1
|
Kapit JA, Youngs S, Pardis WA, Padilla AM, Michel APM. An Underwater Methane Sensor Based on Laser Spectroscopy in a Hollow Core Optical Fiber. ACS Sens 2024; 9:5896-5905. [PMID: 39523583 PMCID: PMC11590101 DOI: 10.1021/acssensors.4c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Existing sensors for measuring dissolved methane in situ suffer from excessively slow response times or large size and complexity. The technology reported here realizes improvements by utilizing a hollow core optical fiber (HFC) as the detection cell in an underwater infrared laser spectrometer. The sensor operates by using a polymer membrane inlet to continuously extract dissolved gas from water. Once inside the sensor, the gas passes through an HCF, within which tunable diode laser spectroscopy is used to quantify methane. The use of an HCF for the optical cell enables advantages of sensitivity, selectivity, compactness, response time, and ease of integration. A submersible prototype has been developed, characterized in the laboratory, and tested in the ocean to a depth of 2000 m. Initial laboratory environmental testing showed a pCH4 detection range up to 10,000 μatm, an uncertainty of 5.6 μatm or ±1.4% (whichever is greater) and a response time of 4.6 min over a range of controlled operating conditions. Operation at sea demonstrated its utility in generating dissolved methane maps, targeted point sampling, and water column profiling.
Collapse
Affiliation(s)
- Jason A. Kapit
- Woods Hole Oceanographic
Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, United States
| | - Sarah Youngs
- Woods Hole Oceanographic
Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, United States
| | - William A. Pardis
- Woods Hole Oceanographic
Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, United States
| | | | - Anna P. M. Michel
- Woods Hole Oceanographic
Institution, 266 Woods Hole Road, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
2
|
Hu SK, Anderson RE, Pachiadaki MG, Edgcomb VP, Serres MH, Sylva SP, German CR, Seewald JS, Lang SQ, Huber JA. Microbial eukaryotic predation pressure and biomass at deep-sea hydrothermal vents. THE ISME JOURNAL 2024; 18:wrae004. [PMID: 38366040 PMCID: PMC10939315 DOI: 10.1093/ismejo/wrae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/18/2024]
Abstract
Deep-sea hydrothermal vent geochemistry shapes the foundation of the microbial food web by fueling chemolithoautotrophic microbial activity. Microbial eukaryotes (or protists) play a critical role in hydrothermal vent food webs as consumers and hosts of symbiotic bacteria, and as a nutritional source to higher trophic levels. We measured microbial eukaryotic cell abundance and predation pressure in low-temperature diffuse hydrothermal fluids at the Von Damm and Piccard vent fields along the Mid-Cayman Rise in the Western Caribbean Sea. We present findings from experiments performed under in situ pressure that show cell abundances and grazing rates higher than those done at 1 atmosphere (shipboard ambient pressure); this trend was attributed to the impact of depressurization on cell integrity. A relationship between the protistan grazing rate, prey cell abundance, and temperature of end-member hydrothermal vent fluid was observed at both vent fields, regardless of experimental approach. Our results show substantial protistan biomass at hydrothermally fueled microbial food webs, and when coupled with improved grazing estimates, suggest an important contribution of grazers to the local carbon export and supply of nutrient resources to the deep ocean.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Oceanography, Texas A&M University, College Station, TX 77843, United States
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, MN 55057, United States
| | - Maria G Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Virginia P Edgcomb
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Margrethe H Serres
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Christopher R German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Susan Q Lang
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| |
Collapse
|
3
|
He Z, Lou Y, Zhang H, Han X, Pähtz T, Jiao P, Hu P, Zhou Y, Wang Y, Qiu Z. The role of hydrodynamics for the spatial distribution of high-temperature hydrothermal vent-endemic fauna in the deep ocean environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166714. [PMID: 37659550 DOI: 10.1016/j.scitotenv.2023.166714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Active hydrothermal vents provide the surrounding submarine environment with substantial amounts of matter and energy, thus serving as important habitats for diverse megabenthic communities in the deep ocean and constituting a unique, highly productive chemosynthetic ecosystem on Earth. Vent-endemic biological communities gather near the venting site and are usually not found beyond a distance of the order of 100 m from the vent. This is surprising because one would actually expect matter ejected from high-temperature vents, which generate highly turbulent buoyancy plumes, to be suspended and carried far away by the plume flows and deep-sea currents. Here, we study this problem from a fluid dynamics perspective by simulating the vent hydrodynamics using a numerical model that couples the plume flow with induced matter and energy transport. We find that both low- and high-temperature vents deposit most vent matter relatively close to the plume. In particular, the tendency of turbulent buoyancy plumes to carry matter far away is strongly counteracted by generated entrainment flows back into the plume stem. The deposition ranges of organic and inorganic hydrothermal particles obtained from the simulations for various natural high-temperature vents are consistent with the observed maximum spatial extent of biological communities, evidencing that plume hydrodynamics exercises strong control over the spatial distribution of vent-endemic fauna. While other factors affecting the spatial distribution of vent-endemic fauna, such as geology and geochemistry, are site-specific, the main physical features of plume hydrodynamics unraveled in this study are largely site-unspecific and therefore universal across vent sites on Earth.
Collapse
Affiliation(s)
- Zhiguo He
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China; Hainan Institution, Zhejiang University, Sanya 572000, China.
| | - Yingzhong Lou
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China; Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Haoyang Zhang
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China
| | - Xiqiu Han
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China; Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Thomas Pähtz
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China.
| | - Pengcheng Jiao
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China; Hainan Institution, Zhejiang University, Sanya 572000, China
| | - Peng Hu
- Ocean College & Engineering Research Center of Oceanic Sensing Technology and Equipment of Ministry of Education, Zhejiang University, Zhoushan 316021, China
| | - Yadong Zhou
- Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yejian Wang
- Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhongyan Qiu
- Key Laboratory of Submarine Geosciences & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| |
Collapse
|
4
|
Stubseid HH, Bjerga A, Haflidason H, Pedersen LER, Pedersen RB. Volcanic evolution of an ultraslow-spreading ridge. Nat Commun 2023; 14:4134. [PMID: 37438364 DOI: 10.1038/s41467-023-39925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Nearly 30% of ocean crust forms at mid-ocean ridges where the spreading rate is less than 20 mm per year. According to the seafloor spreading paradigm, oceanic crust forms along a narrow axial zone and is transported away from the rift valley. However, because quantitative age data of volcanic eruptions are lacking, constructing geological models for the evolution of ultraslow-spreading crust remains a challenge. In this contribution, we use sediment thicknesses acquired from ~4000 km of sub-bottom profiler data combined with 14C ages from sediment cores to determine the age of the ocean floor of the oblique ultraslow-spreading Mohns Ridge to reveal a systematic pattern of young volcanism outside axial volcanic ridges. Here, we present an age map of the upper lava flows within the rift valley of a mid-ocean ridge and find that nearly half of the rift valley floor has been rejuvenated by volcanic activity during the last 25 Kyr.
