1
|
Shi X. The bisintercalator family of nonribosomal peptides: structural diversity and biosynthetic mechanism. Nat Prod Rep 2025. [PMID: 40207437 DOI: 10.1039/d5np00003c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Covering: up to February 2025Among the numerous bioactive microbial natural products, a subset of nonribosomal peptides derived from actinobacteria is characterized by their C2-symmetric macrocyclic scaffolds and referred to as bisintercalators due to their ability to bisintercalate into DNA molecules. This family of compounds exhibits excellent antimicrobial, antitumor and antiviral properties, making them promising candidates for drug development. New members of the bisintercalator family continue to be discovered, and significant advancement has been made in understanding their biosynthesis over the past two decades. These efforts have established the general biosynthetic pathways of bisintercalators, although some chemically intriguing enzymatic transformations remain to be fully elucidated. This review summarizes the sources and chemical structures of known bisintercalators, briefly discussing their bioactivities, and then highlights the biochemical reactions involved in assembling their sophisticated macrocyclic scaffolds.
Collapse
Affiliation(s)
- Xinjie Shi
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
2
|
Mizutani T, Abe I. Pyridoxal 5'-Phosphate (PLP)-Dependent β- and γ-Substitution Reactions Forming Nonproteinogenic Amino Acids in Natural Product Biosynthesis. JOURNAL OF NATURAL PRODUCTS 2025; 88:211-230. [PMID: 39700331 DOI: 10.1021/acs.jnatprod.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Living organisms synthesize various nonproteinogenic amino acids (NPAAs) as the building blocks of natural products. These NPAAs are often biosynthesized by pyridoxal 5'-phosphate (PLP)-dependent enzymes, which catalyze β- or γ- substitutions. These enzymes contribute to the structural diversification of NPAAs by installing new functional groups to amino acid side chains. Recent developments in genome mining have led to the identification of various PLP-dependent enzymes catalyzing β- or γ- substitutions, which form NPAAs in secondary metabolism. This short review summarizes recently investigated PLP-enzymes catalyzing β- or γ-substitutions in the biosynthesis of NPAAs by covering the literature published from 2015 through 2024.
Collapse
Affiliation(s)
- Taku Mizutani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Yu Y, van der Donk WA. PEARL-Catalyzed Peptide Bond Formation after Chain Reversal by Ureido-Forming Condensation Domains. ACS CENTRAL SCIENCE 2024; 10:1242-1250. [PMID: 38947204 PMCID: PMC11212132 DOI: 10.1021/acscentsci.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic pathway toward these compounds. The final product is a bisarginyl ureidopeptide with an enone electrophile. The putative lantibiotic dehydratase catalyzes peptide bond formation to a Thr that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS SnaA catalyzes the formation of a ureido group, and bioinformatics analysis revealed a distinct active site signature EHHXXHDG of ureido-generating condensation (Curea) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and nonribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Sakata S, Li J, Yasuno Y, Shinada T, Shin-Ya K, Katsuyama Y, Ohnishi Y. Identification of the Cirratiomycin Biosynthesis Gene Cluster in Streptomyces Cirratus: Elucidation of the Biosynthetic Pathways for 2,3-Diaminobutyric Acid and Hydroxymethylserine. Chemistry 2024; 30:e202400271. [PMID: 38456538 DOI: 10.1002/chem.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.
Collapse
Affiliation(s)
- Shunki Sakata
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jiafeng Li
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
5
|
Wilson RH, Chatterjee S, Smithwick ER, Damodaran AR, Bhagi-Damodaran A. Controllable multi-halogenation of a non-native substrate by SyrB2 iron halogenase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593161. [PMID: 38766225 PMCID: PMC11100670 DOI: 10.1101/2024.05.08.593161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Geminal, multi-halogenated functional groups are widespread in natural products and pharmaceuticals, yet no synthetic methodologies exist that enable selective multi-halogenation of unactivated C-H bonds. Biocatalysts are powerful tools for late-stage C-H functionalization, as they operate with high degrees of regio-, chemo-, and stereoselectivity. 2-oxoglutarate (2OG)-dependent non-heme iron halogenases chlorinate and brominate aliphatic C-H bonds offering a solution for achieving these challenging transformations. Here, we describe the ability of a non-heme iron halogenase, SyrB2, to controllably halogenate non-native substrate alpha-aminobutyric acid (Aba) to yield mono-chlorinated, di-chlorinated, and tri-chlorinated products. These chemoselective outcomes are achieved by controlling the loading of 2OG cofactor and SyrB2 biocatalyst. By using a ferredoxin-based biological reductant for electron transfer to the catalytic center of SyrB2, we demonstrate order-of-magnitude enhancement in the yield of tri-chlorinated product that were previously inaccessible using any single halogenase enzyme. We also apply these strategies to broaden SyrB2's reactivity scope to include multi-bromination and demonstrate chemoenzymatic conversion of the ethyl side chain in Aba to an ethylyne functional group. We show how steric hindrance induced by the successive addition of halogen atoms on Aba's C4 carbon dictates the degree of multi-halogenation by hampering C3-C4 bond rotation within SyrB2's catalytic pocket. Overall, our work showcases the synthetic potential of iron halogenases to facilitate multi-C-H functionalization chemistry.
Collapse
Affiliation(s)
- R Hunter Wilson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Sourav Chatterjee
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Elizabeth R Smithwick
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Anoop R Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| | - Ambika Bhagi-Damodaran
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, 55455, United States
| |
Collapse
|
6
|
Li R, Lichstrahl MS, Zandi TA, Kahlert L, Townsend CA. The dabABC operon is a marker of C4-alkylated monobactam biosynthesis and responsible for ( 2S, 3R)-diaminobutyrate production. iScience 2024; 27:109202. [PMID: 38433893 PMCID: PMC10906522 DOI: 10.1016/j.isci.2024.109202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) assemble metabolites of medicinal and commercial value. Both serine and threonine figure prominently in these processes and separately can be converted to the additional NRPS building blocks 2,3-diaminopropionate (Dap) and 2,3-diaminobutyrate (Dab). Here we bring extensive bioinformatics, in vivo and in vitro experimentation to compose a unified view of the biosynthesis of these widely distributed non-canonical amino acids that both derive by pyridoxal-mediated β-elimination of the activated O-phosphorylated substrates followed by β-addition of an amine donor. By examining monobactam biosynthesis in Pseudomonas and in Burkholderia species where it is silent, we show that (2S,3R)-Dab synthesis depends on an l-threonine kinase (DabA), a β-replacement reaction with l-aspartate (DabB) and an argininosuccinate lyase-like protein (DabC). The growing clinical importance of monobactams to both withstand Ambler Class B metallo-β-lactamases and retain their antibiotic activity make reprogrammed precursor and NRPS synthesis of modified monobactams a feasible and attractive goal.
