Additionally, the applicability of molecular-targeted agents identified using CGP has not been extensively examined. We investigated the status of genomic alterations in Japanese patients with advanced GISTs using the National Center for Cancer Genomics and Advanced Therapeutics (C-CAT) database to identify novel treatment strategies and drug development. MATERIALS AND METHODS We retrospectively reviewed the clinical and CGP data of patients with advanced-stage GIST registered in the C-CAT database to assess the genomic landscape and potential actionable alterations. RESULTS Data from 144 patients were reviewed. Oncogenic alterations were detected frequently in KIT (78%), CDKN2A (37%), CDKN2B (29%), RB1 (11%), STK11 (10%), TP53 (9%), PDGFRA (6%), and SDHB (6%). Loss of CDKN2A/CDKN2B was only observed in KIT/PDGFRA-mutated GISTs, while alterations in SDHA/SDHB were only detected in KIT/PDGFRA wild-type GISTs. Among 119 KIT/PDGFRA-mutated GISTs, 95 (80%) had oncogenic genomic alterations and 29 (24%) had actionable alterations, excluding KIT and PDGFRA. However, among 25 KIT/PDGFRA wild-type GISTs, 22 (88%) had oncogenic alterations and 11 (44%) had actionable alterations. Representative candidate drugs for genome-matched therapies in KIT/PDGFRA-mutated and wild-type GISTs were as follows: pembrolizumab for tumor mutation burden-high in one and two patients, respectively; poly-adenosine diphosphate ribose polymerase inhibitors for alterations related to homologous recombination deficiency in 12 and one patient, respectively; NTRK inhibitor for ETV6-NTRK3 fusion in one with KIT/PDGFRA wild-type GIST; and human epidermal growth factor receptor 2-antibody-drug conjugate in one with KIT/PDGFRA-mutated GIST. CONCLUSION This study highlights the genomic landscape of advanced GISTs and the important role of CGP in identifying rational molecular-targeted therapeutic options.
Collapse
Affiliation(s)
- Hiroyuki Fujii
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiharu Hirose
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Natsuko Okita
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Atsuo Takashima
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Lajara S, Jo VY. Soft Tissue Fine-Needle Aspiration: Current and Future Impact on Patient Care. Surg Pathol Clin 2024; 17:483-507. [PMID: 39129144 DOI: 10.1016/j.path.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Soft tissue neoplasms pose many diagnostic challenges on fine-needle aspiration (FNA), owing largely to their rarity, large number of entities, and histologic diversity. Advances in ancillary testing now allow detection of the characteristic immunophenotypes and molecular alterations for many neoplasms and include reliable surrogate immunohistochemical markers for underlying molecular events that are highly efficient in small biopsies. A morphology-based framework is recommended to guide appropriate differentials and judicious selection of ancillary tests for small biopsies. The accurate diagnosis of soft tissue tumors is crucial for patient management and prognostication, with many potential implications in this era of precision medicine.
Collapse
Affiliation(s)
- Sigfred Lajara
- Department of Pathology, UPMC Shadyside Hospital, Cancer Pavilion, Suite 201, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Vickie Y Jo
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Wachtel H, Nathanson KL. Molecular Genetics of Pheochromocytoma/Paraganglioma. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2024; 36:100527. [PMID: 39328362 PMCID: PMC11424047 DOI: 10.1016/j.coemr.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGL) are neuroendocrine tumors which secrete catecholamines, causing cardiovascular compromise. While isolated tumors and locoregional disease can be treated surgically, treatment options for metastatic disease are limited, and no targeted therapies exist. Approximately 25% of PPGL are causatively associated with germline pathogenic variants, which are known risk factors for multifocal and metastatic PPGL. Knowledge of somatic driver mutations continues to evolve. Molecular classification of PPGL has identified three genomic subtypes: Cluster 1 (pseudohypoxia), Cluster 2 (kinase signaling) and Cluster 3 (Wnt-altered). This review summaries recent studies characterizing the tumor microenvironment, genomic drivers of tumorigenesis and progression, and current research on molecular targets for novel diagnostic and therapeutic strategies in PPGL.
Collapse
Affiliation(s)
- Heather Wachtel
- Hospital of the University of Pennsylvania, Department of Surgery, Division of Endocrine and Oncologic Surgery and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine L Nathanson
- Hospital of the University of Pennsylvania, Department of Medical Genetics, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
殷 善. [Review and prospect of the diagnosis and treatment of head and neck paragangliomas]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2024; 38:773-776. [PMID: 39193732 PMCID: PMC11839586 DOI: 10.13201/j.issn.2096-7993.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 08/29/2024]
Abstract
ead and neck paraganglioma(HNPGL) often originates from the parasympathetic ganglia and is a highly invasive benign tumor. The diagnosis and treatment of this disease with strong heterogeneity is still a challenge. In the future, deep exploration is needed in genetic typing, grading diagnosis and treatment decisions, protection of cranial nerves and new drug treatments to better treat this disease.
Collapse
Affiliation(s)
- 善开 殷
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海市听力测试中心 上海交通大学耳鼻咽喉科研究所 上海东方耳鼻咽喉科研究所(上海,200233)Department of Otorhinolaryngology, Shangha Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
13
|
Popoiu TA, Pîrvu CA, Popoiu CM, Iacob ER, Talpai T, Voinea A, Albu RS, Tãban S, Bãlãnoiu LM, Pantea S. Gastrointestinal Stromal Tumors (GISTs) in Pediatric Patients: A Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1040. [PMID: 39334573 PMCID: PMC11429550 DOI: 10.3390/children11091040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are rare mesenchymal neoplasms that primarily affect adults, with pediatric cases constituting only 0.5-2.7% of the total. Pediatric GISTs present unique clinical, genetic, and pathological features that distinguish them from adult cases. This literature review aims to elucidate these differences, emphasizing diagnostic and therapeutic challenges. We discuss the resistance of pediatric GISTs to conventional chemotherapy and highlight the importance of surgical intervention, especially in emergency situations involving intra-abdominal bleeding. The review also explores the molecular characteristics of pediatric GISTs, including rare mutations such as quadruple-negative wild-type GIST with an FGF3 gene gain mutation. To illustrate these points, we conclude with a case from our clinic involving a 15-year-old female with multiple CD117-positive gastric GISTs and a quadruple-negative wild-type genetic profile who required urgent surgical intervention following a failed tumor embolization. This case underscores the critical need for early diagnosis and individualized therapeutic strategies combining oncologic and surgical care to improve outcomes in pediatric GIST patients.
Collapse
Affiliation(s)
- Tudor-Alexandru Popoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Department III of Functional Sciences, Discipline of Medical Informatics and Biostatistics, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãtãlin-Alexandru Pîrvu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Cãlin-Marius Popoiu
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Emil Radu Iacob
- Department of Pediatric Surgery, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Tamas Talpai
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Amalia Voinea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Rãzvan-Sorin Albu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Sorina Tãban
- Department of Pathology, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Larisa-Mihaela Bãlãnoiu
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Stelian Pantea
- Department of General Surgery, "Victor Babeş" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
14
|
Álvarez-González E, Sierra LM. Tricarboxylic Acid Cycle Relationships with Non-Metabolic Processes: A Short Story with DNA Repair and Its Consequences on Cancer Therapy Resistance. Int J Mol Sci 2024; 25:9054. [PMID: 39201738 PMCID: PMC11355010 DOI: 10.3390/ijms25169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair. Additionally, by influencing DDR modulation, they establish direct relationships with DNA repair on at least four different pathways. The AlkB pathway deals with the removal of N-alkylation DNA and RNA damage that is inhibited by fumarate and 2HG. The MGMT pathway acts in the removal of O-alkylation DNA damage, and it is inhibited by the silencing of the MGMT gene promoter by 2HG and succinate. The other two pathways deal with the repair of double-strand breaks (DSBs) but with opposite effects: the FH pathway, which uses fumarate to help with the repair of this damage, and the chromatin remodeling pathway, in which oncometabolites inhibit its repair by impairing the homologous recombination repair (HRR) system. Since oncometabolites inhibit DNA repair, their removal from tumor cells will not always generate a positive response in cancer therapy. In fact, their presence contributes to longer survival and/or sensitization against tumor therapy in some cancer patients.
