1
|
Weiss E, Berl A, Shir-az O, Bilal BS, Weiss EI, Paitan Y, Zaltsman N, Golberg A, Shalom A. Quaternary Ammonium Silica Nanoparticles for Antimicrobial Implantable Medical Devices: An In Vitro Study. Life (Basel) 2024; 14:1654. [PMID: 39768361 PMCID: PMC11678768 DOI: 10.3390/life14121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilm formation on prostheses and implanted devices can lead to serious complications and increased healthcare expenditures. Once formed, biofilm management is difficult and may involve a long course of antibiotics, additional surgery, and, occasionally, implant removal. This study evaluated the antibacterial properties of medical-grade silicone samples integrated with novel, non-leaching, antibacterial, quaternary ammonium silica (QASi) particles. Our collaborators (Nobio, Israel) prepared silicone sheets integrated with antibacterial QASi nanoparticles. Samples containing 0.5%, 0.75%, and 1%, QASi particles were evaluated for antibacterial properties against S. epidermidis, S. aureus, methicillin-resistant S. aureus (MRSA), E. faecalis, and P. aeruginosa using the direct contact test. The tested silicone samples integrated with QASi particles showed no bacterial growth, while growth was observed in control silicone samples without QASi. In addition, the agar diffusion test, used to evaluate the leaching of antibacterial components, exhibited no inhibition zone around the samples indicating that the QASi particles do not leach into surrounding milieu. The QASi nanoparticles exhibited very potent antibacterial surface properties, killing all viable bacteria placed on their surface. Incorporating QASi nanoparticle technology into medical products during production has the potential to create an antimicrobial surface that prevents microbial colonization and biofilm formation.
Collapse
Affiliation(s)
- Eitam Weiss
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Berl
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ofir Shir-az
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Biader Samih Bilal
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ervin I. Weiss
- School of Dental Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, Kfar Saba 4428164, Israel;
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natan Zaltsman
- Department of Research and Development, Nobio, Ltd., Kadima 6092000, Israel
| | - Alexander Golberg
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Avshalom Shalom
- Department of Plastic Surgery, Meir Medical Center, Kfar Saba 4428164, Israel; (E.W.); (A.B.); (O.S.-a.); (B.S.B.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Yan CJ, Yang SR, Yeh YC. Injectable pH- and Ultrasound-Responsive Dual-Crosslinked Dextran/Chitosan/TiO 2 Nanocomposite Hydrogels for Antibacterial Applications. Chem Asian J 2024; 19:e202301151. [PMID: 38782735 DOI: 10.1002/asia.202301151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Combining exogenous and endogenous antibacterial mechanisms has been demonstrated to enhance therapeutic efficacy significantly. This study constructs an innovative type of exogenous and endogenous antibacterial nanocomposite hydrogels with injectable dual-crosslinked networks and dual-stimuli responsiveness. The primary network establishes imine bonds between the functionalized dextran featuring norbornenes and aldehydes (NorAld-Dex) and the quaternized chitosan (QCS). The imine bonds provide self-healing, injectability, and pH-responsiveness to the hydrogel network. The secondary network is established by integrating thiolated mesoporous silica-coated titanium dioxide nanoparticles (TiO2@MS-SH) into the hydrogel network via an ultrasound-activated thiol-norbornene reaction with NorAld-Dex. The microstructures and properties of NorAld-Dex/QCS/TiO2@MS-SH hydrogels can be fine-tuned by adjusting the sonication time to increase the amount of thiol-norbornene crosslinks in the network. Effective antibacterial performance of NorAld-Dex/QCS/TiO2@MS-SH hydrogels at low pH has been demonstrated with the synergistic effect of the acid-induced dissociation of the hydrogel network, protonated QCS, and the reactive oxygen species (ROS) generated by TiO2@MS-SH nanoparticles under ultrasound irradiation. In summary, NorAld-Dex/QCS/TiO2@MS-SH nanocomposite hydrogel is an advanced dual stimuli-responsive antibacterial platform with customizable microstructures and properties, offering great potential for biomedical applications.
Collapse
Affiliation(s)
- Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| |
Collapse
|
3
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
4
|
Algarni AA. Antibacterial Agents for Composite Resin Restorative Materials: Current Knowledge and Future Prospects. Cureus 2024; 16:e57212. [PMID: 38681374 PMCID: PMC11056222 DOI: 10.7759/cureus.57212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Resin composites became the material of choice for direct restorations in anterior and posterior teeth. Despite the revolutionary improvement in the material, restoration failure is still a major drawback due to the material's inherent negative properties, including a lack of antibacterial effects. Therefore, many attempts have been made to incorporate antibacterial agents into resin composite materials to improve their antimicrobial properties and prevent secondary caries formation. Multiple laboratory studies have been conducted using different antibacterial agents, such as quaternary ammonium compounds, methacryloyloxydodecylpyridinium bromide, magnesium oxide nanoparticles, chlorhexidine, and chitosan. This review provides a glance at the current status of these materials and the research directions needed in the future.
Collapse
Affiliation(s)
- Amnah A Algarni
- Restorative Dental Sciences Department, College of Dentistry, Taibah University, Madinah, SAU
| |
Collapse
|
5
|
Khan S, Amin F, Amin R, Kumar N. Exploring the Effect of Cetylpyridinium Chloride Addition on the Antibacterial Activity and Surface Hardness of Resin-Based Dental Composites. Polymers (Basel) 2024; 16:588. [PMID: 38475272 DOI: 10.3390/polym16050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to evaluate the effect of cetylpyridinium chloride (CPC) addition on the antibacterial and surface hardness characteristics of two commercial resin-based dental composites (RBDCs). A total of two hundred and seventy (n = 270) specimens from Filtek Z250 Universal and Filtek Z350 XT flowable RBDCs were fabricated with the addition of CPC at 2 %wt and 4 %wt concentrations to assess their antibacterial activity using the agar diffusion test and direct contact inhibition test, and their surface hardness using the Vickers microhardness test after 1 day, 30 days, and 90 days of aging. A surface morphology analysis of the specimens was performed using a scanning electron microscope (SEM). The RBDCs that contained 2 %wt and 4 %wt CPC demonstrated significant antibacterial activity against Streptococcus mutans up to 90 days, with the highest activity observed for the 4 %wt concentration. Nevertheless, there was a reduction in antibacterial effectiveness over time. Moreover, compared to the control (0 %wt) and 2 %wt CPC groups, the universal RBDCs containing 4 %wt CPC exhibited a notable decrease in surface hardness, while all groups showed a decline in hardness over time. In conclusion, the satisfactory combination of the antibacterial effect and surface hardness property of RBDCs was revealed with the addition of a 2 %wt CPC concentration.
Collapse
Affiliation(s)
- Sara Khan
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Faiza Amin
- Department of Science of Dental Materials, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Rafat Amin
- Dow College of Biotechnology, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Naresh Kumar
- Department of Science of Dental Materials, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan
| |
Collapse
|
6
|
Kohno T, Kitagawa H, Tsuboi R, Deng F, Sakai H, Wu T, Fan YS, Xiao L, Imazato S. Development of Antibacterial Resin Composites Incorporating Poly(METAC) Clusters. MATERIALS (BASEL, SWITZERLAND) 2024; 17:896. [PMID: 38399151 PMCID: PMC10889979 DOI: 10.3390/ma17040896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
This study examined the antibacterial effects and physical properties of a novel resin composite incorporating poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] (poly(METAC)), a methacrylate cationic polymer comprising quaternary ammonium compounds (QACs). Resin composites incorporating poly(METAC) were fabricated by adding 6 wt.% METAC aqueous solution to a commercially available resin composite. The FE-SEM/EDS and Raman spec-troscopy analyses showed that METAC was assembled and polymerized in the resin composites after curing. The antibacterial effect was evaluated by inoculating Streptococcus mutans or Strepto-coccus sobrinus suspensions on the surface of cured resin composites, and the experimental resin composites incorporating poly(METAC) clusters exhibited bactericidal effects even after 28 days of ageing. The physical properties of the experimental resin composites were within the ISO-stipulated ranges. Newly fabricated resin composites containing the QAC-based poly(METAC) cluster ex-hibited long-term bactericidal effects against oral bacteria on their surfaces and demonstrated ac-ceptable physical properties for clinical use.
Collapse
Affiliation(s)
- Tomoki Kohno
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruaki Kitagawa
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ririko Tsuboi
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan School of Dentistry, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Fan Deng
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirohiko Sakai
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tingyi Wu
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yo-Shiuan Fan
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Linghao Xiao
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Imazato
- Joint Research Laboratory of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Weiss EI, Enoch O, Steinkeller-Dekel M. Effect of composite resin containing antibacterial filler on sugar-induced pH drop caused by whole saliva bacteria. J Prosthet Dent 2023; 130:938.e1-938.e7. [PMID: 37833182 DOI: 10.1016/j.prosdent.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023]
Abstract
STATEMENT OF PROBLEM Secondary caries around restorations is a major problem and can be attributed to bacteria invading microgaps formed at the tooth-restoration interface. An antibacterial composite resin containing quaternary ammonium silica (QASi) filler has been reported to inhibit enamel demineralization in situ. However, whether the prevention of enamel demineralization by QASi-containing composite resin is because of the reduced metabolic activity of acid-producing saliva bacteria is unclear. PURPOSE The purpose of this study was to compare the effects of QASi-containing composite resin and 2 other restorative materials on the viability of salivary bacteria and sugar-induced acid production. MATERIAL AND METHODS Whole saliva from each of the 30 study participants, 14 at high risk and 16 at low risk for caries, was brought into contact with quadruplicate specimens of 3 restorative materials, Infinix Flowable Composite, an anti-bacterial composite resin containing 1.5% QASi filler (Nobio), Filtek Supreme Flowable Restorative (3M), a conventional flowable composite resin, and dental amalgam (Silmet). Bacterial growth and sugar-induced acid production on each restorative material were measured every 20 minutes for 18 hours. Caries risk groups were compared using the t test and repeated measures analysis of variance (α=.05). When significant, Bonferroni multiple comparisons were used. RESULTS On average, the saliva with the QASi-containing composite resin specimens maintained a near-neutral pH, not dropping below pH 6.0. The saliva associated with both conventional restorative materials exhibited a pH drop below 5.5 (P<.001), the critical threshold for tooth demineralization according to the Stephan curve. Virtually no growth was measured on the surface of the antibacterial composite resin, whereas bacteria grew on the conventional composite resin and dental amalgam (P<.001). No differences were observed between participants at high and low risk of caries. CONCLUSIONS Unlike amalgam and conventional composite resin, the QASi-containing composite resin showed a near-complete shutdown of the metabolic activity of salivary bacteria upon contact and virtually no bacterial viability. This suggests that the prevention of tooth demineralization by QASi-containing restoratives is associated with a significant reduction in bacterial metabolic activity.
