1
|
Navarrete M, Zhou Y. The 14-3-3 Protein Family and Schizophrenia. Front Mol Neurosci 2022; 15:857495. [PMID: 35359567 PMCID: PMC8964262 DOI: 10.3389/fnmol.2022.857495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a debilitating mental disorder that affects approximately 1% of the world population, yet the disorder is not very well understood. The genetics of schizophrenia is very heterogenous, making it hard to pinpoint specific alterations that may cause the disorder. However, there is growing evidence from human studies suggesting a link between alterations in the 14-3-3 family and schizophrenia. The 14-3-3 proteins are abundantly expressed in the brain and are involved in many important cellular processes. Knockout of 14-3-3 proteins in mice has been shown to cause molecular, structural, and behavioral alterations associated with schizophrenia. Thus, 14-3-3 animal models allow for further exploration of the relationship between 14-3-3 and schizophrenia as well as the study of schizophrenia pathology. This review considers evidence from both human and animal model studies that implicate the 14-3-3 family in schizophrenia. In addition, possible mechanisms by which alterations in 14-3-3 proteins may contribute to schizophrenia-like phenotypes such as dopaminergic, glutamatergic, and cytoskeletal dysregulations are discussed.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
2
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
3
|
Ohgomori T, Jinno S. Signal Transducer and Activator of Transcription 3 Activation in Hippocampal Neural Stem Cells and Cognitive Deficits in Mice Following Short-term Cuprizone Exposure. Neuroscience 2021; 472:90-102. [PMID: 34358632 DOI: 10.1016/j.neuroscience.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Recent studies have emphasized that adult hippocampal neurogenesis impairment may be associated with cognitive problems. Because cuprizone (CPZ), a copper-chelating reagent, was shown to decrease the production of new neurons, we aimed to further understand the involvement of adult hippocampal neurogenesis impairment in cognitive function by using a short-term (2-week) CPZ exposure paradigm. The CPZ-fed mice showed cognitive deficits, i.e., impaired sensorimotor gating and reduced social novelty preference, compared to normal-fed mice. Although a long-term (e.g., 5-week) CPZ exposure paradigm was found to cause demyelination, we encountered that the labeling for myelin in the hippocampus was unaffected by 2-week CPZ exposure. The densities of neuronal progenitor cells (NPCs) and newborn granule cells (NGCs) were lower in CPZ-fed mice than in normal-fed mice, while those of neural stem cells (NSCs) were comparable between groups. We then examined whether short-term CPZ exposure might induce activation of signal transducer and activator of transcription 3 (STAT3), which plays a major role in cytokine receptor signaling. The densities of phosphorylated STAT3-positive (pSTAT3+) NSCs were higher in CPZ-fed mice than in normal-fed mice, while those of pSTAT3+ NPCs/NGCs were very low in both groups. Interestingly, the densities of bromodeoxyuridine-positive (BrdU+) NSCs were higher in CPZ-fed mice than in normal-fed mice 2 weeks after BrdU injection, while those of BrdU+ NPCs/NGCs were lower in CPZ-fed mice than in normal-fed mice. These findings suggest that short-term CPZ exposure inhibits differentiation of NSCs into NPCs via activation of STAT3, which may in part underlie cognitive deficits.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, Kaizuka 597-0104, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
4
|
Mielnik CA, Binko MA, Chen Y, Funk AJ, Johansson EM, Intson K, Sivananthan N, Islam R, Milenkovic M, Horsfall W, Ross RA, Groc L, Salahpour A, McCullumsmith RE, Tripathy S, Lambe EK, Ramsey AJ. Consequences of NMDA receptor deficiency can be rescued in the adult brain. Mol Psychiatry 2021; 26:2929-2942. [PMID: 32807843 PMCID: PMC8505246 DOI: 10.1038/s41380-020-00859-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 07/11/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are required to shape activity-dependent connections in the developing and adult brain. Impaired NMDAR signalling through genetic or environmental insults causes a constellation of neurodevelopmental disorders that manifest as intellectual disability, epilepsy, autism, or schizophrenia. It is not clear whether the developmental impacts of NMDAR dysfunction can be overcome by interventions in adulthood. This question is paramount for neurodevelopmental disorders arising from mutations that occur in the GRIN genes, which encode NMDAR subunits, and the broader set of mutations that disrupt NMDAR function. We developed a mouse model where a congenital loss-of-function allele of Grin1 can be restored to wild type by gene editing with Cre recombinase. Rescue of NMDARs in adult mice yields surprisingly robust improvements in cognitive functions, including those that are refractory to treatment with current medications. These results suggest that neurodevelopmental disorders arising from NMDAR deficiency can be effectively treated in adults.