Collapse
Affiliation(s)
- Enol Álvarez-González
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| | - Luisa María Sierra
- Departamento de Biología Funcional, Área de Genética, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain;
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avda. HUCA s/n, 33011 Oviedo, Spain
| |
Collapse
|
15
|
Ali RH, Alsaber AR, Mohanty AK, Alnajjar A, Mohammed EMA, Alateeqi M, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Alkandari M. Molecular Profiling of KIT/PDGFRA-Mutant and Wild-Type Gastrointestinal Stromal Tumors (GISTs) with Clinicopathological Correlation: An 18-Year Experience at a Tertiary Center in Kuwait. Cancers (Basel) 2024; 16:2907. [PMID: 39199677 PMCID: PMC11352935 DOI: 10.3390/cancers16162907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
In gastrointestinal stromal tumors (GISTs), identifying prototypical mutations in the KIT/PDGFRA oncogenes, or in rare alternate genes, is essential for prognostication and predicting response to tyrosine kinase inhibitors. Conversely, wild-type GISTs (WT-GIST), which lack known mutations, have limited treatment options. Data on the mutational landscape of GISTs and their impact on disease progression are very limited in Kuwait. Using a targeted next-generation sequencing panel, we investigated the spectrum and frequency of KIT, PDGFRA, and RAS-pathway-related mutations in 95 out of 200 GISTs diagnosed at Kuwait Cancer Center from 2005 to 2023 and assessed their correlation with clinicopathological parameters. Among the 200 tumors (median age 55 years; 15-91), 54% originated in the stomach, 33% in the small bowel, 7% in the colorectum, 1.5% in the peritoneum, and 4.5% had an unknown primary site. Of the 95 molecularly profiled cases, 88% had a mutation: KIT (61%), PDGFRA (25%), NF1 (2%), and one NTRK1 rearrangement. Ten WT-GISTs were identified (stomach = 6, small bowel = 2, and colorectum = 2). WT-GISTs tended to be smaller (median 4.0 cm; 0.5-8.0) (p = 0.018), with mitosis ≤5/5 mm2, and were of lower risk (p = 0.019). KIT mutations were an adverse indicator of disease progression (p = 0.049), while wild-type status did not significantly impact progression (p = 0.934). The genetic landscape in this cohort mirrors that of global studies, but regional collaborations are needed to correlate outcomes with genetic variants.
Collapse
Affiliation(s)
- Rola H. Ali
- Department of Pathology, College of Medicine, Kuwait University, Safat 13110, Kuwait
- Histopathology Laboratory, Sabah Hospital, Sabah Medical District, Safat 13001, Kuwait
| | - Ahmad R. Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Safat 13034, Kuwait;
| | - Asit K. Mohanty
- Department of Medical Oncology, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (A.K.M.); (A.A.)
| | - Abdulsalam Alnajjar
- Department of Medical Oncology, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (A.K.M.); (A.A.)
| | - Eiman M. A. Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Amir A. Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Center, Sabah Medical District, Safat 13001, Kuwait; (E.M.A.M.); (M.A.); (H.J.); (A.A.); (N.B.); (Z.A.); (A.A.A.); (S.B.)
| | - Mohammad Alkandari
- Histopathology Laboratory, Farwaniya Hospital, Sabah Al Nasser Area 92426, Kuwait;
| |
Collapse
|
16
|
Takaki EO, Kiyono K, Obuchi Y, Yamauchi T, Watanabe T, Matsumoto H, Karimine M, Kuniyoshi Y, Nishikori S, Yokoyama F, Nishimori H, Nabeshima H, Nakamura K. A PDE3A-SLFN12 Molecular Glue Exhibits Significant Antitumor Activity in TKI-Resistant Gastrointestinal Stromal Tumors. Clin Cancer Res 2024; 30:3603-3621. [PMID: 38864850 PMCID: PMC11325149 DOI: 10.1158/1078-0432.ccr-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Gastrointestinal stromal tumor (GIST), the most common mesenchymal tumor with KIT or PDGFRA driver mutations, is typically treated with tyrosine kinase inhibitors (TKI). However, resistance to TKIs due to secondary mutations is a common challenge in advanced GISTs. In addition, there are currently no effective therapies for several other molecular subtypes, such as succinate dehydrogenase-deficient GISTs. Therefore, novel therapeutic strategies are needed. EXPERIMENTAL DESIGN To address this need, we tested the efficacy of a novel non-TKI compound, OPB-171775, using patient-derived xenograft models of GISTs. In parallel, we sought to elucidate the mechanism of action of the compound. RESULTS Our study revealed that OPB-171775 exhibited significant efficacy against GISTs regardless of their KIT mutation status by inducing complex formation between phosphodiesterase 3A (PDE3A) and Schlafen family member 12 (SLFN12), which are highly expressed in GISTs, leading to SLFN12 RNase-mediated cell death. Furthermore, we identified the activation of general control non-derepressible 2 and its downstream response as an effector pathway of SLFN12 in mediating anticancer activity and revealed potential pharmacodynamic markers. CONCLUSIONS These findings suggest that OPB-171775, with its significant efficacy, could potentially serve as a novel and effective treatment option for advanced GISTs, particularly those resistant to TKIs.
Collapse
Affiliation(s)
- Emiri O. Takaki
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Kunihiko Kiyono
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Yutaka Obuchi
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Takeshi Yamauchi
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Takashi Watanabe
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Hideki Matsumoto
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Miho Karimine
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Yuki Kuniyoshi
- Office of Bioinformatics, Department of Drug Discovery Strategy, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Shingo Nishikori
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Fumiharu Yokoyama
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan.
| | - Hikaru Nishimori
- Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Hiroshi Nabeshima
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| | - Kazuhide Nakamura
- Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co., Ltd., Minoh, Japan.
| |
Collapse
|
17
|
da Silva Gomes S, Oliveira CS, Furtado TDA, Melo LM, Dos Santos SG, Braga RSN, Martins EMTG, Gomes JPDS. Recurrence of fusocellular subtype GIST with SDHB mutation: A case of SDHB-loss and therapeutic challenges. J Surg Oncol 2024. [PMID: 39099211 DOI: 10.1002/jso.27727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/11/2024] [Indexed: 08/06/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are sarcomas affecting the stomach and small intestine, with a rare subtype characterized by succinate dehydrogenase B (SDHB)-loss posing significant diagnostic and therapeutic challenges. A 62-year-old man with weight loss and abdominal pain was diagnosed with a gastric GIST showing SDHB-loss. Initial treatment with Imatinib reduced the tumor size, but surgery revealed no residual tumor. Despite adjuvant Imatinib, recurrence occurred, necessitating further surgical intervention. While GISTs typically benefit from surgery and tyrosine kinase inhibitors (TKIs), those with SDHB-loss are resistant to TKIs, requiring a different management approach. This case emphasizes the importance of surgical intervention for SDHB-deficient GISTs and the need for ongoing research into effective treatments for this subtype.
Collapse
Affiliation(s)
| | | | | | - Lara M Melo
- General Surgery Deparment, Hospital Felicio Rocho, Belo Horizonte, Brazil
| | - Sara G Dos Santos
- General Surgery Deparment, Hospital Felicio Rocho, Belo Horizonte, Brazil
| | - Renata S N Braga
- General Surgery Deparment, Hospital Felicio Rocho, Belo Horizonte, Brazil
| | | | | |
Collapse
|
18
|
Yu Y, Yu M, Luo L, Zhang Z, Zeng H, Chen Y, Lin Z, Chen M, Wang W. Molecular characteristics and immune microenvironment of gastrointestinal stromal tumours: targets for therapeutic strategies. Front Oncol 2024; 14:1405727. [PMID: 39070147 PMCID: PMC11272528 DOI: 10.3389/fonc.2024.1405727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Gastrointestinal stromal tumours (GISTs) are the most common mesenchymal tumours, arising mainly from the interstitial cells of Cajal (ICCs) of the gastrointestinal tract. As radiotherapy and chemotherapy are generally ineffective for GISTs, the current primary treatment is surgical resection. However, surgical resection is not choice for most patients. Therefore, new therapeutic strategies are urgently needed. Targeted therapy, represented by tyrosine kinase inhibitors (TKIs), and immunotherapy, represented by immune checkpoint inhibitor therapies and chimeric antigen receptor T-cell immunotherapy (CAR-T), offer new therapeutic options in GISTs and have shown promising treatment responses. In this review, we summarize the molecular classification and immune microenvironment of GISTs and discuss the corresponding targeted therapy and immunotherapy options. This updated knowledge may provide more options for future therapeutic strategies and applications in GISTs.
Collapse
Affiliation(s)
- Yang Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengdie Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., Guangzhou, Guangdong, China
| | - Lijie Luo
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zijing Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Haiping Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zeyu Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengnan Chen
- Department of Thyroid and Breast Surgery, Baiyun Hospital, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Medrano Guzman R, Lopez Lara X, Arias Rivera AS, Garcia Rios LE, Brener Chaoul M. Neoadjuvant Imatinib in Gastrointestinal Stromal Tumors (GIST): The First Analysis of a Mexican Population. Cureus 2024; 16:e65001. [PMID: 39161479 PMCID: PMC11333017 DOI: 10.7759/cureus.65001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction Gastrointestinal stromal tumors (GISTs) are neoplasms originating from the interstitial cells of Cajal, pacemaker cells responsible for intestinal motility. Patients with locally advanced GISTs and those with borderline resections due to the proximity of vital anatomical structures, which could result in unacceptable post-surgical morbidity, require special therapeutic consideration. Imatinib, a tyrosine kinase inhibitor, has demonstrated significant success in the non-surgical management of metastatic GIST, and its favorable impact on overall survival in the adjuvant setting makes it logical to speculate on the benefit it could provide as a neoadjuvant medication in patients with locally advanced disease. Methods Patients aged 18-90 years with a diagnosis of GIST confirmed by immunohistochemistry (CD117 positivity) who were treated at the Oncology Hospital of Centro Médico Nacional Siglo XXI in Mexico City from January 2012 to December 2016 were included in the study. It is a retrospective study with a duration of four years. Clinical data were collected from the medical records, which included sex, age, tumor location, initial resectability, reason for unresectability, initial tumor size, and mitotic rate. In the case of unresectable disease, patients who were evaluated by medical oncology and who had received treatment with 400 mg of imatinib daily were evaluated. Results A total of 312 patients diagnosed with GIST were analyzed. One hundred thirty-one were men (42%) with a mean age of 57 years, and 181 were women (58%) with a mean age of 59 years. The most frequent anatomical location was the stomach (n=185, 59.2%). At the time of diagnosis, 210 patients (67.3%) presented with resectable disease, while n=102 patients (32.7%) had unresectable disease. A total of 102 patients with unresectable disease received therapy with 400 mg of imatinib per day. Sixteen patients (15.7%) presented a reduction in tumor dimensions and underwent surgery. Conclusion The study highlights the importance of complete surgical resection and the potential benefit of neoadjuvant imatinib therapy in converting unresectable to resectable disease. The results suggest that imatinib can be effective in converting unresectable GISTs to resectable ones, allowing for a complete resection to be performed and obtaining an R0 resection in 93.7% of these cases.
