1
|
Call N, Tomkinson AE. Joining of DNA breaks- interplay between DNA ligases and poly (ADP-ribose) polymerases. DNA Repair (Amst) 2025; 149:103843. [PMID: 40347914 DOI: 10.1016/j.dnarep.2025.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/28/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The joining of DNA single- and double-strand breaks (SSB and DSB) is essential for maintaining genome stability and integrity. While this is ultimately accomplished in human cells by the DNA ligases encoded by the LIG1, LIG3 and LIG4 genes, these enzymes are recruited to DNA breaks through specific interactions with proteins involved in break sensing and recognition and/or break processing. In this review, we focus on the interplay between the DNA break-activated poly (ADP-ribose) polymerases, PARP1 and PARP2, poly (ADP-ribose) (PAR) and the DNA ligases in DNA replication and repair. The most extensively studied example of this interplay is the recruitment of DNA ligase IIIα (LigIIIα) and other repair proteins to SSBs through an interaction between XRCC1, a scaffold protein and partner protein of nuclear LigIIIα, and PAR synthesized by PARP1 and to a lesser extent PARP2. Recently, these proteins have been implicated in a back-up pathway for joining Okazaki fragments that appears to have a critical function even in cells with no defect in the major LigI-dependent pathway. Finally, we discuss the effects of FDA-approved PARP1/2 inhibitors on DNA replication and repair in cancer and non-malignant cells and the potential utility of DNA ligase inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Nicolas Call
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
2
|
Shahi A, Kidane D. Decoding mitochondrial DNA damage and repair associated with H. pylori infection. Front Cell Infect Microbiol 2025; 14:1529441. [PMID: 39906209 PMCID: PMC11790445 DOI: 10.3389/fcimb.2024.1529441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Mitochondrial genomic stability is critical to prevent various human inflammatory diseases. Bacterial infection significantly increases oxidative stress, driving mitochondrial genomic instability and initiating inflammatory human disease. Oxidative DNA base damage is predominantly repaired by base excision repair (BER) in the nucleus (nBER) as well as in the mitochondria (mtBER). In this review, we summarize the molecular mechanisms of spontaneous and H. pylori infection-associated oxidative mtDNA damage, mtDNA replication stress, and its impact on innate immune signaling. Additionally, we discuss how mutations located on mitochondria targeting sequence (MTS) of BER genes may contribute to mtDNA genome instability and innate immune signaling activation. Overall, the review summarizes evidence to understand the dynamics of mitochondria genome and the impact of mtBER in innate immune response during H. pylori-associated pathological outcomes.
Collapse
Affiliation(s)
| | - Dawit Kidane
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, United States
| |
Collapse
|
3
|
Vodicka P, Vodenkova S, Danesova N, Vodickova L, Zobalova R, Tomasova K, Boukalova S, Berridge MV, Neuzil J. Mitochondrial DNA damage, repair, and replacement in cancer. Trends Cancer 2025; 11:62-73. [PMID: 39438191 DOI: 10.1016/j.trecan.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
Mitochondria are vital organelles with their own DNA (mtDNA). mtDNA is circular and composed of heavy and light chains that are structurally more accessible than nuclear DNA (nDNA). While nDNA is typically diploid, the number of mtDNA copies per cell is higher and varies considerably during development and between tissues. Compared with nDNA, mtDNA is more prone to damage that is positively linked to many diseases, including cancer. Similar to nDNA, mtDNA undergoes repair processes, although these mechanisms are less well understood. In this review, we discuss the various forms of mtDNA damage and repair and their association with cancer initiation and progression. We also propose horizontal mitochondrial transfer as a novel mechanism for replacing damaged mtDNA.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Sona Vodenkova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic.
| | - Natalie Danesova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Kristyna Tomasova
- Institute of Experimental Medicine, Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Jiri Neuzil
- First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, Qld 4222, Australia.
| |
Collapse
|
4
|
Paul Chowdhuri S, Das BB. TDP1 phosphorylation by CDK1 in mitosis promotes MUS81-dependent repair of trapped Top1-DNA covalent complexes. EMBO J 2024; 43:3710-3732. [PMID: 39014228 PMCID: PMC11377750 DOI: 10.1038/s44318-024-00169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Topoisomerase 1 (Top1) controls DNA topology, relieves DNA supercoiling during replication and transcription, and is critical for mitotic progression to the G1 phase. Tyrosyl-DNA phosphodiesterase 1 (TDP1) mediates the removal of trapped Top1-DNA covalent complexes (Top1cc). Here, we identify CDK1-dependent phosphorylation of TDP1 at residue S61 during mitosis. A TDP1 variant defective for S61 phosphorylation (TDP1-S61A) is trapped on the mitotic chromosomes, triggering DNA damage and mitotic defects. Moreover, we show that Top1cc repair in mitosis occurs via a MUS81-dependent DNA repair mechanism. Replication stress induced by camptothecin or aphidicolin leads to TDP1-S61A enrichment at common fragile sites, which over-stimulates MUS81-dependent chromatid breaks, anaphase bridges, and micronuclei, ultimately culminating in the formation of 53BP1 nuclear bodies during G1 phase. Our findings provide new insights into the cell cycle-dependent regulation of TDP1 dynamics for the repair of trapped Top1-DNA covalent complexes during mitosis that prevents genomic instability following replication stress.
Collapse
Affiliation(s)
- Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
5
|
Dyrkheeva NS, Zakharenko AL, Malakhova AA, Okorokova LS, Shtokalo DN, Medvedev SP, Tupikin AA, Kabilov MR, Lavrik OI. Transcriptomic analysis of HEK293A cells with a CRISPR/Cas9-mediated TDP1 knockout. Biochim Biophys Acta Gen Subj 2024; 1868:130616. [PMID: 38621596 DOI: 10.1016/j.bbagen.2024.130616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Alexandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Anastasia A Malakhova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; Federal research center Institute of Cytology and Genetics, SB RAS, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | | | - Dmitry N Shtokalo
- AcademGene LLC, 6 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; A.P. Ershov Institute of Informatics Systems, SB RAS, 6 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Sergey P Medvedev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; Federal research center Institute of Cytology and Genetics, SB RAS, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Alexey A Tupikin
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
7
|
Ghosh A, Ghosh A, Bhattacharyya A, Mitra R, Das BB, Bhaumik A. Mitochondrial topoisomerase 1 targeted anticancer therapy using irinotecan encapsulated mesoporous MIL-101(Fe) synthesized via a vapour assisted method. Dalton Trans 2024; 53:3010-3019. [PMID: 38265230 DOI: 10.1039/d3dt03654e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Mitochondrial topisomerase 1 (Top1mt) is critical for mtDNA replication, transcription, and energy production. Here, we investigate the carrier-mediated targeted delivery of the anticancer drug irinotecan into the mitochondria to selectively trap Top1mt covalent complexes (Top1mtcc) and its role in anticancer therapeutics. We have designed a biocompatible mesoporous metal-organic framework (MOF) material, namely MIL-101(Fe), as the drug delivery carrier that selectively localizes inside mitochondria. In contrast to the traditional way of synthesising MOFs, here we have employed a vapour-assisted solvothermal method for the synthesis of MIL-101(Fe) using terephthalic acid as the organic linker and Fe(III) as the metal source. The advantage of this method is that it recycles the excess solvent (DMF) and reduces the amount of washing solvent. We demonstrate that MIL-101(Fe)-encapsulated irinotecan (MIL-Iri) was selectively targeted towards the mitochondria to poison Top1mtcc in a dose-dependent manner and was achieved at a low nanomolar drug concentration. We provide evidence that Top1mtcc generated by MIL-Iri leads to mtDNA damage in human colon and breast cancer cells and plays a significant role in cellular toxicity. Altogether, this study provides evidence for a new and effective strategy in anticancer chemotherapy.
Collapse
Affiliation(s)
- Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.
| | - Arpan Bhattacharyya
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.
| | - Riddhi Mitra
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700 032, India.