Collapse
Affiliation(s)
- Rongfeng Li
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Michael S. Lichstrahl
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Trevor A. Zandi
- T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Lukas Kahlert
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| | - Craig A. Townsend
- Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA
| |
Collapse
|
7
|
Yu Y, van der Donk WA. PEARL-catalyzed peptide bond formation after chain reversal during the biosynthesis of non-ribosomal peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573212. [PMID: 38187666 PMCID: PMC10769383 DOI: 10.1101/2023.12.23.573212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
A subset of nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are encoded in their biosynthetic gene clusters (BGCs) with enzymes annotated as lantibiotic dehydratases. The functions of these putative lantibiotic dehydratases remain unknown. Here, we characterize an NRPS-PKS BGC with a putative lantibiotic dehydratase from the bacterium Stackebrandtia nassauensis (sna). Heterologous expression revealed several metabolites produced by the BGC, and the omission of selected biosynthetic enzymes revealed the biosynthetic sequence towards these compounds. The putative lantibiotic dehydratase catalyzes peptide bond formation that extends the peptide scaffold opposite to the NRPS and PKS biosynthetic direction. The condensation domain of the NRPS catalyzes the formation of a ureido group, and bioinformatics analysis revealed distinct active site residues of ureido-generating condensation (UreaC) domains. This work demonstrates that the annotated lantibiotic dehydratase serves as a separate amide bond-forming machinery in addition to the NRPS, and that the lantibiotic dehydratase enzyme family possesses diverse catalytic activities in the biosynthesis of both ribosomal and non-ribosomal natural products.
Collapse
Affiliation(s)
- Yue Yu
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
8
|
Jähne J, Herfort S, Doellinger J, Lasch P, Tam LTT, Borriss R, Vater J. Investigation of the potential of Brevibacillus spp. for the biosynthesis of nonribosomally produced bioactive compounds by combination of genome mining with MALDI-TOF mass spectrometry. Front Microbiol 2023; 14:1286565. [PMID: 38156002 PMCID: PMC10753013 DOI: 10.3389/fmicb.2023.1286565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/30/2023] Open
Abstract
The biosynthetic potential of 11 Brevibacillus spp. strains was investigated by combination of genome mining with mass spectrometric analysis using MALDI-TOF mass spectrometry. These endophytic, plant associated Brevibacillus strains were isolated from crop plants, such as coffee and black pepper, in Vietnam. Draft genomes of these strains were available. They were classified (a) by comparison with type strains and a collection of genome-sequenced Brevibacillus spp. deposited in the NCBI data base as well as (b) by construction of a phylogenetic tree from the core sequences of publicly available genomes of Brevibacillus strains. They were identified as Brevibacillus brevis (1 strain); parabrevis (2 strains); porteri (3 strains); and 5 novel Brevibacillus genomospecies. Our work was specifically focused on the detection and characterization of nonribosomal peptides produced by these strains. Structural characterization of these compounds was performed by LIFT-MALDI-TOF/TOF mass spectrometric sequence analysis. The highlights of our work were the demonstration of the tyrocidines, a well-known family of cyclodecapeptides of great structural variability, as the main products of all investigated strains and the identification of a novel class of pentapeptides produced by B. brevis; B. schisleri; and B. porteri which we designate as brevipentins. Our biosynthetic studies demonstrate that knowledge of their biosynthetic capacity can efficiently assist classification of Brevibacillus species.
Collapse
Affiliation(s)
- Jennifer Jähne
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Stefanie Herfort
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Joerg Doellinger
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Peter Lasch
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| | - Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Ha Noi, Vietnam
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Joachim Vater
- Centre for Biological Threads and Special Pathogens, Proteomics and Spectroscopy (ZBS6), Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
9
|
Liu N, Xu Y, Shang F, Sun H, Liu X, Huang Y, Tan H, Zhang J. New insights into the dihydro-mureidomycin biosynthesis controlled by two unusual proteins in Streptomyces roseosporus. Microb Cell Fact 2023; 22:255. [PMID: 38087285 PMCID: PMC10714638 DOI: 10.1186/s12934-023-02260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Uridyl peptide compounds are renowned as a subclass of nucleoside antibiotics for their highly specific antibacterial activity against Gram-negative bacteria and the unique target of action. We previously activated the biosynthetic gene cluster of a uridyl peptide antibiotic, mureidomycin, in Streptomyces roseosporus NRRL 15998 by introducing an exogenous positive regulator gene ssaA, and the generated strain was designated as Sr-hA. This study aims to further explore mureidomycin analogs from Sr-hA as well as the collaborative roles of two wide-spread genes, SSGG-02980 and SSGG-03002 encoding putative nuclease/phosphatase and oxidoreductase respectively, in mureidomycin diversification. RESULTS In order to understand how SSGG-02980 and SSGG-03002 contribute to mureidomycin biosynthesis, the gene disruption mutants and complementary strains were constructed. Mass spectrometry analyses revealed that two series of pairwise mureidomycin analogs were synthesized in Sr-hA with a two-dalton difference in molecular weight for each pair. By disruption of SSGG-03002, only mureidomycins with lower molecular weight (MRDs, 1-6) could be specifically accumulated in the mutant (∆03002-hA), whereas the other series of products with molecular weight plus 2 Da (rMRDs, 1'-6') became dominant in SSGG-02980 disruption mutant (∆02980-hA). Further comprehensive NMR analyses were performed to elucidate the structures, and three MRDs (3, 4, 5) with unsaturated double bond at C5-C6 of uracil group were characterized from ∆03002-hA. In contrast, the paired rMRDs analogs (3', 4', 5') from ∆SSGG-02980 corresponding to 3, 4 and 5 were shown to contain a single bond at this position. The results verified that SSGG-03002 participates in the reduction of uracil ring, whereas SSGG-02980 antagonizes the effect of SSGG-03002, which has been rarely recognized for a phosphatase. CONCLUSIONS Overall, this study revealed the key roles of two wide-spread families of enzymes in Streptomyces. Of them, oxidoreductase, SSGG-03002, is involved in dihydro-mureidomycin biosynthesis of S. roseosporus, whereas nuclease/phosphatase, SSGG-02980, has an adverse effect on SSGG-03002. This kind of unusual regulation model between nuclease/phosphatase and oxidoreductase is unprecedented, providing new insights into the biosynthesis of mureidomycins in Streptomyces. The findings would be of significance for structural diversification of more uridyl peptide antibiotics against Gram-negative bacteria.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Shang
- Analytical and Testing Center, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huiying Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Lu Y, Li Y, Fan J, Li X, Sun H, Wang L, Han X, Zhu Y, Zhang T, Shi Y, Xie Y, Hong B. Expanding structural diversity of 5'-aminouridine moiety of sansanmycin via mutational biosynthesis. Front Bioeng Biotechnol 2023; 11:1278601. [PMID: 38026887 PMCID: PMC10643210 DOI: 10.3389/fbioe.2023.1278601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sansanmycins represent a family of uridyl peptide antibiotics with antimicrobial activity specifically against Mycobacterium tuberculosis (including drug-resistant M. tuberculosis) and Pseudomonas aeruginosa. They target translocase I (MraY) to inhibit bacterial cell wall assembly. Given the unique mechanism of action, sansanmycin has emerged as a potential lead compound for developing new anti-tuberculosis drugs, while the 5'-aminouridine moiety plays a crucial role in the pharmacophore of sansanmycin. For expanding the structural diversity of the 5'-aminouridine moiety of sansanmycin through biosynthetic methods, we firstly demonstrated that SsaM and SsaK are responsible for the biosynthesis of the 5'-aminouridine moiety of sansanmycin in vivo. Using the ssaK deletion mutant (SS/KKO), we efficiently obtained a series of new analogues with modified 5'-aminouridine moieties through mutational biosynthesis. Based on molecular networking analysis of MS/MS, twenty-two new analogues (SS-KK-1 to -13 and SS-KK-A to -I) were identified. Among them, four new analogues (SS-KK-1 to -3 and SS-KK-C) were purified and bioassayed. SS-KK-2 showed better antibacterial activity against E. coli ΔtolC than the parent compound sansanmycin A. SS-KK-3 showed the same anti-TB activity as sansanmycin A against M. tuberculosis H37Rv as well as clinically isolated, drug-sensitive and multidrug-resistant M. tuberculosis strains. Furthermore, SS-KK-3 exhibited significantly improved structural stability compared to sansanmycin A. The results suggested that mutasynthesis is an effective and practical strategy for expanding the structural diversity of 5'-aminouridine moiety in sansanmycin.
