1
|
Flores-Ibarra A, Maia RNA, Olasz B, Church JR, Gotthard G, Schapiro I, Heberle J, Nogly P. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation. J Mol Biol 2024; 436:168356. [PMID: 37944792 DOI: 10.1016/j.jmb.2023.168356] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Raiza N A Maia
- Department of Chemistry, The University of Texas at Austin, 78712-1224 Austin, TX, USA
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | | | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Przemyslaw Nogly
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Rojas V, Salinas F, Romero A, Larrondo LF, Canessa P. Interactions between Core Elements of the Botrytis cinerea Circadian Clock Are Modulated by Light and Different Protein Domains. J Fungi (Basel) 2022; 8:486. [PMID: 35628742 PMCID: PMC9144814 DOI: 10.3390/jof8050486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Botrytis cinerea possesses a complex light-sensing system composed of eleven photoreceptors. In B. cinerea, bcwcl1 encodes for the BcWCL1 protein, the orthologue of the blue-light photoreceptor WC-1 from Neurospora crassa. The functional partner of BcWCL1 is the BcWCL2 protein, both interacting in the nucleus and forming the B. cinerea white collar complex (BcWCC). This complex is required for photomorphogenesis and circadian regulation. However, no molecular evidence shows a light-dependent interaction between the BcWCC components or light-sensing capabilities in BcWCL1. In this work, by employing a yeast two-hybrid system that allows for the in vivo analysis of protein-protein interactions, we confirm that BcWCL1 and BcWCL2 interact in the absence of light as well as upon blue-light stimulation, primarily through their PAS (Per-Arnt-Sim) domains. Deletion of the PAS domains present in BcWCL1 (BcWCL1PAS∆) or BcWCL2 (BcWCL2PAS∆) severely impairs the interaction between these proteins. Interestingly, the BcWCL1PAS∆ protein shows a blue-light response and interacts with BcWCL2 or BcWCL2PAS∆ upon light stimulation. Finally, we demonstrate that BcWCL1 and BcWCL1PAS∆ respond to blue light by introducing a point mutation in the photoactive cysteine, confirming that both proteins are capable of light sensing. Altogether, the results revealed the complexity of protein-protein interactions occurring between the core elements of the B. cinerea circadian clock.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (V.R.); (L.F.L.)
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
| | - Francisco Salinas
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Andrés Romero
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (V.R.); (L.F.L.)
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
| | - Paulo Canessa
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 8331150, Chile; (F.S.); (A.R.)
- Centro de Biotecnologia Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
3
|
Yu CW, Wu YC, Liao VHC. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127091. [PMID: 34488090 DOI: 10.1016/j.jhazmat.2021.127091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Plastics pollution is an emerging environmental problem and nanoplastics (NPs) toxicity has received great concern. This study investigated whether early developmental exposure to polystyrene NPs influence the circadian rhythms and the possible underlying mechanisms in C. elegans. We show that early developmental NPs exposure disturbs circadian rhythms in C. elegans and ASH neurons and G protein-coupled receptor kinase (GRK-2) are involved in the level of chemotaxis response. A higher bioconcentration factor in entrained worms was observed, suggesting that circadian interference results in increased NPs bioaccumulation in C. elegans. In addition, we show that reactive oxygen species produced by NPs exposure and peroxiredoxin-2 (PRDX-2) are related to the disturbed circadian rhythms. We further show that the NPs-induced circadian rhythms disruption is associated with stress resistance decline and modulated by transcription DAF-16/FOXO signaling. Because circadian rhythms are found in most living organisms and the fact that DAF-16 and PRDX-2 are evolutionarily conserved, our findings suggest a possible negative impact of NPs on circadian rhythms and stress resistance in higher organisms including humans.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Yi-Chun Wu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 106, Taiwan.
| |
Collapse
|
4
|
Pola-Sánchez E, Villalobos-Escobedo JM, Carreras-Villaseñor N, Martínez-Hernández P, Beltrán-Hernández EB, Esquivel-Naranjo EU, Herrera-Estrella A. A Global Analysis of Photoreceptor-Mediated Transcriptional Changes Reveals the Intricate Relationship Between Central Metabolism and DNA Repair in the Filamentous Fungus Trichoderma atroviride. Front Microbiol 2021; 12:724676. [PMID: 34566928 PMCID: PMC8456097 DOI: 10.3389/fmicb.2021.724676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Light provides critical information for the behavior and development of basically all organisms. Filamentous fungi sense blue light, mainly, through a unique transcription factor complex that activates its targets in a light-dependent manner. In Trichoderma atroviride, the BLR-1 and BLR-2 proteins constitute this complex, which triggers the light-dependent formation of asexual reproduction structures (conidia). We generated an ENVOY photoreceptor mutant and performed RNA-seq analyses in the mutants of this gene and in those of the BLR-1, CRY-1 and CRY-DASH photoreceptors in response to a pulse of low intensity blue light. Like in other filamentous fungi BLR-1 appears to play a central role in the regulation of blue-light responses. Phenotypic characterization of the Δenv-1 mutant showed that ENVOY functions as a growth and conidiation checkpoint, preventing exacerbated light responses. Similarly, we observed that CRY-1 and CRY-DASH contribute to the typical light-induced conidiation response. In the Δenv-1 mutant, we observed, at the transcriptomic level, a general induction of DNA metabolic processes and strong repression of central metabolism. An analysis of the expression level of DNA repair genes showed that they increase their expression in the absence of env-1. Consistently, photoreactivation experiments showed that Δenv-1 had increased DNA repair capacity. Our results indicate that light perception in T. atroviride is far more complex than originally thought.