Collapse
Affiliation(s)
- H H Stubseid
- Center for Deep Sea Research and Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway.
| | - A Bjerga
- Center for Deep Sea Research and Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - H Haflidason
- Center for Deep Sea Research and Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - L E R Pedersen
- Center for Deep Sea Research and Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| | - R B Pedersen
- Center for Deep Sea Research and Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway
| |
Collapse
|
5
|
Molari M, Hassenrueck C, Laso-Pérez R, Wegener G, Offre P, Scilipoti S, Boetius A. A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nat Microbiol 2023; 8:651-665. [PMID: 36894632 PMCID: PMC10066037 DOI: 10.1038/s41564-023-01342-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
Members of the bacterial genus Sulfurimonas (phylum Campylobacterota) dominate microbial communities in marine redoxclines and are important for sulfur and nitrogen cycling. Here we used metagenomics and metabolic analyses to characterize a Sulfurimonas from the Gakkel Ridge in the Central Arctic Ocean and Southwest Indian Ridge, showing that this species is ubiquitous in non-buoyant hydrothermal plumes at Mid Ocean Ridges across the global ocean. One Sulfurimonas species, USulfurimonas pluma, was found to be globally abundant and active in cold (<0-4 °C), oxygen-saturated and hydrogen-rich hydrothermal plumes. Compared with other Sulfurimonas species, US. pluma has a reduced genome (>17%) and genomic signatures of an aerobic chemolithotrophic metabolism using hydrogen as an energy source, including acquisition of A2-type oxidase and loss of nitrate and nitrite reductases. The dominance and unique niche of US. pluma in hydrothermal plumes suggest an unappreciated biogeochemical role for Sulfurimonas in the deep ocean.
Collapse
Affiliation(s)
- Massimiliano Molari
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | - Rafael Laso-Pérez
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gunter Wegener
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| | - Stefano Scilipoti
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Antje Boetius
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
6
|
Hoffert M, Anderson RE, Reveillaud J, Murphy LG, Stepanauskas R, Huber JA. Genomic Variation Influences Methanothermococcus Fitness in Marine Hydrothermal Systems. Front Microbiol 2021; 12:714920. [PMID: 34489903 PMCID: PMC8417812 DOI: 10.3389/fmicb.2021.714920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems.
Collapse
Affiliation(s)
- Michael Hoffert
- Biology Department, Carleton College, Northfield, MN, United States.,Finch Therapeutics Group, Somerville, MA, United States
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, MN, United States
| | - Julie Reveillaud
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Montpellier, France
| | | | | | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| |
Collapse
|
7
|
Abstract
In the ocean, viruses impact microbial mortality, regulate biogeochemical cycling, and alter the metabolic potential of microbial lineages. At deep-sea hydrothermal vents, abundant viruses infect a wide range of hosts among the archaea and bacteria that inhabit these dynamic habitats. However, little is known about viral diversity, host range, and biogeography across different vent ecosystems, which has important implications for how viruses manipulate microbial function and evolution. Here, we examined viral diversity, viral and host distribution, and virus-host interactions in microbial metagenomes generated from venting fluids from several vent sites within three different geochemically and geographically distinct hydrothermal systems: Piccard and Von Damm vent fields at the Mid-Cayman Rise in the Caribbean Sea, and at several vent sites within Axial Seamount in the Pacific Ocean. Analysis of viral sequences and clustered regularly interspaced short palindromic repeat (CRISPR) spacers revealed highly diverse viral assemblages and evidence of active infection. Network analysis revealed that viral host range was relatively narrow, with very few viruses infecting multiple microbial lineages. Viruses were largely endemic to individual vent sites, indicating restricted dispersal, and in some cases, viral assemblages persisted over time. Thus, we show that hydrothermal vent fluids are home to novel, diverse viral assemblages that are highly localized to specific regions and taxa. IMPORTANCE Viruses play important roles in manipulating microbial communities and their evolution in the ocean, yet not much is known about viruses in deep-sea hydrothermal vents. However, viral ecology and evolution are of particular interest in hydrothermal vent habitats because of their unique nature: previous studies have indicated that most viruses in hydrothermal vents are temperate rather than lytic, and it has been established that rates of horizontal gene transfer (HGT) are particularly high among thermophilic vent microbes, and viruses are common vectors for HGT. If viruses have broad host range or are widespread across vent sites, they have increased potential to act as gene-sharing "highways" between vent sites. By examining viral diversity, distribution, and infection networks across disparate vent sites, this study provides the opportunity to better characterize and constrain the viral impact on hydrothermal vent microbial communities. We show that viruses in hydrothermal vents are diverse and apparently active, but most have restricted host range and are not widely distributed among vent sites. Thus, the impacts of viral infection are likely to be highly localized and constrained to specific taxa in these habitats.
Collapse
|
8
|
Moulana A, Anderson RE, Fortunato CS, Huber JA. Selection Is a Significant Driver of Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-Sea Hydrothermal Vents. mSystems 2020; 5:e00673-19. [PMID: 32291353 PMCID: PMC7159903 DOI: 10.1128/msystems.00673-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Microbial genomes have highly variable gene content, and the evolutionary history of microbial populations is shaped by gene gain and loss mediated by horizontal gene transfer and selection. To evaluate the influence of selection on gene content variation in hydrothermal vent microbial populations, we examined 22 metagenome-assembled genomes (MAGs) (70 to 97% complete) from the ubiquitous vent Epsilonbacteraeota genus Sulfurovum that were recovered from two deep-sea hydrothermal vent regions, Axial Seamount in the northeastern Pacific Ocean (13 MAGs) and the Mid-Cayman Rise in the Caribbean Sea (9 MAGs). Genes involved in housekeeping functions were highly conserved across Sulfurovum lineages. However, genes involved in environment-specific functions, and in particular phosphate regulation, were found mostly in Sulfurovum genomes from the Mid-Cayman Rise in the low-phosphate Atlantic Ocean environment, suggesting that nutrient limitation is an important selective pressure for these bacteria. Furthermore, genes that were rare within the pangenome were more likely to undergo positive selection than genes that were highly conserved in the pangenome, and they also appeared to have experienced gene-specific sweeps. Our results suggest that selection is a significant driver of gene gain and loss for dominant microbial lineages in hydrothermal vents and highlight the importance of factors like nutrient limitation in driving microbial adaptation and evolution.IMPORTANCE Microbes can alter their gene content through the gain and loss of genes. However, there is some debate as to whether natural selection or neutral processes play a stronger role in molding the gene content of microbial genomes. In this study, we examined variation in gene content for the Epsilonbacteraeota genus Sulfurovum from deep-sea hydrothermal vents, which are dynamic habitats known for extensive horizontal gene transfer within microbial populations. Our results show that natural selection is a strong driver of Sulfurovum gene content and that nutrient limitation in particular has shaped the Sulfurovum genome, leading to differences in gene content between ocean basins. Our results also suggest that recently acquired genes undergo stronger selection than genes that were acquired in the more distant past. Overall, our results highlight the importance of natural selection in driving the evolution of microbial populations in these dynamic habitats.