Collapse
Affiliation(s)
- Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Fan
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Cartmell C, Abou Fayad A, Lynch R, Sharma SV, Hauck N, Gust B, Goss RJM. SynBio-SynChem Approaches to Diversifying the Pacidamycins through the Exploitation of an Observed Pictet-Spengler Reaction. Chembiochem 2021; 22:712-716. [PMID: 33058439 PMCID: PMC7898326 DOI: 10.1002/cbic.202000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/12/2020] [Indexed: 11/09/2022]
Abstract
A nonenzymatic Pictet-Spengler reaction has been postulated to give rise to a subset of naturally occurring uridyl peptide antibiotics (UPAs). Here, using a combination of strain engineering and synthetic chemistry, we demonstrate that Pictet-Spengler chemistry may be employed to generate even greater diversity in the UPAs. We use an engineered strain to afford access to meta-tyrosine containing pacidamycin 4. Pictet-Spengler diversification of this compound using a small series of aryl-aldehydes was achieved with some derivatives affording remarkable diastereomeric control.
Collapse
Affiliation(s)
- Christopher Cartmell
- School of Chemistry and BSRCUniversity of St AndrewsSt AndrewsFife, KY16 9STUK
- Department of ChemistryUniversity of Prince Edward Island CharlottetownPrince Edward IslandC1A 4P3Canada
| | - Antoine Abou Fayad
- School of Chemistry and BSRCUniversity of St AndrewsSt AndrewsFife, KY16 9STUK
- Department of Experimental Pathology, Immunology and Microbiology Faculty of Medicine. Center of Infectious Disease Research (CIDR) WHO Collaborating Center for Reference and Research on Bacterial PathogensAmerican University of BeirutRiad El-Solh/Beirut1107 2020Lebanon
| | - Rosemary Lynch
- School of Chemistry and BSRCUniversity of St AndrewsSt AndrewsFife, KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry and BSRCUniversity of St AndrewsSt AndrewsFife, KY16 9STUK
| | - Nils Hauck
- Pharmazeutische Biologie, Pharmazeutisches InstitutEberhard-Karls-UniversitätAuf der Morgenstelle 872076TübingenGermany
| | - Bertolt Gust
- Pharmazeutische Biologie, Pharmazeutisches InstitutEberhard-Karls-UniversitätAuf der Morgenstelle 872076TübingenGermany
| | - Rebecca J. M. Goss
- School of Chemistry and BSRCUniversity of St AndrewsSt AndrewsFife, KY16 9STUK
| |
Collapse
|
12
|
Molecular mechanism of mureidomycin biosynthesis activated by introduction of an exogenous regulatory gene ssaA into Streptomyces roseosporus. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1949-1963. [PMID: 33580428 PMCID: PMC7880210 DOI: 10.1007/s11427-020-1892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/04/2022]
Abstract
Mureidomycins (MRDs), a group of unique uridyl-peptide antibiotics, exhibit antibacterial activity against the highly refractory pathogen Pseudomonas aeruginosa. Our previous study showed that the cryptic MRD biosynthetic gene cluster (BGC) mrd in Streptomyces roseosporus NRRL 15998 could not be activated by its endogenous regulator 02995 but activated by an exogenous activator SsaA from sansanmycin’s BGC ssa of Streptomyces sp. strain SS. Here we report the molecular mechanism for this inexplicable regulation. EMSAs and footprinting experiments revealed that SsaA could directly bind to a 14-nt palindrome sequence of 5′-CTGRCNNNNGTCAG-3′ within six promoter regions of mrd. Disruption of three representative target genes (SSGG-02981, SSGG-02987 and SSGG-02994) showed that the target genes directly controlled by SsaA were essential for MRD production. The regulatory function was further investigated by replacing six regions of SSGG-02995 with those of ssaA. Surprisingly, only the replacement of 343–450 nt fragment encoding the 115–150 amino acids (AA) of SsaA could activate MRD biosynthesis. Further bioinformatics analysis showed that the 115–150 AA situated between two conserved domains of SsaA. Our findings significantly demonstrate that constitutive expression of a homologous exogenous regulatory gene is an effective strategy to awaken cryptic biosynthetic pathways in Streptomyces.
Collapse
|
13
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
14
|
Gong R, Yu L, Qin Y, Price NPJ, He X, Deng Z, Chen W. Harnessing synthetic biology-based strategies for engineered biosynthesis of nucleoside natural products in actinobacteria. Biotechnol Adv 2020; 46:107673. [PMID: 33276073 DOI: 10.1016/j.biotechadv.2020.107673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/25/2020] [Indexed: 01/01/2023]
Abstract
Antibiotic resistance poses an increasing threat to global health, and it is urgent to reverse the present trend by accelerating development of new natural product derived drugs. Nucleoside antibiotics, a valuable family of promising natural products with remarkable structural features and diverse biological activities, have played significant roles in healthcare and for plant protection. Understanding the biosynthesis of these intricate molecules has provided a foundation for bioengineering the microbial cell factory towards yield enhancement and structural diversification. In this review, we summarize the recent progresses in employing synthetic biology-based strategies to improve the production of target nucleoside antibiotics. Moreover, we delineate the advances on rationally accessing the chemical diversities of natural nucleoside antibiotics.