Collapse
Affiliation(s)
- Enrique Pola-Sánchez
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | | | - Pedro Martínez-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Emma Beatriz Beltrán-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Edgardo Ulises Esquivel-Naranjo
- Laboratorio de Microbiología Molecular, Unidad de Microbiología Básica y Aplicada, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| |
Collapse
|
5
|
Li Y, Sun T, Guo D, Gao J, Zhang J, Cai F, Fischer R, Shen Q, Yu Z. Comprehensive analysis of the regulatory network of blue-light-regulated conidiation and hydrophobin production in Trichoderma guizhouense. Environ Microbiol 2021; 23:6241-6256. [PMID: 34472181 DOI: 10.1111/1462-2920.15748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/27/2022]
Abstract
Conidia of Trichoderma guizhouense (Hypocreales, Ascomycota) are frequently applied to the production of biofertilizers and biocontrol agents. Conidiation of some Trichoderma species depends on blue light and the action of different blue light receptors. However, the interplay between different blue-light receptors in light signalling remained elusive. Here, we studied the functions of the blue light receptors BLR1 and ENV1, and the MAP kinase HOG1 in blue light signalling in T. guizhouense. We found that the BLR1 dominates light responses and ENV1 is responsible for photoadaptation. Genome-wide gene expression analyses revealed that 1615 genes, accounting for ~13.4% of the genes annotated in the genome, are blue-light regulated in T. guizhouense, and remarkably, these differentially expressed genes (DEGs) including 61 transcription factors. BLR1 and HOG1 are the core components of the light signalling network, which control 79.9% and 73.9% of the DEGs respectively. In addition, the strict regulation of hydrophobin production by the blue light signalling network is impressive. Our study unravels the regulatory network based on the blue light receptors and the MAPK HOG pathway for conidiation, hydrophobin production and other processes in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Sun
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Degang Guo
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia Gao
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Jian Zhang
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Cai
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Reinhard Fischer
- Department of Microbiology, Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Karlsruhe, D-76131, Germany
| | - Qirong Shen
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenzhong Yu
- Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Cascant-Lopez E, Crosthwaite SK, Johnson LJ, Harrison RJ. No Evidence That Homologs of Key Circadian Clock Genes Direct Circadian Programs of Development or mRNA Abundance in Verticillium dahliae. Front Microbiol 2020; 11:1977. [PMID: 33013740 PMCID: PMC7493669 DOI: 10.3389/fmicb.2020.01977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/27/2020] [Indexed: 01/24/2023] Open
Abstract
Many organisms harbor circadian clocks that promote their adaptation to the rhythmic environment. While a broad knowledge of the molecular mechanism of circadian clocks has been gained through the fungal model Neurospora crassa, little is known about circadian clocks in other fungi. N. crassa belongs to the same class as many important plant pathogens including the vascular wilt fungus Verticillium dahliae. We identified homologs of N. crassa clock proteins in V. dahliae, which showed high conservation in key protein domains. However, no evidence for an endogenous, free-running and entrainable rhythm was observed in the daily formation of conidia and microsclerotia. In N. crassa the frequency (frq) gene encodes a central clock protein expressed rhythmically and in response to light. In contrast, expression of Vdfrq is not light-regulated. Temporal gene expression profiling over 48 h in constant darkness and temperature revealed no circadian expression of key clock genes. Furthermore, RNA-seq over a 24 h time-course revealed no robust oscillations of clock-associated transcripts in constant darkness. Comparison of gene expression between wild-type V. dahliae and a ΔVdfrq mutant showed that genes involved in metabolism, transport and redox processes are mis-regulated in the absence of Vdfrq. In addition, VdΔfrq mutants display growth defects and reduced pathogenicity in a strain dependent manner. Our data indicate that if a circadian clock exists in Verticillium, it is based on alternative mechanisms such as post-transcriptional interactions of VdFRQ and the WC proteins or the components of a FRQ-less oscillator. Alternatively, it could be that whilst the original functions of the clock proteins have been maintained, in this species the interactions that generate robust rhythmicity have been lost or are only triggered when specific environmental conditions are met. The presence of conserved clock genes in genomes should not be taken as definitive evidence of circadian function.
Collapse
Affiliation(s)
| | | | - Louise J Johnson
- The School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Richard J Harrison
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, United Kingdom.,National Institute of Agricultural Botany (NIAB), Cambridge, United Kingdom
| |
Collapse
|
7
|
Duffield GE, Han S, Hou TY, de la Iglesia HO, McDonald KA, Mecklenburg KL, Robles-Murguia M. Inhibitor of DNA binding 2 (Id2) Regulates Photic Entrainment Responses in Mice: Differential Responses of the Id2-/- Mouse Circadian System Are Dependent on Circadian Phase and on Duration and Intensity of Light. J Biol Rhythms 2020; 35:555-575. [PMID: 32981454 DOI: 10.1177/0748730420957504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ID2 is a rhythmically expressed helix-loop-helix transcriptional repressor, and its deletion results in abnormal properties of photoentrainment. By examining parametric and nonparametric models of entrainment, we have started to explore the mechanism underlying this circadian phenotype. Id2-/- mice were exposed to differing photoperiods, and the phase angle of entrainment under short days was delayed 2 h as compared with controls. When exposed to long durations of continuous light, enhanced entrainment responses were observed after a delay of the clock but not with phase advances. However, the magnitude of phase shifts was not different in Id2-/- mice tested in constant darkness using a discrete pulse of saturating light. No differences were observed in the speed of clock resetting when challenged by a series of discrete pulses interspaced by varying time intervals. A photic phase-response curve was constructed, although no genotypic differences were observed. Although phase shifts produced by discrete saturating light pulses at CT16 were similar, treatment with a subsaturating pulse revealed a ~2-fold increase in the magnitude of the Id2-/- shift. A corresponding elevation of light-induced per1 expression was observed in the Id2-/- suprachiasmatic nucleus (SCN). To test whether the phenotype is based on a sensitivity change at the level of the retina, pupil constriction responses were measured. No differences were observed in responses or in retinal histology, suggesting that the phenotype occurs downstream of the retina and retinal hypothalamic tract. To test whether the phenotype is due to a reduced amplitude of state variables of the clock, the expression of clock genes per1 and per2 was assessed in vivo and in SCN tissue explants. Amplitude, phase, and period length were normal in Id2-/- mice. These findings suggest that ID2 contributes to a photoregulatory mechanism at the level of the SCN central pacemaker through control of the photic induction of negative elements of the clock.
Collapse
Affiliation(s)
- Giles E Duffield
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| | - Sung Han
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Tim Y Hou
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana
| | - Horacio O de la Iglesia
- Department of Biology and Graduate Program in Neuroscience, University of Washington, Seattle, Washington
| | - Kathleen A McDonald
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana
| | - Kirk L Mecklenburg
- Department of Biology, Indiana University South Bend, South Bend, Indiana
| | - Maricela Robles-Murguia
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, Indiana.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
8
|
Light Response of Pseudomonas putida KT2440 Mediated by Class II LitR, a Photosensor Homolog. J Bacteriol 2020; 202:JB.00146-20. [PMID: 32967908 DOI: 10.1128/jb.00146-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 retains three homologs (PplR1 to PplR3) of the LitR/CarH family, an adenosyl B12-dependent light-sensitive MerR family transcriptional regulator. Transcriptome analysis revealed the existence of a number of photoinducible genes, including pplR1, phrB (encoding DNA photolyase), ufaM (furan-containing fatty acid synthase), folE (GTP cyclohydrolase I), cryB (cryptochrome-like protein), and multiple genes without annotated/known function. Transcriptional analysis by quantitative reverse transcription-PCR with knockout mutants of pplR1 to pplR3 showed that a triple knockout completely abolished the light-inducible transcription in P. putida, which indicates the occurrence of ternary regulation of PplR proteins. A DNase I footprint assay showed that PplR1 protein specifically binds to the promoter regions of light-inducible genes, suggesting a consensus PplR1-binding direct repeat, 5'-T(G/A)TACAN12TGTA(C/T)A-3'. The disruption of B12 biosynthesis cluster did not affect the light-inducible transcription; however, disruption of ppSB1-LOV (where LOV indicates "light, oxygen, or voltage") and ppSB2-LOV, encoding blue light photoreceptors adjacently located to pplR3 and pplR2, respectively, led to the complete loss of light-inducible transcription. Overall, the results suggest that the three PplRs and two PpSB-LOVs cooperatively regulate the light-inducible gene expression. The wide distribution of the pplR/ppSB-LOV cognate pair homologs in Pseudomonas spp. and related bacteria suggests that the response and adaptation to light are similarly regulated in the group of nonphototrophic bacteria.IMPORTANCE The LitR/CarH family is a new group of photosensor homologous to MerR-type transcriptional regulators. Proteins of this family are distributed to various nonphototrophic bacteria and grouped into at least five classes (I to V). Pseudomonas putida retaining three class II LitR proteins exhibited a genome-wide response to light. All three paralogs were functional and mediated photodependent activation of promoters directing the transcription of light-induced genes or operons. Two LOV (light, oxygen, or voltage) domain proteins, adjacently encoded by two litR genes, were also essential for the photodependent transcriptional control. Despite the difference in light-sensing mechanisms, the DNA binding consensus of class II LitR [T(G/A)TA(C/T)A] was the same as that of class I. This is the first study showing the actual involvement of class II LitR in light-induced transcription.