Collapse
Affiliation(s)
- Alief Moulana
- Biology Department, Carleton College, Northfield, Minnesota, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | | | - Julie A Huber
- Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
9
|
Grozeva NG, Klein F, Seewald JS, Sylva SP. Chemical and isotopic analyses of hydrocarbon-bearing fluid inclusions in olivine-rich rocks. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20180431. [PMID: 31902341 PMCID: PMC7015310 DOI: 10.1098/rsta.2018.0431] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
We examined the mineralogical, chemical and isotopic compositions of secondary fluid inclusions in olivine-rich rocks from two active serpentinization systems: the Von Damm hydrothermal field (Mid-Cayman Rise) and the Zambales ophiolite (Philippines). Peridotite, troctolite and gabbroic rocks in these systems contain abundant CH4-rich secondary inclusions in olivine, with less abundant inclusions in plagioclase and clinopyroxene. Olivine-hosted secondary inclusions are chiefly composed of CH4 and minor H2, in addition to secondary minerals including serpentine, brucite, magnetite and carbonates. Secondary inclusions in plagioclase are dominated by CH4 with variable amounts of H2 and H2O, while those in clinopyroxene contain only CH4. We determined hydrocarbon abundances and stable carbon isotope compositions by crushing whole rocks and analysing the released volatiles using isotope ratio monitoring-gas chromatography mass spectrometry. Bulk rock gas analyses yielded appreciable quantities of CH4 and C2H6 in samples from Cayman (4-313 nmol g-1 CH4 and 0.02-0.99 nmol g-1 C2H6), with lesser amounts in samples from Zambales (2-37 nmol g-1 CH4 and 0.004-0.082 nmol g-1 C2H6). Mafic and ultramafic rocks at Cayman exhibit δ13CCH4 values of -16.7‰ to -4.4‰ and δ13CC2H6 values of -20.3‰ to +0.7‰. Ultramafic rocks from Zambales exhibit δ13CCH4 values of -12.4‰ to -2.8‰ and δ13CC2H6 values of -1.2‰ to -0.9‰. Similarities in the carbon isotopic compositions of CH4 and C2H6 in plutonic rocks, Von Damm hydrothermal fluids, and Zambales gas seeps suggest that leaching of fluid inclusions may provide a significant contribution of abiotic hydrocarbons to deep-sea vent fluids and ophiolite-hosted gas seeps. Isotopic compositions of CH4 and C2H6 from a variety of hydrothermal fields hosted in olivine-rich rocks that are similar to those in Von Damm vent fluids further support the idea that a significant portion of abiotic hydrocarbons in ultramafic-influenced vent fluids is derived from fluid inclusions. This article is part of a discussion meeting issue 'Serpentinite in the Earth system'.
Collapse
Affiliation(s)
- Niya G. Grozeva
- Massachusetts Institute of Technology – Woods Hole Oceanographic Institution Joint Program in Oceanography, Cambridge, MA 02139, USA
| | - Frieder Klein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jeffrey S. Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Sean P. Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
10
|
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 2020; 17:271-283. [PMID: 30867583 DOI: 10.1038/s41579-019-0160-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although 'black smokers' and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Galambos D, Anderson RE, Reveillaud J, Huber JA. Genome-resolved metagenomics and metatranscriptomics reveal niche differentiation in functionally redundant microbial communities at deep-sea hydrothermal vents. Environ Microbiol 2019; 21:4395-4410. [PMID: 31573126 PMCID: PMC6899741 DOI: 10.1111/1462-2920.14806] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The structure and function of microbial communities inhabiting the subseafloor near hydrothermal systems are influenced by fluid geochemistry, geologic setting and fluid flux between vent sites, as well as biological interactions. Here, we used genome-resolved metagenomics and metatranscriptomics to examine patterns of gene abundance and expression and assess potential niche differentiation in microbial communities in venting fluids from hydrothermal vent sites at the Mid-Cayman Rise. We observed similar patterns in gene and transcript abundance between two geochemically distinct vent fields at the community level but found that each vent site harbours a distinct microbial community with differing transcript abundances for individual microbial populations. Through an analysis of metabolic pathways in 64 metagenome-assembled genomes (MAGs), we show that MAG transcript abundance can be tied to differences in metabolic pathways and to potential metabolic interactions between microbial populations, allowing for niche-partitioning and divergence in both population distribution and activity. Our results illustrate that most microbial populations have a restricted distribution within the seafloor, and that the activity of those microbial populations is tied to both genome content and abiotic factors.
Collapse
Affiliation(s)
- David Galambos
- Biology DepartmentCarleton CollegeNorthfieldMinnesotaUSA
| | | | | | - Julie A. Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| |
Collapse
|
12
|
Haughton GA, Hayman NW, Searle RC, Le Bas T, Murton BJ. Volcanic-Tectonic Structure of the Mount Dent Oceanic Core Complex in the Ultraslow Mid-Cayman Spreading Center Determined From Detailed Seafloor Investigation. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2019; 20:1298-1318. [PMID: 35860338 PMCID: PMC9285398 DOI: 10.1029/2018gc008032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/15/2023]
Abstract
The flanks of the ultraslow-spreading Mid-Cayman Spreading Center (MCSC) are characterized by domal massifs or oceanic core complexes (OCCs). The most prominent of these, Mount Dent, comprises lower-crustal and upper-mantle lithologies and hosts the Von Damm vent field ~12 km west of the axial deep. Here, presented autonomous underwater vehicle-derived swath sonar (multibeam) mapping and deep-towed side-scan sonar imagery lead to our interpretation that: (i) slip along the OCC-bounding detachment fault is ceasing, (ii) the termination zone, where detachment fault meets the hanging wall, is disintegrating, (iii) the domed surface of the OCC is cut by steep north-south extensional faulting, and (iv) the breakaway zone is cut by outward facing faults. The Von Damm vent field and dispersed pockmarks on the OCC's south flank further suggest that hydrothermal fluid flow is pervasive within the faulted OCC. On the axial floor of the MCSC, bright acoustic backscatter and multibeam bathymetry reveal: (v) a volcanic detachment hanging wall, (vi) a major fault rifting the southern flank of Mount Dent, and (vii) a young axial volcanic ridge intersecting its northern flank. These observations are described by a conceptual model wherein detachment faulting and OCC exhumation are ceasing during an increase in magmatic intrusion, brittle deformation, and hydrothermal circulation within the OCC. Together, this high-resolution view of the MCSC provides an instructive example of how OCCs, formed within an overall melt-starved ultraslow spreading center, can undergo magmatism, hydrothermal activity, and faulting in much the same way as expected in magmatically more robust slow-spreading centers elsewhere.