Collapse
Affiliation(s)
- Rong Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Le Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yini Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Neil P J Price
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL, USA
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenqing Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
15
|
tRNA-dependent amide bond-forming enzymes in peptide natural product biosynthesis. Curr Opin Chem Biol 2020; 59:164-171. [PMID: 32898755 DOI: 10.1016/j.cbpa.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
In the ribosome-independent biosynthesis of peptide natural products, amino acid building blocks are generally activated in the form of phosphoesters, esters, or thioesters prior to amide bond formation. Following the recent discovery of bacterial enzymes that utilize an aminoacyl ester with a transfer ribonucleic acid (tRNA) in primary metabolism, the number of tRNA-dependent enzymes used in biosynthetic studies of peptide natural products has increased steadily. In this review, we summarize the rapidly growing knowledge base regarding two types of tRNA-dependent enzymes, which are structurally and functionally distinct. Initially, we focus on enzymes with the GCN5-related N-acetyltransferase fold and discuss the catalytic function and aminoacyl-tRNA recognition. Next, newly found peptide-amino acyl tRNA ligases and their ATP-dependent reactions are highlighted.
Collapse
|
16
|
Arbour CA, Imperiali B. Uridine natural products: Challenging targets and inspiration for novel small molecule inhibitors. Bioorg Med Chem 2020; 28:115661. [PMID: 32828427 DOI: 10.1016/j.bmc.2020.115661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/18/2020] [Indexed: 12/16/2022]
Abstract
Nucleoside derivatives, in particular those featuring uridine, are familiar components of the nucleoside family of bioactive natural products. The structural complexity and biological activities of these compounds have inspired research from organic chemistry and chemical biology communities seeking to develop novel approaches to assemble the challenging molecular targets, to gain inspiration for enzyme inhibitor development and to fuel antibiotic discovery efforts. This review will present recent case studies describing the total synthesis and biosynthesis of uridine natural products, and de novo synthetic efforts exploiting features of the natural products to produce simplified scaffolds. This research has culminated in the development of complementary strategies that can lead to effective uridine-based inhibitors and antibiotics. The strengths and challenges of the juxtaposing methods will be illustrated by examining select uridine natural products. Moreover, structure-activity relationships (SAR) for each natural product-inspired scaffold will be discussed, highlighting the impact on inhibitor development, with the aim of future uridine-based small molecule expansion.
Collapse
Affiliation(s)
- Christine A Arbour
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Salunke RV, Mishra PK, Sanghvi YS, Ramesh NG. Synthesis of novel homoazanucleosides and their peptidyl analogs. Org Biomol Chem 2020; 18:5639-5651. [PMID: 32724966 DOI: 10.1039/d0ob01046d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthesis of novel homoazanucleosides and their peptidyl analogs as hybrid molecules comprised of amino acids, an iminosugar and natural nucleobases is reported for the first time. A pluripotent amino-substituted chiral polyhydroxypyrrolidine, possessing orthogonally different functional groups on either arm of the pyrrolidine ring, served as an ideal substrate for the synthesis of the proposed peptidyl homoazanucleosides. The acid sensitive primary benzyloxy group, on one arm of the pyrrolidine ring, after selective deprotection, was utilized for the introduction of nucleobases to obtain the homoazanucleosides. The amino group on the other side offered the opportunity to be coupled with amino acids to deliver the desired peptidyl homoazanucleosides. Glycosidase inhibition studies revealed that the acetamido derivatives of homoazanucleosides were found to be sub-millimolar inhibitors of β-N-acetyl-glucosaminidase.
Collapse
Affiliation(s)
- Rahul Vilas Salunke
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| | - Pawan Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, CA 92024-6615, USA
| | - Namakkal G Ramesh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi - 110016, India.
| |
Collapse
|
18
|
Recent advances in the biosynthesis of nucleoside antibiotics. J Antibiot (Tokyo) 2019; 72:913-923. [PMID: 31554958 DOI: 10.1038/s41429-019-0236-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/07/2019] [Indexed: 01/27/2023]
Abstract
Nucleoside antibiotics are a diverse class of natural products with promising biomedical activities. These compounds contain a saccharide core and a nucleobase. Despite the large number of nucleoside antibiotics that have been reported, biosynthetic studies on these compounds have been limited compared with those on other types of natural products such as polyketides, peptides, and terpenoids. Due to recent advances in genome sequencing technology, the biosynthesis of nucleoside antibiotics has rapidly been clarified. This review covering 2009-2019 focuses on recent advances in the biosynthesis of nucleoside antibiotics.
Collapse
|
19
|
Mechanism of action of nucleoside antibacterial natural product antibiotics. J Antibiot (Tokyo) 2019; 72:865-876. [DOI: 10.1038/s41429-019-0227-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/02/2019] [Accepted: 07/31/2019] [Indexed: 01/09/2023]
|
20
|
Shi Y, Wang X, He N, Xie Y, Hong B. Rescrutiny of the sansanmycin biosynthetic gene cluster leads to the discovery of a novel sansanmycin analogue with more potency against Mycobacterium tuberculosis. J Antibiot (Tokyo) 2019; 72:769-774. [PMID: 31341273 DOI: 10.1038/s41429-019-0210-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 01/21/2023]
Abstract
A novel sansanmycin analogue, sansanmycin Q (1), was identified by genome mining from the fermentation broth of Streptomyces sp. SS (CPCC 200442). In comparison with other sansanmycin compounds, sansanmycin Q has an extra glycine residue at the N-terminus of the pseudopeptide backbone. The additional glycine was proved to be assembled to sansanmycin A by SsaB, a tRNA-dependent aminoacyltransferase, based on the results of rescrutiny of sansanmycin biosynthetic gene cluster, and then overexpression and knockout of ssaB in the wild-type strain. The structure of sansanmycin Q was assigned by interpretation of NMR and mass spectral data. The results of the bioassay disclosed that sansanmycin Q exhibited more potency against Mycobacterium tuberculosis H37Rv and a rifampicin- and isoniazid-resistant strain than sansanmycin A.
Collapse
Affiliation(s)
- Yuanyuan Shi
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China
| | - Xinwei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China
| | - Ning He
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China.
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China. .,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tiantanxili No.1, Beijing, China.
| |
Collapse
|
21
|
Thongkongkaew T, Ding W, Bratovanov E, Oueis E, Garcı́a-Altares M, Zaburannyi N, Harmrolfs K, Zhang Y, Scherlach K, Müller R, Hertweck C. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species. ACS Chem Biol 2018; 13:1370-1379. [PMID: 29669203 DOI: 10.1021/acschembio.8b00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.