Collapse
Affiliation(s)
- Catharine A Mielnik
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Mary A Binko
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Yuxiao Chen
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1L8, Canada
| | - Adam J Funk
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614, USA
| | - Emily M Johansson
- Interdisciplinary Institute for NeuroScience (IINS) CNRS, Université Bordeaux Segalen, 33000, Bordeaux, France
| | - Katheron Intson
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nirun Sivananthan
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Rehnuma Islam
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marija Milenkovic
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Wendy Horsfall
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Laurent Groc
- Interdisciplinary Institute for NeuroScience (IINS) CNRS, Université Bordeaux Segalen, 33000, Bordeaux, France
| | - Ali Salahpour
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Shreejoy Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1L8, Canada
| | - Evelyn K Lambe
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of OBGYN, University of Toronto, Toronto, ON, M5G 1E2, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1L8, Canada
| | - Amy J Ramsey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
5
|
Huang Y, Jiang H, Zheng Q, Fok AHK, Li X, Lau CG, Lai CSW. Environmental enrichment or selective activation of parvalbumin-expressing interneurons ameliorates synaptic and behavioral deficits in animal models with schizophrenia-like behaviors during adolescence. Mol Psychiatry 2021; 26:2533-2552. [PMID: 33473150 DOI: 10.1038/s41380-020-01005-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Synaptic deficit-induced excitation and inhibition (E/I) imbalance have been implicated in the pathogenesis of schizophrenia. Using in vivo two-photon microscopy, we examined the dynamic plasticity of dendritic spines of pyramidal neurons (PNs) and "en passant" axonal bouton of parvalbumin-expressing interneurons (PVINs) in the frontal association (FrA) cortex in two adolescent mouse models with schizophrenia-like behaviors. Simultaneous imaging of PN dendritic spines and PV axonal boutons showed that repeated exposure to N-methyl-D-aspartate receptor (NMDAR) antagonist MK801 during adolescence disrupted the normal developmental balance of excitatory and inhibitory synaptic structures. This MK801-induced structural E/I imbalance significantly correlated with animal recognition memory deficits and could be ameliorated by environmental enrichment (EE). In addition, selective chemogenetic activation of PVINs in the FrA mimicked the effects of EE on both synaptic plasticity and animal behavior, while selective inhibition of PVIN abolished EE's beneficial effects. Electrophysiological recordings showed that chronic MK801 treatment significantly suppressed the frequency of mEPSC/mIPSC ratio of layer (L) 2/3 PNs and significantly reduced the resting membrane potential of PVINs, the latter was rescued by selective activation of PVINs. Such manipulations of PVINs also showed similar effects in PV-Cre; ErbB4fl/fl animal model with schizophrenia-like behaviors. EE or selective activation of PVINs in the FrA restored behavioral deficits and structural E/I imbalance in adolescent PV-Cre; ErbB4fl/fl mice, while selective inhibition of PVINs abolished EE's beneficial effects. Our findings suggest that the PVIN activity in the FrA plays a crucial role in regulating excitatory and inhibitory synaptic structural dynamics and animal behaviors, which may provide a potential therapeutic target for schizophrenia treatment.