Collapse
Affiliation(s)
- G. A. Haughton
- School of Ocean and Earth SciencesUniversity of SouthamptonSouthamptonUK
| | - N. W. Hayman
- Institute for Geophysics, Jackson School for GeosciencesUniversity of TexasAustinTXUSA
| | - R. C. Searle
- Department of Earth SciencesDurham UniversityDurhamUK
| | - T. Le Bas
- National Oceanography CenterSouthamptonUK
| | | |
Collapse
|
13
|
Jones RM, Goordial JM, Orcutt BN. Low Energy Subsurface Environments as Extraterrestrial Analogs. Front Microbiol 2018; 9:1605. [PMID: 30072971 PMCID: PMC6058055 DOI: 10.3389/fmicb.2018.01605] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Earth's subsurface is often isolated from phototrophic energy sources and characterized by chemotrophic modes of life. These environments are often oligotrophic and limited in electron donors or electron acceptors, and include continental crust, subseafloor oceanic crust, and marine sediment as well as subglacial lakes and the subsurface of polar desert soils. These low energy subsurface environments are therefore uniquely positioned for examining minimum energetic requirements and adaptations for chemotrophic life. Current targets for astrobiology investigations of extant life are planetary bodies with largely inhospitable surfaces, such as Mars, Europa, and Enceladus. Subsurface environments on Earth thus serve as analogs to explore possibilities of subsurface life on extraterrestrial bodies. The purpose of this review is to provide an overview of subsurface environments as potential analogs, and the features of microbial communities existing in these low energy environments, with particular emphasis on how they inform the study of energetic limits required for life. The thermodynamic energetic calculations presented here suggest that free energy yields of reactions and energy density of some metabolic redox reactions on Mars, Europa, Enceladus, and Titan could be comparable to analog environments in Earth's low energy subsurface habitats.
Collapse
Affiliation(s)
| | | | - Beth N. Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| |
Collapse
|
14
|
Reveillaud J, Anderson R, Reves-Sohn S, Cavanaugh C, Huber JA. Metagenomic investigation of vestimentiferan tubeworm endosymbionts from Mid-Cayman Rise reveals new insights into metabolism and diversity. MICROBIOME 2018; 6:19. [PMID: 29374496 PMCID: PMC5787263 DOI: 10.1186/s40168-018-0411-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/19/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND The microbial endosymbionts of two species of vestimentiferan tubeworms (Escarpia sp. and Lamellibrachia sp.2) collected from an area of low-temperature hydrothermal diffuse vent flow at the Mid-Cayman Rise (MCR) in the Caribbean Sea were characterized using microscopy, phylogenetic analyses, and a metagenomic approach. RESULTS Bacteria, with a typical Gram negative cell envelope contained within membrane-bound vacuoles, were observed within the trophosome of both tubeworm species. Phylogenetic analysis of the 16S rRNA gene and ITS region suggested MCR individuals harbored highly similar endosymbionts that were > 98% identical, with the exception of two symbionts that showed a 60 bp insertion within the ITS region. All sequences from MCR endosymbionts formed a separate well-supported clade that diverged from those of symbionts of seep and vent vestimentiferans from the Pacific, Gulf of Mexico, and Mediterranean Sea. The metagenomes of the symbionts of two specimens of each tubeworm species were sequenced, and two distinct Gammaproteobacteria metagenome-assembled genomes (MAGs) of more than 4 Mbp assembled. An Average Nucleotide Identity (ANI) of 86.5% between these MAGs, together with distinct 16S rRNA gene and ITS sequences, indicate the presence of multiple endosymbiont phylotypes at the MCR, with one MAG shared between one Escarpia and two Lamellibrachia individuals, indicating these endosymbionts are not specific to either host species. Genes for sulfur and hydrogen oxidation, nitrate reduction (assimilatory and dissimilatory), glycolysis and the Krebs cycle, peptide, sugar, and lipid transporters, and both rTCA and CBB carbon fixation cycles were detected in the MAGs, highlighting key and shared functions with symbiont metagenomes of the vestimentiferans Riftia, Tevnia, and Ridgeia from the Pacific. The potential for a second hydrogen oxidation pathway (via a bidirectional hydrogenase), formate dehydrogenase, a catalase, and several additional peptide transporters were found exclusively in the MCR endosymbiont MAGs. CONCLUSIONS The present study adds new evidence that tubeworm endosymbionts can potentially switch from autotrophic to heterotrophic metabolism, or may be mixotrophic, presumably while free-living, and also suggests their versatile metabolic potential may enable both the host and symbionts to exploit a wide range of environmental conditions. Together, the marked gene content and sequence dissimilarity at the rRNA operon and whole genome level between vent and seep symbionts suggest these newly described endosymbionts from the MCR belong to a novel tubeworm endosymbiont genera, introduced as Candidatus Vondammii.
Collapse
Affiliation(s)
- Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France.
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Rika Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
- Department of Biology, Carleton College, Northfield, MN, USA
| | - Sintra Reves-Sohn
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Colleen Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
- Present Address: Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
15
|
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017; 8:1114. [PMID: 29066755 PMCID: PMC5655027 DOI: 10.1038/s41467-017-01228-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023] Open
Abstract
Little is known about evolutionary drivers of microbial populations in the warm subseafloor of deep-sea hydrothermal vents. Here we reconstruct 73 metagenome-assembled genomes (MAGs) from two geochemically distinct vent fields in the Mid-Cayman Rise to investigate patterns of genomic variation within subseafloor populations. Low-abundance populations with high intra-population diversity coexist alongside high-abundance populations with low genomic diversity, with taxonomic differences in patterns of genomic variation between the mafic Piccard and ultramafic Von Damm vent fields. Populations from Piccard are significantly enriched in nonsynonymous mutations, suggesting stronger purifying selection in Von Damm relative to Piccard. Comparison of nine Sulfurovum MAGs reveals two high-coverage, low-diversity MAGs from Piccard enriched in unique genes related to the cellular membrane, suggesting these populations were subject to distinct evolutionary pressures that may correlate with genes related to nutrient uptake, biofilm formation, or viral invasion. These results are consistent with distinct evolutionary histories between geochemically different vent fields, with implications for understanding evolutionary processes in subseafloor microbial populations.
Collapse
Affiliation(s)
- Rika E Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Department of Biology, Carleton College, Northfield, MN, 55057, USA.
| | - Julie Reveillaud
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cirad UMR 117, Inra UMR 1309 ASTRE, Cirad Campus International de Baillarguet, Montpellier, France
| | - Emily Reddington
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Great Pond Foundation, Edgartown, MA, 02539, USA
| | - Tom O Delmont
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jill M McDermott
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jeff S Seewald
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
16
|
Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160829. [PMID: 28484604 PMCID: PMC5414241 DOI: 10.1098/rsos.160829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.