Collapse
|
9
|
McCorison CB, Goodwin SB. The wheat pathogen Zymoseptoria tritici senses and responds to different wavelengths of light. BMC Genomics 2020; 21:513. [PMID: 32711450 PMCID: PMC7382159 DOI: 10.1186/s12864-020-06899-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background The ascomycete fungus Zymoseptoria tritici (synonyms: Mycosphaerella graminicola, Septoria tritici) is a major pathogen of wheat that causes the economically important foliar disease Septoria tritici blotch. Despite its importance as a pathogen, little is known about the reaction of this fungus to light. To test for light responses, cultures of Z. tritici were grown in vitro for 16-h days under white, blue or red light, and their transcriptomes were compared with each other and to those obtained from control cultures grown in darkness. Results There were major differences in gene expression with over 3400 genes upregulated in one or more of the light conditions compared to dark, and from 1909 to 2573 genes specifically upregulated in the dark compared to the individual light treatments. Differences between light treatments were lower, ranging from only 79 differentially expressed genes in the red versus blue comparison to 585 between white light and red. Many of the differentially expressed genes had no functional annotations. For those that did, analysis of the Gene Ontology (GO) terms showed that those related to metabolism were enriched in all three light treatments, while those related to growth and communication were more prevalent in the dark. Interestingly, genes for effectors that have been shown previously to be involved in pathogenicity also were upregulated in one or more of the light treatments, suggesting a possible role of light for infection. Conclusions This analysis shows that Z. tritici can sense and respond to light with a huge effect on transcript abundance. High proportions of differentially expressed genes with no functional annotations illuminates the huge gap in our understanding of light responses in this fungus. Differential expression of genes for effectors indicates that light could be important for pathogenicity; unknown effectors may show a similar pattern of transcription. A better understanding of the effects of light on pathogenicity and other biological processes of Z. tritici could help to manage Septoria tritici blotch in the future.
Collapse
Affiliation(s)
- Cassandra B McCorison
- Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA
| | - Stephen B Goodwin
- USDA-Agricultural Research Service, Crop Production and Pest Control Research Unit, Department of Botany and Plant Pathology, Purdue University, 915 West State Street, West Lafayette, IN, 47907-2054, USA.
| |
Collapse
|
10
|
Corrochano LM. Light in the Fungal World: From Photoreception to Gene Transcription and Beyond. Annu Rev Genet 2019; 53:149-170. [DOI: 10.1146/annurev-genet-120417-031415] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi see light of different colors by using photoreceptors such as the White Collar proteins and cryptochromes for blue light, opsins for green light, and phytochromes for red light. Light regulates fungal development, promotes the accumulation of protective pigments and proteins, and regulates tropic growth. The White Collar complex (WCC) is a photoreceptor and a transcription factor that is responsible for regulating transcription after exposure to blue light. In Neurospora crassa, light promotes the interaction of WCCs and their binding to the promoters to activate transcription. In Aspergillus nidulans, the WCC and the phytochrome interact to coordinate gene transcription and other responses, but the contribution of these photoreceptors to fungal photobiology varies across fungal species. Ultimately, the effect of light on fungal biology is the result of the coordinated transcriptional regulation and activation of signal transduction pathways.
Collapse
Affiliation(s)
- Luis M. Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
11
|
Zhang J, Wang F, Yang Y, Wang Y, Dong C. CmVVD is involved in fruiting body development and carotenoid production and the transcriptional linkage among three blue-light receptors in edible fungus Cordyceps militaris. Environ Microbiol 2019; 22:466-482. [PMID: 31742850 DOI: 10.1111/1462-2920.14867] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
Abstract
Fruiting body development and carotenoid production are light-induced in Cordyceps militaris. Our previous studies have shown that two blue-light receptors, CmWC-1 and CmCRY-DASH, regulate fruiting body development and secondary metabolism. However, the photosensory system of C. militaris remains unclear. Here, gene deletion of Cmvvd, coding for another blue-light receptor, resulted in reduced conidiation level and significant promotion of carotenoid content. Cmvvd transcription levels at fruiting body stages were higher than at other stages, and fruiting bodies could not develop normally in ΔCmvvd strains, indicating that Cmvvd might play an important role in fruiting body development. Rhythm loops were not affected in ΔCmvvd strains but were regulated by Cmwc-1, and the expression of the rhythm regulator gene Cmfrq was dependent on CmWC-1. Chromatin immunoprecipitation assay confirmed that Cmvvd is the direct target of CmWC-1 in this fungus. Our results also revealed interdependent transcriptional relationships between Cmwc-1 and Cmvvd, and between Cmwc-1 and Cmcry-DASH. Cmcry-DASH expression was affected by Cmvvd, and the function-loss of Cmcry-DASH might be compensated by the high transcription of Cmvvd. This is the first report of the transcriptional linkage among the three blue-light receptors in edible fungi and will be helpful for studies of multicellular development in this fungus.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
12
|
Yang H, Wang X, Li Z, Guo Q, Yang M, Chen D, Wang C. The Effect of Blue Light on the Production of Citrinin in Monascus purpureus M9 by Regulating the mraox Gene through lncRNA AOANCR. Toxins (Basel) 2019; 11:toxins11090536. [PMID: 31540336 PMCID: PMC6784174 DOI: 10.3390/toxins11090536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Blue light, as an important environmental factor, can regulate the production of various secondary metabolites of Monascus purpureus M9, including mycotoxin-citrinin, pigments, and monacolin K. The analysis of citrinin in Monascus M9 exposed to blue light for 0 min./d, 15 min./d, and 60 min./d showed that 15 min./d of blue light illumination could significantly increase citrinin production, while 60 min./d of blue light illumination decreased citrinin production. Analysis of long non-coding RNA (LncRNA) was performed on the transcripts of Monascus M9 under three culture conditions, and this analysis identified an lncRNA named AOANCR that can negatively regulate the mraox gene. Fermentation studies suggested that alternate respiratory pathways could be among the pathways that are involved in the regulation of the synthesis of citrinin by environmental factors. Aminophylline and citric acid were added to the culture medium to simulate the process of generating cyclic adenosine monophosphate (cAMP) in cells under illumination conditions. The results of the fermentation showed that aminophylline and citric acid could increase the expression of the mraox gene, decrease the expression of lncRNA AOANCR, and reduce the yield of citrinin. This result also indicates a reverse regulation relationship between lncRNA AOANCR and the mraox gene. A blue light signal might regulate the mraox gene at least partially through lncRNA AOANCR, thereby regulating citrinin production. Citrinin has severe nephrotoxicity in mammals, and it is important to control the residual amout of citrinin in red yeast products during fermentation. LncRNA AOANCR and mraox can potentially be used as new targets for the control of citrinin production.