Collapse
Affiliation(s)
| | - Xavier Lopez Lara
- Surgical Oncology, Centro Médico Nacional Siglo XXI, Mexico City, MEX
| | | | | | | |
Collapse
|
20
|
Vagher J, Mehrhoff CJ, Florou V, Maese LD. Genetic Predisposition to Sarcoma: What Should Clinicians Know? Curr Treat Options Oncol 2024; 25:769-783. [PMID: 38713268 DOI: 10.1007/s11864-024-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 05/08/2024]
Abstract
OPINION STATEMENT Pathogenic germline variants in the setting of several associated cancer predisposition syndromes (CPS) may lead to the development of sarcoma. We would consider testing for a CPS in patients with a strong family history of cancer, multiple primary malignancies, and/or pediatric/adolescent/young adult patients diagnosed with other malignancies strongly associated with CPS. When a CPS is diagnosed in a patient with sarcoma, additional treatment considerations and imaging options for those patients are required. This applies particularly to the use of radiation therapy, ionizing radiation with diagnostic imaging, and the use of alkylating chemotherapy. As data and guidelines are currently lacking for many of these scenarios, we have adopted a shared decision-making process with patients and their families. If the best chance for cure in a patient with CPS requires utilization of radiation therapy or alkylating chemotherapy, we discuss the risks with the patient but do not omit these modalities. However, if there are treatment options that yield equivalent survival rates, yet avoid these modalities, we elect for those options. Considering staging imaging and post-therapy evaluation for sarcoma recurrence, we avoid surveillance techniques that utilize ionizing radiation when possible but do not completely omit them when their use is indicated.
Collapse
Affiliation(s)
- Jennie Vagher
- Department of Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Casey J Mehrhoff
- Department of Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
- Division of Hematology/Oncology, Primary Children's Hospital, University of Utah, 100 Mario Capecchi Dr, Salt Lake City, UT, 84113, USA
| | - Vaia Florou
- Division of Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Luke D Maese
- Department of Population Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA.
- Division of Hematology/Oncology, Primary Children's Hospital, University of Utah, 100 Mario Capecchi Dr, Salt Lake City, UT, 84113, USA.
| |
Collapse
|
21
|
Cranmer LD, Konnick EQ, Yoshida JR, Jacobson AL, Malik BA, Mogal H, Sullivan LB, Handfrod CL, Pritchard CC, Dubard-Gault ME. Combined Germline and Mosaic SDHA Mutation Is Associated With a Multicancer Syndrome Including Neuroblastoma, Renal Cancer, and Multifocal GI Tumor. JCO Precis Oncol 2024; 8:e2300455. [PMID: 38885448 PMCID: PMC11371076 DOI: 10.1200/po.23.00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/12/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024] Open
Abstract
Highlighting here a patient case with neuroblastoma, renal cancer & GIST from germline SDHA.
Collapse
Affiliation(s)
- Lee D. Cranmer
- Department of Medicine, University of Washington, Seattle, WA
| | - Eric Q. Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | | | - Angela L. Jacobson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Bilal A. Malik
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Harveshp Mogal
- Department of Surgery, University of Washington School of Medicine, Seattle, WA
| | | | | | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Marianne E. Dubard-Gault
- Fred Hutch Cancer Center, Seattle, WA
- Swedish Cancer Institute and the Paul G Alle Research Center, Seattle, WA
- Translational Science and Therapeutics Division at the Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
22
|
Medrano Guzman R, Perez Ventura EF, Arias Rivera AS, Piña-Sanchez P, Brener Chaoul M. Clinicopathological Characteristics and the First Mutational Analysis of Gastrointestinal Stromal Tumors From Mexico: A Single Institution Experience. Cureus 2024; 16:e62594. [PMID: 39027749 PMCID: PMC11256735 DOI: 10.7759/cureus.62594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Gastrointestinal stromal tumors (GISTs) arise from Cajal's interstitial cell precursors and display a variety of genetic mutations, primarily in the KIT and PDGFRA genes. These mutations are linked to tumor location, prognosis, and response to treatment. This study delves into the mutational patterns of GISTs in a Mexican population and their impact on overall survival (OS) and disease-free survival (DFS). Methodology This retrospective study examined 42 GIST cases diagnosed at the Oncology Hospital of the National Medical Center XXI Century between January 2018 and December 2020. Clinical, histological, and immunohistochemical data were gathered, and mutational analysis of KIT and PDGFRA genes was conducted using second-generation sequencing. Results The study group consisted of 52.4% females and 47.6% males, with an average age of 62.6 years. The most common tumor site was the stomach (59.5%), followed by the small intestine (26.2%). KIT mutations were detected in 71.4% of cases, predominantly involving exon 11. PDGFRA mutations were observed in 7.1% of cases. Recurrence was noted in 9.5% of patients, all with high-risk tumors. No significant link was identified between specific mutations and OS or DFS. Conclusions This investigation sheds light on the genetic landscape of GISTs in the Mexican population. While no significant association was established between particular mutations and survival outcomes, the study emphasizes the importance of molecular profiling in treatment decision-making. Further studies with larger sample sizes and longer follow-up periods are necessary to validate these results and explore their clinical relevance.
Collapse
Affiliation(s)
- Rafael Medrano Guzman
- Surgical Oncology, Unidad Médica de Alta Especialidad (UMAE) Hospital de Oncologia Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, MEX
| | - Edgar F Perez Ventura
- Surgical Oncology, Unidad Médica de Alta Especialidad (UMAE) Hospital de Oncologia Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, MEX
| | | | - Patricia Piña-Sanchez
- Medical Research Unit in Oncological Diseases, Unidad Médica de Alta Especialidad (UMAE) Hospital de Oncologia Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, MEX
| | | |
Collapse
|
23
|
Czarnecka AM, Chmiel P, Błoński P, Rutkowski P. Establishing biomarkers for soft tissue sarcomas. Expert Rev Anticancer Ther 2024; 24:407-421. [PMID: 38682679 DOI: 10.1080/14737140.2024.2346187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Soft tissue sarcomas (STS) are a rare and diverse group of tumors. Curative options are limited to localized disease, with surgery being the mainstay. Advanced stages are associated with a poor prognosis. Currently, the prognosis of the patient is based on histological classification and clinical characteristics, with only a few biomarkers having entered clinical practice. AREAS COVERED This article covers extensive recent research that has established novel potential biomarkers based on genomics, proteomics, and clinical characteristics. Validating and incorporating these biomarkers into clinical practice can improve prognosis, prediction of recurrence, and treatment response. Relevant literature was collected from PubMed, Scopus, and clinicaltrials.gov databases (November 2023). EXPERT OPINION Currently, defining prognostic markers in soft tissue sarcomas remains challenging. More studies are required, especially to personalize treatment through advanced genetic profiling and analysis using individual tumor and patient characteristics.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Chmiel
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Medical Faculty, Warsaw Medical University, Warsaw, Poland
| | - Piotr Błoński
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Medical Faculty, Warsaw Medical University, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
24
|