Collapse
Affiliation(s)
- Anni Djurhuus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
- e-mail:
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Noatun 3, Torshavn, Faroe Islands
| | - Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, , Germany
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
| |
Collapse
|
17
|
Dalmasso C, Oger P, Selva G, Courtine D, L’Haridon S, Garlaschelli A, Roussel E, Miyazaki J, Reveillaud J, Jebbar M, Takai K, Maignien L, Alain K. Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise. Syst Appl Microbiol 2016; 39:440-444. [DOI: 10.1016/j.syapm.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/26/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
|
18
|
Complete Genome Sequence of the Hyperthermophilic and Piezophilic Archeon Thermococcus piezophilus CDGST, Able To Grow under Extreme Hydrostatic Pressures. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00610-16. [PMID: 27417831 PMCID: PMC4945791 DOI: 10.1128/genomea.00610-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the genome sequence of Thermococcus superprofundus strain CDGST, a new piezophilic and hyperthermophilic member of the order Thermococcales isolated from the world’s deepest hydrothermal vents, at the Mid-Cayman Rise. The genome is consistent with a heterotrophic, anaerobic, and piezophilic lifestyle.
Collapse
|
19
|
Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, Vidoudez C, Amann R, Meyerdierks A. HeterotrophicProteobacteriain the vicinity of diffuse hydrothermal venting. Environ Microbiol 2016; 18:4348-4368. [DOI: 10.1111/1462-2920.13304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Dimitri V. Meier
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Wolfgang Bach
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
| | - Peter R. Girguis
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | | | - Eoghan P. Reeves
- University of Bremen, MARUM - Center for Marine Environmental Sciences, Petrology of the Ocean Crust group; Leobener Str. D-28359 Bremen Germany
- University of Bergen, Department of Earth Science and Centre for Geobiology; Postboks 7803 N-5020 Bergen Norway
| | - Michael Richter
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Charles Vidoudez
- Harvard University, Department of Organismic & Evolutionary Biology; 16 Divinity Avenue Cambridge MA 02138-2020 USA
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| | - Anke Meyerdierks
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1 D-28359 Bremen Germany
| |
Collapse
|
20
|
Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, Seewald J, German CR, Huber JA. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol 2016; 18:1970-87. [PMID: 26663423 PMCID: PMC5021209 DOI: 10.1111/1462-2920.13173] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor.
Collapse
Affiliation(s)
- Julie Reveillaud
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Emily Reddington
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Jill McDermott
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Christopher Algar
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Julie L Meyer
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Sean Sylva
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
21
|
McDermott JM, Seewald JS, German CR, Sylva SP. Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc Natl Acad Sci U S A 2015; 112:7668-72. [PMID: 26056279 PMCID: PMC4485091 DOI: 10.1073/pnas.1506295112] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.
Collapse
Affiliation(s)
- Jill M McDermott
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543;
| | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Christopher R German
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543
| |
Collapse
|
22
|
Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. ISME JOURNAL 2015; 10:225-39. [PMID: 26046257 DOI: 10.1038/ismej.2015.81] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/05/2015] [Accepted: 04/09/2015] [Indexed: 11/08/2022]
Abstract
Microbial processes within deep-sea hydrothermal plumes affect ocean biogeochemistry on global scales. In rising hydrothermal plumes, a combination of microbial metabolism and particle formation processes initiate the transformation of reduced chemicals like hydrogen sulfide, hydrogen, methane, iron, manganese and ammonia that are abundant in hydrothermal vent fluids. Despite the biogeochemical importance of this rising portion of plumes, it is understudied in comparison to neutrally buoyant plumes. Here we use metagenomics and bioenergetic modeling to describe the abundance and genetic potential of microorganisms in relation to available electron donors in five different hydrothermal plumes and three associated background deep-sea waters from the Eastern Lau Spreading Center located in the Western Pacific Ocean. Three hundred and thirty one distinct genomic 'bins' were identified, comprising an estimated 951 genomes of archaea, bacteria, eukarya and viruses. A significant proportion of these genomes is from novel microorganisms and thus reveals insights into the energy metabolism of heretofore unknown microbial groups. Community-wide analyses of genes encoding enzymes that oxidize inorganic energy sources showed that sulfur oxidation was the most abundant and diverse chemolithotrophic microbial metabolism in the community. Genes for sulfur oxidation were commonly present in genomic bins that also contained genes for oxidation of hydrogen and methane, suggesting metabolic versatility in these microbial groups. The relative diversity and abundance of genes encoding hydrogen oxidation was moderate, whereas that of genes for methane and ammonia oxidation was low in comparison to sulfur oxidation. Bioenergetic-thermodynamic modeling supports the metagenomic analyses, showing that oxidation of elemental sulfur with oxygen is the most dominant catabolic reaction in the hydrothermal plumes. We conclude that the energy metabolism of microbial communities inhabiting rising hydrothermal plumes is dictated by the underlying plume chemistry, with a dominant role for sulfur-based chemolithoautotrophy.
Collapse
|
23
|
Lee S, Kim SJ, Ju SJ, Pak SJ, Son SK, Yang J, Han S. Mercury accumulation in hydrothermal vent mollusks from the southern Tonga Arc, southwestern Pacific Ocean. CHEMOSPHERE 2015; 127:246-253. [PMID: 25748345 DOI: 10.1016/j.chemosphere.2015.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/31/2014] [Accepted: 01/03/2015] [Indexed: 06/04/2023]
Abstract
We provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.001%). It suggests that Hg methylation may have not been favorable in the vent field sediment. In addition, Hg concentrations in the mollusks were much higher (10-100 times) than in other hydrothermal vent environments, indicating that organisms located at the Tonga Arc are exposed to exceedingly high Hg levels. While Hg concentration was higher in the gills and digestive glands than in the mantles and residues of snails and mussels, the MMHg concentrations in the gills and digestive glands were orders of magnitude lower (0.004-0.04%) than Hg concentrations. In summary, our results suggest that the release of Hg from the hydrothermal vent fields of the Tonga Arc and subsequent bioaccumulation are substantial, but not for MMHg.