Collapse
Affiliation(s)
- Hua Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xufeng Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingguan Yang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Di Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Changlu Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Abstract
Molecular mechanisms of dark-to-light state transitions in flavoprotein photoreceptors have been the subject of intense investigation. Blue-light sensing flavoproteins fall into three general classes that share aspects of their activation processes: LOV domains, BLUF proteins, and cryptochromes. In all cases, light-induced changes in flavin redox, protonation, and bonding states result in hydrogen-bond and conformational rearrangements important for regulation of downstream targets. Physical characterization of these flavoprotein states can provide valuable insights into biological function, but clear conclusions are often challenging to draw owing to complexities of data collection and interpretation. In this chapter, we briefly review the three classes of flavoprotein photoreceptors and provide methods for their recombinant production, reconstitution with flavin cofactor, and characterization. We then relate best practices and special considerations for the application of several types of spectroscopies, redox potential measurements, and X-ray scattering experiments to photosensitive flavoproteins. The methods presented are generally accessible to most laboratories.
Collapse
Affiliation(s)
- Estella F Yee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | | | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
14
|
|
15
|
Modeling Reveals a Key Mechanism for Light-Dependent Phase Shifts of Neurospora Circadian Rhythms. Biophys J 2018; 115:1093-1102. [PMID: 30139524 DOI: 10.1016/j.bpj.2018.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Light shifts and synchronizes the phase of the circadian clock to daily environments, which is critical for maintaining the daily activities of an organism. It has been proposed that such light-dependent phase shifts are triggered by light-induced upregulation of a negative element of the core circadian clock (i.e., frq, Per1/2) in many organisms, including fungi. However, we find, using systematic mathematical modeling of the Neurospora crassa circadian clock, that the upregulation of the frq gene expression alone is unable to reproduce the observed light-dependent phase responses. Indeed, we find that the depression of the transcriptional activator white-collar-1, previously shown to be promoted by FRQ and VVD, is a key molecular mechanism for accurately simulating light-induced phase response curves for wild-type and mutant strains of Neurospora. Our findings elucidate specific molecular pathways that can be utilized to control phase resetting of circadian rhythms.
Collapse
|
16
|
Fungal Light-Oxygen-Voltage Domains for Optogenetic Control of Gene Expression and Flocculation in Yeast. mBio 2018; 9:mBio.00626-18. [PMID: 30065085 PMCID: PMC6069114 DOI: 10.1128/mbio.00626-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa. When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV’s ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms. Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa. In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.
Collapse
|
17
|
Olmedo M, Roenneberg T, Merrow M, Corrochano LM. Glucose sensing and light regulation: A mutation in the glucose sensor RCO-3 modifies photoadaptation in Neurospora crassa. Fungal Biol 2018; 122:497-504. [DOI: 10.1016/j.funbio.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
|
18
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
19
|
Liversage J, Coetzee MP, Bluhm BH, Berger DK, Crampton BG. LOVe across kingdoms: Blue light perception vital for growth and development in plant–fungal interactions. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Stappler E, Walton JD, Beier S, Schmoll M. Abundance of Secreted Proteins of Trichoderma reesei Is Regulated by Light of Different Intensities. Front Microbiol 2017; 8:2586. [PMID: 29375497 PMCID: PMC5770571 DOI: 10.3389/fmicb.2017.02586] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
In Trichoderma reesei light is an important factor in the regulation of glycoside hydrolase gene expression. We therefore investigated the influence of different light intensities on cellulase activity and protein secretion. Differentially secreted proteins in light and darkness as identified by mass spectrometry included members of different glycoside hydrolase families, such as CBH1, Cel3A, Cel61B, XYN2, and XYN4. Several of the associated genes showed light-dependent regulation on the transcript level. Deletion of the photoreceptor genes blr1 and blr2 resulted in a diminished difference of protein abundance between light and darkness. The amount of secreted proteins including that of the major exo-acting beta-1,4-glucanases CBH1 and CBH2 was generally lower in light-grown cultures than in darkness. In contrast, cbh1 transcript levels increased with increasing light intensity from 700 to 2,000 lux but dopped at high light intensity (5,000 lux). In the photoreceptor mutants Δblr1 and Δblr2 cellulase activity in light was reduced compared to activity in darkness, showing a discrepancy between transcript levels and secreted cellulase activity. Furthermore, evaluation of different light sensitivities revealed an increased light tolerance with respect to cellulase expression of QM9414 compared to its parental strain QM6a. Investigation of one of the differentially expressed proteins between light and darkness, CLF1, revealed its function as a factor involved in regulation of secreted protease activity. T. reesei secretes a different set of proteins in light compared to darkness, this difference being mainly due to the function of the major known photoreceptors. Moreover, cellulase regulation is adjusted to light intensity and improved light tolerance was correlated with increased cellulase production. Our findings further support the hypothesis of a light intensity dependent post-transcriptional regulation of cellulase gene expression in T. reesei.
Collapse
Affiliation(s)
- Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Jonathan D. Walton
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Sabrina Beier
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| |
Collapse
|
21
|
Tong SM, Zhang AX, Guo CT, Ying SH, Feng MG. Daylight length-dependent translocation of VIVID photoreceptor in cells and its essential role in conidiation and virulence of Beauveria bassiana. Environ Microbiol 2017; 20:169-185. [PMID: 28967173 DOI: 10.1111/1462-2920.13951] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
The fungal insect pathogen Beauveria bassiana has the blue-light photoreceptor VIVID (VVD) but lacks a pigmentation pattern to trace its light responses. Here, we show that the fungal vvd is transcriptionally expressed, and linked to other blue/red photoreceptor genes, in a daylight length-dependent manner. GFP-tagged VVD fusion protein was localized to periphery, cytoplasm and vacuoles of hyphal cells in light/dark (L:D) cycles of 24:0 and 16:8 and aggregated in cytoplasm with shortening daylight until transfer into nuclei in full darkness. Deletion of vvd caused more reduced (91%) conidiation capacity in L:D 12:12 cycle of blue light (450/480 nm) than of yellow-to-red (540-760 nm) and white lights (∼70%). The conidiation defect worsened with shortened daylight in different L:D cycles of white light, coinciding well with drastic repression of key activator genes in central development pathway. Intriguingly, the deletion mutant displayed blocked secretion of cuticle-degrading Pr1 proteases, retarded dimorphic transition in insect haemocoel, and hence a lethal action twice longer than those for control strains against Galleria mellonella regardless of the infection passing or bypassing insect cuticle. Conclusively, VVD sustains normal conidiation in a daylight length-dependent manner and acts as a vital virulence factor in B. bassiana.
Collapse
Affiliation(s)
- Sen-Miao Tong
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - An-Xue Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chong-Tao Guo
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Light, stress, sex and carbon - The photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biol 2017; 122:479-486. [PMID: 29801792 DOI: 10.1016/j.funbio.2017.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Abstract
Trichoderma reesei represents one of the most prolific producers of homologous and heterologous proteins. Discovery of the photoreceptor ENV1 as a regulator of cellulase gene expression initiated analysis of light response pathways and their physiological relevance for T. reesei. The function of ENV1 in regulation of plant cell wall degrading enzymes is conserved in Neurospora crassa. ENV1 emerged as a central checkpoint for integration of nutrient sensing, light response and development. This photoreceptor exerts its function by influencing transcript abundance and feedback cycles of the alpha subunits of the heterotrimeric G-protein pathway and impacts regulation of the beta and gamma subunits via mutual regulation with the phosducin PhLP1. The output of regulation by ENV1 is in part mediated by the cAMP pathway and likely aimed at cellulose recognition. Lack of ENV1 causes deregulation of the pheromone system and female sterility in light. A regulatory interconnection with VEL1 and influence on other regulators of secondary metabolism like YPR2 as well as polyketide synthase encoding genes indicates a function in secondary metabolism. The function of ENV1 in integrating light response with signaling of osmotic and oxidative stress is evolutionary conserved in Hypocreales and distinct from other sordariomycetes including N. crassa.