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
8
|
Sallmyr A, Bhandari SK, Naila T, Tomkinson AE. Mammalian DNA ligases; roles in maintaining genome integrity. J Mol Biol 2024; 436:168276. [PMID: 37714297 PMCID: PMC10843057 DOI: 10.1016/j.jmb.2023.168276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair. Breaks are joined by a DNA ligase that catalyzes phosphodiester bond formation at DNA nicks with 3' hydroxyl and 5' phosphate termini. Three human genes encode ATP-dependent DNA ligases. These enzymes have a conserved catalytic core consisting of three subdomains that encircle nicked duplex DNA during ligation. The DNA ligases are targeted to different nuclear DNA transactions by specific protein-protein interactions. Both DNA ligase IIIα and DNA ligase IV form stable complexes with DNA repair proteins, XRCC1 and XRCC4, respectively. There is functional redundancy between DNA ligase I and DNA ligase IIIα in DNA replication, excision repair and single-strand break repair. Although DNA ligase IV is a core component of the major double-strand break repair pathway, non-homologous end joining, the other enzymes participate in minor, alternative double-strand break repair pathways. In contrast to the nucleus, only DNA ligase IIIα is present in mitochondria and is essential for maintaining the mitochondrial genome. Human immunodeficiency syndromes caused by mutations in either LIG1 or LIG4 have been described. Preclinical studies with DNA ligase inhibitors have identified potentially targetable abnormalities in cancer cells and evidence that DNA ligases are potential targets for cancer therapy.
Collapse
Affiliation(s)
- Annahita Sallmyr
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Seema Khattri Bhandari
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Tasmin Naila
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States
| | - Alan E Tomkinson
- University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States.
| |
Collapse
|
9
|
Bhattacharjee S, Richardson JM, Das BB. Fluorescence-resonance-energy-transfer-based assay to estimate modulation of TDP1 activity through arginine methylation. STAR Protoc 2023; 4:102218. [PMID: 37058403 PMCID: PMC10139991 DOI: 10.1016/j.xpro.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 04/15/2023] Open
Abstract
Tyrosyl DNA phosphodiesterase (TDP1) is a DNA repair enzyme that hydrolyzes the phosphotyrosyl linkage between 3'-DNA-protein crosslinks such as stalled topoisomerase 1 cleavage complexes (Top1cc). Here, we present a fluorescence-resonance-energy-transfer-(FRET) based assay to estimate modulation of TDP1 activity through arginine methylation. We describe steps for TDP1 expression and purification and estimating TDP1 activity using fluorescence-quenched probes mimicking Top1cc. We then detail data analysis of real-time TDP1 activity and screening of TDP1-selective inhibitors. For complete details on the use and execution of this protocol, please refer to Bhattacharjee et al. (2022).1.
Collapse
Affiliation(s)
- Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
10
|
Savu DI, Moisoi N. Mitochondria - Nucleus communication in neurodegenerative disease. Who talks first, who talks louder? BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148588. [PMID: 35780856 DOI: 10.1016/j.bbabio.2022.148588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria - nuclear coadaptation has been central to eukaryotic evolution. The dynamic dialogue between the two compartments within the context of multiorganellar interactions is critical for maintaining cellular homeostasis and directing the balance survival-death in case of cellular stress. The conceptualisation of mitochondria - nucleus communication has so far been focused on the communication from the mitochondria under stress to the nucleus and the consequent signalling responses, as well as from the nucleus to mitochondria in the context of DNA damage and repair. During ageing processes this dialogue may be better viewed as an integrated bidirectional 'talk' with feedback loops that expand beyond these two organelles depending on physiological cues. Here we explore the current views on mitochondria - nucleus dialogue and its role in maintaining cellular health with a focus on brain cells and neurodegenerative disease. Thus, we detail the transcriptional responses initiated by mitochondrial dysfunction in order to protect itself and the general cellular homeostasis. Additionally, we are reviewing the knowledge of the stress pathways initiated by DNA damage which affect mitochondria homeostasis and we add the information provided by the study of combined mitochondrial and genotoxic damage. Finally, we reflect on how each organelle may take the lead in this dialogue in an ageing context where both compartments undergo accumulation of stress and damage and where, perhaps, even the communications' mechanisms may suffer interruptions.
Collapse
Affiliation(s)
- Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania
| | - Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Innovation, Faculty of Health Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH Leicester, UK.
| |
Collapse
|
11
|
Akbari M, Nilsen HL, Montaldo NP. Dynamic features of human mitochondrial DNA maintenance and transcription. Front Cell Dev Biol 2022; 10:984245. [PMID: 36158192 PMCID: PMC9491825 DOI: 10.3389/fcell.2022.984245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/02/2022] [Indexed: 12/03/2022] Open
Abstract
Mitochondria are the primary sites for cellular energy production and are required for many essential cellular processes. Mitochondrial DNA (mtDNA) is a 16.6 kb circular DNA molecule that encodes only 13 gene products of the approximately 90 different proteins of the respiratory chain complexes and an estimated 1,200 mitochondrial proteins. MtDNA is, however, crucial for organismal development, normal function, and survival. MtDNA maintenance requires mitochondrially targeted nuclear DNA repair enzymes, a mtDNA replisome that is unique to mitochondria, and systems that control mitochondrial morphology and quality control. Here, we provide an overview of the current literature on mtDNA repair and transcription machineries and discuss how dynamic functional interactions between the components of these systems regulate mtDNA maintenance and transcription. A profound understanding of the molecular mechanisms that control mtDNA maintenance and transcription is important as loss of mtDNA integrity is implicated in normal process of aging, inflammation, and the etiology and pathogenesis of a number of diseases.
Collapse
Affiliation(s)
- Mansour Akbari
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Unit for precision medicine, Akershus University Hospital, Nordbyhagen, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Nicola Pietro Montaldo
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- *Correspondence: Nicola Pietro Montaldo,
| |
Collapse
|
12
|
Bhattacharjee S, Rehman I, Basu S, Nandy S, Richardson JM, Das BB. Interplay between symmetric arginine dimethylation and ubiquitylation regulates TDP1 proteostasis for the repair of topoisomerase I-DNA adducts. Cell Rep 2022; 39:110940. [PMID: 35705029 DOI: 10.1016/j.celrep.2022.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 04/05/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond between a DNA 3' end and a tyrosyl moiety and is implicated in the repair of trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). Protein arginine methyltransferase 5 (PRMT5) catalyzes arginine methylation of TDP1 at the residues R361 and R586. Here, we establish mechanistic crosstalk between TDP1 arginine methylation and ubiquitylation, which is critical for TDP1 homeostasis and cellular responses to Top1 poisons. We show that R586 methylation promotes TDP1 ubiquitylation, which facilitates ubiquitin/proteasome-dependent TDP1 turnover by impeding the binding of UCHL3 (deubiquitylase enzyme) with TDP1. TDP1-R586 also promotes TDP1-XRCC1 binding and XRCC1 foci formation at Top1cc-damage sites. Intriguingly, R361 methylation enhances the 3'-phosphodiesterase activity of TDP1 in real-time fluorescence-based cleavage assays, and this was rationalized using structural modeling. Together, our findings establish arginine methylation as a co-regulator of TDP1 proteostasis and activity, which modulates the repair of trapped Top1cc.
Collapse
Affiliation(s)
- Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Rehman
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saini Basu
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Souvik Nandy
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Julia M Richardson
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, The King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
13
|
Monitoring DNA polymerase β mitochondrial localization and dynamics. DNA Repair (Amst) 2022; 116:103357. [PMID: 35717762 PMCID: PMC9253048 DOI: 10.1016/j.dnarep.2022.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Mouse fibroblasts lacking (null) DNA polymerase β (pol β) were transfected with fluorescently tagged pol β and stained with biomarkers to allow visualization within living cells by confocal microscopy. Transient transfection resulted in varying pol β expression levels. Separating cells into three groups based on pol β fluorescence intensity and morphological distribution, permitted analysis of the concentration dependence and spatial distribution of cytoplasmic pol β. Colocalization between pol β and mitochondria was pol β concentration dependent. A decrease in overlap with nucleoids containing mitochondrial DNA (mtDNA) was observed at the highest pol β intensity where pol β exhibits a tubular appearance, suggesting the ability to load elevated levels of pol β into mitochondria readily available for relocation to damaged mtDNA. The dynamics of pol β and mitochondrial nucleoids were followed by confocal recording of time series images. Two populations of mitochondrial nucleoids were observed, with and without pol β. Micro-irradiation, known to form DNA single-strand breaks, in a line across nucleus and cytoplasm of pol β stably transfected cells enhanced apparent localization of pol β with mitochondria in the perinuclear region of the cytoplasm near the nuclear membrane. Exposure of pol β expressing cells to H2O2 resulted in a time-dependent increase in cytoplasmic pol β observed by immunofluorescence analysis of fixed cells. Further screening revealed increased levels of colocalization of pol β with a mitochondrial probe and an increase in oxidative DNA damage in the cytoplasm. ELISA quantification confirmed an increase of an oxidative mitochondrial base lesion, 7,8-dihydro-8-oxoguanine, after H2O2 treatment. Taken together, the results suggest that pol β is recruited to mitochondria in response to oxidatively-induced mtDNA damage to participate in mtDNA repair.