Collapse
Affiliation(s)
- Seyong Lee
- School of Environmental Science & Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Se-Joo Kim
- Korean Bioinformation Center, Korea Institute of Bioscience & Biotechnology, Daejeon 305-806, Republic of Korea
| | - Se-Jong Ju
- Deep-Sea and Seabed Resources Research Center, Korea Institute of Ocean Science & Technology, Gyeonggi-do 426-744, Republic of Korea; Marine Biology Major, University of Science & Technology, Daejeon 305-350, Republic of Korea
| | - Sang-Joon Pak
- Deep-Sea and Seabed Resources Research Center, Korea Institute of Ocean Science & Technology, Gyeonggi-do 426-744, Republic of Korea
| | - Seung-Kyu Son
- Deep-Sea and Seabed Resources Research Center, Korea Institute of Ocean Science & Technology, Gyeonggi-do 426-744, Republic of Korea
| | - Jisook Yang
- School of Environmental Science & Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Seunghee Han
- School of Environmental Science & Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 500-712, Republic of Korea.
| |
Collapse
|
24
|
Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME JOURNAL 2014; 9:1434-45. [PMID: 25489728 DOI: 10.1038/ismej.2014.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 11/09/2022]
Abstract
Within hydrothermal plumes, chemosynthetic processes and microbe-mineral interactions drive primary productivity in deep-ocean food webs and may influence transport of elements such as iron. However, the source of microorganisms in plumes and the factors governing how these communities assemble are poorly understood, in part due to lack of data from early stages of plume formation. In this study, we examined microbial community composition of rising hydrothermal plumes from five vent fields along the Eastern Lau Spreading Center. Seafloor and plume microbial communities were significantly dissimilar and shared few phylotypes. Plume communities were highly similar to each other with significant differences in community membership only between Kilo Moana and Mariner, two vents that are separated by extremes in depth, latitude and geochemistry. Systematic sampling of waters surrounding the vents revealed that species richness and phylogenetic diversity was typically highest near the vent orifice, implying mixing of microbial communities from the surrounding habitats. Above-plume background communities were primarily dominated by SAR11, SAR324 and MG-I Archaea, while SUP05, Sulfurovum, Sulfurimonas, SAR324 and Alteromonas were abundant in plume and near-bottom background communities. These results show that the ubiquitous water-column microorganisms populate plume communities, and that the composition of background seawater exerts primary influence on plume community composition, with secondary influence from geochemical and/or physical properties of vents. Many of these pervasive deep-ocean organisms are capable of lithotrophy, suggesting that they are poised to use inorganic electron donors encountered in hydrothermal plumes.
Collapse
|
25
|
Troni G, Whitcomb LL. Advances inIn SituAlignment Calibration of Doppler and High/Low-end Attitude Sensors for Underwater Vehicle Navigation: Theory and Experimental Evaluation. J FIELD ROBOT 2014. [DOI: 10.1002/rob.21551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Giancarlo Troni
- Department of Mechanical Engineering; Pontificia Universidad; Católica de Chile Santiago Chile
| | - Louis L. Whitcomb
- Department of Mechanical Engineering; Johns Hopkins University; Baltimore Maryland 21218
| |
Collapse
|
26
|
Reeves EP, McDermott JM, Seewald JS. The origin of methanethiol in midocean ridge hydrothermal fluids. Proc Natl Acad Sci U S A 2014; 111:5474-9. [PMID: 24706901 PMCID: PMC3992694 DOI: 10.1073/pnas.1400643111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.
Collapse
Affiliation(s)
- Eoghan P. Reeves
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, D-28359 Bremen, Germany
| | - Jill M. McDermott
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
| | - Jeffrey S. Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; and
| |
Collapse
|
27
|
Ancion PY, Lear G, Neale M, Roberts K, Lewis GD. Using biofilm as a novel approach to assess stormwater treatment efficacy. WATER RESEARCH 2014; 49:406-415. [PMID: 24210358 DOI: 10.1016/j.watres.2013.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/04/2013] [Accepted: 10/09/2013] [Indexed: 06/02/2023]
Abstract
Contaminants associated with stormwater are among the leading causes of water quality impairment in urban streams. Multiple device treatment systems are commonly installed with the aim of reducing contaminant loads within stormwater discharge. However, the in situ performance of such systems remains poorly understood. We investigated the efficacy of an advanced stormwater treatment system by monitoring biofilm associated metals and biofilm bacterial community composition at multiple locations through the treatment system (which included rain gardens, grassy swales, a stormwater filter and a wetland) and in the receiving stream above and below the stormwater discharge. Changes in bacterial community composition were assessed by Automated Ribosomal Intergenic Spacer Analysis (ARISA) and concentrations of biofilm associated metals monitored by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Significant differences in bacterial community composition were detected throughout the stormwater network. Bacterial communities gradually changed towards a community more similar to that within the receiving stream and the discharge of treated stormwater had little effect on the composition of bacterial communities in the receiving stream, suggesting the effective conditioning of water quality by the treatment system. Concentrations of some biofilm-associated metals declined following sequential treatment, for example copper (73% reduction), zinc (48% reduction) and lead (46% reduction). In contrast, levels of arsenic, cadmium, chromium and nickel were not reduced by the treatment system. We demonstrate that biofilm bacterial community composition is a sensitive indicator of environmental changes within freshwater ecosystems and an efficient indicator to monitor water quality in enclosed stormwater networks where traditional biological indicators are not available.
Collapse
Affiliation(s)
- Pierre-Yves Ancion
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand
| | - Gavin Lear
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand.
| | - Martin Neale
- Environment Research, Auckland Council, Auckland, New Zealand
| | - Kelly Roberts
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand
| | - Gillian D Lewis
- Environmental Microbiology Research Group, School of Biological Sciences, The University of Auckland, Private Bag 92-019, New Zealand
| |
Collapse
|
28
|
Beedessee G, Watanabe H, Ogura T, Nemoto S, Yahagi T, Nakagawa S, Nakamura K, Takai K, Koonjul M, Marie DEP. High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian Ridge relevant to its geological setting. PLoS One 2013; 8:e81570. [PMID: 24358117 PMCID: PMC3864839 DOI: 10.1371/journal.pone.0081570] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/14/2013] [Indexed: 11/30/2022] Open
Abstract
Dispersal ability plays a key role in the maintenance of species in spatially and temporally discrete niches of deep-sea hydrothermal vent environments. On the basis of population genetic analyses in the eastern Pacific vent fields, dispersal of animals in the mid-oceanic ridge systems generally appears to be constrained by geographical barriers such as trenches, transform faults, and microplates. Four hydrothermal vent fields (the Kairei and Edmond fields near the Rodriguez Triple Junction, and the Dodo and Solitaire fields in the Central Indian Ridge) have been discovered in the mid-oceanic ridge system of the Indian Ocean. In the present study, we monitored the dispersal of four representative animals, Austinograea rodriguezensis, Rimicaris kairei, Alviniconcha and the scaly-foot gastropods, among these vent fields by using indirect methods, i.e., phylogenetic and population genetic analyses. For all four investigated species, we estimated potentially high connectivity, i.e., no genetic difference among the populations present in vent fields located several thousands of kilometers apart; however, the direction of migration appeared to differ among the species, probably because of different dispersal strategies. Comparison of the intermediate-spreading Central Indian Ridge with the fast-spreading East Pacific Rise and slow-spreading Mid-Atlantic Ridge revealed the presence of relatively high connectivity in the intermediate- and slow-spreading ridge systems. We propose that geological background, such as spreading rate which determines distance among vent fields, is related to the larval dispersal and population establishment of vent-endemic animal species, and may play an important role in controlling connectivity among populations within a biogeographical province.