Collapse
Affiliation(s)
- Ervin I Weiss
- Professor of Prosthodontics, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Omer Enoch
- Predoctoral student, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Steinkeller-Dekel
- Clinical Instructor, Department of Prosthodontics, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Plotniece A, Sobolev A, Supuran CT, Carta F, Björkling F, Franzyk H, Yli-Kauhaluoma J, Augustyns K, Cos P, De Vooght L, Govaerts M, Aizawa J, Tammela P, Žalubovskis R. Selected strategies to fight pathogenic bacteria. J Enzyme Inhib Med Chem 2023; 38:2155816. [PMID: 36629427 PMCID: PMC9848314 DOI: 10.1080/14756366.2022.2155816] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/12/2023] Open
Abstract
Natural products and analogues are a source of antibacterial drug discovery. Considering drug resistance levels emerging for antibiotics, identification of bacterial metalloenzymes and the synthesis of selective inhibitors are interesting for antibacterial agent development. Peptide nucleic acids are attractive antisense and antigene agents representing a novel strategy to target pathogens due to their unique mechanism of action. Antisense inhibition and development of antisense peptide nucleic acids is a new approach to antibacterial agents. Due to the increased resistance of biofilms to antibiotics, alternative therapeutic options are necessary. To develop antimicrobial strategies, optimised in vitro and in vivo models are needed. In vivo models to study biofilm-related respiratory infections, device-related infections: ventilator-associated pneumonia, tissue-related infections: chronic infection models based on alginate or agar beads, methods to battle biofilm-related infections are discussed. Drug delivery in case of antibacterials often is a serious issue therefore this review includes overview of drug delivery nanosystems.
Collapse
Affiliation(s)
- Aiva Plotniece
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Riga, Latvia
| | | | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fabrizio Carta
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, Center for Peptide-Based Antibiotics, University of Copenhagen, Copenhagen East, Denmark
| | - Jari Yli-Kauhaluoma
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Koen Augustyns
- Infla-Med, Centre of Excellence, University of Antwerp, Antwerp, Belgium
- Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Matthias Govaerts
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Juliana Aizawa
- Department of Pharmaceutical Sciences, Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
| | - Päivi Tammela
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Raivis Žalubovskis
- Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| |
Collapse
|
9
|
Chladek G, Barszczewska-Rybarek I, Chrószcz-Porębska M, Mertas A. The effect of quaternary ammonium polyethylenimine nanoparticles on bacterial adherence, cytotoxicity, and physical and mechanical properties of experimental dental composites. Sci Rep 2023; 13:17497. [PMID: 37840040 PMCID: PMC10577145 DOI: 10.1038/s41598-023-43851-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
A significant problem related to the functioning of resin-based composites for dental fillings is secondary or recurrent caries, which is the reason for the need for repeated treatment. The cross-linked quaternary ammonium polyethylenimine nanoparticles (QA-PEI-NPs) have been shown to be a promising antibacterial agent against different bacteria, including cariogenic ones. However, little is known about the properties of dental dimethacrylate polymer-based composites enriched with QA-PEI-NPs. This research was carried out on experimental composites based on bis-GMA/UDMA/TEGDMA matrix enriched with 0.5, 1, 1.5, 2 and 3 (wt%) QA-PEI-NPs and reinforced with two glass fillers. The cured composites were tested for their adherence of Streptococcus Mutans bacteria, cell viability (MTT assay) with 48 h and 10-days extracts , degree of conversion (DC), water sorption (WSO), and solubility (WSL), water contact angle (CA), flexural modulus (E), flexural strength (FS), compressive strength (CS), and Vickers microhardness (HV). The investigated materials have shown a complete reduction in bacteria adherence and satisfactory biocompatibility. The QA-PEI-NPs additive has no effect on the DC, VH, and E values. QA-PEI-NPs increased the CA (a favorable change), the WSO and WSL (unfavorable changes) and decreased flexural strength, and compressive strength (unfavorable changes). The changes mentioned were insignificant and acceptable for most composites, excluding the highest antibacterial filler content. Probably the reason for the deterioration of some properties was low compatibility between filler particles and the matrix; therefore, it is worth extending the research by surface modification of QA-PEI-NPs to achieve the optimum performance characteristics.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Faculty of Mechanical Engineering, Materials Research Laboratory, Silesian University of Technology, 18a Konarskiego Str., 41-100, Gliwice, Poland.
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 M. Strzody Str., 44-100, Gliwice, Poland
| | - Marta Chrószcz-Porębska
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 M. Strzody Str., 44-100, Gliwice, Poland
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808, Zabrze, Poland
| |
Collapse
|
10
|
Trejo‐Carbajal N, Cuevas Suárez CE, Reyes‐Angeles MC, Herrera‐González AM. Evaluation of eugenol‐derived monomers as antimicrobial agents in dental resin composites. J Appl Polym Sci 2023; 140. [DOI: 10.1002/app.54226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/11/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe aim of this study is to synthesize two eugenol‐derived halogenated monomers and to evaluate their properties as antibacterial and antifungal agents in the formulation of dental composite resins. The 4‐allyl‐2‐methoxyphenyl (2‐chloroethyl) carbonate (ECl) and 4‐allyl‐2‐methoxyphenyl 2,2,3,3,4,4,4‐heptafluorobutanoate (EF) monomers have halogens, chlorine or fluorine bonded in their structure, whose antibacterial activity is known. The characterization of ECl and EF monomers was made by Fourier transform infrared and 1H and 13C NMR. dental resin composites are formulated by mixing the BisGMA/TEGDMA, photoinitiator system, inorganic filler, and the ECl or EF monomer, respectively. The antimicrobial and antifungal activity of the experimental resins is determined using the strains of Staphylococcus aureus and Candida albicans. After copolymerization, DCRs with ECl or EF monomers significantly stop antibacterial growth and show excellent antifungal effect. The best results in the antibacterial test are using 0.5 or 3 wt% of the ECl monomer, while for the EF monomer is 5 wt%. On the other hand, the most adequate concentration of ECl and EF monomers in the antifungal activity is 0.5 wt%. The above demonstrates the ability of ECl and EF monomers to prevent antibacterial and antifungal growth in a dental composite resin, which would extend the useful life of a dental restoration.
Collapse
Affiliation(s)
- Nayely Trejo‐Carbajal
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo Pachuca Hidalgo Mexico
| | - Carlos E. Cuevas Suárez
- Área Académica de Odontología, Instituto de Ciencias de la Salud Universidad Autónoma del Estado de Hidalgo Pachuca Hidalgo Mexico
| | - Mari Carmen Reyes‐Angeles
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo Pachuca Hidalgo Mexico
| | - Ana M. Herrera‐González
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e Ingeniería Universidad Autónoma del Estado de Hidalgo Pachuca Hidalgo Mexico
| |
Collapse
|
11
|
Tebyaniyan H, Hussain A, Vivian M. Current antibacterial agents in dental bonding systems: a comprehensive overview. Future Microbiol 2023; 18:825-844. [PMID: 37668450 DOI: 10.2217/fmb-2022-0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Dental caries is mainly caused by oral biofilm acid, and the most common dental restoration treatment is composite dental restorations. The main cause of failure is secondary caries adjacent to the restoration. Long-term survival of dental materials is improved by the presence of antibacterial agents, which selectively inhibit bacterial growth or survival. Chemical, natural and biomaterials have been studied for their antimicrobial activities and antibacterial bonding agents have been improved. Their usage has been increased to inhibit the growth of invading and residual bacteria in the oral cavity, as biofilm accumulation increases the risk of treatment failure. In this article, the success and applications of antibacterial agents are discussed in dental bonding systems.
Collapse
Affiliation(s)
- Hamid Tebyaniyan
- Department of Science & Research, Islimic Azade University, Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, AB, T6G 1C9, Canada
| | - Mark Vivian
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, S7N 5E4, Canada
| |
Collapse
|
12
|
Himanshu, Mukherjee R, Vidic J, Leal E, da Costa AC, Prudencio CR, Raj VS, Chang CM, Pandey RP. Nanobiotics and the One Health Approach: Boosting the Fight against Antimicrobial Resistance at the Nanoscale. Biomolecules 2023; 13:1182. [PMID: 37627247 PMCID: PMC10452580 DOI: 10.3390/biom13081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial resistance (AMR) is a growing public health concern worldwide, and it poses a significant threat to human, animal, and environmental health. The overuse and misuse of antibiotics have contributed significantly and others factors including gene mutation, bacteria living in biofilms, and enzymatic degradation/hydrolyses help in the emergence and spread of AMR, which may lead to significant economic consequences such as reduced productivity and increased health care costs. Nanotechnology offers a promising platform for addressing this challenge. Nanoparticles have unique properties that make them highly effective in combating bacterial infections by inhibiting the growth and survival of multi-drug-resistant bacteria in three areas of health: human, animal, and environmental. To conduct an economic evaluation of surveillance in this context, it is crucial to obtain an understanding of the connections to be addressed by several nations by implementing national action policies based on the One Health strategy. This review provides an overview of the progress made thus far and presents potential future directions to optimize the impact of nanobiotics on AMR.
Collapse
Affiliation(s)
- Himanshu
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Riya Mukherjee
- Graduate Institute of Biomedical Sciences, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan; (H.); (R.M.)