Collapse
|
23
|
Bazafkan H, Beier S, Stappler E, Böhmdorfer S, Oberlerchner JT, Sulyok M, Schmoll M. SUB1 has photoreceptor dependent and independent functions in sexual development and secondary metabolism in Trichoderma reesei. Mol Microbiol 2017; 106:742-759. [PMID: 28925526 DOI: 10.1111/mmi.13842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 12/17/2022]
Abstract
Light dependent processes are involved in the regulation of growth, development and enzyme production in Trichoderma reesei. The photoreceptors BLR1, BLR2 and ENV1 exert crucial functions in these processes. We analyzed the involvement of the transcription factor SUB1 in sexual development as well as secondary metabolism and its position in the light signaling cascade. SUB1 influences growth and in contrast to its homologue in N. crassa, SUB1 is not essential for fruiting body formation and male fertility in T. reesei, but required for female fertility. Accordingly, SUB1 is involved in the regulation of the pheromone system of T. reesei. Female sterility of mutants lacking env1 is rescued in triple mutants of blr1, blr2 and env1, but not in double mutants of these genes. Confrontation of strains lacking sub1 results in growth arrest prior to contact of the potential mating partners. This effect is at least in part due to altered secondary metabolite production. Additionally, together with BLR1 and BLR2, SUB1 is essential for spore pigmentation and transcription of pks4, and secondary metabolism is regulated by SUB1 in a light- and nutrient dependent manner. Our results hence indicate rewiring of several pathways targeted by SUB1 in T. reesei.
Collapse
Affiliation(s)
- Hoda Bazafkan
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Sabrina Beier
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Eva Stappler
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Josua T Oberlerchner
- Department of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
24
|
Koritala BSC, Lee K. Natural Variation of the Circadian Clock in Neurospora. ADVANCES IN GENETICS 2017; 99:1-37. [PMID: 29050553 DOI: 10.1016/bs.adgen.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most living organisms on earth experience daily and expected changes from the rotation of the earth. For an organism, the ability to predict and prepare for incoming stresses or resources is a very important skill for survival. This cellular process of measuring daily time of the day is collectively called the circadian clock. Because of its fundamental role in survival in nature, there is a great interest in studying the natural variation of the circadian clock. However, characterizing the genetic and molecular mechanisms underlying natural variation of circadian clocks remains a challenging task. In this chapter, we will summarize the progress in studying natural variation of the circadian clock in the successful eukaryotic model Neurospora, which led to discovering many design principles of the molecular mechanisms of the eukaryotic circadian clock. Despite the success of the system in revealing the molecular mechanisms of the circadian clock, Neurospora has not been utilized to extensively study natural variation. We will review the challenges that hindered the natural variation studies in Neurospora, and how they were overcome. We will also review the advantages of Neurospora for natural variation studies. Since Neurospora is the model fungal species for circadian study, it represents over 5 million species of fungi on earth. These fungi play important roles in ecosystems on earth, and as such Neurospora could serve as an important model for understanding the ecological role of natural variation in fungal circadian clocks.
Collapse
Affiliation(s)
- Bala S C Koritala
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States
| | - Kwangwon Lee
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States; Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States.
| |
Collapse
|
25
|
Monroy AA, Stappler E, Schuster A, Sulyok M, Schmoll M. A CRE1- regulated cluster is responsible for light dependent production of dihydrotrichotetronin in Trichoderma reesei. PLoS One 2017; 12:e0182530. [PMID: 28809958 PMCID: PMC5557485 DOI: 10.1371/journal.pone.0182530] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Changing light conditions, caused by the rotation of earth resulting in day and night or growth on the surface or within a substrate, result in considerably altered physiological processes in fungi. For the biotechnological workhorse Trichoderma reesei, regulation of glycoside hydrolase gene expression, especially cellulase expression was shown to be a target of light dependent gene regulation. Analysis of regulatory targets of the carbon catabolite repressor CRE1 under cellulase inducing conditions revealed a secondary metabolite cluster to be differentially regulated in light and darkness and by photoreceptors. We found that this cluster is involved in production of trichodimerol and that the two polyketide synthases of the cluster are essential for biosynthesis of dihydrotrichotetronine (syn. bislongiquinolide or bisorbibutenolide). Additionally, an indirect influence on production of the peptaibol antibiotic paracelsin was observed. The two polyketide synthetase genes as well as the monooxygenase gene of the cluster were found to be connected at the level of transcription in a positive feedback cycle in darkness, but negative feedback in light, indicating a cellular sensing and response mechanism for the products of these enzymes. The transcription factor TR_102497/YPR2 residing within the cluster regulates the cluster genes in a light dependent manner. Additionally, an interrelationship of this cluster with regulation of cellulase gene expression was detected. Hence the regulatory connection between primary and secondary metabolism appears more widespread than previously assumed, indicating a sophisticated distribution of resources either to degradation of substrate (feed) or to antagonism of competitors (fight), which is influenced by light.
Collapse
Affiliation(s)
- Alberto Alonso Monroy
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Eva Stappler
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| | - Andre Schuster
- TU Wien, Institute of Chemical Engineering, Research Area Molecular Biotechnology, Vienna, Austria
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna, Department for Agrobiotechnology (IFA-Tulln), Center for Analytical Chemistry, Tulln, Austria
| | - Monika Schmoll
- AIT - Austrian Institute of Technology GmbH, Center for Health & Bioresources, Tulln, Austria
| |
Collapse
|
26
|
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms. Genetics 2017; 206:1881-1893. [PMID: 28600326 DOI: 10.1534/genetics.117.202788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/31/2017] [Indexed: 01/24/2023] Open
Abstract
Nonsense-mediated RNA decay (NMD) is a crucial post-transcriptional regulatory mechanism that recognizes and eliminates aberrantly processed transcripts, and mediates the expression of normal gene transcripts. In this study, we report that in the filamentous fungus Neurospora crassa, the NMD factors play a conserved role in regulating the surveillance of NMD targets including premature termination codon (PTC)-containing transcripts and normal transcripts. The circadian rhythms in all of the knockout strains of upf1-3 genes, which encode the Up-frameshift proteins, were aberrant. The upf1 knockout strain displays a shortened circadian period, which can be restored by constantly expressing exogenous Up-frameshift protein 1 (UPF1). UPF1 regulates the circadian clock by modulating the splicing of the core clock gene frequency (frq) through spliceosome and spliceosome-related arginine/serine-rich splicing factors, which partly account for the short periods in the upf1 knockout strain. We also demonstrated that the clock genes including White Collar (WC)-1, WC-2, and FRQ are involved in controlling the diurnal growth rhythm, and UPF1 may affect the growth rhythms by mediating the FRQ protein levels in the daytime. These findings suggest that the NMD factors play important roles in regulating the circadian clock and diurnal growth rhythms in Neurospora.