Collapse
Affiliation(s)
| | - Hiromi Watanabe
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- * E-mail:
| | - Tomomi Ogura
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- Graduate School of Marine Science and Technoloy, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | | | - Takuya Yahagi
- Atmosphere and Ocean Research Institute, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Satoshi Nakagawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Kentaro Nakamura
- Precambrian Ecosystem Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Ken Takai
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
- Precambrian Ecosystem Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Meera Koonjul
- Albion Fisheries Research Centre, Ministry of Fisheries, Petite Rivière, Mauritius
| | | |
Collapse
|
29
|
Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol 2013; 16:304-17. [PMID: 23809230 DOI: 10.1111/1462-2920.12165] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 05/09/2013] [Accepted: 05/24/2013] [Indexed: 11/27/2022]
Abstract
Chemolithotrophy is a pervasive metabolic lifestyle for microorganisms in the dark ocean. The SAR324 group of Deltaproteobacteria is ubiquitous in the ocean and has been implicated in sulfur oxidation and carbon fixation, but also contains genomic signatures of C1 utilization and heterotrophy. Here, we reconstructed the metagenome and metatranscriptome of a population of SAR324 from a hydrothermal plume and surrounding waters in the deep Gulf of California to gain insight into the genetic capability and transcriptional dynamics of this enigmatic group. SAR324's metabolism is signified by genes that encode a novel particulate hydrocarbon monooxygenase (pHMO), degradation pathways for corresponding alcohols and short-chain fatty acids, dissimilatory sulfur oxidation, formate dehydrogenase (FDH) and a nitrite reductase (NirK). Transcripts of the pHMO, NirK, FDH and transporters for exogenous carbon and amino acid uptake were highly abundant in plume waters. Sulfur oxidation genes were also abundant in the plume metatranscriptome, indicating SAR324 may also utilize reduced sulfur species in hydrothermal fluids. These results suggest that aspects of SAR324's versatile metabolism (lithotrophy, heterotrophy and alkane oxidation) operate simultaneously, and may explain SAR324's ubiquity in the deep Gulf of California and in the global marine biosphere.
Collapse
Affiliation(s)
- Cody S Sheik
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
30
|
Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol 2013; 4:124. [PMID: 23720658 PMCID: PMC3659317 DOI: 10.3389/fmicb.2013.00124] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 11/24/2022] Open
Abstract
Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA ; Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA ; Center for Computational Medicine and Bioinformatics, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
31
|
Sylvan JB, Sia TY, Haddad AG, Briscoe LJ, Toner BM, Girguis PR, Edwards KJ. Low temperature geomicrobiology follows host rock composition along a geochemical gradient in lau basin. Front Microbiol 2013; 4:61. [PMID: 23543862 PMCID: PMC3608910 DOI: 10.3389/fmicb.2013.00061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/04/2013] [Indexed: 02/01/2023] Open
Abstract
The East Lau Spreading Center (ELSC) and Valu Fa Ridge (VFR) comprise a ridge segment in the southwest Pacific Ocean where rapid transitions in the underlying mantle chemistry manifest themselves as gradients in seafloor rock geochemistry. We studied the geology and microbial diversity of three silicate rock samples and three inactive sulfide chimney samples collected, from north to south, at the vent fields Kilo Moana, ABE, Tui Malila, and Mariner. This is the first study of microbial populations on basaltic andesite, which was sampled at Mariner vent field. Silicate rock geochemistry exhibits clear latitudinal trends that are mirrored by changes in bacterial community composition. α-proteobacteria, ε-proteobacteria, and Bacteroidetes are most common on a silicate collected from Kilo Moana and their proportions decrease linearly on silicates collected further south. Conversely, a silicate from Mariner vent field hosts high proportions of a unique lineage of Chloroflexi unrelated (<90% sequence similarity) to previously recovered environmental clones or isolates, which decrease at ABE and are absent at Kilo Moana. The exteriors of inactive sulfide structures are dominated by lineages of sulfur oxidizing α-proteobacteria, γ-proteobacteria, and ε-proteobacteria, while the interior of one chimney is dominated by putative sulfur-reducing δ-proteobacteria. A comparison of bacterial communities on inactive sulfides from this and previous studies reveals the presence of a clade of uncultured Bacteroidetes exclusive to sulfidic environments, and a high degree of heterogeneity in bacterial community composition from one sulfide structure to another. In light of the heterogeneous nature of bacterial communities observed here and in previous studies of both active and inactive hydrothermal sulfide structures, the presence of numerous niches may be detected on these structures in the future by finer scale sampling and analysis.
Collapse
Affiliation(s)
- Jason B Sylvan
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lavalleur HJ, Colwell FS. Microbial characterization of basalt formation waters targeted for geological carbon sequestration. FEMS Microbiol Ecol 2013; 85:62-73. [DOI: 10.1111/1574-6941.12098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/31/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Heather J. Lavalleur
- College of Earth, Ocean, and Atmospheric Sciences; Oregon State University; Corvallis; OR; USA
| | - Frederick S. Colwell
- College of Earth, Ocean, and Atmospheric Sciences; Oregon State University; Corvallis; OR; USA
| |
Collapse
|
33
|
Anderson RE, Beltrán MT, Hallam SJ, Baross JA. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. FEMS Microbiol Ecol 2012; 83:324-39. [PMID: 22928928 DOI: 10.1111/j.1574-6941.2012.01478.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022] Open
Abstract
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean.
Collapse
Affiliation(s)
- Rika E Anderson
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
34
|
Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME JOURNAL 2012; 6:2257-68. [PMID: 22695860 DOI: 10.1038/ismej.2012.63] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.
Collapse
Affiliation(s)
- Ryan A Lesniewski
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | | | | | | | | |
Collapse
|
35
|
Bernardino AF, Levin LA, Thurber AR, Smith CR. Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS One 2012; 7:e33515. [PMID: 22496753 PMCID: PMC3319539 DOI: 10.1371/journal.pone.0033515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/10/2012] [Indexed: 11/22/2022] Open
Abstract
Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities.