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Jasmina Vidic
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France;
| | - Elcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belem 66075-000, PA, Brazil
| | | | - Carlos Roberto Prudencio
- Laboratório de Imunobiotecnologia, Centro de Imunologia, Instituto Adolfo Lutz, 351, São Paulo 01246-902, SP, Brazil
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
- Laboratory Animal Center, Chang Gung University, No. 259, Wenhua 1st Road, Guishan Dist., Taoyuan City 33302, Taiwan
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), Department of Biotechnology & Microbiology, SRM University, Sonepat 131 029, Haryana, India
| |
Collapse
|
13
|
Yao J, Zou P, Cui Y, Quan L, Gao C, Li Z, Gong W, Yang M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041188. [PMID: 37111673 PMCID: PMC10141387 DOI: 10.3390/pharmaceutics15041188] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Bacterial infection is a common clinical disease. Antibiotics have saved countless lives since their discovery and are a powerful weapon in the fight against bacteria. However, with the widespread use of antibiotics, the problem of drug resistance now poses a great threat to human health. In recent years, studies have investigated approaches to combat bacterial resistance. Several antimicrobial materials and drug delivery systems have emerged as promising strategies. Nano-drug delivery systems for antibiotics can reduce the resistance to antibiotics and extend the lifespan of novel antibiotics, and they allow targeting drug delivery compared to conventional antibiotics. This review highlights the mechanistic insights of using different strategies to combat drug-resistant bacteria and summarizes the recent advancements in antimicrobial materials and drug delivery systems for different carriers. Furthermore, the fundamental properties of combating antimicrobial resistance are discussed, and the current challenges and future perspectives in this field are proposed.
Collapse
Affiliation(s)
- Jiaxin Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Pengfei Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanan Cui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Liangzhu Quan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Meiyan Yang
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
14
|
Akif FA, Mahmoud M, Prasad B, Richter P, Azizullah A, Qasim M, Anees M, Krüger M, Gastiger S, Burkovski A, Strauch SM, Lebert M. Polyethylenimine Increases Antibacterial Efficiency of Chlorophyllin. Antibiotics (Basel) 2022; 11:antibiotics11101371. [PMID: 36290029 PMCID: PMC9598908 DOI: 10.3390/antibiotics11101371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Polyethylenimines (PEIs), a group of polycationic molecules, are known to impair the outer membrane of Gram-negative bacteria and exhibit antimicrobial activity. The outer membrane of Gram-negative strains hinders the uptake of photosensitizer chlorophyllin. In this study, we report chlorophyllin and branched PEI combinations’ activity against Escherichia coli strains DH5α and RB791, Salmonella enterica sv. Typhimurium LT2, and Bacillus subtilis 168. The minimal bactericidal concentration (MBC) was determined by plating cells treated with different concentrations of PEI and chlorophyllin on agar and monitoring their growth after 24 h. All tested combinations of PEI and chlorophyllin were lethal for S. enterica after 240 min of incubation in light, whereas PEI alone (<100 µg mL−1) was ineffective. In the darkness, complete inhibition was noted with a combination of ≥2.5 µg mL−1 chlorophyllin and 50 µg mL−1 PEI. If applied alone, PEI alone of ≥800 µg mL−1 of PEI was required to completely inactivate E. coli DH5α cells in light, whereas with ≥5 µg mL−1 chlorophyllin, only ≥100 µg mL−1 PEI was needed. No effect was detected in darkness with PEI alone. However, 1600 µg mL−1 PEI in combination with 2.5 µg mL−1 resulted in complete inactivation after 4 h dark incubation. PEI alone did not inhibit E. coli strain RB791, while cells were inactivated when treated with 10 µg mL−1 chlorophyllin in combination with ≥100 µg mL−1 (in light) or ≥800 µg mL−1 PEI (in darkness). Under illumination, B. subtilis was inactivated at all tested concentrations. In the darkness, 1 µg mL−1 chlorophyllin and 12.5 µg mL−1 PEI were lethal for B. subtilis. Overall, PEI can be used as an antimicrobial agent or potentiating agent for ameliorating the antimicrobial activity of chlorophyllin.
Collapse
Affiliation(s)
- Faheem Ahmad Akif
- Department of Microbiology, Kohat University of Science and Technology (KUST), Kohat 26000, Pakistan
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Mona Mahmoud
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
- Dairy Department (Microbiology Lab.), National Research Centre, Cairo 12622, Egypt
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Binod Prasad
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Peter Richter
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
- Correspondence: (P.R.); (M.Q.)
| | - Azizullah Azizullah
- Department of Botany, Kohat University of Science and Technology (KUST), Kohat 26000, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology (KUST), Kohat 26000, Pakistan
- Correspondence: (P.R.); (M.Q.)
| | - Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology (KUST), Kohat 26000, Pakistan
| | - Marcus Krüger
- Environmental Cell Biology Group, Department of Microgravity and Translational Regenerative Medicine, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Susanne Gastiger
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sebastian M. Strauch
- Postgraduate Program in Health and Environment, University of Joinville Region, Joinville 89219-710, SC, Brazil
| | - Michael Lebert
- Gravitational Biology Group, Department of Biology, Cell Biology Division, Friedrich-Alexander-Universität, Erlangen-Nürnberg, 91058 Erlangen, Germany
- Space Biology Unlimited S.A.S., 33000 Bordeaux, France
| |
Collapse
|
15
|
Dental restorative materials containing quaternary ammonium compounds have sustained antibacterial action. J Am Dent Assoc 2022; 153:1114-1120. [DOI: 10.1016/j.adaj.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/07/2022]
|
16
|
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
During the orthodontic process, increased microbial colonization and dental plaque formation on the orthodontic appliances and auxiliaries are major complications, causing oral infectious diseases, such as dental caries and periodontal diseases. To reduce plaque accumulation, antimicrobial materials are increasingly being investigated and applied to orthodontic appliances and auxiliaries by various methods. Through the development of nanotechnology, nanoparticles (NPs) have been reported to exhibit excellent antibacterial properties and have been applied in orthodontic materials to decrease dental plaque accumulation. In this review, we present the current development, antibacterial mechanisms, biocompatibility, and application of antibacterial NPs in orthodontic materials.
Collapse
Affiliation(s)
- Zhang Yun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| | - Du Qin
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Fei Wei
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Li Xiaobing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
17
|
Antibacterial Performance of Composite Containing Quaternary Ammonium Silica (QASi) Filler - a Preliminary Study. J Dent 2022; 123:104209. [PMID: 35760205 DOI: 10.1016/j.jdent.2022.104209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Antibacterial composite will have a significant clinical advantage in controlling caries. This study tests the antibacterial properties of a novel bulk-fill flowable composite (Infinx™, Nobio™ Ltd.) containing quaternary ammonium silica (QASi) filler particles. METHODS Infinix™ was tested in-vitro by the direct contact test (DCT), using E. faecalis or whole saliva as inoculum. A similar formula composite without QASi served as a control. In addition, composite test samples were polymerized on three volunteers' intact buccal enamel surfaces of mandibular first premolars in a split-mouth design experiment. Traditional composite served as control (Filtekt Bulk Fill™ 3M). Bacterial viability on the composite surfaces weres assessed ex-vivo microscopically six months later, using a fluorescent dead/live stain. Images of each bacterial sample were taken using a fluorescent microscope (Nikon Eclipse 80i), and further live/total cell analysis was performed using ImageJ software. RESULTS Following direct contact with one week of aged Infinix, more than 1 million E. faecalis bacteria were killed. Similarly, when using the saliva as inoculum, no single microorganism survived. Six-month in-vivo experiments supported these results by showing a reduction of 54%, 30% and 28% in live/total number of bacteria ratio retrieved from antibacterial composite vs. the control in volunteers #1, #2, #3 respectively. CONCLUSION Within the limitations of the experimental design, the present study suggest that antibacterial activity of quaternary ammonium silica particles (QASi) is comparable to that of previously described quaternary ammonium polyethyleneimine particles (QPEI). In addition, whole saliva bacteria are effectively killed by QASi-containing composite in-vitro and in-vivo, for a period of six month at least. Long-term full-scale clinical study is needed to confirm the findings of the present study and their implication on maintaining health balance. CLINICAL SIGNIFICANCE Antibacterial composites containing QASi filler is a novel class of restoratives that may contributes to caries lesion control.
Collapse
|
18
|
Zhou W, Zhao H, Li Z, Huang X. Autopolymerizing acrylic repair resin containing low concentration of dimethylaminohexadecyl methacrylate to combat saliva-derived bacteria. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:49. [PMID: 35639209 PMCID: PMC9156454 DOI: 10.1007/s10856-022-06670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Biofilm accumulation on the polymethyl methacrylate (PMMA) restorations negatively affect the prognosis of the provisional restorations or the following treatment. This study developed a novel antibacterial PMMA resin containing low concentration of dimethylaminohexadecyl methacrylate (DMAHDM). Four resins were tested: (1) PMMA resin (Control), (2) 1.25% DMAHDM, (3) 2.5% DMAHDM, (4) 5% DMAHDM. Adding 1.25% DMAHDM into the PMMA resin did not influence the mechanical properties, degree of conversion, monomer releasing, and color stability of the specimens (p > 0.05). The incorporation of DMAHDM into PMMA resin could greatly prevent saliva-derived biofilms adhesion compared with the control group (p < 0.05). The metabolism level of saliva-derived biofilms on the 1.25%, 2.5%, and 5% DMAHDM resins were reduced by 20%, 54%, and 62%, respectively. And the mechanism of DMAHDM disturbing the integrity of bacterial cell walls was confirmed by flow cytometric analysis. Adding 1.25% and 2.5% DMAHDM did not compromise cytocompatibility of the modified resin (p > 0.05). Therefore, novel PMMA resin containing low concentration DMAHDM is promising as a future antimicrobial provisional restoration material for preventing microbial-induced complications in clinical settings. Graphical abstract.