Collapse
|
14
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
15
|
Chowdhury SR, Das SK, Banerjee B, Paul Chowdhuri S, Majumder HK, Das BB. TDP1 knockout Leishmania donovani accumulate topoisomerase 1-linked DNA damage and are hypersensitive to clinically used antileishmanial drugs. FASEB J 2022; 36:e22265. [PMID: 35319800 DOI: 10.1096/fj.202101668rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
Leishmania donovani, a unicellular protozoan parasite, causes a wide range of human diseases including fatal visceral leishmaniasis. Tyrosyl DNA-phosphodiesterase 1 (TDP1) hydrolyzes the phosphodiester bond between DNA 3'-end and a tyrosyl moiety of trapped topoisomerase I-DNA covalent complexes (Top1cc). We have previously shown Leishmania harbors a TDP1 gene (LdTDP1), however, the biological role of TDP1 remains largely unknown. In the present study, we have generated TDP1 knockout L. donovani (LdTDP1-/- ) promastigotes and have shown that LdTDP1-/- parasites are deficient in 3'-phosphodiesterase activities and were hypersensitive to Top1-poison like camptothecin (CPT), DNA alkylation agent like methyl methanesulfonate, and oxidative DNA lesions generated by hydrogen peroxide but were not sensitive to etoposide. We also detected elevated levels of CPT-induced reactive oxygen species triggering cell cycle arrest and cell death in LdTDP1-/- promastigotes. LdTDP1-/- promastigotes accumulate a significant change in the membrane morphology with the accumulation of membrane pores, which is associated with oxidative stress and lipid peroxidation. To our surprise, we detected that LdTDP1-/- parasites were hypersensitive to antileishmanial drugs like amphotericin B and miltefosine, which could be rescued by complementation of wild-type TDP1 gene in the LdTDP1-/- parasites. Notably, multidrug-resistant L. donovani clinical isolates showed a marked reduction in TDP1 expression and were sensitive to Top1 poisons. Taken together, our study provides a new role of LdTDP1 in protecting L. donovani parasites from oxidative stress-induced DNA damage and resistance to amphotericin B and miltefosine.
Collapse
Affiliation(s)
- Somenath Roy Chowdhury
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhendu K Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Bijoylaxmi Banerjee
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Hemanta K Majumder
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| |
Collapse
|
16
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|
17
|
Rosón JN, Vitarelli MDO, Costa-Silva HM, Pereira KS, Pires DDS, Lopes LDS, Cordeiro B, Kraus AJ, Cruz KNT, Calderano SG, Fragoso SP, Siegel TN, Elias MC, da Cunha JPC. H2B.V demarcates divergent strand-switch regions, some tDNA loci, and genome compartments in Trypanosoma cruzi and affects parasite differentiation and host cell invasion. PLoS Pathog 2022; 18:e1009694. [PMID: 35180281 PMCID: PMC8893665 DOI: 10.1371/journal.ppat.1009694] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 03/03/2022] [Accepted: 01/31/2022] [Indexed: 11/19/2022] Open
Abstract
Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in tissue-derived trypomastigote (TCT) life forms, a nonreplicative stage of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using epimastigotes and TCT life forms, and we found that H2B.V was preferentially located at the edges of divergent transcriptional strand switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of TCT forms was depleted of H2B.V-enriched peaks in comparison to epimastigote forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle.
Collapse
Affiliation(s)
- Juliana Nunes Rosón
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina–UNIFESP, São Paulo, Brazil
| | - Marcela de Oliveira Vitarelli
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Héllida Marina Costa-Silva
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Kamille Schmitt Pereira
- Department of Bioprocesses and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - David da Silva Pires
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Leticia de Sousa Lopes
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Barbara Cordeiro
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Amelie J. Kraus
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universitäat in Munch, Munich, Germany
| | - Karin Navarro Tozzi Cruz
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Simone Guedes Calderano
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Stenio Perdigão Fragoso
- Department of Bioprocesses and Biotechnology, Universidade Federal do Paraná, Curitiba, Brazil
- Laboratory of Molecular and Systems Biology of Trypanosomatids, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - T. Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universitäat in Munch, Munich, Germany
| | - Maria Carolina Elias
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Laboratory of Cell Cycle, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
18
|
Bhattacharjee S, Rehman I, Nandy S, Das BB. Post-translational regulation of Tyrosyl-DNA phosphodiesterase (TDP1 and TDP2) for the repair of the trapped topoisomerase-DNA covalent complex. DNA Repair (Amst) 2022; 111:103277. [DOI: 10.1016/j.dnarep.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022]
|
19
|
Trapped topoisomerase-DNA covalent complexes in the mitochondria and their role in human diseases. Mitochondrion 2021; 60:234-244. [PMID: 34500116 DOI: 10.1016/j.mito.2021.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
Topoisomerases regulate DNA topology, organization of the intracellular DNA, the transmission of genetic materials, and gene expressions. Other than the nuclear genome, mitochondria also harbor the small, circular DNA (mtDNA) that encodes a critical subset of proteins for the production of cellular ATP; however, mitochondria are solely dependent on the nucleus for all the mitochondrial proteins necessary for mtDNA replication, repair, and maintenance. Mitochondrial genome compiles topological stress from bidirectional transcription and replication, therefore imports four nuclear encoded topoisomerases (Top1mt, Top2α, Top2β, and Top3α) in the mitochondria to relax mtDNA supercoiling generated during these processes. Trapping of topoisomerase on DNA results in the formation of protein-linked DNA adducts (PDAs), which are widely exploited by topoisomerase-targeting anticancer drugs. Intriguingly mtDNA is potentially exposed to DNA damage that has been attributed to a variety of human diseases, including neurodegeneration, cancer, and premature aging. In this review, we focus on the role of different topoisomerases in the mitochondria and our current understanding of the mitochondrial DNA damage through trapped protein-DNA complexes, and the progress in the molecular mechanisms of the repair for trapped topoisomerase covalent complexes (Topcc). Finally, we have discussed how the pathological DNA lesions that cause mtDNA damage,trigger mitochondrial fission and mitophagy, which serve as quality control events for clearing damaged mtDNA.
Collapse
|
20
|
Rashid I, Hammel M, Sverzhinsky A, Tsai MS, Pascal JM, Tainer JA, Tomkinson AE. Direct interaction of DNA repair protein tyrosyl DNA phosphodiesterase 1 and the DNA ligase III catalytic domain is regulated by phosphorylation of its flexible N-terminus. J Biol Chem 2021; 297:100921. [PMID: 34181949 PMCID: PMC8318918 DOI: 10.1016/j.jbc.2021.100921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/10/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Tyrosyl DNA phosphodiesterase 1 (TDP1) and DNA Ligase IIIα (LigIIIα) are key enzymes in single-strand break (SSB) repair. TDP1 removes 3'-tyrosine residues remaining after degradation of DNA topoisomerase (TOP) 1 cleavage complexes trapped by either DNA lesions or TOP1 inhibitors. It is not known how TDP1 is linked to subsequent processing and LigIIIα-catalyzed joining of the SSB. Here we define a direct interaction between the TDP1 catalytic domain and the LigIII DNA-binding domain (DBD) regulated by conformational changes in the unstructured TDP1 N-terminal region induced by phosphorylation and/or alterations in amino acid sequence. Full-length and N-terminally truncated TDP1 are more effective at correcting SSB repair defects in TDP1 null cells compared with full-length TDP1 with amino acid substitutions of an N-terminal serine residue phosphorylated in response to DNA damage. TDP1 forms a stable complex with LigIII170-755, as well as full-length LigIIIα alone or in complex with the DNA repair scaffold protein XRCC1. Small-angle X-ray scattering and negative stain electron microscopy combined with mapping of the interacting regions identified a TDP1/LigIIIα compact dimer of heterodimers in which the two LigIII catalytic cores are positioned in the center, whereas the two TDP1 molecules are located at the edges of the core complex flanked by highly flexible regions that can interact with other repair proteins and SSBs. As TDP1and LigIIIα together repair adducts caused by TOP1 cancer chemotherapy inhibitors, the defined interaction architecture and regulation of this enzyme complex provide insights into a key repair pathway in nonmalignant and cancer cells.