Denu RA, Joseph CP, Urquiola ES, Byrd PS, Yang RK, Ratan R, Zarzour MA, Conley AP, Araujo DM, Ravi V, Nassif Haddad EF, Nakazawa MS, Patel S, Wang WL, Lazar AJ, Somaiah N. Utility of Clinical Next Generation Sequencing Tests in KIT/PDGFRA/SDH Wild-Type Gastrointestinal Stromal Tumors. Cancers (Basel) 2024; 16:1707. [PMID: 38730662 PMCID: PMC11083047 DOI: 10.3390/cancers16091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack alterations in KIT, PDGFRA, and SDH. We aimed to further characterize the clinical and genomic characteristics of these so-called "triple-negative" GISTs. Methods: We extracted clinical and genomic data from patients seen at MD Anderson Cancer Center with a diagnosis of GIST and available clinical next generation sequencing data to identify "triple-negative" patients. Results: Of the 20 patients identified, 11 (55.0%) had gastric, 8 (40.0%) had small intestinal, and 1 (5.0%) had rectal primary sites. In total, 18 patients (90.0%) eventually developed recurrent or metastatic disease, and 8 of these presented with de novo metastatic disease. For the 13 patients with evaluable response to imatinib (e.g., neoadjuvant treatment or for recurrent/metastatic disease), the median PFS with imatinib was 4.4 months (range 0.5-191.8 months). Outcomes varied widely, as some patients rapidly developed progressive disease while others had more indolent disease. Regarding potential genomic drivers, four patients were found to have alterations in the RAS/RAF/MAPK pathway: two with a BRAF V600E mutation and two with NF1 loss-of-function (LOF) mutations (one deletion and one splice site mutation). In addition, we identified two with TP53 LOF mutations, one with NTRK3 fusion (ETV6-NTRK3), one with PTEN deletion, one with FGFR1 gain-of-function (GOF) mutation (K654E), one with CHEK2 LOF mutation (T367fs*), one with Aurora kinase A fusion (AURKA-CSTF1), and one with FANCA deletion. Patients had better responses with molecularly targeted therapies than with imatinib. Conclusions: Triple-negative GISTs comprise a diverse cohort with different driver mutations. Compared to KIT/PDGFRA-mutant GIST, limited benefit was observed with imatinib in triple-negative GIST. In depth molecular profiling can be helpful in identifying driver mutations and guiding therapy.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Cissimol P. Joseph
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth S. Urquiola
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Precious S. Byrd
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard K. Yang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ravin Ratan
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria Alejandra Zarzour
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anthony P. Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dejka M. Araujo
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vinod Ravi
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander J. Lazar
- Department of Pathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
25
|
Adle-Biassette H, Ricci R, Martin A, Martini M, Ravegnini G, Kaci R, Gélébart P, Poirot B, Sándor Z, Lehman-Che J, Tóth E, Papp B. Sarco/endoplasmic reticulum calcium ATPase 3 (SERCA3) expression in gastrointestinal stromal tumours. Pathology 2024; 56:343-356. [PMID: 38184384 DOI: 10.1016/j.pathol.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 01/08/2024]
Abstract
Accurate characterisation of gastrointestinal stromal tumours (GIST) is important for prognosis and the choice of targeted therapies. Histologically the diagnosis relies on positive immunostaining of tumours for KIT (CD117) and DOG1. Here we report that GISTs also abundantly express the type 3 Sarco/Endoplasmic Reticulum Calcium ATPase (SERCA3). SERCA enzymes transport calcium ions from the cytosol into the endoplasmic reticulum and play an important role in regulating the intensity and the periodicity of calcium-induced cell activation. GISTs from various localisations, histological and molecular subtypes or risk categories were intensely immunopositive for SERCA3 with the exception of PDGFRA-mutated cases where expression was high or moderate. Strong SERCA3 expression was observed also in normal and hyperplastic interstitial cells of Cajal. Decreased SERCA3 expression in GIST was exceptionally observed in a zonal pattern, where CD117 staining was similarly decreased, reflecting clonal heterogeneity. In contrast to GIST, SERCA3 immunostaining of spindle cell tumours and other gastrointestinal tumours resembling GIST was negative or weak. In conclusion, SERCA3 immunohistochemistry may be useful for the diagnosis of GIST with high confidence, when used as a third marker in parallel with KIT and DOG1. Moreover, SERCA3 immunopositivity may be particularly helpful in cases with negative or weak KIT or DOG1 staining, a situation that may be encountered de novo, or during the spontaneous or therapy-induced clonal evolution of GIST.
Collapse
Affiliation(s)
- Homa Adle-Biassette
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France; INSERM NeuroDiderot, DMU DREAM, France
| | - Riccardo Ricci
- Department of Pathology, Università Cattolica del Sacro Cuore, Rome, Italy; UOC di Anatomia Patologica, Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Antoine Martin
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Paris, France; Inserm UMR U978, Université Sorbonne Paris Nord, Alliance Sorbonne Paris Cité, Labex Inflamex, Bobigny, France
| | - Maurizio Martini
- Dipartimento di patologia umana dell'adulto e dell'età evolutiva 'Gaetano Barresi' Azienda Ospedaliera Universitaria Policlinico 'G. Martino', Messina, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Rachid Kaci
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Lariboisière, and Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Pascal Gélébart
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Brigitte Poirot
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Zsuzsanna Sándor
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Jacqueline Lehman-Che
- Molecular Oncology Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France
| | - Erika Tóth
- Department of Pathology, National Institute of Oncology, Budapest, Hungary
| | - Bela Papp
- INSERM UMR U976, Hôpital Saint-Louis, Paris, France; Institut de Recherche Saint-Louis, Université de Paris, France; CEA, DRF-Institut Francois Jacob, Department of Hemato-Immunology Research, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
26
|
Nowak KM, Chetty R. Predictive and prognostic biomarkers in gastrointestinal tract tumours. Pathology 2024; 56:205-213. [PMID: 38238239 DOI: 10.1016/j.pathol.2023.12.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 02/18/2024]
Abstract
Tumours of the gastrointestinal tract represent nearly a quarter of all newly diagnosed tumours diagnosed in 2019. Various treatment modalities for gastrointestinal cancers exist, some of which may be guided by biomarkers. Biomarkers act as gauges of either normal or pathogenic processes or responses to an exposure or intervention. They come in many forms. This review explores established and potential molecular/immunohistochemical (IHC) predictive and prognostic biomarkers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | | |
Collapse
|
27
|
Nishida T, Naito Y, Takahashi T, Saito T, Hisamori S, Manaka D, Ogawa K, Hirota S, Ichikawa H. Molecular and clinicopathological features of KIT/PDGFRA wild-type gastrointestinal stromal tumors. Cancer Sci 2024; 115:894-904. [PMID: 38178783 PMCID: PMC10920999 DOI: 10.1111/cas.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/22/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Approximately 10% of gastrointestinal stromal tumors (GISTs) harbor reportedly no KIT and PDGFRA mutations (wild-type GISTs). The clinicopathological features and oncologic outcomes of wild-type GISTs based on molecular profiles are unknown. We recruited 35 wild-type GIST patients from the two registry studies of high-risk GISTs between 2012 and 2015 and primary GISTs between 2003 and 2014. Molecular profiling of wild-type GISTs was performed by targeted next-generation sequencing (NGS) using formalin-fixed paraffin-embedded tumor samples. Among 35 wild-type GISTs, targeted NGS analysis detected NF1, SDH, or BRAF mutation: 16 NF1-GISTs with various NF1 mutations, 12 SDH-GISTs (4 with SDHA mutations, 4 with SDHB mutations, and 4 with SDHB-negative staining), and 5 BRAF-GISTs with the V600E mutation. Two GISTs showed no mutations based on our targeted NGS analysis. Additional gene mutations were infrequent in primary wild-type GISTs and found in TP53, CREBBP, CDKN2A, and CHEK2. Most NF1-GISTs were located in the small intestine (N = 12; 75%) and showed spindle cell features (N = 15; 94%) and multiple tumors (N = 6, 38%) with modest proliferation activities. In contrast, SDH-GISTs were predominantly found in the stomach (N = 11; 92%), exhibiting epithelioid cell (N = 6; 50%) and multiple (N = 6, 50%) features. The overall survival of patients with SDH-GISTs appeared to be better than that of BRAF-GISTs (p = 0.0107) or NF1-GISTs (p = 0.0754), respectively. In conclusion, major molecular changes in wild-type GISTs include NF1, SDH, and BRAF. NF1-GISTs involved multifocal spindle cell tumors in the small intestine. SDH-GISTs occurred in young patients and were multifocal in the stomach and clinically indolent.