Collapse
Affiliation(s)
- Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hongyan Zhao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhen Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Hanna AL, Hamouda HM, Goda HA, Sadik MW, Moghanm FS, Ghoneim AM, Alenezi MA, Alnomasy SF, Alam P, Elsayed TR. Biosynthesis and Characterization of Silver Nanoparticles Produced by Phormidium ambiguum and Desertifilum tharense Cyanobacteria. Bioinorg Chem Appl 2022; 2022:9072508. [PMID: 35265106 PMCID: PMC8901344 DOI: 10.1155/2022/9072508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
Abstract
The world faces a challenge with the pervasion of multidrug-resistant bacteria that encourages scientists to develop and discover alternative, ecofriendly, and easy-to-produce new antibacterial agents. Our work is part of the greater effort of scientists around the world to achieve this goal by the biological synthesis of silver nanoparticles using cyanobacterial extracellular and intracellular components as nonchemical reducing agents. Two Egyptian cyanobacteria were isolated and identified according to 16S rRNA gene sequencing as Phormidium ambiguum and a novel species Desertifilum tharense. The sequences were deposited with accession numbers MW762709 and MW762710 for Desertifilum tharense and Phormidium ambiguum, respectively, in the GenBank. The results of UV-Vis analysis showed promising extracellular Ag-NPs synthesis by Desertifilum tharense and Phormidium ambiguum under light conditions. Therefore, these Ag-NPs were characterized and evaluated for antibacterial and antioxidant activity. TEM and SEM analyses revealed the spherical crystals with face-centered cubic structures and size range of 6.24-11.4 nm and 6.46-12.2 nm for Ag-NPs of Desertifilum tharense and Phormidium ambiguum, respectively. XRD and EDX results confirmed the successful synthesis of Ag-NPs in their oxide form or chloride form. The FTIR spectrum data confirmed the presence of hydroxyl and amide groups. Desertifilum tharense Ag-NPs displayed the largest inhibition zone that ranged from 9 mm against Micrococcus luteus ATCC 10240 to 25 mm against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. For Phormidium ambiguum Ag-NPs, the inhibition zone diameter was in the range of 9 mm to 18 mm. The biosynthesized Ag-NPs significantly inhibited the growth of medically important resistance-pathogenic Gram-positive and Gram-negative bacteria. The Ag-NPs of Phormidium ambiguum exhibited the highest scavenging activity of 48.7% when compared with that of Desertifilum tharense, which displayed 43.753%.
Collapse
Affiliation(s)
- Amira L. Hanna
- Microbiology Department, Division of Basic Medical Science, Egyptian Drug Authority EDA (National Organization for Drug Control and Research NODCAR), Giza 12553, Egypt
| | - Hayam M. Hamouda
- Microbiology Department, Division of Basic Medical Science, Egyptian Drug Authority EDA (National Organization for Drug Control and Research NODCAR), Giza 12553, Egypt
| | - Hanan A. Goda
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Mahmoud W. Sadik
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Farahat S. Moghanm
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Adel M. Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza 12112, Egypt
| | - Muneefah A. Alenezi
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Sultan F. Alnomasy
- Medical Laboratories Department, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 1942, Saudi Arabia
| | - Tarek R. Elsayed
- Department of Microbiology, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| |
Collapse
|
20
|
Mubeen B, Ansar AN, Rasool R, Ullah I, Imam SS, Alshehri S, Ghoneim MM, Alzarea SI, Nadeem MS, Kazmi I. Nanotechnology as a Novel Approach in Combating Microbes Providing an Alternative to Antibiotics. Antibiotics (Basel) 2021; 10:1473. [PMID: 34943685 PMCID: PMC8698349 DOI: 10.3390/antibiotics10121473] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of infectious diseases promises to be one of the leading mortality factors in the healthcare sector. Although several drugs are available on the market, newly found microorganisms carrying multidrug resistance (MDR) against which existing drugs cannot function effectively, giving rise to escalated antibiotic dosage therapies and the need to develop novel drugs, which require time, money, and manpower. Thus, the exploitation of antimicrobials has led to the production of MDR bacteria, and their prevalence and growth are a major concern. Novel approaches to prevent antimicrobial drug resistance are in practice. Nanotechnology-based innovation provides physicians and patients the opportunity to overcome the crisis of drug resistance. Nanoparticles have promising potential in the healthcare sector. Recently, nanoparticles have been designed to address pathogenic microorganisms. A multitude of processes that can vary with various traits, including size, morphology, electrical charge, and surface coatings, allow researchers to develop novel composite antimicrobial substances for use in different applications performing antimicrobial activities. The antimicrobial activity of inorganic and carbon-based nanoparticles can be applied to various research, medical, and industrial uses in the future and offer a solution to the crisis of antimicrobial resistance to traditional approaches. Metal-based nanoparticles have also been extensively studied for many biomedical applications. In addition to reduced size and selectivity for bacteria, metal-based nanoparticles have proven effective against pathogens listed as a priority, according to the World Health Organization (WHO). Moreover, antimicrobial studies of nanoparticles were carried out not only in vitro but in vivo as well in order to investigate their efficacy. In addition, nanomaterials provide numerous opportunities for infection prevention, diagnosis, treatment, and biofilm control. This study emphasizes the antimicrobial effects of nanoparticles and contrasts nanoparticles' with antibiotics' role in the fight against pathogenic microorganisms. Future prospects revolve around developing new strategies and products to prevent, control, and treat microbial infections in humans and other animals, including viral infections seen in the current pandemic scenarios.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Aunza Nayab Ansar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan; (B.M.); (A.N.A.); (R.R.); (I.U.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (S.A.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Wu M, Yang J, Chen S, Lu P, Wang R. TOCNC-g-PEI nanoparticle encapsulated oregano essential oil for enhancing the antimicrobial activity of cellulose nanofibril packaging films. Carbohydr Polym 2021; 274:118654. [PMID: 34702473 DOI: 10.1016/j.carbpol.2021.118654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
A nanocellulose-based film with excellent antimicrobial and antioxidant activity was developed by adding Pickering emulsion which was stabilized by functionalized particles. First, TOCNC-g-PEI nanoparticles were prepared by grafting polyethyleneimine (PEI) onto TEMPO-oxidized cellulose nanocrystals (TOCNCs) and used to stabilize oregano essential oil (OEO) Pickering emulsions. The contact angle of TOCNC-g-PEI nanoparticles was 79.7°, and the minimum inhibitory concentration against L.monocytogenes and E.coli was 0.50 mg/mL. Second, the emulsion droplets were stably dispersed in cellulose nanofibril (CNF) suspensions owing to the depletion stability of CNFs. Finally, the films were dried and emulsion droplets formed oil core/CNF shell microcapsules in active CNF films and completely encapsulated OEO in active CNF films. The inhibition rates of the film against L.monocytogenes and E.coli were 97.28% and 97.23%, respectively. The influence of Pickering emulsion on the active CNF films was discussed. The developed active CNF films have promising application in food preservation and active packaging.
Collapse
Affiliation(s)
- Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Jian Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Shunli Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| | - Ruifang Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
22
|
Rechmann P, Le CQ, Chaffee BW, Rechmann BMT. Demineralization prevention with a new antibacterial restorative composite containing QASi nanoparticles: an in situ study. Clin Oral Investig 2021; 25:5293-5305. [PMID: 33608748 PMCID: PMC7895509 DOI: 10.1007/s00784-021-03837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/09/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To investigate whether a newly developed dental composite with quaternary ammonium silica dioxide (QASi) nanoparticles incorporated with other fillers into the restorative material demonstrates antibacterial activity by reducing enamel demineralization in an in situ gap model. MATERIALS AND METHODS Twenty subjects wearing a lower removable partial denture (RPD) with acrylic flanges on both sides of the mouth were recruited into the 4-week in situ study. The gap model consisted of an enamel slab placed next to a composite, separated by a 38-μm space. In the split-mouth design on one side of the RPD, the composite was the Nobio Infinix composite (Nobio Ltd., Kadima, Israel), and the contralateral side used a control composite. Each participant received enamel slabs from one tooth. The gap model was recessed into the RPD buccal flange, allowing microbial plaque to accumulate within the gap. After 4 weeks of continuous wearing, decalcification (∆Z mineral loss) of the enamel slabs adjacent to the gap was determined by cross-sectional microhardness testing in the laboratory. RESULTS The ∆Z for the antibacterial composite test side was 235±354 (mean±standard deviation [SD]; data reported from 17 participants) and statistically significantly lower compared to ∆Z of the control side (774±556; mean±SD) (paired t-test, P<0.0001; mean of test minus control -539 (SD=392), 95% confidence interval of difference: -741, -338). CONCLUSIONS This in situ clinical study showed that composites with QASi antibacterial particles significantly reduced demineralization in enamel adjacent to a 38-μm gap over a 4-week period in comparison to a conventional composite. CLINICAL RELEVANCE Composites with QASi nanoparticle technology have the potential to reduce the occurrence of secondary caries. TRIAL REGISTRATION ClinicalTrials.gov #NCT04059250.
Collapse
Affiliation(s)
- Peter Rechmann
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Charles Q Le
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Benjamin W Chaffee
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Beate M T Rechmann
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, 707 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
23
|
Tian X, Fan T, Zhao W, Abbas G, Han B, Zhang K, Li N, Liu N, Liang W, Huang H, Chen W, Wang B, Xie Z. Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioact Mater 2021; 6:2854-2869. [PMID: 33718667 PMCID: PMC7905263 DOI: 10.1016/j.bioactmat.2021.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is still a serious threat to human life and health, but there are few therapeutic options available to treat stroke because of limited blood-brain penetration. The development of nanotechnology may overcome some of the problems related to traditional drug development. In this review, we focus on the potential applications of nanotechnology in stroke. First, we will discuss the main molecular pathological mechanisms of ischemic stroke to develop a targeted strategy. Second, considering the important role of the blood-brain barrier in stroke treatment, we also delve mechanisms by which the blood-brain barrier protects the brain, and the reasons why the therapeutics must pass through the blood-brain barrier to achieve efficacy. Lastly, we provide a comprehensive review related to the application of nanomaterials to treat stroke, including liposomes, polymers, metal nanoparticles, carbon nanotubes, graphene, black phosphorus, hydrogels and dendrimers. To conclude, we will summarize the challenges and future prospects of nanomedicine-based stroke treatments.