Collapse
Affiliation(s)
- Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Miaw-Sheue Tsai
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
21
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
22
|
Rong Z, Tu P, Xu P, Sun Y, Yu F, Tu N, Guo L, Yang Y. The Mitochondrial Response to DNA Damage. Front Cell Dev Biol 2021; 9:669379. [PMID: 34055802 PMCID: PMC8149749 DOI: 10.3389/fcell.2021.669379] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are double membrane organelles in eukaryotic cells that provide energy by generating adenosine triphosphate (ATP) through oxidative phosphorylation. They are crucial to many aspects of cellular metabolism. Mitochondria contain their own DNA that encodes for essential proteins involved in the execution of normal mitochondrial functions. Compared with nuclear DNA, the mitochondrial DNA (mtDNA) is more prone to be affected by DNA damaging agents, and accumulated DNA damages may cause mitochondrial dysfunction and drive the pathogenesis of a variety of human diseases, including neurodegenerative disorders and cancer. Therefore, understanding better how mtDNA damages are repaired will facilitate developing therapeutic strategies. In this review, we focus on our current understanding of the mtDNA repair system. We also discuss other mitochondrial events promoted by excessive DNA damages and inefficient DNA repair, such as mitochondrial fusion, fission, and mitophagy, which serve as quality control events for clearing damaged mtDNA.
Collapse
Affiliation(s)
- Ziye Rong
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Peipei Tu
- Department of Microbiology and Bioengineering, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Peiqi Xu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yan Sun
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Fangfang Yu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Na Tu
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Lixia Guo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Zhang W, Bi S, Li P, Liu J, Zhou C, Wang X, Zhang W, Wang H, Tang B. In Situ Observation of mtDNA Damage during Hepatic Ischemia-Reperfusion. Anal Chem 2021; 93:5782-5788. [PMID: 33783186 DOI: 10.1021/acs.analchem.0c05220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury is a severe pathophysiological event during liver surgery or transplantation and could lead to liver failure or even death. The energy supply of mitochondria plays an essential role in preventing IR injury. Mitochondrial DNA (mtDNA) is involved in maintaining the balance of energy by participating in an oxidative phosphorylation process. However, the exact relationship between IR and mtDNA remains unclear by reason of the lack of an accurate real-time analysis method. Herein, we fabricated a mitochondria-targeting fluorescent probe (mtDNA-BP) to explore mtDNA stability and supervise the changes in mtDNA in IR liver. By virtue of pyridinium electropositivity and suitable size, mtDNA-BP could accumulate in mitochondria and insert into the mtDNA groove, which made mtDNA-BP fluoresce strongly. This is attributed to the reduction of the intramolecular rotation energy loss that is restricted by DNA. By in situ fluorescence imaging, we observed in real time that mtDNA damage was aggravated by deteriorating IR injury, so the ROS-mtDNA-mediated IR damage signal pathway was speculated. Furthermore, on the basis of mtDNA-BP real-time response capability for mtDNA, we established a drug-screening method for inhibiting IR injury and found superior therapeutic performance of two potential drugs: pioglitazone and salidroside. This work contributes to our understanding of mtDNA-related disease and provides a new drug analysis method.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Simin Bi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
24
|
Sallmyr A, Rashid I, Bhandari SK, Naila T, Tomkinson AE. Human DNA ligases in replication and repair. DNA Repair (Amst) 2021; 93:102908. [PMID: 33087274 DOI: 10.1016/j.dnarep.2020.102908] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To ensure genome integrity, the joining of breaks in the phosphodiester backbone of duplex DNA is required during DNA replication and to complete the repair of almost all types of DNA damage. In human cells, this task is accomplished by DNA ligases encoded by three genes, LIG1, LIG3 and LIG4. Mutations in LIG1 and LIG4 have been identified as the causative factor in two inherited immunodeficiency syndromes. Moreover, there is emerging evidence that DNA ligases may be good targets for the development of novel anti-cancer agents. In this graphical review, we provide an overview of the roles of the DNA ligases encoded by the three human LIG genes in DNA replication and repair.
Collapse
Affiliation(s)
- Annahita Sallmyr
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Ishtiaque Rashid
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Seema Khattri Bhandari
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Tasmin Naila
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics and Microbiology and the University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131, United States.
| |
Collapse
|
25
|
Chowdhuri SP, Das BB. Top1-PARP1 association and beyond: from DNA topology to break repair. NAR Cancer 2021; 3:zcab003. [PMID: 33981998 PMCID: PMC8095074 DOI: 10.1093/narcan/zcab003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022] Open
Abstract
Selective trapping of human topoisomerase 1 (Top1) on the DNA (Top1 cleavage complexes; Top1cc) by specific Top1-poisons triggers DNA breaks and cell death. Poly(ADP-ribose) polymerase 1 (PARP1) is an early nick sensor for trapped Top1cc. New mechanistic insights have been developed in recent years to rationalize the importance of PARP1 beyond the repair of Top1-induced DNA breaks. This review summarizes the progress in the molecular mechanisms of trapped Top1cc-induced DNA damage, PARP1 activation at DNA damage sites, PAR-dependent regulation of Top1 nuclear dynamics, and PARP1-associated molecular network for Top1cc repair. Finally, we have discussed the rationale behind the synergy between the combination of Top1 poison and PARP inhibitors in cancer chemotherapies, which is independent of the ‘PARP trapping’ phenomenon.
Collapse
Affiliation(s)
- Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
26
|
Zagnoli-Vieira G, Caldecott KW. Untangling trapped topoisomerases with tyrosyl-DNA phosphodiesterases. DNA Repair (Amst) 2020; 94:102900. [PMID: 32653827 DOI: 10.1016/j.dnarep.2020.102900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases alleviate the torsional stress that is generated by processes that are central to genome metabolism such as transcription and DNA replication. To do so, these enzymes generate an enzyme intermediate known as the cleavage complex in which the topoisomerase is covalently linked to the termini of a DNA single- or double-strand break. Whilst cleavage complexes are normally transient they can occasionally become abortive, creating protein-linked DNA breaks that threaten genome stability and cell survival; a process promoted and exploited in the cancer clinic by the use of topoisomerase 'poisons'. Here, we review the consequences to genome stability and human health of abortive topoisomerase-induced DNA breakage and the cellular pathways that cells have adopted to mitigate them, with particular focus on an important class of enzymes known as tyrosyl-DNA phosphodiesterases.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Keith W Caldecott
- Genome Damage Stability Centre, University of Sussex, Falmer Road, Brighton, BN1 9RQ, UK.
| |
Collapse
|
27
|
Karakaidos P, Rampias T. Mitonuclear Interactions in the Maintenance of Mitochondrial Integrity. Life (Basel) 2020; 10:life10090173. [PMID: 32878185 PMCID: PMC7555762 DOI: 10.3390/life10090173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022] Open
Abstract
In eukaryotic cells, mitochondria originated in an α-proteobacterial endosymbiont. Although these organelles harbor their own genome, the large majority of genes, originally encoded in the endosymbiont, were either lost or transferred to the nucleus. As a consequence, mitochondria have become semi-autonomous and most of their processes require the import of nuclear-encoded components to be functional. Therefore, the mitochondrial-specific translation has evolved to be coordinated by mitonuclear interactions to respond to the energetic demands of the cell, acquiring unique and mosaic features. However, mitochondrial-DNA-encoded genes are essential for the assembly of the respiratory chain complexes. Impaired mitochondrial function due to oxidative damage and mutations has been associated with numerous human pathologies, the aging process, and cancer. In this review, we highlight the unique features of mitochondrial protein synthesis and provide a comprehensive insight into the mitonuclear crosstalk and its co-evolution, as well as the vulnerabilities of the animal mitochondrial genome.