Collapse
Affiliation(s)
- Angelo F Bernardino
- Departamento de Oceanografia e Ecologia, Universidade Federal do Espírito Santo, Goiabeiras, Vitória, Espírito Santo, Brazil.
| | | | | | | |
Collapse
|
36
|
Sylvan JB, Pyenson BC, Rouxel O, German CR, Edwards KJ. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations. GEOBIOLOGY 2012; 10:178-192. [PMID: 22221398 DOI: 10.1111/j.1472-4669.2011.00315.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We deployed sediment traps adjacent to two active hydrothermal vents at 9°50'N on the East Pacific Rise (EPR) to assess the variability in bacterial community structure associated with plume particles on the timescale of weeks to months, to determine whether an endemic population of plume microbes exists, and to establish ecological relationships between bacterial populations and vent chemistry. Automated rRNA intergenic spacer analysis (ARISA) indicated that there are separate communities at the two different vents and temporal community variations between each vent. Correlation analysis between chemistry and microbiology indicated that shifts in the coarse particulate (>1 mm) Fe/(Fe+Mn+Al), Cu, V, Ca, Al, (232) Th, and Ti as well as fine-grained particulate (<1 mm) Fe/(Fe+Mn+Al), Fe, Ca, and Co are reflected in shifts in microbial populations. 16S rRNA clone libraries from each trap at three time points revealed a high percentage of Epsilonproteobacteria clones and hyperthermophilic Aquificae. There is a shift toward the end of the experiment to more Gammaproteobacteria and Alphaproteobacteria, many of whom likely participate in Fe and S cycling. The particle-attached plume environment is genetically distinct from the surrounding seawater. While work to date in hydrothermal environments has focused on determining the microbial communities on hydrothermal chimneys and the basaltic lavas that form the surrounding seafloor, little comparable data exist on the plume environment that physically and chemically connects them. By employing sediment traps for a time-series approach to sampling, we show that bacterial community composition on plume particles changes on timescales much shorter than previously known.
Collapse
Affiliation(s)
- J B Sylvan
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
37
|
Briggs BR, Inagaki F, Morono Y, Futagami T, Huguet C, Rosell-Mele A, Lorenson TD, Colwell FS. Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiol Ecol 2012; 81:88-98. [PMID: 22273405 DOI: 10.1111/j.1574-6941.2012.01311.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 12/23/2011] [Accepted: 01/12/2012] [Indexed: 11/28/2022] Open
Abstract
The degradation of organic carbon in subseafloor sediments on continental margins contributes to the largest reservoir of methane on Earth. Sediments in the Andaman Sea are composed of ~ 1% marine-derived organic carbon and biogenic methane is present. Our objective was to determine microbial abundance and diversity in sediments that transition the gas hydrate occurrence zone (GHOZ) in the Andaman Sea. Microscopic cell enumeration revealed that most sediment layers harbored relatively low microbial abundance (10(3)-10(5) cells cm(-3)). Archaea were never detected despite the use of both DNA- and lipid-based methods. Statistical analysis of terminal restriction fragment length polymorphisms revealed distinct microbial communities from above, within, and below the GHOZ, and GHOZ samples were correlated with a decrease in organic carbon. Primer-tagged pyrosequences of bacterial 16S rRNA genes showed that members of the phylum Firmicutes are predominant in all zones. Compared with other seafloor settings that contain biogenic methane, this deep subseafloor habitat has a unique microbial community and the low cell abundance detected can help to refine global subseafloor microbial abundance.
Collapse
|
38
|
Disturbance of deep-sea environments induced by the M9.0 Tohoku Earthquake. Sci Rep 2012; 2:270. [PMID: 22355782 PMCID: PMC3280601 DOI: 10.1038/srep00270] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 01/24/2012] [Indexed: 11/16/2022] Open
Abstract
The impacts of the M9.0 Tohoku Earthquake on deep-sea environment were investigated 36 and 98 days after the event. The light transmission anomaly in the deep-sea water after 36 days became atypically greater (∼35%) and more extensive (thickness ∼1500 m) near the trench axis owing to the turbulent diffusion of fresh seafloor sediment, coordinated with potential seafloor displacement. In addition to the chemical influx associated with sediment diffusion, an influx of 13C-enriched methane from the deep sub-seafloor reservoirs was estimated. This isotopically unusual methane influx was possibly triggered by the earthquake and its aftershocks that subsequently induced changes in the sub-seafloor hydrogeologic structures. The whole prokaryotic biomass and the development of specific phylotypes in the deep-sea microbial communities could rise and fall at 36 and 98 days, respectively, after the event. We may capture the snap shots of post-earthquake disturbance in deep-sea chemistry and microbial community responses.
Collapse
|
39
|
Connelly DP, Copley JT, Murton BJ, Stansfield K, Tyler PA, German CR, Van Dover CL, Amon D, Furlong M, Grindlay N, Hayman N, Hühnerbach V, Judge M, Le Bas T, McPhail S, Meier A, Nakamura KI, Nye V, Pebody M, Pedersen RB, Plouviez S, Sands C, Searle RC, Stevenson P, Taws S, Wilcox S. Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nat Commun 2012; 3:620. [PMID: 22233630 PMCID: PMC3274706 DOI: 10.1038/ncomms1636] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022] Open
Abstract
The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with >400 °C venting from the world's deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
Collapse
Affiliation(s)
- Douglas P. Connelly
- National Oceanography Centre, Southampton, UK
- These authors contributed equally to this work.
| | - Jonathan T. Copley
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
- These authors contributed equally to this work.
| | | | - Kate Stansfield
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Paul A. Tyler
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | | | - Diva Amon
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | - Nancy Grindlay
- Center for Marine Science, University of North Carolina, Wilmington, NC, USA
| | - Nicholas Hayman
- University of Texas, Institute for Geophysics, Austin, TX, USA
| | | | - Maria Judge
- National University of Ireland, Earth and Ocean Sciences, Galway, Ireland
| | - Tim Le Bas
- National Oceanography Centre, Southampton, UK
| | | | - Alexandra Meier
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Ko-ichi Nakamura
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Verity Nye
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | | | | | | | - Carla Sands
- National Oceanography Centre, Southampton, UK
| | | | | | - Sarah Taws
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Sally Wilcox
- Department of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
40
|
German CR, Ramirez-Llodra E, Baker MC, Tyler PA, and the ChEss Scientific Steering Committee. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map. PLoS One 2011; 6:e23259. [PMID: 21829722 PMCID: PMC3150416 DOI: 10.1371/journal.pone.0023259] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 07/10/2011] [Indexed: 11/19/2022] Open
Abstract
The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the world's least investigated deep-ocean basin.
Collapse
Affiliation(s)
- Christopher R. German
- Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Eva Ramirez-Llodra
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - Maria C. Baker
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom
| | - Paul A. Tyler
- School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton, United Kingdom
| | | |
Collapse
|
41
|
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 2011; 75:361-422. [PMID: 21646433 PMCID: PMC3122624 DOI: 10.1128/mmbr.00039-10] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The majority of life on Earth--notably, microbial life--occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean-the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.-has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats.
Collapse
Affiliation(s)
- Beth N. Orcutt
- Center for Geomicrobiology, Aarhus University, 8000 Aarhus, Denmark
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jason B. Sylvan
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Nina J. Knab
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Katrina J. Edwards
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
42
|
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|