Collapse
Affiliation(s)
- Xing Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wentian Zhao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ghulam Abbas
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Ke Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Nan Li
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Ning Liu
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Hao Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Wen Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, College of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Bing Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, PR China
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, 518116, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Ostadhossein F, Moitra P, Altun E, Dutta D, Sar D, Tripathi I, Hsiao SH, Kravchuk V, Nie S, Pan D. Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Commun Biol 2021; 4:846. [PMID: 34267305 PMCID: PMC8282845 DOI: 10.1038/s42003-021-02372-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/16/2021] [Indexed: 01/16/2023] Open
Abstract
Dental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Esra Altun
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Debapriya Dutta
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Indu Tripathi
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Valeriya Kravchuk
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shuming Nie
- Departments of Bioengineering, Carle Illinois College of Medicine, Beckman Institute, Department of Chemistry, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA.
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, MD, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, Baltimore, MD, USA.
| |
Collapse
|
25
|
Șaramet V, Meleșcanu-Imre M, Țâncu AMC, Albu CC, Ripszky-Totan A, Pantea M. Molecular Interactions between Saliva and Dental Composites Resins: A Way Forward. MATERIALS (BASEL, SWITZERLAND) 2021; 14:ma14102537. [PMID: 34068320 PMCID: PMC8153278 DOI: 10.3390/ma14102537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 02/06/2023]
Abstract
Dentin and enamel loss related to trauma or especially caries is one of the most common pathological issues in dentistry that requires restoration of the teeth by using materials with appropriate properties. The composite resins represent dental materials with significant importance in today’s dentistry, presenting important qualities, including their mechanical behavior and excellent aesthetics. This paper focuses on the saliva interactions with these materials and on their biocompatibility, which is continuously improved in the new generations of resin-based composites. Starting from the elements involved on the molecular landscape of the dental caries process, the paper presents certain strategies for obtaining more advanced new dental composite resins, as follows: suppression of oral biofilm acids formation, promotion of remineralization process, counteraction of the proteolytic attack, and avoidance of cytotoxic effects; the relation between dental composite resins and salivary oxidative stress biomarkers is also presented in this context.
Collapse
Affiliation(s)
| | - Marina Meleșcanu-Imre
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Ana Maria Cristina Țâncu
- Department of Complete Denture, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
- Correspondence: (A.M.C.Ț.); (C.C.A.)
| | - Crenguța Cristina Albu
- Department of Genetics, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania
- Correspondence: (A.M.C.Ț.); (C.C.A.)
| | - Alexandra Ripszky-Totan
- Department of Biochemistry, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| | - Mihaela Pantea
- Department of Fixed Prosthodontics and Occlusology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 010221 Bucharest, Romania;
| |
Collapse
|
26
|
Barszczewska-Rybarek IM, Chrószcz MW, Chladek G. Physicochemical and Mechanical Properties of Bis-GMA/TEGDMA Dental Composite Resins Enriched with Quaternary Ammonium Polyethylenimine Nanoparticles. MATERIALS 2021; 14:ma14082037. [PMID: 33919544 PMCID: PMC8074033 DOI: 10.3390/ma14082037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022]
Abstract
Modification of dental monomer compositions with antimicrobial agents must not cause deterioration of the structure, physicochemical, or mechanical properties of the resulting polymers. In this study, 0.5, 1, and 2 wt.% quaternary ammonium polyethylenimine nanoparticles (QA-PEI-NPs) were obtained and admixed with a Bis-GMA/TEGDMA (60:40) composition. Formulations were then photocured and tested for their degree of conversion (DC), polymerization shrinkage (S), glass transition temperature (Tg), water sorption (WS), solubility (SL), water contact angle (WCA), flexural modulus (E), flexural strength (σ), hardness (HB), and impact resistance (an). We found that the DC, S, Tg, WS, E, and HB were not negatively affected by the addition of QA-PEI-NPs. Changes in these values rarely reached statistical significance. On the other hand, the SL increased upon increasing the QA-PEI-NPs concentration, whereas σ and an decreased. These results were usually statistically significant. The WCA values increased slightly, but they remained within the range corresponding to hydrophilic surfaces. To conclude, the addition of 1 wt.% QA-PEI-NPs is suitable for applications in dental materials, as it ensures sufficient physicochemical and mechanical properties.
Collapse
Affiliation(s)
- Izabela M Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Marta W Chrószcz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Grzegorz Chladek
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
27
|
Bhadila G, Menon D, Wang X, Vila T, Melo MAS, Montaner S, Arola DD, Weir MD, Sun J, Hockin H K, Xu. Long-term antibacterial activity and cytocompatibility of novel low-shrinkage-stress, remineralizing composites. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:886-905. [PMID: 33482702 DOI: 10.1080/09205063.2021.1878805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A low-shrinkage-stress (LSS), antibacterial and remineralizing nanocomposite was recently developed; however, validation of its long-term antibacterial potency in modulating human salivary-derived biofilm is an unmet need. This study aimed to evaluate the antibacterial effect of the bioactive LSS composite before and after aging in acidic solution for 90 days using a multi-species biofilm model, and to evaluate its cytotoxicity. The LSS composite consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), 3% dimethylaminohexadecyl methacrylate (DMAHDM) and 20% nanoparticles of amorphous calcium phosphate (NACP). Biofilm colony-forming units (CFU), lactic acid production, and confocal laser scanning microscopy (3D biofilm) were evaluated before and after three months of aging. Cytotoxicity was assessed against human gingival fibroblasts (HGF). The new LSS composite presented the lowest biofilm CFU, lactic acid and biofilm biomass, compared to controls (n = 6, p < 0.05). Importantly, the new composite exhibited no significant difference in antibacterial performance before and after 90-day-aging, demonstrating long-term antibacterial activity (p > 0.1). The LSS antibacterial and remineralizing composite presented a low cell viability at original extract that has increased with further dilutions. In conclusion, this study spotlighted that the new bioactive composite not only had a low shrinkage stress, but also down-regulated the growth of oral biofilms, reduced acid production, maintained antibacterial activity after the 90-day-aging, and did not compromise the cytocompatibility.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD, USA
| | - Taissa Vila
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dwayne D Arola
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD, USA
| | | | - Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Ali S, Sangi L, Kumar N, Kumar B, Khurshid Z, Zafar MS. Evaluating antibacterial and surface mechanical properties of chitosan modified dental resin composites. Technol Health Care 2021; 28:165-173. [PMID: 31594266 DOI: 10.3233/thc-181568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The antibacterial properties are beneficial and desired for dental restorative composite materials. The incorporation of various antimicrobial agents into resin composites may compromise their physical and mechanical properties hence limiting their applications. OBJECTIVE The aim of the current study is to evaluate the antibacterial activity and the hardness of microhybrid and flowable resin based composites (RBCs) modified using novel antimicrobial agent chitosan (CS). METHODS The antibacterial activity of microhybrid and flowable RBCs modified with 0, 0.25, 0.5 and 1% w/w chitosan (CS) against Actinomyces viscous bacteria was explored using agar diffusion test and direct contact methods. The hardness of control and experimental RBCs was determined by Vickers hardness (VH) tester. RESULTS The results revealed that control and experimental flowable and microhybrid RBCs did not demonstrate growth inhibition zone in the lawn growth of Actinomyces viscous. The direct contact test revealed that colony forming unit (CFU) count of Actinomyces viscous was comparable among the experimental and control materials. The flowable RBCs containing 1% CS had significantly higher VH compared to control and other experimental flowable RBC groups. The microhybrid RBCs consisting of 0.50% CS exhibited significantly higher VH compared to experimental microhybrid RBC group containing 1% CS.
Collapse
Affiliation(s)
- Shahid Ali
- Department of Science of Dental Materials, Bibi Aseefa Dental College, Shaheed Mohtarma Benazir Bhutto Medical University, Larkana, Pakistan
| | - Laila Sangi
- Department of Operative Dentistry, Institute of Dentistry, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Bharat Kumar
- Department of Prosthodontics, Dow International Dental College, Dow University of Health Sciences, Karachi, Pakistan
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Biomaterials, College of Dentistry, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al Munawwarah, Saudi Arabia.,Department of Dental Material, RIPHAH International University, Islamabad, Pakistan
| |
Collapse
|
29
|
Kuriki N, Asahi Y, Sotozono M, Machi H, Noiri Y, Hayashi M, Ebisu S. Next-Generation Sequencing for Determining the Effect of Arginine on Human Dental Biofilms Using an In Situ Model. PHARMACY 2021; 9:pharmacy9010018. [PMID: 33445627 PMCID: PMC7838886 DOI: 10.3390/pharmacy9010018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Oral biofilms are associated with caries, periodontal diseases, and systemic diseases. Generally, antimicrobial therapy is used as the first line of treatment for infectious diseases; however, bacteria in biofilms eventually develop antibiotic resistance. This study aimed to apply our in situ biofilm model to verify whether an arginine preparation is useful for plaque control. Ten healthy subjects who did not show signs of caries, gingivitis, or periodontitis were recruited. The dental biofilms from the subjects were obtained using our oral device before and after gargling with arginine solution for 4 weeks. We found that 8% arginine solution significantly increased the concentration of ammonium ions (NH4
+) in vitro and in vivo in saliva (p < 0.05) and decreased the proportions of the genera Atopobium and Catonella in vivo. However, the viable count was unaffected by the mouthwash. Further, oral populations of the genera Streptococcus and Neisseria tended to increase with the use of arginine. Therefore, we concluded that using an 8% arginine solution decreased the NH4
+ concentration in the oral cavity without affecting the number of viable bacteria, and that the diversity of oral bacterial flora changed. We suggest that arginine might help prevent mature biofilm formation.