Collapse
|
28
|
Kodavati M, Wang H, Hegde ML. Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells 2020; 9:cells9041065. [PMID: 32344665 PMCID: PMC7226538 DOI: 10.3390/cells9041065] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria plays privotal role in diverse pathways that regulate cellular function and survival, and have emerged as a prime focus in aging and age-associated motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Accumulating evidence suggests that many amyloidogenic proteins, including MND-associated RNA/DNA-binding proteins fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43, are strongly linked to mitochondrial dysfunction. Animal model and patient studies have highlighted changes in mitochondrial structure, plasticity, replication/copy number, mitochondrial DNA instability, and altered membrane potential in several subsets of MNDs, and these observations are consistent with the evidence of increased excitotoxicity, induction of reactive oxygen species, and activation of intrinsic apoptotic pathways. Studies in MND rodent models also indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting a causal role of mitochondrial dysfunction. Our recent studies, which demonstrated the involvement of specific defects in DNA break-ligation mediated by DNA ligase 3 (LIG3) in FUS-associated ALS, raised a key question of its potential implication in mitochondrial DNA transactions because LIG3 is essential for both mitochondrial DNA replication and repair. This question, as well as how wild-type and mutant MND-associated factors affect mitochondria, remain to be elucidated. These new investigation avenues into the mechanistic role of mitochondrial dysfunction in MNDs are critical to identify therapeutic targets to alleviate mitochondrial toxicity and its consequences. In this article, we critically review recent advances in our understanding of mitochondrial dysfunction in diverse subgroups of MNDs and discuss challenges and future directions.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
- Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
29
|
Sun Y, Saha S, Wang W, Saha LK, Huang SYN, Pommier Y. Excision repair of topoisomerase DNA-protein crosslinks (TOP-DPC). DNA Repair (Amst) 2020; 89:102837. [PMID: 32200233 DOI: 10.1016/j.dnarep.2020.102837] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022]
Abstract
Topoisomerases are essential enzymes solving DNA topological problems such as supercoils, knots and catenanes that arise from replication, transcription, chromatin remodeling and other nucleic acid metabolic processes. They are also the targets of widely used anticancer drugs (e.g. topotecan, irinotecan, enhertu, etoposide, doxorubicin, mitoxantrone) and fluoroquinolone antibiotics (e.g. ciprofloxacin and levofloxacin). Topoisomerases manipulate DNA topology by cleaving one DNA strand (TOP1 and TOP3 enzymes) or both in concert (TOP2 enzymes) through the formation of transient enzyme-DNA cleavage complexes (TOPcc) with phosphotyrosyl linkages between DNA ends and the catalytic tyrosyl residue of the enzymes. Failure in the self-resealing of TOPcc results in persistent TOPcc (which we refer it to as topoisomerase DNA-protein crosslinks (TOP-DPC)) that threaten genome integrity and lead to cancers and neurodegenerative diseases. The cell prevents the accumulation of topoisomerase-mediated DNA damage by excising TOP-DPC and ligating the associated breaks using multiple pathways conserved in eukaryotes. Tyrosyl-DNA phosphodiesterases (TDP1 and TDP2) cleave the tyrosyl-DNA bonds whereas structure-specific endonucleases such as Mre11 and XPF (Rad1) incise the DNA phosphodiester backbone to remove the TOP-DPC along with the adjacent DNA segment. The proteasome and metalloproteases of the WSS1/Spartan family typify proteolytic repair pathways that debulk TOP-DPC to make the peptide-DNA bonds accessible to the TDPs and endonucleases. The purpose of this review is to summarize our current understanding of how the cell excises TOP-DPC and why, when and where the cell recruits one specific mechanism for repairing topoisomerase-mediated DNA damage, acquiring resistance to therapeutic topoisomerase inhibitors and avoiding genomic instability, cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sourav Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Liton Kumar Saha
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
30
|
Ramirez JL. An Evolutionary View of Trypanosoma Cruzi Telomeres. Front Cell Infect Microbiol 2020; 9:439. [PMID: 31998659 PMCID: PMC6967402 DOI: 10.3389/fcimb.2019.00439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Like in most eukaryotes, the linear chromosomes of Trypanosoma cruzi end in a nucleoprotein structure called the telomere, which is preceded by regions of variable length called subtelomeres. Together telomeres and subtelomeres are dynamic sites where DNA sequence rearrangements can occur without compromising essential interstitial genes or chromosomal synteny. Good examples of subtelomeres involvement are the expansion of human olfactory receptors genes, variant surface antigens in Trypanosoma brucei, and Saccharomyces cerevisiae mating types. T. cruzi telomeres are made of long stretches of the hexameric repeat 5′-TTAGGG-OH-3′, and its subtelomeres are enriched in genes and pseudogenes from the large gene families RHS, TS and DGF1, DEAD/H-RNA helicase and N-acetyltransferase, intermingled with sequences of retrotransposons elements. In particular, members of the Trans-sialidase type II family appear to have played a role in shaping the current T. cruzi telomere structure. Although the structure and function of T. cruzi telomeric and subtelomeric regions have been documented, recent experiments are providing new insights into T. cruzi's telomere-subtelomere dynamics. In this review, I discuss the co-evolution of telomere, subtelomeres and the TS gene family, and the role that these regions may have played in shaping T. cruzi's genome.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Fundación Instituto de Estudios Avanzados and United Nations University UNU-BIOLAC, Caracas, Venezuela
| |
Collapse
|
31
|
Brettrager EJ, van Waardenburg RC. Targeting Tyrosyl-DNA phosphodiesterase I to enhance toxicity of phosphodiester linked DNA-adducts. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1153-1163. [PMID: 31875206 PMCID: PMC6929713 DOI: 10.20517/cdr.2019.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Our genomic DNA is under constant assault from endogenous and exogenous sources, which needs to be resolved to maintain cellular homeostasis. The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends. Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts. These DNA-adducts can be divided into two groups: small adducts, including oxidized nucleotides, RNA, and non-canonical nucleoside analogs, and large adducts, such as (drug-stabilized) topoisomerase- DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA. Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance, making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents. Tdp1's unique catalytic cycle, which is centered on the formation of Tdp1-DNA covalent reaction intermediate, allows for two principally different targeting strategies: (1) catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics; and (2) poisoning of Tdp1 by stabilization of the Tdp1- DNA covalent reaction intermediate, which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution, analogous to topoisomerase targeted poisons such as topotecan or etoposide. The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept; however, no small molecules have been reported for this strategy. Herein, we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
32
|
Tyrosyl-DNA Phosphodiesterase I N-Terminal Domain Modifications and Interactions Regulate Cellular Function. Genes (Basel) 2019; 10:genes10110897. [PMID: 31698852 PMCID: PMC6895789 DOI: 10.3390/genes10110897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The conserved eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) removes a diverse array of adducts from the end of DNA strand breaks. Tdp1 specifically catalyzes the hydrolysis of phosphodiester linked DNA-adducts. These DNA lesions range from damaged nucleotides to peptide-DNA adducts to protein-DNA covalent complexes and are products of endogenously or exogenously induced insults or simply failed reaction products. These adducts include DNA inserted ribonucleotides and non-conventional nucleotides, as well as covalent reaction intermediates of DNA topoisomerases with DNA and a Tdp1-DNA adduct in trans. This implies that Tdp1 plays a role in maintaining genome stability and cellular homeostasis. Dysregulation of Tdp1 protein levels or catalysis shifts the equilibrium to genome instability and is associated with driving human pathologies such as cancer and neurodegeneration. In this review, we highlight the function of the N-terminal domain of Tdp1. This domain is understudied, structurally unresolved, and the least conserved in amino acid sequence and length compared to the rest of the enzyme. However, over time it emerged that the N-terminal domain was post-translationally modified by, among others, phosphorylation, SUMOylation, and Ubiquitinoylation, which regulate Tdp1 protein interactions with other DNA repair associated proteins, cellular localization, and Tdp1 protein stability.