Collapse
|
27
|
Dunlap JC, Loros JJ. Making Time: Conservation of Biological Clocks from Fungi to Animals. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0039-2016. [PMID: 28527179 PMCID: PMC5446046 DOI: 10.1128/microbiolspec.funk-0039-2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 01/03/2023] Open
Abstract
The capacity for biological timekeeping arose at least three times through evolution, in prokaryotic cyanobacteria, in cells that evolved into higher plants, and within the group of organisms that eventually became the fungi and the animals. Neurospora is a tractable model system for understanding the molecular bases of circadian rhythms in the last of these groups, and is perhaps the most intensively studied circadian cell type. Rhythmic processes described in fungi include growth rate, stress responses, developmental capacity, and sporulation, as well as much of metabolism; fungi use clocks to anticipate daily environmental changes. A negative feedback loop comprises the core of the circadian system in fungi and animals. In Neurospora, the best studied fungal model, it is driven by two transcription factors, WC-1 and WC-2, that form the White Collar Complex (WCC). WCC elicits expression of the frq gene. FRQ complexes with other proteins, physically interacts with the WCC, and reduces its activity; the kinetics of these processes is strongly influenced by progressive phosphorylation of FRQ. When FRQ becomes sufficiently phosphorylated that it loses the ability to influence WCC activity, the circadian cycle starts again. Environmental cycles of light and temperature influence frq and FRQ expression and thereby reset the internal circadian clocks. The molecular basis of circadian output is also becoming understood. Taken together, molecular explanations are emerging for all the canonical circadian properties, providing a molecular and regulatory framework that may be extended to many members of the fungal and animal kingdoms, including humans.
Collapse
Affiliation(s)
- Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
28
|
Abstract
ABSTRACT
Life, as we know it, would not be possible without light. Light is not only a primary source of energy, but also an important source of information for many organisms. To sense light, only a few photoreceptor systems have developed during evolution. They are all based on an organic molecule with conjugated double bonds that allows energy transfer from visible (or UV) light to its cognate protein to translate the primary physical photoresponse to cell-biological actions. The three main classes of receptors are flavin-based blue-light, retinal-based green-light (such as rhodopsin), and linear tetrapyrrole-based red-light sensors. Light not only controls the behavior of motile organisms, but is also important for many sessile microorganisms including fungi. In fungi, light controls developmental decisions and physiological adaptations as well as the circadian clock. Although all major classes of photoreceptors are found in fungi, a good level of understanding of the signaling processes at the molecular level is limited to some model fungi. However, current knowledge suggests a complex interplay between light perception systems, which goes far beyond the simple sensing of light and dark. In this article we focus on recent results in several fungi, which suggest a strong link between light-sensing and stress-activated mitogen-activated protein kinases.
Collapse
|
29
|
Conrad KS, Hurley JM, Widom J, Ringelberg CS, Loros JJ, Dunlap JC, Crane BR. Structure of the frequency-interacting RNA helicase: a protein interaction hub for the circadian clock. EMBO J 2016; 35:1707-19. [PMID: 27340124 PMCID: PMC4969578 DOI: 10.15252/embj.201694327] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 11/09/2022] Open
Abstract
In the Neurospora crassa circadian clock, a protein complex of frequency (FRQ), casein kinase 1a (CK1a), and the FRQ-interacting RNA Helicase (FRH) rhythmically represses gene expression by the white-collar complex (WCC). FRH crystal structures in several conformations and bound to ADP/RNA reveal differences between FRH and the yeast homolog Mtr4 that clarify the distinct role of FRH in the clock. The FRQ-interacting region at the FRH N-terminus has variable structure in the absence of FRQ A known mutation that disrupts circadian rhythms (R806H) resides in a positively charged surface of the KOW domain, far removed from the helicase core. We show that changes to other similarly located residues modulate interactions with the WCC and FRQ A V142G substitution near the N-terminus also alters FRQ and WCC binding to FRH, but produces an unusual short clock period. These data support the assertion that FRH helicase activity does not play an essential role in the clock, but rather FRH acts to mediate contacts among FRQ, CK1a and the WCC through interactions involving its N-terminus and KOW module.
Collapse
Affiliation(s)
- Karen S Conrad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine, Hanover, NH, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
30
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
31
|
Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES, Wong GKS, Chow BY. Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci U S A 2016; 113:E1442-51. [PMID: 26929367 PMCID: PMC4801262 DOI: 10.1073/pnas.1509428113] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.
Collapse
Affiliation(s)
- Spencer T Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Kevin H Gardner
- Structural Biology Initiative, CUNY Advanced Science Research Center, City College of New York, New York, NY 10031; Department of Chemistry and Biochemistry, City College of New York, New York, NY 10031; Biochemistry, Chemistry and Biology Programs, Graduate Center, The City University of New York, New York, NY 10031
| | - Edward S Boyden
- The Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; McGovern Institute for Brain Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9; Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2E1; BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
32
|
Fuller K, Dunlap J, Loros J. Fungal Light Sensing at the Bench and Beyond. ADVANCES IN GENETICS 2016; 96:1-51. [DOI: 10.1016/bs.adgen.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
34
|
Fraikin GY, Strakhovskaya MG, Belenikina NS, Rubin AB. Bacterial photosensory proteins: Regulatory functions and optogenetic applications. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715040086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Dasgupta A, Chen CH, Lee C, Gladfelter AS, Dunlap JC, Loros JJ. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity. PLoS Genet 2015; 11:e1005215. [PMID: 25978382 PMCID: PMC4433212 DOI: 10.1371/journal.pgen.1005215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
Most organisms on earth sense light through the use of chromophore-bearing photoreceptive proteins with distinct and characteristic photocycle lengths, yet the biological significance of this adduct decay length is neither understood nor has been tested. In the filamentous fungus Neurospora crassa VIVID (VVD) is a critical player in the process of photoadaptation, the attenuation of light-induced responses and the ability to maintain photosensitivity in response to changing light intensities. Detailed in vitro analysis of the photochemistry of the blue light sensing, FAD binding, LOV domain of VVD has revealed residues around the site of photo-adduct formation that influence the stability of the adduct state (light state), that is, altering the photocycle length. We have examined the biological significance of VVD photocycle length to photoadaptation and report that a double substitution mutant (vvdI74VI85V), previously shown to have a very fast light to dark state reversion in vitro, shows significantly reduced interaction with the White Collar Complex (WCC) resulting in a substantial photoadaptation defect. This reduced interaction impacts photoreceptor transcription factor WHITE COLLAR-1 (WC-1) protein stability when N. crassa is exposed to light: The fast-reverting mutant VVD is unable to form a dynamic VVD-WCC pool of the size required for photoadaptation as assayed both by attenuation of gene expression and the ability to respond to increasing light intensity. Additionally, transcription of the clock gene frequency (frq) is sensitive to changing light intensity in a wild-type strain but not in the fast photo-reversion mutant indicating that the establishment of this dynamic VVD-WCC pool is essential in general photobiology and circadian biology. Thus, VVD photocycle length appears sculpted to establish a VVD-WCC reservoir of sufficient size to sustain photoadaptation while maintaining sensitivity to changing light intensity. The great diversity in photocycle kinetics among photoreceptors may be viewed as reflecting adaptive responses to specific and salient tasks required by organisms to respond to different photic environments.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Chen-Hui Chen
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - ChangHwan Lee
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, United States of America
| | - Amy S. Gladfelter
- Department of Biological Sciences, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Department of Biochemistry, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
36
|
Li N, Joska TM, Ruesch CE, Coster SJ, Belden WJ. The frequency natural antisense transcript first promotes, then represses, frequency gene expression via facultative heterochromatin. Proc Natl Acad Sci U S A 2015; 112:4357-4362. [PMID: 25831497 PMCID: PMC4394252 DOI: 10.1073/pnas.1406130112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock is controlled by a network of interconnected feedback loops that require histone modifications and chromatin remodeling. Long noncoding natural antisense transcripts (NATs) originate from Period in mammals and frequency (frq) in Neurospora. To understand the role of NATs in the clock, we put the frq antisense transcript qrf (frq spelled backwards) under the control of an inducible promoter. Replacing the endogenous qrf promoter altered heterochromatin formation and DNA methylation at frq. In addition, constitutive, low-level induction of qrf caused a dramatic effect on the endogenous rhythm and elevated circadian output. Surprisingly, even though qrf is needed for heterochromatic silencing, induction of qrf initially promoted frq gene expression by creating a more permissible local chromatin environment. The observation that antisense expression can initially promote sense gene expression before silencing via heterochromatin formation at convergent loci is also found when a NAT to hygromycin resistance gene is driven off the endogenous vivid (vvd) promoter in the Δvvd strain. Facultative heterochromatin silencing at frq functions in a parallel pathway to previously characterized VVD-dependent silencing and is needed to establish the appropriate circadian phase. Thus, repression via dicer-independent siRNA-mediated facultative heterochromatin is largely independent of, and occurs alongside, other feedback processes.