Collapse
Affiliation(s)
- Nanako Kuriki
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
- Correspondence: ; Tel.: +81-(66)-8792927
| | - Yoko Asahi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Maki Sotozono
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Hiroyuki Machi
- Osaka University Dental Technology Institute, Suita, Osaka 565-0871, Japan;
| | - Yuichiro Noiri
- Department of Oral Health Science, Division of Cariology, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan;
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| | - Shigeyuki Ebisu
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.A.); (M.S.); (M.H.); (S.E.)
| |
Collapse
|
30
|
Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J ESTHET RESTOR DENT 2020; 33:567-582. [PMID: 33368974 DOI: 10.1111/jerd.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Nanotechnology has progressed significantly and particles as small as 3 nm are being employed in resin-based restorative materials to improve clinical performance. The goal of this review is to report the progress of nanotechnology in Restorative Dentistry by reviewing the advantages, limitations, and applications of resin-based restorative materials with nanoparticles. MATERIALS AND METHODS A literature review was conducted using PubMed/Medline, Scopus and Embase databases. In vitro, in vivo and in situ research studies published in English between 1999 and 2020, and which focused on the analysis of resin-based restorative materials containing nanoparticles were included. RESULTS A total of 140 studies were included in this review. Studies reported the effect of incorporating different types of nanoparticles on adhesive systems or resin composites. Mechanical, physical, and anti-bacterial properties were described. The clinical performance of resin-based restorative materials with nanoparticles was also reported. CONCLUSIONS The high surface area of nanoparticles exponentially increases the bioactivity of materials using bioactive nanofillers. However, the tendency of nanoparticles to agglomerate, the chemical instability of the developed materials and the decline of rheological properties when high ratios of nanoparticles are employed are some of the obstacles to overcome in the near future. CLINICAL SIGNIFICANCE In spite of the recent advancements of nanotechnology in resin-based restorative materials, some challenges need to be overcome before new nano-based restorative materials are considered permanent solutions to clinical problems.
Collapse
Affiliation(s)
- Natalia Almeida Bastos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandro Basso Bitencourt
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | | | | |
Collapse
|
31
|
Chrószcz M, Barszczewska-Rybarek I. Nanoparticles of Quaternary Ammonium Polyethylenimine Derivatives for Application in Dental Materials. Polymers (Basel) 2020; 12:E2551. [PMID: 33143324 PMCID: PMC7693368 DOI: 10.3390/polym12112551] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Various quaternary ammonium polyethylenimine (QA-PEI) derivatives have been synthesized in order to obtain nanoparticles. Due to their antibacterial activity and non-toxicity towards mammalian cells, the QA-PEI nanoparticles have been tested extensively regarding potential applications as biocidal additives in various dental composite materials. Their impact has been examined mostly for dimethacrylate-based restorative materials; however, dental cements, root canal pastes, and orthodontic adhesives have also been tested. Results of those studies showed that the addition of small quantities of QA-PEI nanoparticles, from 0.5 to 2 wt.%, led to efficient and long-lasting antibacterial effects. However, it was also discovered that the intensity of the biocidal activity strongly depended on several chemical factors, including the degree of crosslinking, length of alkyl telomeric chains, degree of N-alkylation, degree of N-methylation, counterion type, and pH. Importantly, the presence of QA-PEI nanoparticles in the studied dental composites did not negatively impact the degree of conversion in the composite matrix, nor its mechanical properties. In this review, we summarized these features and functions in order to present QA-PEI nanoparticles as modern and promising additives for dental materials that can impart unique antibacterial characteristics without deteriorating the products' structures or mechanical properties.
Collapse
Affiliation(s)
- Marta Chrószcz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | | |
Collapse
|
32
|
Novel Orthodontic Cement Comprising Unique Imidazolium-Based Polymerizable Antibacterial Monomers. J Funct Biomater 2020; 11:jfb11040075. [PMID: 33080813 PMCID: PMC7712085 DOI: 10.3390/jfb11040075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/22/2023] Open
Abstract
White spot lesions (WSLs) can develop quickly and compromise the successful outcome of the orthodontic treatment. Orthodontic bonding cement with the capability to prevent or mitigate WSLs could be beneficial, especially for patients with high risk of caries. This study explored novel mono- and di-imidazolium-based polymerizable antibacterial monomers and evaluated orthodontic cement compositions comprising such novel monomers. Their antibacterial potentials, mechanical properties, and shear bond strength (SBS) to bovine enamel were investigated. Statistical tests were applied to SBS and mechanical tests (one-way ANOVA and Tukey’s test). For antibacterial resins C (ABR-C) and E (ABR-E), their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against cariogenic Streptococcus mutans bacterial strain UA159 were found to be 4 μg/mL and 8 μg /mL, respectively. The loss of dry mass from completely demineralized dentin beams in buffer solutions pre-dipped into ABR-C and ABR-E resins is much less than that in control buffer (artificial saliva) only. For unfilled resins comprising up to 12 wt % ABR-C, no significant decreases in flexural strength or modulus were observed. For experimental cements incorporating 1–4 wt % ABR-C, there was no drastic compromise to the SBS to enamel except for 3 wt % ABR-C. Furthermore, their SBS was all comparable to the commercially available orthodontic cements. The ISO-22196 antimicrobial test against S. aureus showed significant levels of antibacterial effects—up to over 5 logs of microorganism reduction exhibited by ABR-C-containing experimental cements. The imidazolium-based polymerizable monomers could be utilized to functionalize orthodontic bonding cement with steady antibacterial activity and develop a potential strategy to counteract WSLs.
Collapse
|
33
|
Regulating Oral Biofilm from Cariogenic State to Non-Cariogenic State via Novel Combination of Bioactive Therapeutic Composite and Gene-Knockout. Microorganisms 2020; 8:microorganisms8091410. [PMID: 32933157 PMCID: PMC7564907 DOI: 10.3390/microorganisms8091410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
The objectives were to investigate a novel combination of gene-knockout with antimicrobial dimethylaminohexadecyl methacrylate (DMAHDM) composite in regulating oral biofilm from a cariogenic state toward a non-cariogenic state. A tri-species biofilm model included cariogenic Streptococcus mutans (S. mutans), and non-cariogenic Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii). Biofilm colony-forming-units (CFUs), lactic acid and polysaccharide production were measured. TaqMan real-time-polymerase-chain reaction was used to determine the percentage of each species in biofilm. The rnc gene-knockout for S. mutans with DMAHDM composite reduced biofilm CFU by five logs, compared to control (p < 0.05). Using parent S. mutans, an overwhelming S. mutans percentage of 68.99% and 69.00% existed in biofilms on commercial composite and 0% DMAHDM composite, respectively. In sharp contrast, with a combination of S. mutans rnc knockout and DMAHDM composite, the cariogenic S. mutans percentage in biofilm was reduced to only 6.33%. Meanwhile, the non-cariogenic S. sanguinis + S. gordonii percentage was increased to 93.67%. Therefore, combining rnc-knockout with bioactive and therapeutic dental composite achieved the greatest reduction in S. mutans, and the greatest increase in non-cariogenic species, thereby yielding the least lactic acid-production. This novel method is promising to obtain wide applications to regulate biofilms and inhibit dental caries.
Collapse
|
34
|
Zhou W, Peng X, Zhou X, Bonavente A, Weir MD, Melo MAS, Imazato S, Oates TW, Cheng L, Xu HHK. Novel Nanocomposite Inhibiting Caries at the Enamel Restoration Margins in an In Vitro Saliva-Derived Biofilm Secondary Caries Model. Int J Mol Sci 2020; 21:ijms21176369. [PMID: 32887330 PMCID: PMC7503730 DOI: 10.3390/ijms21176369] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary caries often occurs at the tooth-composite margins. This study developed a novel bioactive composite containing DMAHDM (dimethylaminohexadecyl methacrylate) and NACP (nanoparticles of amorphous calcium phosphate), inhibiting caries at the enamel restoration margins in an in vitro saliva-derived biofilm secondary caries model for the first time. Four composites were tested: (1) Heliomolar nanocomposite, (2) 0% DMAHDM + 0% NACP, (3) 3% DMAHDM + 0% NACP, (D) 3% DMAHDM + 30% NACP. Saliva-derived biofilms were tested for antibacterial effects of the composites. Bovine enamel restorations were cultured with biofilms, Ca and P ion release of nanocomposite and enamel hardness at the enamel restoration margins was measured. Incorporation of DMAHDM and NACP into composite did not affect the mechanical properties (p > 0.05). The biofilms’ CFU (colony-forming units) were reduced by 2 logs via DMAHDM (p < 0.05). Ca and P ion release of the nanocomposite was increased at cariogenic low pH. Enamel hardness at the margins for DMAHDM group was 25% higher than control (p < 0.05). With DMAHDM + NACP, the enamel hardness was the greatest and about 50% higher than control (p < 0.05). Therefore, the novel composite containing DMAHDM and NACP was strongly antibacterial and inhibited enamel demineralization, resulting in enamel hardness at the margins under biofilms that approached the hardness of healthy enamel.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China School of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610041, China; (W.Z.); (X.P.); (X.Z.)
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xinyu Peng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China School of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610041, China; (W.Z.); (X.P.); (X.Z.)
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China School of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610041, China; (W.Z.); (X.P.); (X.Z.)
| | - Andrea Bonavente
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
| | - Mary Anne S. Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China School of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610041, China; (W.Z.); (X.P.); (X.Z.)
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
- Correspondence: (L.C.); (H.H.K.X.)
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; (A.B.); (M.D.W.); (M.A.S.M.); (T.W.O.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (L.C.); (H.H.K.X.)