Collapse
|
33
|
Ghosh A, Bhattacharjee S, Chowdhuri SP, Mallick A, Rehman I, Basu S, Das BB. SCAN1-TDP1 trapping on mitochondrial DNA promotes mitochondrial dysfunction and mitophagy. SCIENCE ADVANCES 2019; 5:eaax9778. [PMID: 31723605 PMCID: PMC6834389 DOI: 10.1126/sciadv.aax9778] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/17/2019] [Indexed: 05/03/2023]
Abstract
A homozygous mutation of human tyrosyl-DNA phosphodiesterase 1 (TDP1) causes the neurodegenerative syndrome, spinocerebellar ataxia with axonal neuropathy (SCAN1). TDP1 hydrolyzes the phosphodiester bond between DNA 3'-end and a tyrosyl moiety within trapped topoisomerase I (Top1)-DNA covalent complexes (Top1cc). TDP1 is critical for mitochondrial DNA (mtDNA) repair; however, the role of mitochondria remains largely unknown for the etiology of SCAN1. We demonstrate that mitochondria in cells expressing SCAN1-TDP1 (TDP1H493R) are selectively trapped on mtDNA in the regulatory non-coding region and promoter sequences. Trapped TDP1H493R-mtDNA complexes were markedly increased in the presence of the Top1 poison (mito-SN38) when targeted selectively into mitochondria in nanoparticles. TDP1H493R-trapping accumulates mtDNA damage and triggers Drp1-mediated mitochondrial fission, which blocks mitobiogenesis. TDP1H493R prompts PTEN-induced kinase 1-dependent mitophagy to eliminate dysfunctional mitochondria. SCAN1-TDP1 in mitochondria creates a pathological state that allows neurons to turn on mitophagy to rescue fit mitochondria as a mechanism of survival.
Collapse
Affiliation(s)
- Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhik Mallick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Ishita Rehman
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sudipta Basu
- Discipline of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat 382355, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
- Corresponding author.
| |
Collapse
|
34
|
Synofzik M, Puccio H, Mochel F, Schöls L. Autosomal Recessive Cerebellar Ataxias: Paving the Way toward Targeted Molecular Therapies. Neuron 2019; 101:560-583. [PMID: 30790538 DOI: 10.1016/j.neuron.2019.01.049] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/20/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Autosomal-recessive cerebellar ataxias (ARCAs) comprise a heterogeneous group of rare degenerative and metabolic genetic diseases that share the hallmark of progressive damage of the cerebellum and its associated tracts. This Review focuses on recent translational research in ARCAs and illustrates the steps from genetic characterization to preclinical and clinical trials. The emerging common pathways underlying ARCAs include three main clusters: mitochondrial dysfunction, impaired DNA repair, and complex lipid homeostasis. Novel ARCA treatments might target common hubs in pathogenesis by modulation of gene expression, stem cell transplantation, viral gene transfer, or interventions in faulty pathways. All these translational steps are addressed in current ARCA research, leading to the expectation that novel treatments for ARCAs will be reached in the next decade.
Collapse
Affiliation(s)
- Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67404 Illkirch, France; INSERM, U1258, 67404 Illkirch, France; CNRS, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Fanny Mochel
- Sorbonne Université, UPMC-Paris 6, UMR S 1127 and Inserm U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moelle épinière, 75013 Paris, France; Department of Genetics and Reference Centre for Adult Neurometabolic Diseases, AP-HP, La Pitié-Salpêtriere University Hospital, Paris, France
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| |
Collapse
|
35
|
Shen Q, Wu J, Ni Y, Xie X, Yu C, Xiao Q, Zhou J, Wang X, Fu Z. Exposure to jet lag aggravates depression-like behaviors and age-related phenotypes in rats subject to chronic corticosterone. Acta Biochim Biophys Sin (Shanghai) 2019; 51:834-844. [PMID: 31314053 DOI: 10.1093/abbs/gmz070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 01/09/2023] Open
Abstract
Our previous finding demonstrated that chronic corticosterone (CORT) may be involved in mediating the pathophysiology of premature aging in rats. Frequent jet lag increases the risk for many diseases, including obesity and type 2 diabetes, and is associated with the aging processes. However, the effect of jet lag on CORT-induced depression and its association with aging phenotypes remain unclear. In this study, the rats were exposed to both CORT and jet lag treatment, and the differences were analyzed and compared to rats with single CORT treatment. Our results showed that jet lag treatment aggravated CORT-induced depression-like behavior evidenced by sucrose intake test, forced swimming test, and open field test. Additionally, this treatment aggravated the shortening of telomeres, which possibly resulted in decreased telomerase activity, and downregulated the expression of telomere-binding factor 2 (TRF2) and telomerase reverse transcriptase compared to that in CORT rats, as revealed by quantitative real-time-polymerase chain reaction and western blot analysis, respectively. The shortening of telomeres may have been caused by increased oxidative stress, which was associated with the inhibition of sirtuin 3. Exposure to jet lag also aggravated the degeneration of mitochondrial functions, as shown by the decreases in the mRNA expression of COX1, ND1, and Tfam. Our findings provide physiological evidence that jet lag exposure may worsen stress-induced depression and age-related abnormalities.
Collapse
Affiliation(s)
- Qichen Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Junli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuehan Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Qingfeng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
36
|
Kawale AS, Povirk LF. Tyrosyl-DNA phosphodiesterases: rescuing the genome from the risks of relaxation. Nucleic Acids Res 2019; 46:520-537. [PMID: 29216365 PMCID: PMC5778467 DOI: 10.1093/nar/gkx1219] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tyrosyl–DNA Phosphodiesterases 1 (TDP1) and 2 (TDP2) are eukaryotic enzymes that clean-up after aberrant topoisomerase activity. While TDP1 hydrolyzes phosphotyrosyl peptides emanating from trapped topoisomerase I (Top I) from the 3′ DNA ends, topoisomerase 2 (Top II)-induced 5′-phosphotyrosyl residues are processed by TDP2. Even though the canonical functions of TDP1 and TDP2 are complementary, they exhibit little structural or sequence similarity. Homozygous mutations in genes encoding these enzymes lead to the development of severe neurodegenerative conditions due to the accumulation of transcription-dependent topoisomerase cleavage complexes underscoring the biological significance of these enzymes in the repair of topoisomerase–DNA lesions in the nervous system. TDP1 can promiscuously process several blocked 3′ ends generated by DNA damaging agents and nucleoside analogs in addition to hydrolyzing 3′-phosphotyrosyl residues. In addition, deficiency of these enzymes causes hypersensitivity to anti-tumor topoisomerase poisons. Thus, TDP1 and TDP2 are promising therapeutic targets and their inhibitors are expected to significantly synergize the effects of current anti-tumor therapies including topoisomerase poisons and other DNA damaging agents. This review covers the structural aspects, biology and regulation of these enzymes, along with ongoing developments in the process of discovering safe and effective TDP inhibitors.
Collapse
Affiliation(s)
- Ajinkya S Kawale
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lawrence F Povirk
- Department of Pharmacology and Toxicology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
37
|
Mammalian Tyrosyl-DNA Phosphodiesterases in the Context of Mitochondrial DNA Repair. Int J Mol Sci 2019; 20:ijms20123015. [PMID: 31226795 PMCID: PMC6628236 DOI: 10.3390/ijms20123015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023] Open
Abstract
Mammalian mitochondria contain four topoisomerases encoded in the nuclear genome: TOP1MT, TOP2α, TOP2β, and TOP3α. They also contain the two known tyrosyl-DNA phosphodiesterases (TDPs): TDP1 and TDP2, including a specific TDP2S isoform. Both TDP1 and TDP2 excise abortive topoisomerase cleavage complexes (TOPccs), yet their molecular structures and mechanisms are different. TDP1 is present across eukaryotes, from yeasts to humans and belongs to the phospholipase D family. It functions without a metal cofactor and has a broad activity range, as it also serves to cleanse blocking 3′-DNA ends bearing phosphoglycolate, deoxyribose phosphate, nucleoside, nucleoside analogs (zidovudine), abasic moieties, and with a lower efficiency, TOP2ccs. Found in higher vertebrates, TDP2 is absent in yeast where TDP1 appears to perform its functions. TDP2 belongs to the exonuclease/endonuclease/phosphodiesterase family and requires magnesium as a cofactor to excise TOP2ccs, and it also excises TOP1ccs, albeit with a lower efficiency. Here, we review TDP1 and TDP2 in the context of mitochondrial DNA repair and discuss potential new research areas centered on the mitochondrial TDPs.