Collapse
Affiliation(s)
- Tawatchai Thongkongkaew
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Wei Ding
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Evgeni Bratovanov
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Emilia Oueis
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Marı́a Garcı́a-Altares
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Shanda Nanlu 27, 250100 Jinan, People’s Republic of China
| | - Kirstin Scherlach
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
- Chair for Natural Product Chemistry, Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
22
|
Sosio M, Gaspari E, Iorio M, Pessina S, Medema MH, Bernasconi A, Simone M, Maffioli SI, Ebright RH, Donadio S. Analysis of the Pseudouridimycin Biosynthetic Pathway Provides Insights into the Formation of C-nucleoside Antibiotics. Cell Chem Biol 2018; 25:540-549.e4. [PMID: 29551347 DOI: 10.1016/j.chembiol.2018.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/28/2017] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
Abstract
Pseudouridimycin (PUM) is a selective nucleoside-analog inhibitor of bacterial RNA polymerase with activity against Gram-positive and Gram-negative bacteria. PUM, produced by Streptomyces sp. ID38640, consists of a formamidinylated, N-hydroxylated Gly-Gln dipeptide conjugated to 5'-aminopseudouridine. We report the characterization of the PUM gene cluster. Bioinformatic analysis and mutational knockouts of pum genes with analysis of accumulated intermediates, define the PUM biosynthetic pathway. The work provides the first biosynthetic pathway of a C-nucleoside antibiotic and reveals three unexpected features: production of free pseudouridine by the dedicated pseudouridine synthase, PumJ; nucleoside activation by specialized oxidoreductases and aminotransferases; and peptide-bond formation by amide ligases. A central role in the PUM biosynthetic pathway is played by the PumJ, which represents a divergent branch within the TruD family of pseudouridine synthases. PumJ-like sequences are associated with diverse gene clusters likely to govern the biosynthesis of different classes of C-nucleoside antibiotics.
Collapse
Affiliation(s)
- Margherita Sosio
- Naicons Srl, Viale Ortles 22/4, 20139 Milan, Italy; KtedoGen Srl, Viale Ortles 22/4, 20139 Milan, Italy.
| | | | | | | | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | | | | | - Sonia I Maffioli
- Naicons Srl, Viale Ortles 22/4, 20139 Milan, Italy; KtedoGen Srl, Viale Ortles 22/4, 20139 Milan, Italy
| | - Richard H Ebright
- Department of Chemistry and Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Stefano Donadio
- Naicons Srl, Viale Ortles 22/4, 20139 Milan, Italy; KtedoGen Srl, Viale Ortles 22/4, 20139 Milan, Italy
| |
Collapse
|
23
|
Abstract
The terminal alkyne is a readily derivatized functionality valued for its diverse applications in material synthesis, pharmaceutical science, and chemical biology. The synthetic biology routes to terminal alkynes are highly desired and yet underexplored. Some marine natural products contain a terminal alkyne functionality, and the discovery of the biosynthetic gene clusters for jamaicamide B and carmabin A marked the beginning of a new era in the understanding and engineering of terminal alkyne biosynthesis. In this chapter, we will overview recent advances in understanding the biosynthetic machinery for terminal alkyne synthesis. We will first describe how to elucidate terminal alkyne biosynthetic mechanism through heterologous expression, purification, and in vitro biochemical assays of individual pathway proteins. This will be followed by the description of an in vivo reporting system for the characterization of a membrane-bound bifunctional desaturase/acetylenase involved in terminal alkyne formation. The chapter will also cover the strategies for discovering additional protein homologs for terminal alkyne synthesis from microbes as well as the applications of click chemistry to identify and quantify terminal alkyne-bearing metabolites from microbial cultures. We will conclude this chapter with current challenges and future directions in this field.
Collapse
Affiliation(s)
- Xuejun Zhu
- University of California, Berkeley, CA, United States
| | - Wenjun Zhang
- University of California, Berkeley, CA, United States; Chan Zuckerberg Biohub, San Francisco, CA, United States.
| |
Collapse
|
24
|
Casini A, Chang FY, Eluere R, King AM, Young EM, Dudley QM, Karim A, Pratt K, Bristol C, Forget A, Ghodasara A, Warden-Rothman R, Gan R, Cristofaro A, Borujeni AE, Ryu MH, Li J, Kwon YC, Wang H, Tatsis E, Rodriguez-Lopez C, O’Connor S, Medema MH, Fischbach MA, Jewett MC, Voigt C, Gordon DB. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology. J Am Chem Soc 2018; 140:4302-4316. [DOI: 10.1021/jacs.7b13292] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arturo Casini
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Fang-Yuan Chang
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Raissa Eluere
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Andrew M. King
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Eric M. Young
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Quentin M. Dudley
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty Karim
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katelin Pratt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Cassandra Bristol
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Anthony Forget
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Amar Ghodasara
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Robert Warden-Rothman
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Rui Gan
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexander Cristofaro
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Amin Espah Borujeni
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Min-Hyung Ryu
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - Jian Li
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Yong-Chan Kwon
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - He Wang
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Evangelos Tatsis
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | - Sarah O’Connor
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Michael A. Fischbach
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Bioengineering and Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, California 94305, United States
| | - Michael C. Jewett
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher Voigt
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| | - D. Benjamin Gordon
- The Foundry, 75 Ames Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States,
| |
Collapse
|
25
|
Cell-free synthetic biology for in vitro biosynthesis of pharmaceutical natural products. Synth Syst Biotechnol 2018; 3:83-89. [PMID: 29900420 PMCID: PMC5995452 DOI: 10.1016/j.synbio.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/29/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Natural products with significant biological activities continuously act as rich sources for drug discovery and development. To harness the potential of these valuable compounds, robust methods need to be developed for their rapid and sustainable production. Cell-free biosynthesis of pharmaceutical natural products by in vitro reconstruction of the entire biosynthetic pathways represents one such solution. In this review, we focus on in vitro biosynthesis of two important classes of natural products, polyketides (PKs) and nonribosomal peptides (NRPs). First, we summarize purified enzyme-based systems for the biosynthesis of PKs, NRPs, and PK/NRP hybrids. Then, we introduce the cell-free protein synthesis (CFPS)-based technology for natural product production. With that, we discuss challenges and opportunities of cell-free synthetic biology for in vitro biosynthesis of natural products.
Collapse
|
26
|
Nunn PB, Codd GA. Metabolic solutions to the biosynthesis of some diaminomonocarboxylic acids in nature: Formation in cyanobacteria of the neurotoxins 3-N-methyl-2,3-diaminopropanoic acid (BMAA) and 2,4-diaminobutanoic acid (2,4-DAB). PHYTOCHEMISTRY 2017; 144:253-270. [PMID: 29059579 DOI: 10.1016/j.phytochem.2017.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
The non-encoded diaminomonocarboxylic acids, 3-N-methyl-2,3-diaminopropanoic acid (syn: α-amino-β-methylaminopropionic acid, MeDAP; β-N-methylaminoalanine, BMAA) and 2,4-diaminobutanoic acid (2,4-DAB), are distributed widely in cyanobacterial species in free and bound forms. Both amino acids are neurotoxic in whole animal and cell-based bioassays. The biosynthetic pathway to 2,4-DAB is well documented in bacteria and in one higher plant species, but has not been confirmed in cyanobacteria. The biosynthetic pathway to BMAA is unknown. This review considers possible metabolic routes, by analogy with reactions used in other species, by which these amino acids might be biosynthesised by cyanobacteria, which are a widespread potential environmental source of these neurotoxins. Where possible, the gene expression that might be implicated in these biosyntheses is discussed.