| |
Collapse
|
35
|
Zhou W, Peng X, Zhou X, Weir MD, Melo MAS, Tay FR, Imazato S, Oates TW, Cheng L, Xu HHK. In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent Mater 2020; 36:1343-1355. [PMID: 32800353 DOI: 10.1016/j.dental.2020.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/09/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Recurrent caries is a primary reason for restoration failure caused by biofilm acids. The objectives of this study were to: (1) develop a novel multifunctional composite with antibacterial function and calcium (Ca) and phosphate (P) ion release, and (2) investigate the effects on enamel demineralization and hardness at the margins under biofilms. METHODS Dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into composite. Four groups were tested: (1) Commercial control (Heliomolar), (2) Experimental control (0% DMAHDM + 0% NACP), (3) antibacterial group (3% DMAHDM + 0% NACP), (D) antibacterial and remineralizing group (3% DMAHDM + 30% NACP). Mechanical properties and Ca and P ion release were measured. Colony-forming units (CFU), lactic acid and polysaccharide of Streptococcus mutans (S. mutans) biofilms were evaluated. Demineralization of bovine enamel with restorations was induced via S. mutans, and enamel hardness was measured. Data were analyzed via one-way and two-way analyses of variance and Tukey's multiple comparison tests. RESULTS Adding DMAHDM and NACP into composite did not compromise the mechanical properties (P > 0.05). Ca and P ion release of 3% DMAHDM + 30% NACP was increased at cariogenic low pH. Biofilm lactic acid and polysaccharides were greatly decreased via DMAHDM, and CFU was reduced by 4 logs (P < 0.05). Under biofilm acids, enamel hardness at the margins was decreased to about 0.5 GPa for control; it was about 1 GPa for antibacterial group, and 1.3 GPa for antibacterial and remineralizing group (P < 0.05). CONCLUSIONS The novel 3% DMAHDM + 30% NACP composite had strong antibacterial effects. It substantially reduced enamel demineralization adjacent to restorations under biofilm acid attacks, yielding enamel hardness that was 2-fold greater than that of control composites. The novel multifunctional composite is promising to inhibit recurrent caries.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
36
|
Novel CaF 2 Nanocomposites with Antibacterial Function and Fluoride and Calcium Ion Release to Inhibit Oral Biofilm and Protect Teeth. J Funct Biomater 2020; 11:jfb11030056. [PMID: 32752248 PMCID: PMC7564802 DOI: 10.3390/jfb11030056] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
(1) Background: The objective of this study was to develop a novel dental nanocomposite containing dimethylaminohexadecyl methacrylate (DMAHDM), 2-methacryloyloxyethyl phosphorylcholine (MPC), and nanoparticles of calcium fluoride (nCaF2) for preventing recurrent caries via antibacterial, protein repellent and fluoride releasing capabilities. (2) Methods: Composites were made by adding 3% MPC, 3% DMAHDM and 15% nCaF2 into bisphenol A glycidyl dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) (denoted BT). Calcium and fluoride ion releases were evaluated. Biofilms of human saliva were assessed. (3) Results: nCaF2+DMAHDM+MPC composite had the lowest biofilm colony forming units (CFU) and the greatest ion release; however, its mechanical properties were lower than commercial control composite (p < 0.05). nCaF2+DMAHDM composite had similarly potent biofilm reduction, with mechanical properties matching commercial control composite (p > 0.05). Fluoride and calcium ion releases from nCaF2+DMAHDM were much more than commercial composite. Biofilm CFU on composite was reduced by 4 logs (n = 9, p < 0.05). Biofilm metabolic activity and lactic acid were also substantially reduced by nCaF2+DMAHDM, compared to commercial control composite (p < 0.05). (4) Conclusions: The novel nanocomposite nCaF2+DMAHDM achieved strong antibacterial and ion release capabilities, without compromising the mechanical properties. This bioactive nanocomposite is promising to reduce biofilm acid production, inhibit recurrent caries, and increase restoration longevity.
Collapse
|
37
|
Bhadila G, Wang X, Zhou W, Menon D, Melo MAS, Montaner S, Oates TW, Weir MD, Sun J, Xu HHK. Novel low-shrinkage-stress nanocomposite with remineralization and antibacterial abilities to protect marginal enamel under biofilm. J Dent 2020; 99:103406. [PMID: 32526346 DOI: 10.1016/j.jdent.2020.103406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Polymerization shrinkage stress may lead to marginal damage, microleakage and failure of composite restorations. The objectives of this study were to : (1) develop a novel nanocomposite with low-shrinkage-stress, antibacterial and remineralization properties to reduce marginal enamel demineralization under biofilms; (2) evaluate the mechanical properties of the composite and calcium (Ca) and phosphate (P) ion release; and (3) investigate the cytotoxicity of the new low-shrinkage-stress monomer in vitro. METHODS The low-shrinkage-stress resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), and 3 % dimethylaminohexadecyl methacrylate (DMAHDM) and 20 % calcium phosphate nanoparticles (NACP) were added. Mechanical properties, polymerization shrinkage stress, and degree of conversion were evaluated. The growth of Streptococcus mutans (S. mutans) on enamel slabs with different composites was assessed. Ca and P ion releases and monomer cytotoxicity were measured. RESULTS Composite with DMAHDM and NACP had flexural strength of 84.9 ± 10.3 MPa (n = 6), matching that of a commercial control composite. Adding 3 % DMAHDM did not negatively affect the composite ion release. Under S. mutans biofilm, the marginal enamel hardness was 1.2 ± 0.1 GPa for the remineralizing and antibacterial group, more than 2-fold the 0.5 ± 0.07 GPa for control (p < 0.05). The polymerization shrinkage stress of the new composite was 40 % lower than that of traditional composite control (p < 0.05). The new monomers had fibroblast viability similar to that of traditional monomer control (p > 0.1). CONCLUSION A novel low-shrinkage-stress nanocomposite was developed with remineralizing and antibacterial properties. This new composite is promising to inhibit recurrent caries at the restoration margins by reducing polymerization stress and protecting enamel hardness.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA
| | - Wen Zhou
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, MD 21704, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
38
|
Pircalabioru GG, Chifiriuc MC. Nanoparticulate drug-delivery systems for fighting microbial biofilms: from bench to bedside. Future Microbiol 2020; 15:679-698. [PMID: 32495694 DOI: 10.2217/fmb-2019-0251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biofilms are highly tolerant to antimicrobial agents and adverse environmental conditions being important reservoirs for chronic and hard-to-treat infections. Nanomaterials exhibit microbiostatic/microbicidal/antipathogenic properties and can be also used for the delivery of antibiofilm agents. However, few of the many promising leads offered by nanotechnology reach clinical studies and eventually, become available to clinicians. The aim of this paper was to review the progress and challenges in the development of nanotechnology-based antibiofilm drug-delivery systems. The main identified challenges are: most papers report only in vitro studies of the activity of different nanoformulations; lack of standardization in the methodological approaches; insufficient collaboration between material science specialists and clinicians; paucity of in vivo studies to test efficiency and safety.
Collapse
Affiliation(s)
- Gratiela G Pircalabioru
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- University of Bucharest, Faculty of Biology, Research Institute of The University of Bucharest (ICUB), Bucharest, Romania
| |
Collapse
|
39
|
Zhou W, Zhou X, Huang X, Zhu C, Weir MD, Melo MA, Bonavente A, Lynch CD, Imazato S, Oates TW, Cheng L, Xu HH. Antibacterial and remineralizing nanocomposite inhibit root caries biofilms and protect root dentin hardness at the margins. J Dent 2020; 97:103344. [DOI: 10.1016/j.jdent.2020.103344] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 01/19/2023] Open
|
40
|
Standardization of antimicrobial testing of dental devices. Dent Mater 2020; 36:e59-e73. [DOI: 10.1016/j.dental.2019.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 12/15/2019] [Indexed: 11/23/2022]
|
41
|
Baras BH, Melo MAS, Thumbigere-Math V, Tay FR, Fouad AF, Oates TW, Weir MD, Cheng L, Xu HHK. Novel Bioactive and Therapeutic Root Canal Sealers with Antibacterial and Remineralization Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1096. [PMID: 32121595 PMCID: PMC7084849 DOI: 10.3390/ma13051096] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
According to the American Dental Association Survey of Dental Services Rendered (published in 2007), 15 million root canal treatment procedures are performed annually. Endodontic therapy relies mainly on biomechanical preparation, chemical irrigation and intracanal medicaments which play an important role in eliminating bacteria in the root canal. Furthermore, adequate obturation is essential to confine any residual bacteria within the root canal and deprive them of nutrients. However, numerous studies have shown that complete elimination of bacteria is not achieved due to the complex anatomy of the root canal system. There are several conventional antibiotic materials available in the market for endodontic use. However, the majority of these antibiotics and antiseptics provide short-term antibacterial effects, and they impose a risk of developing antibacterial resistance. The root canal is a dynamic environment, and antibacterial and antibiofilm materials with long-term effects and nonspecific mechanisms of action are highly desirable in such environments. In addition, the application of acidic solutions to the root canal wall can alter the dentin structure, resulting in a weaker and more brittle dentin. Root canal sealers with bioactive properties come in direct contact with the dentin wall and can play a positive role in bacterial elimination and strengthening of the root structure. The new generation of nanostructured, bioactive, antibacterial and remineralizing additives into polymeric resin-based root canal sealers are discussed in this review. The effects of these novel bioactive additives on the physical and sealing properties, as well as their biocompatibility, are all important factors that are presented in this article.
Collapse
Affiliation(s)
- Bashayer H. Baras
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mary Anne S. Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA;
| | - Vivek Thumbigere-Math
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Franklin R. Tay
- Department of Endodontics, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Ashraf F. Fouad
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC 27599-7450, USA;
| | - Thomas W. Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Michael D. Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
| | - Lei Cheng
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610000, China
| | - Hockin H. K. Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; (B.H.B.); (V.T.-M.); (T.W.O.)