Collapse
Affiliation(s)
- Toshirou Nishida
- Department of SurgeryJapan Community Health‐care Organization Osaka HospitalOsakaJapan
- Department of SurgeryNational Cancer Center HospitalTokyoJapan
- National Institute of Biomedical Innovation, Health and Nutrition, Laboratory of Nuclear Transport DynamicsIbarakiJapan
| | - Yoichi Naito
- Department of General Internal MedicineNational Cancer Center Hospital EastKashiwaJapan
- Department of Experimental TherapeuticsNational Cancer Center Hospital EastKashiwaJapan
- Department of Medical OncologyNational Cancer Center Hospital EastKashiwaJapan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
| | - Takuro Saito
- Department of Gastroenterological SurgeryOsaka University Graduate School of MedicineSuitaJapan
- Department of SurgeryOsaka Police HospitalOsakaJapan
| | - Shigeo Hisamori
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Dai Manaka
- Department of SurgeryKyoto Katsura HospitalKyotoJapan
| | - Katsuhiro Ogawa
- Department of SurgerySaiseikai Kumamoto HospitalKumamotoJapan
| | - Seiichi Hirota
- Department of Surgical PathologyHyogo Medical University School of MedicineNishinomiyaJapan
| | - Hitoshi Ichikawa
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
28
|
Fabozzi F, Carrozzo R, Lodi M, Di Giannatale A, Cipri S, Rosignoli C, Giovannoni I, Stracuzzi A, Rizza T, Montante C, Agolini E, Di Nottia M, Galaverna F, Del Baldo G, Del Bufalo F, Mastronuzzi A, De Ioris MA. Case report: A safeguard in the sea of variants of uncertain significance: a case study on child with high risk neuroblastoma and acute myeloid leukemia. Front Oncol 2024; 13:1324013. [PMID: 38260858 PMCID: PMC10800918 DOI: 10.3389/fonc.2023.1324013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
The increased availability of genetic technologies has significantly improved the detection of novel germline variants conferring a predisposition to tumor development in patients with malignant disease. The identification of variants of uncertain significance (VUS) represents a challenge for the clinician, leading to difficulties in decision-making regarding medical management, the surveillance program, and genetic counseling. Moreover, it can generate confusion and anxiety for patients and their family members. Herein, we report a 5-year-old girl carrying a VUS in the Succinate Dehydrogenase Complex Subunit C (SHDC) gene who had been previously treated for high-risk neuroblastoma and subsequently followed by the development of secondary acute myeloid leukemia. In this context, we describe how functional studies can provide additional insight on gene function determining whether the variant interferes with normal protein function or stability.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Mariachiara Lodi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Selene Cipri
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Chiara Rosignoli
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | | | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Claudio Montante
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Michela Di Nottia
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Neuromuscular Disorders Research Unit, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Federica Galaverna
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giada Del Baldo
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesco Del Bufalo
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | |
Collapse
|
29
|
Sharobim M, Matkovic E, Schwalbe M, Matkowskyj KA. Pathologic Features of Miscellaneous Foregut Malignancies. Cancer Treat Res 2024; 192:49-66. [PMID: 39212915 DOI: 10.1007/978-3-031-61238-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neuroendocrine neoplasms are a heterogeneous group of tumors that can occur in almost any organ and share a common neuroendocrine phenotype.
Collapse
Affiliation(s)
- Mark Sharobim
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Eduard Matkovic
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
30
|
Tian S, Wang R, Wang Y, Chen R, Lin T, Xiao X, Liu X, Ideozu JE, Geng H, Wang Y, Yue D. p32 regulates glycometabolism and TCA cycle to inhibit ccRCC progression via copper-induced DLAT lipoylation oligomerization. Int J Biol Sci 2024; 20:516-536. [PMID: 38169635 PMCID: PMC10758103 DOI: 10.7150/ijbs.84399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024] Open
Abstract
A key player in mitochondrial respiration, p32, often referred to as C1QBP, is mostly found in the mitochondrial matrix. Previously, we showed that p32 interacts with DLAT in the mitochondria. Here, we found that p32 expression was reduced in ccRCC and suppressed progression and metastasis in ccRCC animal models. We observed that increasing p32 expression led to an increase in oxidative phosphorylation by interacting with DLAT, thus, regulating the activation of the pyruvate dehydrogenase complex (PDHc). Mechanistically, reduced p32 expression, in concert with DLAT, suppresses PDHc activity and the TCA cycle. Furthermore, our research discovered that p32 has a direct binding affinity for copper, facilitating the copper-induced oligomerization of lipo-DLAT specifically in ccRCC cells. This finding reveals an innovative function of the p32/DLAT/copper complex in regulating glycometabolism and the TCA cycle in ccRCC. Importantly, our research provides important new understandings of the underlying molecular processes causing the abnormal mitochondrial metabolism linked to this cancer.
Collapse
Affiliation(s)
- Shaoping Tian
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Rui Wang
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Yiting Wang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin 300134, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tianyu Lin
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Xuesong Xiao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xinyu Liu
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| | - Justin Eze Ideozu
- Genomic Medicine, Genomic Research Center, AbbVie, North Chicago, IL 60064, USA
| | - Hua Geng
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Yong Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dan Yue
- Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, China
| |
Collapse
|
31
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
32
|
Liu J, Li J, Zhu Y, Jing R, Ding S, Zhang J, Zhao L, Chen Y, Shen J. Advances in Drug Therapy for Gastrointestinal Stromal Tumour. Curr Med Chem 2024; 31:3057-3073. [PMID: 37151058 DOI: 10.2174/0929867330666230505163151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/05/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Gastrointestinal stromal tumour (GIST) is a common gastrointestinal sarcoma located in the stromal cells of the digestive tract, and molecular studies have revealed the pathogenesis of mutations in KIT and PDGFRA genes. Since imatinib opened the era of targeted therapy for GIST, tyrosine kinase inhibitors (TKIs) that can treat GIST have been developed successively. However, the lack of new drugs with satisfactory therapeutic standards has made addressing resistance a significant challenge for TKIs in the face of the resistance to first-line and second-line drugs. Therefore, we need to find as many drugs and new treatments that block mutated genes as possible. METHODS We conducted a comprehensive collection of literature using databases, integrated and analysed the selected literature based on keywords and the comprehensive nature of the articles, and finally wrote articles based on the content of the studies. RESULTS In this article, we first briefly explained the relationship between GIST and KIT/ PDGFRα and then introduced the related drug treatment. The research progress of TKIs was analyzed according to the resistance of the drugs. CONCLUSION This article describes the research progress of some TKIs and briefly introduces the currently approved TKIs and some drugs under investigation that may have better therapeutic effects, hoping to provide clues to the research of new drugs.
Collapse
Affiliation(s)
- Ju Liu
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| | - Jiawei Li
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Yan Zhu
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Rui Jing
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Shi Ding
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P. R. China
| | - Jifang Zhang
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Leyan Zhao
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
| | - Ye Chen
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| | - Jiwei Shen
- College of Pharmacy, Liaoning University, Shenyang, Liaoning 110036, P.R. China
- API Engineering Technology Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
- Small Molecular Targeted Drug R&D Engineering Research Center of Liaoning Province, Shenyang, Liaoning 110036, P.R. China
| |
Collapse
|
33
|
Rogala J, Zhou M. Hereditary succinate dehydrogenase-deficient renal cell carcinoma. Semin Diagn Pathol 2024; 41:32-41. [PMID: 37981479 DOI: 10.1053/j.semdp.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Succinate dehydrogenase (SDH), formed by four subunits SDHA, SDHB, SDHC, SDHD, and an assembly factor SDHAF2, functions as a key respiratory enzyme. Biallelic inactivation of genes encoding any of the components, almost always in the presence of a germline mutation, causes loss of function of the entire enzyme complex (so-called SDH deficiency) and subsequent development of SDH-deficient neoplasms which include pheochromocytoma/paraganglioma, gastrointestinal stromal tumor, and renal cell carcinoma (RCC). These tumors may occur in the same patient or kindred. SDH-deficient RCC shows distinctive morphological features with vacuolated eosinophilic cytoplasm due to distinctive cytoplasmatic inclusions containing flocculent material. The diagnosis is confirmed by loss of SDHB on immunohistochemistry with positive internal control. The majority of tumors occur in the setting of germline mutations in one of the SDH genes, most commonly SDHB. The prognosis is excellent for low-grade tumors but worse for high-grade tumors with high-grade nuclei, sarcomatoid change, or coagulative necrosis. Awareness of the morphological features and low-threshold for applying SDHB immunohistochemistry help identify patients with SDH-deficient RCC and hereditary SDH-deficient tumor syndromes. In this review we summarize recent development on the clinical and genetic features, diagnostic approach, and pitfalls of SDH-deficient syndrome, focusing on SDH-deficient renal cell carcinomas.
Collapse
Affiliation(s)
- Joanna Rogala
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic; Department of Pathology, Regional Specialist Hospital, Wrocław, Poland; Department of Pathology, Public Specialist Hospital, Nowa Sól, Poland
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA; Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
34
|
Shi J, Sun K, Kong F, Shen D. Morphological, immunohistochemical, and genetic analyses of epithelioid gastrointestinal stromal tumors. Ann Diagn Pathol 2023; 67:152208. [PMID: 37696133 DOI: 10.1016/j.anndiagpath.2023.152208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Epithelioid gastrointestinal stromal tumors (GISTs) are rare and may be confused with other tumors with epithelioid morphology. Therefore, herein, we collected 12 epithelioid GIST samples and summarized their morphological and immunohistochemical characteristics. Through genetic testing, we explored the correlation between morphology and gene mutations. The results showed that eight tumors showed focal or diffuse myxoid stromal changes with less cohesively arranged rhabdoid tumor cells; among these, five showed platelet-derived growth factor receptor alpha gene (PDGFRA) mutations. Signet ring cells with sclerosing stroma and receptor tyrosine kinase type III gene (KIT) mutations were present in two cases, which might be a KIT mutation-associated growth pattern in epithelioid GISTs. Succinate dehydrogenase gene (SDH) mutations were detected in three cases. Simultaneously, PDGFRA mutations were detected in two cases, and the Kirsten rat sarcoma viral oncogene homolog gene (KRAS) mutation was detected in another case. SDH-subunit B (SDHB) expression was partially weak and strongly diffuse in two cases with concurrent PDGFRA and SDHD mutations, respectively. The coexistence of PDGFRA and SDHD mutations may have affected SDHB expression. Altogether, we concluded that PDGFRA mutations may play an important role in co-mutant GIST pathogenesis.