Collapse
Affiliation(s)
- Peter B Nunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2DT, UK.
| | - Geoffrey A Codd
- School of Life Sciences, University of Dundee, DD1 5EH, UK; School of Natural Sciences, University of Stirling, FK9 4LA, UK.
| |
Collapse
|
27
|
Chen R, Zhang Q, Tan B, Zheng L, Li H, Zhu Y, Zhang C. Genome Mining and Activation of a Silent PKS/NRPS Gene Cluster Direct the Production of Totopotensamides. Org Lett 2017; 19:5697-5700. [PMID: 29019409 DOI: 10.1021/acs.orglett.7b02878] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A 92 kb silent hybrid polyketide and nonribosomal peptide gene cluster in marine-derived Streptomyces pactum SCSIO 02999 was activated by genetically manipulating the regulatory genes, including the knockout of two negative regulators (totR5 and totR3) and overexpression of a positive regulator totR1, to direct the production of the known totopotensamides (TPMs) A (1) and B (3) and a novel sulfonate-containing analogue TPM C (2). Inactivation of totG led to accumulation of TPM B (3) lacking the glycosyl moiety, which indicated TotG as a dedicated glycosyltransferase in the biosynthesis of 1 and 2.
Collapse
Affiliation(s)
- Ruidong Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Liujuan Zheng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Huixian Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences , 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
28
|
Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3'-Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl 2017; 56:12492-12497. [PMID: 28786545 PMCID: PMC5656905 DOI: 10.1002/anie.201705639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Indexed: 01/27/2023]
Abstract
The uridyl peptide antibiotics (UPAs), of which pacidamycin is a member, have a clinically unexploited mode of action and an unusual assembly. Perhaps the most striking feature of these molecules is the biosynthetically unique 3'-deoxyuridine that they share. This moiety is generated by an unusual, small and monomeric dehydratase, Pac13, which catalyses the dehydration of uridine-5'-aldehyde. Here we report the structural characterisation of Pac13 with a series of ligands, and gain insight into the enzyme's mechanism demonstrating that H42 is critical to the enzyme's activity and that the reaction is likely to proceed via an E1cB mechanism. The resemblance of the 3'-deoxy pacidamycin moiety with the synthetic anti-retrovirals, presents a potential opportunity for the utilisation of Pac13 in the biocatalytic generation of antiviral compounds.
Collapse
Affiliation(s)
- Freideriki Michailidou
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
- GSKStevenageSG1 2NYUK
| | | | | | - Andrew F. Bent
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - James H. Naismith
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | | | | | - Sunil V. Sharma
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| | - Rebecca J. M. Goss
- School of ChemistryUniversity of St AndrewsNorth HaughSt AndrewsFifeKY16 9STUK
| |
Collapse
|
29
|
Michailidou F, Chung C, Brown MJB, Bent AF, Naismith JH, Leavens WJ, Lynn SM, Sharma SV, Goss RJM. Pac13 is a Small, Monomeric Dehydratase that Mediates the Formation of the 3′‐Deoxy Nucleoside of Pacidamycins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Freideriki Michailidou
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
- GSK Stevenage SG1 2NY UK
| | | | | | - Andrew F. Bent
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - James H. Naismith
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | | | | | - Sunil V. Sharma
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| | - Rebecca J. M. Goss
- School of Chemistry University of St Andrews North Haugh St Andrews Fife KY16 9ST UK
| |
Collapse
|
30
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
31
|
Biosynthesis of isonitrile lipopeptides by conserved nonribosomal peptide synthetase gene clusters in Actinobacteria. Proc Natl Acad Sci U S A 2017. [PMID: 28634299 DOI: 10.1073/pnas.1705016114] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A putative lipopeptide biosynthetic gene cluster is conserved in many species of Actinobacteria, including Mycobacterium tuberculosis and M. marinum, but the specific function of the encoding proteins has been elusive. Using both in vivo heterologous reconstitution and in vitro biochemical analyses, we have revealed that the five encoding biosynthetic enzymes are capable of synthesizing a family of isonitrile lipopeptides (INLPs) through a thio-template mechanism. The biosynthesis features the generation of isonitrile from a single precursor Gly promoted by a thioesterase and a nonheme iron(II)-dependent oxidase homolog and the acylation of both amino groups of Lys by the same isonitrile acyl chain facilitated by a single condensation domain of a nonribosomal peptide synthetase. In addition, the deletion of INLP biosynthetic genes in M. marinum has decreased the intracellular metal concentration, suggesting the role of this biosynthetic gene cluster in metal transport.
Collapse
|
32
|
Wise CE, Makris TM. Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis. ACS Chem Biol 2017; 12:1316-1326. [PMID: 28300390 DOI: 10.1021/acschembio.7b00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.
Collapse
Affiliation(s)
- Courtney E. Wise
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M. Makris
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
33
|
Bugg TDH. Nucleoside Natural Product Antibiotics Targetting Microbial Cell Wall Biosynthesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/7355_2017_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
34
|
Wang SS, Zhang NN, He N, Guo WQ, Lei X, Cai Q, Hong B, Xie YY. Exploiting Substrate Diversity of NRPS Led to the Generation of New Sansanmycin Analogs. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Further exploration of substrate diversity of the sansanmycin biosynthetic pathway using available halogen- and methyl-phenylalanines led to the generation of diverse sansanmycin derivatives, either at the single C- or N-terminus alone or at both C- and N-termini. The structures of all of these derivatives were determined by MS/MS spectra, and amongst them, the structures of [2-Cl-Phe]-sansanmycin H (1) and [2-Cl-Phe]-sansanmycin A (2) were further identified by NMR. Both the C-terminal derivative 1 and the N-terminal derivative 2 were assayed for their antibacterial activities, and compound 1 exhibited moderate activity against P. aeruginosa and ΔtolC mutant E. coli.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning-Ning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Qiang Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuan Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qiang Cai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bin Hong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yun-Ying Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 618] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
36
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
37
|
Nature's combinatorial biosynthesis and recently engineered production of nucleoside antibiotics in Streptomyces. World J Microbiol Biotechnol 2017; 33:66. [PMID: 28260195 DOI: 10.1007/s11274-017-2233-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/22/2017] [Indexed: 10/20/2022]
Abstract
Modified nucleosides produced by Streptomyces and related actinomycetes are widely used in agriculture and medicine as antibacterial, antifungal, anticancer and antiviral agents. These specialized small-molecule metabolites are biosynthesized by complex enzymatic machineries encoded within gene clusters in the genome. The past decade has witnessed a burst of reports defining the key metabolic processes involved in the biosynthesis of several distinct families of nucleoside antibiotics. Furthermore, genome sequencing of various Streptomyces species has dramatically increased over recent years. Potential biosynthetic gene clusters for novel nucleoside antibiotics are now apparent by analysis of these genomes. Here we revisit strategies for production improvement of nucleoside antibiotics that have defined mechanisms of action, and are in clinical or agricultural use. We summarize the progress for genetically manipulating biosynthetic pathways for structural diversification of nucleoside antibiotics. Microorganism-based biosynthetic examples are provided and organized under genetic principles and metabolic engineering guidelines. We show perspectives on the future of combinatorial biosynthesis, and present a working model for discovery of novel nucleoside natural products in Streptomyces.