Collapse
|
38
|
Bermúdez-Guzmán L, Leal A. DNA repair deficiency in neuropathogenesis: when all roads lead to mitochondria. Transl Neurodegener 2019; 8:14. [PMID: 31110700 PMCID: PMC6511134 DOI: 10.1186/s40035-019-0156-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in DNA repair enzymes can cause two neurological clinical manifestations: a developmental impairment and a degenerative disease. Polynucleotide kinase 3'-phosphatase (PNKP) is an enzyme that is actively involved in DNA repair in both single and double strand break repair systems. Mutations in this protein or others in the same pathway are responsible for a complex group of diseases with a broad clinical spectrum. Besides, mitochondrial dysfunction also has been consolidated as a hallmark of brain degeneration. Here we provide evidence that supports a shared role between mitochondrial dysfunction and DNA repair defects in the pathogenesis of the nervous system. As models, we analyze PNKP-related disorders, focusing on Charcot-Marie-Tooth disease and ataxia. A better understanding of the molecular dynamics of this relationship could provide improved diagnosis and treatment for neurological diseases.
Collapse
Affiliation(s)
- Luis Bermúdez-Guzmán
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
| | - Alejandro Leal
- Section of Genetics and Biotechnology, School of Biology, Universidad de Costa Rica, San José, 11501 Costa Rica
- Neuroscience Research Center, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
39
|
Twist and Turn-Topoisomerase Functions in Mitochondrial DNA Maintenance. Int J Mol Sci 2019; 20:ijms20082041. [PMID: 31027213 PMCID: PMC6514783 DOI: 10.3390/ijms20082041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Like any genome, mitochondrial DNA (mtDNA) also requires the action of topoisomerases to resolve topological problems in its maintenance, but for a long time, little was known about mitochondrial topoisomerases. The last years have brought a closer insight into the function of these fascinating enzymes in mtDNA topology regulation, replication, transcription, and segregation. Here, we summarize the current knowledge about mitochondrial topoisomerases, paying special attention to mammalian mitochondrial genome maintenance. We also discuss the open gaps in the existing knowledge of mtDNA topology control and the potential involvement of mitochondrial topoisomerases in human pathologies. While Top1mt, the only exclusively mitochondrial topoisomerase in mammals, has been studied intensively for nearly a decade, only recent studies have shed some light onto the mitochondrial function of Top2β and Top3α, enzymes that are shared between nucleus and mitochondria. Top3α mediates the segregation of freshly replicated mtDNA molecules, and its dysfunction leads to mtDNA aggregation and copy number depletion in patients. Top2β, in contrast, regulates mitochondrial DNA replication and transcription through the alteration of mtDNA topology, a fact that should be acknowledged due to the frequent use of Topoisomerase 2 inhibitors in medical therapy.
Collapse
|
40
|
Kundu B, Das SK, Paul Chowdhuri S, Pal S, Sarkar D, Ghosh A, Mukherjee A, Bhattacharya D, Das BB, Talukdar A. Discovery and Mechanistic Study of Tailor-Made Quinoline Derivatives as Topoisomerase 1 Poison with Potent Anticancer Activity. J Med Chem 2019; 62:3428-3446. [PMID: 30897325 DOI: 10.1021/acs.jmedchem.8b01938] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To overcome chemical limitations of camptothecin (CPT), we report design, synthesis, and validation of a quinoline-based novel class of topoisomerase 1 (Top1) inhibitors and establish that compound 28 ( N-(3-(1 H-imidazol-1-yl)propyl)-6-(4-methoxyphenyl)-3-(1,3,4-oxadiazol-2-yl)quinolin-4-amine) exhibits the highest potency in inhibiting human Top1 activity with an IC50 value of 29 ± 0.04 nM. Compound 28 traps Top1-DNA cleavage complexes (Top1ccs) both in the in vitro cleavage assays and in live cells. Point mutation of Top1-N722S fails to trap compound 28-induced Top1cc because of its inability to form a hydrogen bond with compound 28. Unlike CPT, compound 28 shows excellent plasma serum stability and is not a substrate of P-glycoprotein 1 (permeability glycoprotein) advancing its potential anticancer activity. Finally, we provide evidence that compound 28 overcomes the chemical instability of CPT in human breast adenocarcinoma cells through generation of persistent and less reversible Top1cc-induced DNA double-strand breaks as detected by γH2AX foci immunostaining after 5 h of drug removal.
Collapse
Affiliation(s)
- Biswajit Kundu
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| | - Subhendu K Das
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Srijita Paul Chowdhuri
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Sourav Pal
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Dipayan Sarkar
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Ayan Mukherjee
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India.,Academy of Scientific and Innovative Research , Kolkata 700032 , West Bengal , India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences ; Indian Association for the Cultivation of Science , 2A & 2B, Raja S. C. Mullick Road , Kolkata , 700032 West Bengal , India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry , CSIR-Indian Institute of Chemical Biology , 4 Raja S. C. Mullick Road , Kolkata 700032 , West Bengal , India
| |
Collapse
|
41
|
Abstract
The mitochondrial genome encodes proteins essential for the oxidative phosphorylation and, consequently, for proper mitochondrial function. Its localization and, possibly, structural organization contribute to higher DNA damage accumulation, when compared to the nuclear genome. In addition, the mitochondrial genome mutates at rates several times higher than the nuclear, although the causal relationship between these events are not clearly established. Maintaining mitochondrial DNA stability is critical for cellular function and organismal fitness, and several pathways contribute to that, including damage tolerance and bypass, degradation of damaged genomes and DNA repair. Despite initial evidence suggesting that mitochondria lack DNA repair activities, most DNA repair pathways have been at least partially characterized in mitochondria from several model organisms, including humans. In this chapter, we review what is currently known about how the main DNA repair pathways operate in mitochondria and contribute to mitochondrial DNA stability, with focus on the enzymology of mitochondrial DNA repair.
Collapse
Affiliation(s)
- Rebeca R Alencar
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Caio M P F Batalha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago S Freire
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Nadja C de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
42
|
Komarova AO, Drenichev MS, Dyrkheeva NS, Kulikova IV, Oslovsky VE, Zakharova OD, Zakharenko AL, Mikhailov SN, Lavrik OI. Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. J Enzyme Inhib Med Chem 2018; 33:1415-1429. [PMID: 30191738 PMCID: PMC6136360 DOI: 10.1080/14756366.2018.1509210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023] Open
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.
Collapse
Affiliation(s)
- Anastasia O. Komarova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
43
|
Rehman I, Basu SM, Das SK, Bhattacharjee S, Ghosh A, Pommier Y, Das BB. PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res 2018; 46:5601-5617. [PMID: 29718323 PMCID: PMC6009676 DOI: 10.1093/nar/gky291] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Human tyrosyl-DNA phosphodiesterases (TDP) hydrolyze the phosphodiester bond between DNA and the catalytic tyrosine of Top1 to excise topoisomerase I cleavage complexes (Top1cc) that are trapped by camptothecin (CPT) and by genotoxic DNA alterations. Here we show that the protein arginine methyltransferase PRMT5 enhances the repair of Top1cc by direct binding to TDP1 and arginine dimethylation of TDP1 at residues R361 and R586. Top1-induced replication-mediated DNA damage induces TDP1 arginine methylation, enhancing its 3'- phosphodiesterase activity. TDP1 arginine methylation also increases XRCC1 association with TDP1 in response to CPT, and the recruitment of XRCC1 to Top1cc DNA damage foci. PRMT5 knockdown cells exhibit defective TDP1 activity with marked elevation in replication-coupled CPT-induced DNA damage and lethality. Finally, methylation of R361 and R586 stimulate TDP1 repair function and promote cell survival in response to CPT. Together, our findings provide evidence for the importance of PRMT5 for the post-translational regulation of TDP1 and repair of Top1cc.