Collapse
Affiliation(s)
- Na Li
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Tammy M Joska
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Catherine E Ruesch
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Samuel J Coster
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - William J Belden
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
37
|
Crane BR, Young MW. Interactive features of proteins composing eukaryotic circadian clocks. Annu Rev Biochem 2015; 83:191-219. [PMID: 24905781 DOI: 10.1146/annurev-biochem-060713-035644] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research into the molecular mechanisms of eukaryotic circadian clocks has proceeded at an electrifying pace. In this review, we discuss advances in our understanding of the structures of central molecular players in the timing oscillators of fungi, insects, and mammals. A series of clock protein structures demonstrate that the PAS (Per/Arnt/Sim) domain has been used with great variation to formulate the transcriptional activators and repressors of the clock. We discuss how posttranslational modifications and external cues, such as light, affect the conformation and function of core clock components. Recent breakthroughs have also revealed novel interactions among clock proteins and new partners that couple the clock to metabolic and developmental pathways. Overall, a picture of clock function has emerged wherein conserved motifs and structural platforms have been elaborated into a highly dynamic collection of interacting molecules that undergo orchestrated changes in chemical structure, conformational state, and partners.
Collapse
Affiliation(s)
- Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853;
| | | |
Collapse
|
38
|
Montenegro-Montero A, Canessa P, Larrondo LF. Around the Fungal Clock. ADVANCES IN GENETICS 2015; 92:107-84. [DOI: 10.1016/bs.adgen.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Abstract
![]()
Circadian clocks are self-sustaining
timekeepers found in almost
all organisms on earth. The filamentous fungus Neurospora
crassa is a preeminent model for eukaryotic circadian clocks.
Investigations of the Neurospora circadian clock
system have led to elucidation of circadian clock regulatory mechanisms
that are common to all eukaryotes. In this work, we will focus on
the Neurospora circadian oscillator mechanism with
an emphasis on the regulation of the core clock component FREQUENCY.
Collapse
Affiliation(s)
- Joonseok Cha
- Department of Physiology, University of Texas Southwestern Medical Center , 5323 Harry Hines Boulevard, Dallas, Texas 75390-9040, United States
| | | | | |
Collapse
|
40
|
Abstract
The circadian clock exists to synchronize inner physiology with the external world, allowing life to anticipate and adapt to the continual changes that occur in an organism's environment. The clock architecture is highly conserved, present in almost all major branches of life. Within eukaryotes, the filamentous fungus Neurospora crassa has consistently been used as an excellent model organism to uncover the basic circadian physiology and molecular biology. The Neurospora model has elucidated our fundamental understanding of the clock as nested positive and negative feedback loop, regulated by transcriptional and posttranscriptional processes. This review will examine the basics of circadian rhythms in the model filamentous fungus N. crassa as well as highlight the output of the clock in Neurospora and the reasons that N. crassa has continued to be a strong model for the study of circadian rhythms. It will also synopsize classical and emerging methods in the study of the circadian clock.
Collapse
Affiliation(s)
- Jennifer Hurley
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jennifer J Loros
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
| |
Collapse
|
41
|
Ruesch CE, Ramakrishnan M, Park J, Li N, Chong HS, Zaman R, Joska TM, Belden WJ. The histone H3 lysine 9 methyltransferase DIM-5 modifies chromatin at frequency and represses light-activated gene expression. G3 (BETHESDA, MD.) 2014; 5:93-101. [PMID: 25429045 PMCID: PMC4291474 DOI: 10.1534/g3.114.015446] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 11/19/2014] [Indexed: 01/22/2023]
Abstract
The transcriptional program controlling the circadian rhythm requires coordinated regulation of chromatin. Characterization of the chromodomain helicase DNA-binding enzyme CHD1 revealed DNA methylation in the promoter of the central clock gene frequency (frq) in Neurospora crassa. In this report, we show that the DNA methylation at frq is not only dependent on the DNA methyltransferase DIM-2 but also on the H3K9 methyltransferase DIM-5 and HP1. Histone H3 lysine 9 trimethylation (H3K9me3) occurs at frq and is most prominent 30 min after light-activated expression. Strains lacking dim-5 have an increase in light-induced transcription, and more White Collar-2 is found associated with the frq promoter. Consistent with the notion that DNA methylation assists in establishing the proper circadian phase, loss of H3K9 methylation results in a phase advance suggesting it delays the onset of frq expression. The dim-5 deletion strain displays an increase in circadian-regulated conidia formation on race tubes and there is a synthetic genetic interaction between dim-5 and ras-1(bd). These results indicate DIM-5 has a regulatory role in muting circadian output. Overall, the data support a model where facultative heterochromatic at frq serves to establish the appropriate phase, mute the light response, and repress circadian output.
Collapse
Affiliation(s)
- Catherine E Ruesch
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Mukund Ramakrishnan
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Na Li
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Hin S Chong
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Riasat Zaman
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - Tammy M Joska
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, School of Environmental and Biological Sciences, New Brunswick, New Jersey 08901
| |
Collapse
|
42
|
Fuller KK, Loros JJ, Dunlap JC. Fungal photobiology: visible light as a signal for stress, space and time. Curr Genet 2014; 61:275-88. [PMID: 25323429 DOI: 10.1007/s00294-014-0451-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 12/25/2022]
Abstract
Visible light is an important source of energy and information for much of life on this planet. Though fungi are neither photosynthetic nor capable of observing adjacent objects, it is estimated that the majority of fungal species display some form of light response, ranging from developmental decision-making to metabolic reprogramming to pathogenesis. As such, advances in our understanding of fungal photobiology will likely reach the broad fields impacted by these organisms, including agriculture, industry and medicine. In this review, we will first describe the mechanisms by which fungi sense light and then discuss the selective advantages likely imparted by their ability to do so.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA,
| | | | | |
Collapse
|
43
|
Light-mediated participation of the VIVID-like protein of Fusarium fujikuroi VvdA in pigmentation and development. Fungal Genet Biol 2014; 71:9-20. [DOI: 10.1016/j.fgb.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/30/2014] [Accepted: 08/08/2014] [Indexed: 01/24/2023]
|
44
|
Gooch VD, Johnson AE, Bourne BJ, Nix BT, Maas JA, Fox JA, Loros JJ, Larrondo LF, Dunlap JC. A kinetic study of the effects of light on circadian rhythmicity of the frq promoter of Neurospora crassa. J Biol Rhythms 2014; 29:38-48. [PMID: 24492881 DOI: 10.1177/0748730413517981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of the frq gene in the Neurospora crassa circadian rhythm has been widely studied, but technical limitations have hindered a thorough analysis of frq circadian expression waveform. Through our experiments, we have shown an improved precision in defining Neurospora's circadian rhythm kinetics using a codon optimized firefly luciferase gene reporter linked to a frq promoter. In vivo examination of this real-time reporter has allowed for a better understanding of the relationship of the light responsive elements of the frq promoter to its circadian feedback components. We provide a detailed phase response curve showing the phase shifts induced by a light pulse applied at different points of the circadian cycle. Using the frq-luc reporter, we have found that a 12-h light:12-h dark cycle (12L:12D) results in a luciferase expression waveform that is more complex and higher in amplitude than that seen in free-running conditions of constant darkness (DD). When using a lighting regime more consistent with solar timing, rather than a square wave pattern, one observes a circadian waveform that is smoother, lower in amplitude, and different in phasing. Using dim light in place of darkness in these experiments also affects the resulting waveform and phasing. Our experiments illustrate Neurospora's circadian kinetics in greater detail than previous methods, providing further insight into the complex underlying biochemical, genetic, and physiological mechanisms underpinning the circadian oscillator.