Collapse
|
38
|
Moutiez M, Belin P, Gondry M. Aminoacyl-tRNA-Utilizing Enzymes in Natural Product Biosynthesis. Chem Rev 2017; 117:5578-5618. [DOI: 10.1021/acs.chemrev.6b00523] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Mireille Moutiez
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Pascal Belin
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Muriel Gondry
- Institute for Integrative Biology of the
Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
39
|
Maxson T, Tietz JI, Hudson GA, Guo XR, Tai HC, Mitchell DA. Targeting Reactive Carbonyls for Identifying Natural Products and Their Biosynthetic Origins. J Am Chem Soc 2016; 138:15157-15166. [PMID: 27797509 DOI: 10.1021/jacs.6b06848] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Natural products (NPs) serve important roles as drug candidates and as tools for chemical biology. However, traditional NP discovery, largely based on bioassay-guided approaches, is biased toward abundant compounds and rediscovery rates are high. Orthogonal methods to facilitate discovery of new NPs are thus needed, and herein we describe an isotope tag-based expansion of reactivity-based NP screening to address these shortcomings. Reactivity-based screening is a directed discovery approach in which a specific reactive handle on the NP is targeted by a chemoselective probe to enable its detection by mass spectrometry. In this study, we have developed an aminooxy-containing probe to guide the discovery of aldehyde- and ketone-containing NPs. To facilitate the detection of labeling events, the probe was dibrominated, imparting a unique isotopic signature to distinguish labeled metabolites from spectral noise. As a proof of concept, the probe was then utilized to screen a collection of bacterial extracts, leading to the identification of a new analogue of antipain, deimino-antipain. The bacterial producer of deimino-antipain was sequenced and the responsible biosynthetic gene cluster was identified by bioinformatic analysis and heterologous expression. These data reveal the previously undetermined genetic basis for a well-known family of aldehyde-containing, peptidic protease inhibitors, including antipain, chymostatin, leupeptin, elastatinal, and microbial alkaline protease inhibitor, which have been widely used for over 40 years.
Collapse
Affiliation(s)
- Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan I Tietz
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Graham A Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Xiao Rui Guo
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Hua-Chia Tai
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States.,Department of Microbiology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
Shi Y, Jiang Z, Lei X, Zhang N, Cai Q, Li Q, Wang L, Si S, Xie Y, Hong B. Improving the N-terminal diversity of sansanmycin through mutasynthesis. Microb Cell Fact 2016; 15:77. [PMID: 27154005 PMCID: PMC4858918 DOI: 10.1186/s12934-016-0471-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sansanmycins are uridyl peptide antibiotics (UPAs), which are inhibitors of translocase I (MraY) and block the bacterial cell wall biosynthesis. They have good antibacterial activity against Pseudomonas aeruginosa and Mycobacterium tuberculosis strains. The biosynthetic gene cluster of sansanmycins has been characterized and the main biosynthetic pathway elucidated according to that of pacidamycins which were catalyzed by nonribosomal peptide synthetases (NRPSs). Sananmycin A is the major compound of Streptomyces sp. SS (wild type strain) and it bears a non-proteinogenic amino acid, meta-tyrosine (m-Tyr), at the N-terminus of tetrapeptide chain. RESULTS ssaX deletion mutant SS/XKO was constructed by the λ-RED mediated PCR targeting method and confirmed by PCR and southern blot. The disruption of ssaX completely abolished the production of sansanmycin A. Complementation in vivo and in vitro could both recover the production of sansanmycin A, and the overexpression of SsaX apparently increased the production of sansanmycin A by 20%. Six new compounds were identified in the fermentation culture of ssaX deletion mutant. Some more novel sansanmycin analogues were obtained by mutasynthesis, and totally ten sansanmycin analogues, MX-1 to MX-10, were purified and identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR). The bioassay of these sansanmycin analogues showed that sansanmycin MX-1, MX-2, MX-4, MX-6 and MX-7 exhibited comparable potency to sansanmycin A against M. tuberculosis H37Rv, as well as multi-drug-resistant (MDR) and extensive-drug-resistant (XDR) strains. Moreover, sansanmycin MX-2 and MX-4 displayed much better stability than sansanmycin A. CONCLUSIONS We demonstrated that SsaX is responsible for the biosynthesis of m-Tyr in vivo by gene deletion and complementation. About twenty novel sansanmycin analogues were obtained by mutasynthesis in ssaX deletion mutant SS/XKO and ten of them were purified and structurally identified. Among them, MX-2 and MX-4 showed promising anti-MDR and anti-XDR tuberculosis activity and greater stability than sansanmycin A. These results indicated that ssaX deletion mutant SS/XKO was a suitable host to expand the diversity of the N-terminus of UPAs, with potential to yield more novel compounds with improved activity and/or other properties.
Collapse
Affiliation(s)
- Yuanyuan Shi
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Zhibo Jiang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Xuan Lei
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Ningning Zhang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Qiang Cai
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Qinglian Li
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Lifei Wang
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Shuyi Si
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China
| | - Yunying Xie
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| | - Bin Hong
- The Key Laboratory of Biotechnology of Antibiotics of Ministry of Health, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
41
|
Bugg TDH, Rodolis MT, Mihalyi A, Jamshidi S. Inhibition of phospho-MurNAc-pentapeptide translocase (MraY) by nucleoside natural product antibiotics, bacteriophage ϕX174 lysis protein E, and cationic antibacterial peptides. Bioorg Med Chem 2016; 24:6340-6347. [PMID: 27021004 DOI: 10.1016/j.bmc.2016.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
This review covers recent developments in the inhibition of translocase MraY and related phospho-GlcNAc transferases WecA and TagO, and insight into the inhibition and catalytic mechanism of this class of integral membrane proteins from the structure of Aquifex aeolicus MraY. Recent studies have also identified a protein-protein interaction site in Escherichia coli MraY, that is targeted by bacteriophage ϕX174 lysis protein E, and also by cationic antimicrobial peptides containing Arg-Trp close to their N- or C-termini.