Collapse
Affiliation(s)
- Yuhua Huang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hehai Jiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Qiyu Zheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Albert Hiu Ka Fok
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Xiaoyang Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Geoffrey Lau
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong.,Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Cora Sau Wan Lai
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong. .,State Key Laboratory of Cognitive and Brain Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Cao B, Chen Y, Ren Z, Pan Z, McIntyre RS, Wang D. Dysregulation of kynurenine pathway and potential dynamic changes of kynurenine in schizophrenia: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 123:203-214. [PMID: 33513412 DOI: 10.1016/j.neubiorev.2021.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
The kynurenine (KYN) pathway is postulated to play various roles in immune system dysregulation of schizophrenia (SCZ). We conducted a meta-analysis to explore the association between six key metabolites of KYN pathway (i.e., tryptophan (TRP), KYN, quinolinic acid (QUIN), and kynurenic acid (KYNA)) and SCZ. Priori Bonferroni adjustments were conducted for multiple comparisons. In total, 42 studies that examined the relationship between the metabolites in KYN pathway mentioned above and SCZ in 4217 participants and nine studies that examined alterations of these metabolites after antipsychotic treatments were included. The results demonstrate that (1) subjects with prescribed medication had significantly higher KYN levels when compared to controls; (2) higher KYN levels in cerebrospinal fluid (CSF), lower plasma KYN levels and higher CSF KYNA levels were associated with SCZ; (3) the KYN levels were higher in subjects with SCZ after antipsychotic treatments when compared with baseline. The evidence provides valuable insight of the potential underlying involvement of the KYN pathway in the pathogenesis of SCZ.
Collapse
Affiliation(s)
- Bing Cao
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Ministry of Education, Southwest University (SWU), Chongqing, 400715, PR China; National Demonstration Center for Experimental Psychology Education (Southwest University), Chongqing, PR China.
| | - Yan Chen
- Dalla Lana School of Public Health, University of Toronto, 155 College St., Toronto, ON, Canada
| | - Zhongyu Ren
- College of Physical Education, Southwest University, Chongqing, PR China
| | - Zihang Pan
- Duke-NUS Medical School, Singapore, Singapore; Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Pharmacology, University of Toronto, Toronto, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Dongfang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
7
|
Fernandes AB, Alves da Silva J, Almeida J, Cui G, Gerfen CR, Costa RM, Oliveira-Maia AJ. Postingestive Modulation of Food Seeking Depends on Vagus-Mediated Dopamine Neuron Activity. Neuron 2020; 106:778-788.e6. [PMID: 32259476 PMCID: PMC7710496 DOI: 10.1016/j.neuron.2020.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/07/2020] [Accepted: 03/12/2020] [Indexed: 01/07/2023]
Abstract
Postingestive nutrient sensing can induce food preferences. However, much less is known about the ability of postingestive signals to modulate food-seeking behaviors. Here we report a causal connection between postingestive sucrose sensing and vagus-mediated dopamine neuron activity in the ventral tegmental area (VTA), supporting food seeking. The activity of VTA dopamine neurons increases significantly after administration of intragastric sucrose, and deletion of the NMDA receptor in these neurons, which affects bursting and plasticity, abolishes lever pressing for postingestive sucrose delivery. Furthermore, lesions of the hepatic branch of the vagus nerve significantly impair postingestive-dependent VTA dopamine neuron activity and food seeking, whereas optogenetic stimulation of left vagus nerve neurons significantly increases VTA dopamine neuron activity. These data establish a necessary role of vagus-mediated dopamine neuron activity in postingestive-dependent food seeking, which is independent of taste signaling.