Collapse
Affiliation(s)
- Jingli Shi
- Department of Pathology, Peking University People's Hospital, 100044, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, 100044, China
| | - Fangzhou Kong
- Department of Pathology, Peking University People's Hospital, 100044, China
| | - Danhua Shen
- Department of Pathology, Peking University People's Hospital, 100044, China.
| |
Collapse
|
35
|
Fleming AM, Herb J, Stiles ZE, Burkbauer L, Dickson PV, Glazer ES, Shibata D, Murphy AJ, Davidoff AM, Gleeson E, Kim HJ, Meyers MO, Stitzenberg K, Ollila DW, Deneve JL. Lymph node metastases in young patients with gastrointestinal stromal tumor: A nationwide analysis. J Surg Oncol 2023; 128:1268-1277. [PMID: 37650827 DOI: 10.1002/jso.27431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Children, adolescents, and young adults (CAYA) (age ≤39 years) with GIST have high rates of LNM, but their clinical relevance is undefined. This study analyzed the impact of LNM on overall survival (OS) for CAYA with GIST. METHODS The National Cancer Database was queried for patients with resected GIST and pathologic nodal staging data from 2004-2019. Factors associated with LNM were identified. Survival was assessed stratified by presence of LNM. RESULTS Of 4420 patients with GIST, 238 were CAYA (5.4%). When compared to older adults, CAYA more often had small intestine primaries (51.8% vs. 36.6%, p < 0.0001), T4 tumors (30.7% vs. 24.5%, p = 0.0275) and pN1 disease (11.3% vs. 4.7%, p < 0.0001). Within a multivariable Cox proportional hazards regression model adjusting for age, comorbid disease, mitotic rate, tumor size, and primary site, LNM were associated with increased hazard of death for older adults (hazard ratio [HR]: 1.83; confidence interval [CI]: 1.35-2.42; p < 0.0001), but not CAYA (HR: 3.38; CI: 0.50-14.08; p = 0.13). For CAYA, only high mitotic rate predicted mortality (HR: 4.68; CI: 1.41-18.37: p = 0.02). CONCLUSIONS LNM are more commonly identified among CAYA with resected GIST who undergo lymph node evaluations, but do not appear to impact OS as observed in older adults. High mitotic rate remains a predictor of poor outcomes for CAYA with GIST.
Collapse
Affiliation(s)
- Andrew M Fleming
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joshua Herb
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zachary E Stiles
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Laura Burkbauer
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paxton V Dickson
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Evan S Glazer
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Andrew J Murphy
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Andrew M Davidoff
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Elizabeth Gleeson
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hong J Kim
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Michael O Meyers
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karyn Stitzenberg
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David W Ollila
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeremiah L Deneve
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
36
|
Liu C, Zhou D, Yang K, Xu N, Peng J, Zhu Z. Research progress on the pathogenesis of the SDHB mutation and related diseases. Biomed Pharmacother 2023; 167:115500. [PMID: 37734265 DOI: 10.1016/j.biopha.2023.115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
With the improvement of genetic testing technology in diseases in recent years, researchers have a more detailed and clear understanding of the source of cancers. Succinate dehydrogenase B (SDHB), a mitochondrial gene, is related to the metabolic activities of cells and tissues throughout the body. The mutations of SDHB have been found in pheochromocytoma, paraganglioma and other cancers, and is proved to affect the occurrence and progress of those cancers due to the important structural functions. The importance of SDHB is attracting more and more attention of researchers, however, reviews on the structure and function of SDHB, as well as on the mechanism of its carcinogenesis is inadequate. This paper reviews the relationship between SDHB mutations and related cancers, discusses the molecular mechanism of SDHB mutations that may lead to tumor formation, analyzes the mutation spectrum, structural domains, and penetrance of SDHB and sorts out some of the previously discovered diseases. For the patients with SDHB mutation, it is recommended that people in SDHB mutation families undergo regular genetic testing or SDHB immunohistochemistry (IHC). The purpose of this paper is hopefully to provide some reference and help for follow-up researches on SDHB.
Collapse
Affiliation(s)
- Chang Liu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Dayang Zhou
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Kexin Yang
- Department of Surgical oncology, Yunnan Cancer Hospital, 519 Kunzhou Road, Kunming, 650118, China
| | - Ning Xu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Jibang Peng
- Department of Surgical oncology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China
| | - Zhu Zhu
- Ambulatory Surgical Center, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, China.
| |
Collapse
|
37
|
Zhao C, Jin L, Tan Y, Chen Y, Su Z, Li W, Yang Q. Case Report: Multiple gastrointestinal stromal tumors along with numerous cutaneous neurofibromas: a case description and literature analysis. Front Oncol 2023; 13:1206991. [PMID: 37909015 PMCID: PMC10615565 DOI: 10.3389/fonc.2023.1206991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Multiple gastrointestinal stromal tumors (GISTs) combined with cutaneous multiple neurofibromas are clinically rare. This paper presents a case of multiple gastrointestinal stromal tumors in the jejunum of a 68-year-old mother, along with her daughter who also had coexisting cutaneous multiple neurofibromas. The mother had been experiencing repeated melena for over 2 years and had previously been diagnosed with multiple small intestinal masses at other hospitals. Additionally, her 42-year-old daughter was admitted to our department due to recurrent abdominal pain caused by cholecystolithiasis. The mother and daughter both exhibited multiple nodular masses of varying sizes on their skin, including the truncus, limbs, and face, which were diagnosed as neurofibromas. The mother underwent a partial excision of the jejunum and a lateral jejunojejunal anastomosis side-to-side, as well as excision of skin lesions in our department. The final diagnosis of wild-type GISTs associated with neurofibromatosis type 1 (NF1) was confirmed through postoperative pathology, immunohistochemistry, and genetic testing results. During preoperative gastrointestinal endoscopy and intraoperative laparoscopic exploration of the gastrointestinal tract, no obvious tumors were found in her daughter. A combination of patient observations and a review of relevant literature in the field suggests that when patients present with gastrointestinal symptoms and multiple irregular painless swellings in the skin, it is important to consider the possibility of an association with NF1 and GIST. Additionally, obtaining a detailed family history can save time and improve the diagnosis of patients with both NF1 and GIST. We recommend that even if there are no gastrointestinal manifestations of GISTs in the offspring of newly mutated NF1 patients, regular review of gastroenteroscopy, imaging examination, and long-term follow-up after middle age are still crucial for the early diagnosis and treatment of NF1-related GISTs.