Collapse
Affiliation(s)
- Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Maria T Rodolis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Agnes Mihalyi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Shirin Jamshidi
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
42
|
Natural and engineered biosynthesis of nucleoside antibiotics in Actinomycetes. ACTA ACUST UNITED AC 2016; 43:401-17. [DOI: 10.1007/s10295-015-1636-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022]
Abstract
Abstract
Nucleoside antibiotics constitute an important family of microbial natural products bearing diverse bioactivities and unusual structural features. Their biosynthetic logics are unique with involvement of complex multi-enzymatic reactions leading to the intricate molecules from simple building blocks. Understanding how nature builds this family of antibiotics in post-genomic era sets the stage for rational enhancement of their production, and also paves the way for targeted persuasion of the cell factories to make artificial designer nucleoside drugs and leads via synthetic biology approaches. In this review, we discuss the recent progress and perspectives on the natural and engineered biosynthesis of nucleoside antibiotics.
Collapse
|
43
|
Precursor-directed biosynthesis of new sansanmycin analogs bearing para-substituted-phenylalanines with high yields. J Antibiot (Tokyo) 2016; 69:765-768. [DOI: 10.1038/ja.2016.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/09/2022]
|
44
|
Zarins-Tutt JS, Barberi TT, Gao H, Mearns-Spragg A, Zhang L, Newman DJ, Goss RJM. Prospecting for new bacterial metabolites: a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products. Nat Prod Rep 2016; 33:54-72. [DOI: 10.1039/c5np00111k] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the centuries, microbial secondary metabolites have played a central role in the treatment of human diseases and have revolutionised the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | - Hong Gao
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Lixin Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing
- China
| | - David J. Newman
- Frederick National Laboratories for Cancer Research
- Natural Products Branch
- Frederick
- USA
| | | |
Collapse
|
45
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
46
|
Identification of novel mureidomycin analogues via rational activation of a cryptic gene cluster in Streptomyces roseosporus NRRL 15998. Sci Rep 2015; 5:14111. [PMID: 26370924 PMCID: PMC4572928 DOI: 10.1038/srep14111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial agents are urgently needed to tackle the growing threat of antibiotic-resistant pathogens. An important source of new antimicrobials is the large repertoire of cryptic gene clusters embedded in microbial genomes. Genome mining revealed a napsamycin/mureidomycin biosynthetic gene cluster in the chromosome of Streptomyces roseosporus NRRL 15998. The cryptic gene cluster was activated by constitutive expression of a foreign activator gene ssaA from sansanmycin biosynthetic gene cluster of Streptomyces sp. strain SS. Expression of the gene cluster was verified by RT-PCR analysis of key biosynthetic genes. The activated metabolites demonstrated potent inhibitory activity against the highly refractory pathogen Pseudomonas aeruginosa, and characterization of the metabolites led to the discovery of eight acetylated mureidomycin analogues. To our surprise, constitutive expression of the native activator gene SSGG_02995, a ssaA homologue in S. roseosporus NRRL 15998, has no beneficial effect on mureidomycin stimulation. This study provides a new way to activate cryptic gene cluster for the acquisition of novel antibiotics and will accelerate the exploitation of prodigious natural products in Streptomyces.
Collapse
|
47
|
Rodolis MT, Mihalyi A, Ducho C, Eitel K, Gust B, Goss RJM, Bugg TDH. Mechanism of action of the uridyl peptide antibiotics: an unexpected link to a protein-protein interaction site in translocase MraY. Chem Commun (Camb) 2015; 50:13023-5. [PMID: 25222373 DOI: 10.1039/c4cc06516f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pacidamycin and muraymycin uridyl peptide antibiotics show some structural resemblance to an Arg-Trp-x-x-Trp sequence motif for protein-protein interaction between bacteriophage ϕX174 protein E and E. coli translocase MraY. Members of the UPA class, and a synthetic uridine-peptide analogue, were found to show reduced levels of inhibition to F288L or E287A mutant MraY enzymes, implying that the UPAs interact at this extracellular site as part of the enzyme inhibition mechanism.
Collapse
Affiliation(s)
- Maria T Rodolis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 2015; 23:110-9. [DOI: 10.1016/j.tim.2014.10.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 11/30/2022]
|
49
|
Characterization of biosynthetic genes of ascamycin/dealanylascamycin featuring a 5'-O-sulfonamide moiety in Streptomyces sp. JCM9888. PLoS One 2014; 9:e114722. [PMID: 25479601 PMCID: PMC4257720 DOI: 10.1371/journal.pone.0114722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/12/2014] [Indexed: 01/12/2023] Open
Abstract
Ascamycin (ACM) and dealanylascamycin (DACM) are nucleoside antibiotics elaborated by Streptomyces sp. JCM9888. The later shows broad spectrum inhibition activity to various gram-positive and gram-negative bacteria, eukaryotic Trypanosoma and is also toxic to mice, while ascamycin is active against very limited microorganisms, such as Xanthomonas. Both compounds share an unusual 5′-O-sulfonamide moiety which is attached to an adenosine nucleoside. In this paper, we first report on the 30 kb gene cluster (23 genes, acmA to acmW) involved in the biosynthesis of these two antibiotics and a biosynthetic assembly line was proposed. Of them, six genes (AcmABGKIW) are hypothetical genes involved in 5′-O-sulfonamide formation. Two flavin adenine dinucleotide (FAD)-dependent chlorinase genes acmX and acmY were characterized which are significantly remote from acmA-W and postulated to be required for adenine C2-halogenation. Notably gene disruption of acmE resulted in a mutant which could only produce dealanylascamycin but was blocked in its ability to biosynthesize ascamycin, revealing its key role of conversion of dealanylascamycin to ascamycin.
Collapse
|
50
|
Xie Y, Cai Q, Ren H, Wang L, Xu H, Hong B, Wu L, Chen R. NRPS substrate promiscuity leads to more potent antitubercular sansanmycin analogues. JOURNAL OF NATURAL PRODUCTS 2014; 77:1744-1748. [PMID: 24964393 DOI: 10.1021/np5001494] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sansanmycins, members of the uridyl peptide antibiotics, are assembled by nonribosomal peptide synthetases (NRPSs), the substrate promiscuity of which results in the diversity of products. Further exploration of the NRPSs' substrate promiscuity by reinvestigating sansanmycin producer strain led to the isolation and structural elucidation of eight new uridyl peptides, sansanmycins H-O (1-8). Among them, sansanmycin L, containing a 6-OH-bicyclic residue and Phe3 first found at the position AA3, exhibited activity against M. tuberculosis H37Rv with an MIC value of 2 μg/mL, 8-fold more potent than that of the major compound, sansanmycin A (MIC = 16 μg/mL).
Collapse
Affiliation(s)
- Yunying Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|