Collapse
Affiliation(s)
- Van D Gooch
- Division of Science and Mathematics, University of Minnesota-Morris, Morris, MN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The filamentous fungus Neurospora crassa responds to light in complex ways. To thoroughly study the transcriptional response of this organism to light, RNA-seq was used to analyze capped and polyadenylated mRNA prepared from mycelium grown for 24 hr in the dark and then exposed to light for 0 (control) 15, 60, 120, and 240 min. More than three-quarters of all defined protein coding genes (79%) were expressed in these cells. The increased sensitivity of RNA-seq compared with previous microarray studies revealed that the RNA levels for 31% of expressed genes were affected two-fold or more by exposure to light. Additionally, a large class of mRNAs, enriched for transcripts specifying products involved in rRNA metabolism, showed decreased expression in response to light, indicating a heretofore undocumented effect of light on this pathway. Based on measured changes in mRNA levels, light generally increases cellular metabolism and at the same time causes significant oxidative stress to the organism. To deal with this stress, protective photopigments are made, antioxidants are produced, and genes involved in ribosome biogenesis are transiently repressed.
Collapse
|
46
|
Gyöngyösi N, Káldi K. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 2014; 20:3007-23. [PMID: 23964982 DOI: 10.1089/ars.2013.5558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mechanisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels. RECENT ADVANCES The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the other hand, multiple data indicate that ROS affect the molecular oscillator. CRITICAL ISSUES Increasing evidence suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators with timekeeping machineries based on the classical transcription-translation feedback mechanism. FUTURE DIRECTIONS Further investigations are needed to clarify how the different layers of the bidirectional interactions between ROS homeostasis and circadian regulation are interconnected.
Collapse
|
47
|
Tisch D, Schuster A, Schmoll M. Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei. BMC Genomics 2014; 15:425. [PMID: 24893562 PMCID: PMC4076981 DOI: 10.1186/1471-2164-15-425] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/07/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Crosstalk between the signalling pathways responding to light-dark cycles and those triggering the adaptation of metabolism to the environment is known to occur in various organisms. This interrelationship of light response and nutrient sigalling is crucial for health and fitness. The tropical ascomycete Trichoderma reesei (syn. Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. Therefore we aimed to elucidate the interrelationship between nutrient and light signaling and how the light signal is transmitted to downstream pathways. RESULTS We found that the targets of the light regulatory protein ENV1 in light show considerable overlap with those of the heterotrimeric G-protein components PhLP1, GNB1 and GNG1. Detailed investigation of a regulatory interrelationship of these components with ENV1 under conditions of early and late light response indicated a transcriptional mutual regulation between PhLP1 and ENV1, which appears to dampen nutrient signalling during early light response, presumably to free resources for protective measures prior to adaptation of metabolism to light. Investigating the downstream part of the cascade we found support for the hypothesis that ENV1 is necessary for cAMP mediated regulation of a considerable part of the core functions of the output pathway of this cascade, including regulation of glycoside hydrolase genes and those involved in nitrogen, sulphur and amino acid metabolism. CONCLUSIONS ENV1 and PhLP1 are mutual regulators connecting light signaling with nutrient signaling, with ENV1 triggering the output pathway by influencing cAMP levels.
Collapse
Affiliation(s)
- Doris Tisch
- />Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Andre Schuster
- />Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Gumpendorferstraße 1a, A-1060 Wien, Austria
| | - Monika Schmoll
- />AIT Austrian Institute of Technology, Department Health and Environment, Bioresources, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| |
Collapse
|
48
|
Ruger-Herreros C, Gil-Sánchez MDM, Sancar G, Brunner M, Corrochano LM. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa. PLoS One 2014; 9:e95069. [PMID: 24747913 PMCID: PMC3991626 DOI: 10.1371/journal.pone.0095069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/23/2014] [Indexed: 12/04/2022] Open
Abstract
The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC), a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.
Collapse
Affiliation(s)
| | | | - Gencer Sancar
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | - Michael Brunner
- Biochemistry Center, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
49
|
Gooch VD, Johnson AE, Larrondo LF, Loros JJ, Dunlap JC. Bright to dim oscillatory response of the Neurospora circadian oscillator. J Biol Rhythms 2014; 29:49-59. [PMID: 24492882 PMCID: PMC4083493 DOI: 10.1177/0748730413517983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The fungus Neurospora crassa constitutes an important model system extensively used in chronobiology. Several studies have addressed how environmental cues, such as light, can reset or synchronize a circadian system. By means of an optimized firefly luciferase reporter gene and a controllable lighting system, we show that Neurospora can display molecular circadian rhythms in dim light when cultures receive bright light prior to entering dim light conditions. We refer to this behavior as the "bright to dim oscillatory response" (BDOR). The bright light treatment can be applied up to 76 h prior to dim exposure, and it can be as short as 15 min in duration. We have characterized this response in respect to the duration of the light pulse, the time of the light pulse before dim, the intensity of dim light, and the oscillation dynamics in dim light. Although the molecular mechanism that drives the BDOR remains obscure, these findings suggest that a long-term memory of bright light exists as part of the circadian molecular components. It is important to consider the ecological significance of such dim light responses in respect to how organisms naturally maintain their timing mechanism in moonlight.
Collapse
Affiliation(s)
- Van D. Gooch
- Division of Science and Mathematics, University of Minnesota–Morris, Morris, MN, USA
| | - Alicia E. Johnson
- Division of Science and Mathematics, University of Minnesota–Morris, Morris, MN, USA
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jennifer J. Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C. Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
50
|
Canessa P, Schumacher J, Hevia MA, Tudzynski P, Larrondo LF. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 2013; 8:e84223. [PMID: 24391918 PMCID: PMC3877267 DOI: 10.1371/journal.pone.0084223] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022] Open
Abstract
Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.
Collapse
Affiliation(s)
- Paulo Canessa
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julia Schumacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Montserrat A. Hevia
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Westf. Wilhelms-Universität Münster, Münster, Germany
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|