Collapse
Affiliation(s)
- Ishita Rehman
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Suparna M Basu
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhendu K Das
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arijit Ghosh
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | - Benu Brata Das
- Laboratory of Molecular Biology, Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & B, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| |
Collapse
|
44
|
Zinovkina LA. Mechanisms of Mitochondrial DNA Repair in Mammals. BIOCHEMISTRY (MOSCOW) 2018; 83:233-249. [PMID: 29625543 DOI: 10.1134/s0006297918030045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Accumulation of mutations in mitochondrial DNA leads to the development of severe, currently untreatable diseases. The contribution of these mutations to aging and progress of neurodegenerative diseases is actively studied. Elucidation of DNA repair mechanisms in mitochondria is necessary for both developing approaches to the therapy of diseases caused by mitochondrial mutations and understanding specific features of mitochondrial genome functioning. Mitochondrial DNA repair systems have become a subject of extensive studies only in the last decade due to development of molecular biology methods. DNA repair systems of mammalian mitochondria appear to be more diverse and effective than it had been thought earlier. Even now, one may speak about the existence of mitochondrial mechanisms for the repair of single- and double-stranded DNA lesions. Homologous recombination also takes place in mammalian mitochondria, although its functional significance and molecular mechanisms remain obscure. In this review, I describe DNA repair systems in mammalian mitochondria, such as base excision repair (BER) and microhomology-mediated end joining (MMEJ) and discuss a possibility of existence of mitochondrial DNA repair mechanisms otherwise typical for the nuclear DNA, e.g., nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination, and classical non-homologous end joining (NHEJ). I also present data on the mechanisms for coordination of the nuclear and mitochondrial DNA repair systems that have been actively studied recently.
Collapse
Affiliation(s)
- L A Zinovkina
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.
| |
Collapse
|
45
|
Probing the evolutionary conserved residues Y204, F259, S400 and W590 that shape the catalytic groove of human TDP1 for 3'- and 5'-phosphodiester-DNA bond cleavage. DNA Repair (Amst) 2018; 66-67:64-71. [PMID: 29747024 DOI: 10.1016/j.dnarep.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an ubiquitous DNA repair enzyme present in yeast, plants and animals. It removes a broad range of blocking lesions at the ends of DNA breaks. The catalytic core of TDP1 consists in a pair of conserved histidine-lysine-asparagine (HKN) motifs. Analysis of the human TDP1 (hTDP1) crystal structure reveals potential involvement of additional residues that shape the substrate binding site. In this biochemical study, we analyzed four such conserved residues, tyrosine 204 (Y204), phenylalanine 259 (F259), serine 400 (S400) and tryptophan 590 (W590). We show that the F259 residue of hTDP1 is critical for both 3'- and 5'-phosphodiesterase catalysis. We propose that the double π-π interactions of the F259 residue with the -2 and -3 nucleobases serve to position the nucleopeptide substrate in phase with the active site histidines of hTDP1. Mutating Y204 of hTDP1 to phenylalanine (Y204F), as in fly and yeast TDP1 enzymes, had minor impact on TDP1 activity. In constrast, we find that S400 enhances 3'-processing activity while it suppresses 5'-processing activity, thereby promoting specificity for 3'-substrates. W590 is selectively important for 5'-processing. These results reveal the impact of conserved amino acid residues that participate in defining the DNA binding groove around the dual HKN catalytic core motif of TDP1, and their differential roles in facilitating the 3'- vs 5'-end processing activities of hTDP1.
Collapse
|
46
|
Xie X, Shen Q, Ma L, Chen Y, Zhao B, Fu Z. Chronic corticosterone-induced depression mediates premature aging in rats. J Affect Disord 2018; 229:254-261. [PMID: 29329057 DOI: 10.1016/j.jad.2017.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/29/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Stress hormones such as corticosterone (CORT) play an essential role in the development of depression. Chronic CORT administration has been shown to induce dysfunction in the hypothalamic-pituitary-adrenal axis leading to depression, which was in turn associated with accelerated aging. However, the effect of CORT administration on aging remains unclear. METHODS Rats were acclimatized for 1 week and then injected daily with CORT (40mg/kg) or vehicle (n = 10 each) for 21 consecutive days. Age-related indexes were then compared between CORT-treated rats and control rats. RESULTS CORT induced affective behaviors indicative of depressive-like symptoms in rats, including reduced sucrose preference and increased immobility time in the forced swimming test. CORT-treated rats exhibited telomere shortening, possibly contributing to decreased telomerase activity and down-regulated expression of telomere-binding factor 2, correlated with enhanced oxidative damage. This was associated with inhibition of sirtuin 3 leading to reduced activities of superoxide dismutase 2 and glutathione reductase. CORT-treated rats showed degenerated mitochondrial functions represented by decreased adenosine triphosphate production, decreased nicotinamide adenine dinucleotide+ content, and decreased activity of nicotinamide phosphoribosyltransferase. LIMITATIONS The group sample sizes were small, and only male rats and a single dose level of CORT were used. CONCLUSION These findings demonstrate that CORT-induced depression may be involved in mediating the pathophysiology of premature aging in rats.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qichen Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yangyang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Binggong Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
47
|
Zakharenko AL, Lebedeva NA, Lavrik OI. DNA Repair Enzymes as Promising Targets in Oncotherapy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Reactive oxygen species stress increases accumulation of tyrosyl-DNA phsosphodiesterase 1 within mitochondria. Sci Rep 2018. [PMID: 29523818 PMCID: PMC5844879 DOI: 10.1038/s41598-018-22547-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a nuclear and mitochondrial protein that in nuclei and in vitro repairs blocked 3' DNA termini such as 3' phosphotyrosine conjugates resulting from stalling of topoisomerase I-DNA intermediates. Its mutation also causes spinocerebellar ataxia with axonal neuropathy type 1 (SCAN1). Because Tdp1 colocalizes with mitochondria following oxidative stress, we hypothesized that Tdp1 repairs mitochondrial DNA (mtDNA) and that mtDNA damage mediates entry of Tdp1 into the mitochondria. To test this, we used S. cerevisiae mutants, cultured mouse and human cells, and a Tdp1 knockout mouse. H2O2- and rotenone-induced cellular and intramitochondrial reactive oxygen species (ROS) activated oxidant-responsive kinases P38 and ERK1, and the translocation of Tdp1 from the nucleus to the mitochondria via the TIM/TOM complex. This translocation occurred independently of mtDNA. Within the mitochondria, Tdp1 interacted with Ligase III and reduced mtDNA mutations. Tdp1-deficient tissues had impaired mitochondrial respiration and decreased viability. These observations suggest that Tdp1 maintains mtDNA integrity and support the hypothesis that mitochondrial dysfunction contributes to the pathology of SCAN1.
Collapse
|
49
|
Huang SYN, Dalla Rosa I, Michaels SA, Tulumello DV, Agama K, Khiati S, Jean SR, Baechler SA, Factor VM, Varma S, Murai J, Miller Jenkins LM, Kelley SO, Pommier Y. Mitochondrial tyrosyl-DNA phosphodiesterase 2 and its TDP2 S short isoform. EMBO Rep 2018; 19:embr.201642139. [PMID: 29438979 DOI: 10.15252/embr.201642139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/04/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 2 (TDP2) repairs abortive topoisomerase II cleavage complexes. Here, we identify a novel short isoform of TDP2 (TDP2S) expressed from an alternative transcription start site. TDP2S contains a mitochondrial targeting sequence, contributing to its enrichment in the mitochondria and cytosol, while full-length TDP2 contains a nuclear localization signal and the ubiquitin-associated domain in the N-terminus. Our study reveals that both TDP2 isoforms are present and active in the mitochondria. Comparison of isogenic wild-type (WT) and TDP2 knockout (TDP2-/-/-) DT40 cells shows that TDP2-/-/- cells are hypersensitive to mitochondrial-targeted doxorubicin (mtDox), and that complementing TDP2-/-/- cells with human TDP2 restores resistance to mtDox. Furthermore, mtDox selectively depletes mitochondrial DNA in TDP2-/-/- cells. Using CRISPR-engineered human cells expressing only the TDP2S isoform, we show that TDP2S also protects human cells against mtDox. Finally, lack of TDP2 in the mitochondria reduces the mitochondria transcription levels in two different human cell lines. In addition to identifying a novel TDP2S isoform, our report demonstrates the presence and importance of both TDP2 isoforms in the mitochondria.
Collapse
Affiliation(s)
- Shar-Yin N Huang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie A Michaels
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - David V Tulumello
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Keli Agama
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Salim Khiati
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sae Rin Jean
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Simone A Baechler
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Sudhir Varma
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Shana O Kelley
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
50
|
Yoon G, Caldecott KW. Nonsyndromic cerebellar ataxias associated with disorders of DNA single-strand break repair. HANDBOOK OF CLINICAL NEUROLOGY 2018; 155:105-115. [DOI: 10.1016/b978-0-444-64189-2.00007-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|