Collapse
Affiliation(s)
| | - Liquan Jin
- 1st Department of General Surgery, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | | | | | | | | | | |
Collapse
|
38
|
Serrano C, Álvarez R, Carrasco JA, Marquina G, Martínez-García J, Martínez-Marín V, Sala MÁ, Sebio A, Sevilla I, Martín-Broto J. SEOM-GEIS clinical guideline for gastrointestinal stromal tumors (2022). Clin Transl Oncol 2023; 25:2707-2717. [PMID: 37129716 PMCID: PMC10425520 DOI: 10.1007/s12094-023-03177-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin, and a paradigmatic model for a successful rational development of targeted therapies in cancer. The introduction of tyrosine kinase inhibitors with activity against KIT/PDGFRA in both localized and advanced stages has remarkably improved the survival in a disease formerly deemed resistant to all systemic therapies. These guidelines are elaborated by the conjoint effort of the Spanish Society of Medical Oncology (SEOM) and the Spanish Sarcoma Research Group (GEIS) and provide a multidisciplinary and updated consensus for the diagnosis and treatment of GIST patients. We strongly encourage that the managing of these patients should be performed within multidisciplinary teams in reference centers.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Group, Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitario Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, C/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Rosa Álvarez
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Juan Antonio Carrasco
- Hospital Álvaro Cunqueiro–Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | | | | | | | | | - Ana Sebio
- Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Isabel Sevilla
- Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | | |
Collapse
|
39
|
Serrano C, Martín-Broto J, Asencio-Pascual JM, López-Guerrero JA, Rubió-Casadevall J, Bagué S, García-del-Muro X, Fernández-Hernández JÁ, Herrero L, López-Pousa A, Poveda A, Martínez-Marín V. 2023 GEIS Guidelines for gastrointestinal stromal tumors. Ther Adv Med Oncol 2023; 15:17588359231192388. [PMID: 37655207 PMCID: PMC10467260 DOI: 10.1177/17588359231192388] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common malignant neoplasm of mesenchymal origin. GIST spans a wide clinical spectrum that ranges from tumors with essentially no metastatic potential to malignant and life-threatening spread diseases. Gain-of-function mutations in KIT or PDGFRA receptor tyrosine kinases are the crucial drivers of most GISTs, responsible for tumor initiation and evolution throughout the entire course of the disease. The introduction of tyrosine kinase inhibitors targeting these receptors has substantially improved the outcomes in this formerly chemoresistant cancer. As of today, five agents hold regulatory approval for the treatment of GIST: imatinib, sunitinib, regorafenib, ripretinib, and avapritinib. This, in turn, represents a success for a rare neoplasm. During the past two decades, GIST has become a paradigmatic model in cancer for multidisciplinary work, given the disease-specific particularities regarding tumor biology and tumor evolution. Herein, we review currently available evidence for the management of GIST. This clinical practice guideline has been developed by a multidisciplinary expert panel (oncologist, pathologist, surgeon, molecular biologist, radiologist, and representative of patients' advocacy groups) from the Spanish Group for Sarcoma Research, and it is conceived to provide, from a critical perspective, the standard approach for diagnosis, treatment, and follow-up.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Carrer de Natzaret, 115-117, Barcelona 08035, Spain
| | - Javier Martín-Broto
- Medical Oncology Department, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- University Hospital General de Villalba, Madrid, Spain Instituto de investigación Sanitaria Fundación Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain
| | - José Manuel Asencio-Pascual
- Department of General Surgery, Gregorio Marañón University Hospital, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Jordi Rubió-Casadevall
- Department of Medical Oncology, Catalan Institute of Oncology, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Silvia Bagué
- Department of Pathology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Xavier García-del-Muro
- Department of Medical Oncology, Institut Català d’Oncologia, IDIBELL and University of Barcelona, Barcelona, Spain
| | | | - Luís Herrero
- GIST advocacy group – Colectivo GIST, Valladolid, Spain
| | - Antonio López-Pousa
- Department of Pathology, Santa Creu i Sant Pau University Hospital, Barcelona, Spain
| | - Andrés Poveda
- Initia Oncologia, Hospital Quironsalud, Valencia, Spain
| | | |
Collapse
|
40
|
Zhou RW, Parsons RE. Etiology of super-enhancer reprogramming and activation in cancer. Epigenetics Chromatin 2023; 16:29. [PMID: 37415185 DOI: 10.1186/s13072-023-00502-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Super-enhancers are large, densely concentrated swaths of enhancers that regulate genes critical for cell identity. Tumorigenesis is accompanied by changes in the super-enhancer landscape. These aberrant super-enhancers commonly form to activate proto-oncogenes, or other genes upon which cancer cells depend, that initiate tumorigenesis, promote tumor proliferation, and increase the fitness of cancer cells to survive in the tumor microenvironment. These include well-recognized master regulators of proliferation in the setting of cancer, such as the transcription factor MYC which is under the control of numerous super-enhancers gained in cancer compared to normal tissues. This Review will cover the expanding cell-intrinsic and cell-extrinsic etiology of these super-enhancer changes in cancer, including somatic mutations, copy number variation, fusion events, extrachromosomal DNA, and 3D chromatin architecture, as well as those activated by inflammation, extra-cellular signaling, and the tumor microenvironment.
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, University of California San Francisco Internal Medicine Residency, San Francisco, CA, USA
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
41
|
John L, Smith H, Ilanchezhian M, Lockridge R, Reilly KM, Raygada M, Dombi E, Sandler A, Thomas BJ, Glod J, Miettinen M, Allen T, Sommer J, Levy J, Lozinsky S, Dix D, Bouffet E, MacDonald S, Mukherjee D, Snyderman CH, Rowan NR, Malyapa R, Park DM, Heery C, Gardner PA, Cote GM, Fuller S, Butman JA, Jackson S, Gulley JL, Widemann BC, Wedekind MF. The NIH pediatric/young adult chordoma clinic and natural history study: Making advances in a very rare tumor. Pediatr Blood Cancer 2023; 70:e30358. [PMID: 37347686 PMCID: PMC10739575 DOI: 10.1002/pbc.30358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/26/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Chordomas are rare tumors arising from the skull base and spine, with approximately 20 pediatric chordoma cases in the Unitedn States per year. The natural history and optimal treatment of pediatric chordomas, especially poorly differentiated and dedifferentiated subtypes, is incompletely understood. Herein, we present findings from our first National Cancer Institute (NCI) chordoma clinic and a retrospective analysis of published cases of pediatric poorly differentiated chordomas (PDC) and dedifferentiated chordomas (DC). METHODS Patients less than 40 years old with chordoma were enrolled on the NCI Natural History and Biospecimens Acquisitions Study for Children and Adults with Rare Solid Tumors protocol (NCT03739827). Chordoma experts reviewed patient records, evaluated patients, and provided treatment recommendations. Patient-reported outcomes, biospecimens, and volumetric tumor analyses were collected. A literature review for pediatric PDC and DC was conducted. RESULTS Twelve patients (median age: 14 years) attended the clinic, including four patients with active disease and three patients with PDC responsive to systemic therapy. Consensus treatment, management, and recommendations were provided to patients. Literature review returned 45 pediatric cases of PDC or DC with variable treatments and outcomes. CONCLUSIONS A multidisciplinary expert clinic was feasible and successful in improving understanding of pediatric chordoma. While multimodal approaches have all been employed, treatment for PDC has been inconsistent and a recommended standardized treatment approach has not been defined. Centralized efforts, inclusive of specialized chordoma-focused clinics, natural history studies, and prospective analyses will help in the standardization of care for this challenging disease.
Collapse
Affiliation(s)
- Liny John
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maran Ilanchezhian
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robin Lockridge
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Karlyne M Reilly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margarita Raygada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Abby Sandler
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara J Thomas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Markku Miettinen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Taryn Allen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Joan Levy
- Chordoma Foundation, Durham, NC, USA
| | | | - David Dix
- BC Children’s Hospital, Vancouver, Canada
| | | | | | | | | | | | - Robert Malyapa
- University of Maryland Medical Center, Baltimore, MD, USA
| | | | - Christopher Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Paul A. Gardner
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Sarah Fuller
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - John A. Butman
- Radiology and Imaging Sciences, The National Institutes of Health, Bethesda, MD, USA
| | - Sadhana Jackson
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mary Frances Wedekind
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
42
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Meng C, Wang K, Zhang X, Zhu X. Effect of cadmium in the gonads of mussel (Mytilus coruscus): an ionomics and proteomics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68373-68386. [PMID: 37120503 DOI: 10.1007/s11356-023-27208-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/20/2023] [Indexed: 05/27/2023]
Abstract
The mussel Mytilus coruscus is an important and very popular seafood in China and widespread along the eastern coast of China. In this study, we investigated the molecular response of mussel gonads to cadmium accumulation at two concentrations (80 and 200 µg/L) for 30 days using ionomics and proteomics techniques. The shrinkage of the cells and moderate hemocytic infiltration were observed in the Cd-treated groups. The strontium, selenium (Se), and zinc contents were significantly altered, and the relationships between iron, copper, Se, manganese, calcium, sodium, and magnesium were also significantly altered. Label-free quantitative proteomics analysis revealed a total of 227 differentially expressed proteins. These proteins were associated with multiple biological processes, including the tricarboxylic acid cycle, structural reorganization of cells, biosynthesis of amino acids, inflammatory response of cells, and tumorigenesis. Nonetheless, our ionomics and proteomics analysis revealed that mussels could partly alleviate the adverse effects of Cd by altering the metal contents and correlations between minerals, thereby enhancing the biosynthesis of some amino acids and activity of antioxidant enzymes. Overall, this study provides an insight into the mechanism underlying Cd toxicity in mussel gonads from a metal and protein perspective.
Collapse
Affiliation(s)
- Chunying Meng
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316100, People's Republic of China.
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China.
| | - Kuiwu Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| | - Xiaojun Zhang
- Laboratory of Aquatic Product Processing and Quality Safety, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316100, People's Republic of China
| | - Xinyue Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
44
|
Lu T, Mortimer M, Li F, Li Z, Chen L, Li M, Guo LH. Putative adverse outcome pathways of the male reproductive toxicity derived from toxicological studies of perfluoroalkyl acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162439. [PMID: 36848992 DOI: 10.1016/j.scitotenv.2023.162439] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Adverse outcome pathway (AOP) as a conceptual framework is a powerful tool in the field of toxicology to connect seemingly discrete events at different levels of biological organizations into an organized pathway from molecular interactions to whole organism toxicity. Based on numerous toxicological studies, eight AOPs for reproductive toxicity have been endorsed by the Organization for Economic Co-operation and Development (OECD) Task Force on Hazard Assessment. We have conducted a literature survey on the mechanistic studies on male reproductive toxicity of perfluoroalkyl acids (PFAAs), a class of global environmental contaminants with high persistence, bioaccumulation and toxicity. Using the AOP development strategy, five new AOPs for male reproductive toxicity were proposed here, namely (1) changes in membrane permeability leading to reduced sperm motility, (2) disruption of mitochondrial function leading to sperm apoptosis, (3) decreased gonadotropin-releasing hormone (GnRH) expression in hypothalamus leading to reduced testosterone production in male rats, (4) activation of the p38 signaling pathway leading to disruption of BTB in mice, (5) inhibition of p-FAK-Tyr407 activity leading to the destruction of BTB. The molecular initiating events in the proposed AOPs are different from those in the endorsed AOPs, which are either receptor activation or enzyme inhibition. Although some of the AOPs are still incomplete, they can serve as a building block upon which full AOPs can be developed and applied to not only PFAAs but also other chemical toxicants with male reproductive toxicity.