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
42
|
Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HH, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J 2020; 39:69-79. [PMID: 31932551 DOI: 10.4012/dmj.2019-350] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Advancements in materials used for restorative and preventive treatment is being directed toward "bio-active" functionality. Incorporation of filler particles that release active components is a popular method to create bio-active materials, and many approaches are available to develop fillers with the ability to release components that provide "bio-protective" or "bio-promoting" properties; e.g. metal/calcium phosphate nanoparticles, multiple ion-releasing glass fillers, and non-biodegradable polymer particles. In this review paper, recent developments in cutting-edge filler technologies to release bio-active components are addressed and summarized according to their usefulness and functions, including control of bacterial infection, tooth strengthening, and promotion of tissue regeneration.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry.,Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Hockin Hk Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|
43
|
Chen Z, Lv Z, Sun Y, Chi Z, Qing G. Recent advancements in polyethyleneimine-based materials and their biomedical, biotechnology, and biomaterial applications. J Mater Chem B 2020; 8:2951-2973. [DOI: 10.1039/c9tb02271f] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Precise-synthesis strategies and integration approaches of bioinspired PEI-based systems, and their biomedical, biotechnology and biomaterial applications.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- China National Analytical Center
- Guangzhou 510070
- China
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
| | - Ziyu Lv
- Institute of Microscale Optoelectronics
- Shenzhen University
- Shenzhen 518000
- China
| | - Yifeng Sun
- Guangdong Provincial Public Laboratory of Analysis and Testing Technology
- China National Analytical Center
- Guangzhou 510070
- China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films
- State Key Laboratory of OEMT
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510275
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116000
- China
| |
Collapse
|
44
|
Chen H, Tang Y, Weir MD, Lei L, Masri R, Lynch CD, Oates TW, Zhang K, Hu T, Xu HHK. Effects of S. mutans gene-modification and antibacterial calcium phosphate nanocomposite on secondary caries and marginal enamel hardness. RSC Adv 2019; 9:41672-41683. [PMID: 35541571 PMCID: PMC9076473 DOI: 10.1039/c9ra09220j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023] Open
Abstract
Secondary caries at the restoration-tooth margins is a main reason for dental restoration failures. Gene-modification for Streptococcus mutans (S. mutans) and composites containing dimethylaminohexadecyl methacrylate (DMAHDMA) and nanoparticles of amorphous calcium phosphate (NACP) all have the potential to suppress bacterial acids and promote remineralization. However, there has been no report of their effects on marginal caries-inhibition and enamel hardness. The objective of this study was to investigate the effects of gene-modification and DMAHDM-NACP composite restoration on enamel demineralization and hardness at the margins under biofilm acids for the first time. Parent S. mutans and rnc gene-deleted S. mutans were tested side by side. The bioactive composite contained 3% DMAHDM and 30% NACP. Mechanical properties and calcium (Ca) and phosphate (P) ion releases were measured. Colony-forming units (CFU), MTT, lactic acid and polysaccharide of biofilms were evaluated. Demineralization of bovine enamel with composite restorations was induced via biofilms, then enamel hardness was measured. The dual strategy of combining rnc-deletion with DMAHDM+30NACP: (1) achieved the strongest biofilm-inhibition, with the greatest reduction in biofilm CFU by 6 logs; (2) decreased biofilm lactic acid and polysaccharide production by more than 80%; (3) achieved enamel hardness that was 140% higher than that of a commercial fluoride-releasing composite under 30 days of biofilm acids. Therefore, the novel dual approach of rnc gene-deletion and DMAHDM+NACP nanocomposite is promising to inhibit secondary caries at the margins and increase the longevity of tooth restorations.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Yunhao Tang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork Wilton Cork Ireland
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Ke Zhang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- School of Stomatology, Capital Medical University Beijing China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine Baltimore MD 21201 USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
| |
Collapse
|
45
|
Chen H, Tang Y, Weir MD, Gao J, Imazato S, Oates TW, Lei L, Wang S, Hu T, Xu HHK. Effects of S. mutans gene-modification and antibacterial monomer dimethylaminohexadecyl methacrylate on biofilm growth and acid production. Dent Mater 2019; 36:296-309. [PMID: 31839202 DOI: 10.1016/j.dental.2019.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/17/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Antibacterial quaternary ammonium monomers (QAMs) are used in resins. The rnc gene in Streptococcus mutans (S. mutans) plays a key role in resisting antibiotics. The objectives of this study were to investigate for the first time: (1) the effects of rnc deletion on S. mutans biofilms and acid production; (2) the combined effects of rnc deletion with dimethylaminohexadecyl methacrylate (DMAHDM) on biofilm-inhibition efficacy. METHODS Parent S. mutans strain UA159 (ATCC 700610) and the rnc-deleted S. mutans were used. Bacterial growth, minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) were measured to analyze the bacterial susceptibility of the parent and rnc-deleted S. mutans against DMAHDM, with the gold-standard chlorhexidine (CHX) as control. Biofilm biomass, polysaccharide and lactic acid production were measured. RESULTS The drug-susceptibility of the rnc-deleted S. mutans to DMAHDM or CHX was 2-fold higher than parent S. mutans. The drug-susceptibility did not increase after 10 passages (p < 0.05). Deleting the rnc gene increased the biofilm susceptibility to DMAHDM or CHX by 2-fold. The rnc-deletion in S. mutans reduced biofilm biomass, polysaccharide and lactic acid production, even at no drugs. DMAHDM was nearly 40 % more potent than the gold-standard CHX. The combination of rnc deletion+DMAHDM treatment achieved the greatest reduction in biofilm biomass, polysaccharide synthesis, and lactic acid production. SIGNIFICANCE Gene modification by deleting the rnc in S. mutans reduced the biofilm growth and acid production, and the rnc deletion+DMAHDM method showed the greatest biofilm-inhibition efficacy, for the first time. The dual strategy of antibacterial monomer+bacterial gene modification shows great potential to control biofilms and inhibit caries.
Collapse
Affiliation(s)
- Hong Chen
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yunhao Tang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jianghong Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Preventive Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Suping Wang
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Operative Dentistry and Endodontics & Periodontics and Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
46
|
Lan T, Guo Q, Shen X. Polyethyleneimine and quaternized ammonium polyethyleneimine: the versatile materials for combating bacteria and biofilms. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2019; 30:1243-1259. [PMID: 31177926 DOI: 10.1080/09205063.2019.1627650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/25/2019] [Accepted: 06/02/2019] [Indexed: 12/28/2022]
Abstract
Bacterial infection has become a serious clinical concern due to the emergence of drug-resistance and biofilm formation. Therefore, it is in great demand to develop efficient antimicrobial agents to treat bacterial infection without using antibiotics. Herein, we successfully prepared four quaternized ammonium PEI (QPEI: PEI1200-C2, PEI1200-C4, PEI1200-C6 and PEI1200-C8) using the commercial available PEI1200. Both PEI and four QPEI presented broad-spectrum antimicrobial activity against Gram-negative bacteria (E. coli, and P. aeruginosa) and Gram-positive bacteria (B. amyloliquefaciens and S. aureus), especially PEI1200-C6 showed the strongest antimicrobial activity with good biocompatibility at the MIC concentrations. Besides, PEI1200-C6 showed 4-16-fold better antibacterial effect than PEI1200, and fluorescent microscope imaging demonstrated that both of them could efficiently eradicate biofilms formed by four bacterial strains in vitro. As the accessible broad-spectrum antibacterial agents, PEI1200 and PEI1200-C6 are significant candidates to treat bacterial infections or eradicate biofilms on indwelling medical devices.
Collapse
Affiliation(s)
- Tianyu Lan
- a School of Chemical Engineering , Guizhou Minzu University, University Town , Guizhou , China
| | - Qianqian Guo
- b The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences , Guizhou Medical University, University Town , Guizhou , China
| | - Xiangchun Shen
- b The Department of pharmaceutical Engineering (State Key Laboratory of Functions and Applications of Medicinal Plants, the High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, the Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences , Guizhou Medical University, University Town , Guizhou , China
| |
Collapse
|
47
|
Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci 2019; 11:28. [PMID: 31570700 PMCID: PMC6802668 DOI: 10.1038/s41368-019-0062-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 02/06/2023] Open
Abstract
Effective control of oral biofilm infectious diseases represents a major global challenge. Microorganisms in biofilms exhibit increased drug tolerance compared with planktonic cells. The present review covers innovative antimicrobial strategies for controlling oral biofilm-related infections published predominantly over the past 5 years. Antimicrobial dental materials based on antimicrobial agent release, contact-killing and multi-functional strategies have been designed and synthesized for the prevention of initial bacterial attachment and subsequent biofilm formation on the tooth and material surface. Among the therapeutic approaches for managing biofilms in clinical practice, antimicrobial photodynamic therapy has emerged as an alternative to antimicrobial regimes and mechanical removal of biofilms, and cold atmospheric plasma shows significant advantages over conventional antimicrobial approaches. Nevertheless, more preclinical studies and appropriately designed and well-structured multi-center clinical trials are critically needed to obtain reliable comparative data. The acquired information will be helpful in identifying the most effective antibacterial solutions and the most optimal circumstances to utilize these strategies.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, the 7th Medical Center of PLA General Hospital, Beijing, PR China
| | - Franklin R Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| | - Ji-Hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, the Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
48
|
Wu J, Xie X, Zhou H, Tay FR, Weir MD, Melo MAS, Oates TW, Zhang N, Zhang Q, Xu HH. Development of a new class of self-healing and therapeutic dental resins. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Wang Q, Wang L, Gao L, Yu L, Feng W, Liu N, Xu M, Li X, Li P, Huang W. Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. J Mater Chem B 2019. [DOI: 10.1039/c9tb00498j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An antibacterial and self-healing coating was fabricated via LbL assembly based on N-decyl PEI (DPEI) micelles.
Collapse
|
50
|
Wang H, Wang S, Cheng L, Jiang Y, Melo MAS, Weir MD, Oates TW, Zhou X, Xu HHK. Novel dental composite with capability to suppress cariogenic species and promote non-cariogenic species in oral biofilms. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:587-596. [PMID: 30423744 PMCID: PMC6239200 DOI: 10.1016/j.msec.2018.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 02/05/2023]
Abstract
Recurrent caries often occurs and is a primary reason for the failure of dental composite restorations. The objectives of this study were to: (1) develop a bioactive composite containing dimethylaminohexadecyl methacrylate (DMAHDM), (2) investigate its antibacterial effects and suppression on biofilm growth, and (3) investigate its ability to modulate biofilm species composition for the first time. DMAHDM was incorporated into a composite at mass% of 0%, 0.75%, 1.5%, 2.25% and 3%. A commercial composite Heliomolar served as a comparative control. A biofilm model consisting of Streptococcus mutans (S. mutans), Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii) was tested by growing biofilms for 48 h and 72 h on composites. Colony-forming units (CFUs), metabolic activity and live/dead staining were evaluated. Lactic acid and polysaccharide productions were measured to assess biofilm cariogenicity. TaqMan real-time polymerase chain reaction was used to determine the proportion of each species in the biofilm. DMAHDM-containing composite had a strong anti-biofilm function, reducing biofilm CFU by 2-3 orders of magnitude, compared to control composite. Biofilm metabolic activity, lactic acid and polysaccharides were decreased substantially, compared to control (p < 0.05). At 72 h, the cariogenic S. mutans proportion in the biofilm on the composite with 3% DMAHDM was 19.9%. In contrast, an overwhelming S. mutans proportion of 92.2% and 91.2% existed in biofilms on commercial control and 0% DMAHDM, respectively. In conclusion, incorporating DMAHDM into dental composite: (1) yielded potent anti-biofilm properties; (2) modulated the biofilm species composition toward a non-cariogenic tendency. The new DMAHDM composite is promising for applications in a wide range of tooth cavity restorations to modulate oral biofilm species and combat caries.
Collapse
Affiliation(s)
- Haohao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Suping Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Yaling Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|