Collapse
Affiliation(s)
- Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Lu Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
45
|
Turano M, Vicidomini R, Cammarota F, D'Agostino V, Duraturo F, Izzo P, Rosa MD. The Epithelial to Mesenchymal Transition in Colorectal Cancer Progression: The Emerging Role of Succinate Dehydrogenase Alterations and Succinate Accumulation. Biomedicines 2023; 11:biomedicines11051428. [PMID: 37239099 DOI: 10.3390/biomedicines11051428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Colorectal cancer (CRC) stands as the third most significant contributor to cancer-related mortality worldwide. A major underlying reason is that the detection of CRC usually occurs at an advanced metastatic stage, rendering therapies ineffective. In the progression from the in situ neoplasia stage to the advanced metastatic stage, a critical molecular mechanism involved is the epithelial-to-mesenchymal transition (EMT). This intricate transformation consists of a series of molecular changes, ultimately leading the epithelial cell to relinquish its features and acquire mesenchymal and stem-like cell characteristics. The EMT regulation involves several factors, such as transcription factors, cytokines, micro RNAs and long noncoding RNAs. Nevertheless, recent studies have illuminated an emerging link between metabolic alterations and EMT in various types of cancers, including colorectal cancers. In this review, we delved into the pivotal role played by EMT during CRC progression, with a focus on highlighting the relationship between the alterations of the tricarboxylic acid cycle, specifically those involving the succinate dehydrogenase enzyme, and the activation of the EMT program. In fact, emerging evidence supports the idea that elucidating the metabolic modifications that can either induce or inhibit tumor progression could be of immense significance for shaping new therapeutic approaches and preventative measures. We conclude that an extensive effort must be directed towards research for the standardization of drugs that specifically target proteins such as SDH and SUCNR1, but also TRAP1, PDH, ERK1/2, STAT3 and the HIF1-α catabolism.
Collapse
Affiliation(s)
- Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Valeria D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesca Duraturo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80131 Naples, Italy
| |
Collapse
|
46
|
Mohamed N, Khan M, Hosler G, Tumminello K. Primary vulvar extragastrointestinal stromal tumor in a 77-year-old woman. J Cutan Pathol 2023. [PMID: 37127848 DOI: 10.1111/cup.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Extragastrointestinal stromal tumors (EGISTs) carry the same morphological, immunohistochemical and molecular features as gastrointestinal stromal tumors (GISTs) and involve extragastrointestinal tract soft tissue. The majority of reported EGIST cases arise from intraabdominal, retroperitoneal, or pelvic soft tissue. A significant subset of such tumors originates from the gastrointestinal muscle layer, grows in an exophytic manner, then loses attachment to the gastrointestinal tract. Consequently, true EGISTs are exceedingly rare. Herein, we are reporting a case of a vulvar EGIST. A 77-year-old woman presented with a painless subcutaneous nodule on the right perineum. An excisional biopsy showed a fairly circumscribed bland spindle cell lesion in the dermis. The tumor cells were positive for CD117 and ANO1/DOG-1 and negative for smooth muscle myosin, smooth muscle actin, STAT6, low- and high-molecular-weight cytokeratins, SOX10, MART-1, CD10, S-100 protein, and estrogen and progesterone receptors. A diagnosis of EGIST was made and complete excision was recommended. Superficial/subcutaneous EGISTs are extremely rare, and it is important for dermatopathologists to be aware of this entity as it can be misdiagnosed as more common spindle cell neoplasms, both benign and malignant, including but not limited to smooth muscle neoplasms (leiomyoma/leiomyosarcoma), spindle cell melanoma, and sarcomatoid squamous cell carcinoma.
Collapse
Affiliation(s)
- Nada Mohamed
- Department of Pathology, Texas A&M College of Medicine-Baylor Scott & White Health, Temple, Texas, USA
| | | | - Gregory Hosler
- ProPath, Dallas, Texas, USA
- Department of Dermatology, University of Texas Southwestern, Dallas, Texas, USA
| | | |
Collapse
|
47
|
Catalano F, Cremante M, Dalmasso B, Pirrone C, Lagodin D’Amato A, Grassi M, Comandini D. Molecular Tailored Therapeutic Options for Advanced Gastrointestinal Stromal Tumors (GISTs): Current Practice and Future Perspectives. Cancers (Basel) 2023; 15:cancers15072074. [PMID: 37046734 PMCID: PMC10093725 DOI: 10.3390/cancers15072074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are one of the most common mesenchymal tumors characterized by different molecular alterations that lead to specific clinical presentations and behaviors. In the last twenty years, thanks to the discovery of these mutations, several new treatment options have emerged. This review provides an extensive overview of GISTs’ molecular pathways and their respective tailored therapeutic strategies. Furthermore, current treatment strategies under investigation and future perspectives are analyzed and discussed.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Bruna Dalmasso
- Genetica dei Tumori Rari, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Chiara Pirrone
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | - Massimiliano Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Danila Comandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
48
|
Masucci MT, Motti ML, Minopoli M, Di Carluccio G, Carriero MV. Emerging Targeted Therapeutic Strategies to Overcome Imatinib Resistance of Gastrointestinal Stromal Tumors. Int J Mol Sci 2023; 24:6026. [PMID: 37046997 PMCID: PMC10094678 DOI: 10.3390/ijms24076026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common malignant mesenchymal neoplasms of the gastrointestinal tract. The gold standard for the diagnosis of GISTs is morphologic analysis with an immunohistochemical evaluation plus genomic profiling to assess the mutational status of lesions. The majority of GISTs are driven by gain-of-function mutations in the proto-oncogene c-KIT encoding the tyrosine kinase receptor (TKR) known as KIT and in the platelet-derived growth factor-alpha receptor (PDGFRA) genes. Approved therapeutics are orally available as tyrosine kinase inhibitors (TKIs) targeting KIT and/or PDGFRA oncogenic activation. Among these, imatinib has changed the management of patients with unresectable or metastatic GISTs, improving their survival time and delaying disease progression. Nevertheless, the majority of patients with GISTs experience disease progression after 2-3 years of imatinib therapy due to the development of secondary KIT mutations. Today, based on the identification of new driving oncogenic mutations, targeted therapy and precision medicine are regarded as the new frontiers for GISTs. This article reviews the most important mutations in GISTs and highlights their importance in the current understanding and treatment options of GISTs, with an emphasis on the most recent clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Masucci
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Letizia Motti
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy
| |
Collapse
|
49
|
Choi JH, Ro JY. The Recent Advances in Molecular Diagnosis of Soft Tissue Tumors. Int J Mol Sci 2023; 24:ijms24065934. [PMID: 36983010 PMCID: PMC10051446 DOI: 10.3390/ijms24065934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Soft tissue tumors are rare mesenchymal tumors with divergent differentiation. The diagnosis of soft tissue tumors is challenging for pathologists owing to the diversity of tumor types and histological overlap among the tumor entities. Present-day understanding of the molecular pathogenesis of soft tissue tumors has rapidly increased with the development of molecular genetic techniques (e.g., next-generation sequencing). Additionally, immunohistochemical markers that serve as surrogate markers for recurrent translocations in soft tissue tumors have been developed. This review aims to provide an update on recently described molecular findings and relevant novel immunohistochemical markers in selected soft tissue tumors.
Collapse
Affiliation(s)
- Joon Hyuk Choi
- Department of Pathology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Namgu, Daegu 42415, Republic of Korea
| | - Jae Y Ro
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill Medical College, Cornell University, Houston, TX 77030, USA
| |
Collapse
|
50
|
Schipani A, Nannini M, Astolfi A, Pantaleo MA. SDHA Germline Mutations in SDH-Deficient GISTs: A Current Update. Genes (Basel) 2023; 14:genes14030646. [PMID: 36980917 PMCID: PMC10048394 DOI: 10.3390/genes14030646] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Loss of function of the succinate dehydrogenase complex characterizes 20–40% of all KIT/PDGFRA-negative GIST. Approximately half of SDH-deficient GIST patients lack SDHx mutations and are caused by a hypermethylation of the SDHC promoter, which causes the repression of SDHC transcription and depletion of SDHC protein levels through a mechanism described as epimutation. The remaining 50% of SDH-deficient GISTs have mutations in one of the SDH subunits and SDHA mutations are the most common (30%), with consequent loss of SDHA and SDHB protein expression immunohistochemically. SDHB, SDHC, and SDHD mutations in GIST occur in only 20–30% of cases and most of these SDH mutations are germline. More recently, germline mutations in SDHA have also been described in several patients with loss of function of the SDH complex. SDHA-mutant patients usually carry two mutational events at the SDHA locus, either the loss of the wild type allele or a second somatic event in compound heterozygosis. This review provides an overview of all data in the literature regarding SDHA-mutated GIST, especially focusing on the prevalence of germline mutations in SDH-deficient GIST populations who harbor SDHA somatic mutations, and offers a view towards understanding the importance of genetic counselling for SDHA-variant carriers and relatives.
Collapse
Affiliation(s)
- Angela Schipani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Margherita Nannini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Correspondence: ; Tel.: +39-051-2144520
| | - Maria A. Pantaleo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|