Collapse
Affiliation(s)
- Ana B. Fernandes
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,NOVA Medical School
- Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal
| | - Joaquim Alves da Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,NOVA Medical School
- Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal
| | - Joana Almeida
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC 27709, USA
| | - Charles R. Gerfen
- Laboratory of Systems Neurosciences, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Rui M. Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,NOVA Medical School
- Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal,Departments of Neuroscience and Neurology, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA,Corresponding author
| | - Albino J. Oliveira-Maia
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal,NOVA Medical School
- Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal,Corresponding author
| |
Collapse
|
8
|
Sultana R, Shrestha A, Lee CC, Ogundele OM. Disc1 Carrier Mice Exhibit Alterations in Neural pIGF-1Rβ and Related Kinase Expression. Front Cell Neurosci 2020; 14:94. [PMID: 32431597 PMCID: PMC7214624 DOI: 10.3389/fncel.2020.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Mutation of the disc1 gene underlies a broad range of developmental neuropsychiatric defects, including schizophrenia, depression, and bipolar disorder. The pathophysiological phenotypes linked with disc1 mutation are due to the truncation of the DISC1 primary protein structure. This leads to a defective post-synaptic scaffolding and kinase—GSK3β and Erk1/2—signaling. As a result, synaptic function and maintenance are significantly impaired in the disc1 mutant brain. Among several other pathways, GSK3β and Erk1/2 are involved in insulin-like growth factor 1 receptor (IGF-1Rβ) kinase signaling. Although disc1 mutation alters these kinases, it is unclear if the mutation impacts IGF-1R expression and activity in the brain. Here, we demonstrate that the expression of active IGF-1Rβ (pIGF-1Rβ) is altered in the hippocampus and prefrontal cortex (PFC) of disc1 mutant mice and vary with the dose of the mutation (homozygous and heterozygous). The expression of pIGF-1Rβ decreased significantly in 129S (hom, disc1−/−) brains. In contrast, 129S:B6 (het, disc1+/−) brains were characterized by an increase in pIGF-1Rβ when compared with the C57BL/6 (disc1+/+) level. The decrease in pIGF-1Rβ level for the 129S brains was accompanied by the loss of Akt activity (S473 pAkt) and decreased Ser9 phosphorylation of GSK3β (increased basal GSK3β). Additionally, hippocampal and cortical pErk1/2 activity increased in the 129S hippocampus and cortex. Although 129S:B6 recorded alterations in pIGF-1Rβ-pAkt-GSK3β (like 129S), there was no observable change in pErk1/2 activity for the heterozygote (disc1+/−) mutant. In addition to GSK3β inhibition, we conclude that pIGF-1R, pAkt, and pErk1/2 are potential targets in disc1−/− mutant brain. On the other hand, pIGF-1R and pAkt can be further explored in disc1+/− brain.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
9
|
Sultana R, Lee CC. Expression of Behavioral Phenotypes in Genetic and Environmental Mouse Models of Schizophrenia. Front Behav Neurosci 2020; 14:29. [PMID: 32184711 PMCID: PMC7058961 DOI: 10.3389/fnbeh.2020.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/07/2020] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a neuropsychiatric disorder characterized by multifactorial etiology involving complex interactions among genetic and environmental factors. "Multiple-hit" models of the disorder can explain its variable incidence and prevalence in related individuals. Hence, there is a dire need to understand these interactions in the emergence of schizophrenia. To test these factors in the emergence of schizophrenia-like behaviors, we employed a genetic mouse model of the disorder (harboring the DISC1 mutation) along with various environmental insults, such as early life stress (maternal separation of pups) and/or pharmacological interventions (ketamine injections). When assessed on a battery of behavioral tests, we found that environmental interventions affect the severity of behavioral phenotypes in terms of increased negative behavior, as shown by reduced mobility in the forced swim and tail suspension tests, and changes to positive and cognitive symptoms, such as increased locomotion and disrupted PPI along with reduced working memory, respectively. Among the various interventions, the genetic mutation had the most profound effect on behavioral aberrations, followed by an environmental intervention by ketamine injections and ketamine-injected animals that were maternally separated during early postnatal days. We conclude that although environmental factors increased the prevalence of aberrant behavioral phenotypes, genetic background is still the predominant influence on phenotypic alterations in these mouse models of schizophrenia.
Collapse
Affiliation(s)
- Razia Sultana
- Neural Systems Laboratory, Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | |
Collapse
|
10
|
Ferri SL, Pallathra AA, Kim H, Dow HC, Raje P, McMullen M, Bilker WB, Siegel SJ, Abel T, Brodkin ES. Sociability development in mice with cell-specific deletion of the NMDA receptor NR1 subunit gene. GENES BRAIN AND BEHAVIOR 2019; 19:e12624. [PMID: 31721416 DOI: 10.1111/gbb.12624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Social affiliative behavior is an important component of everyday life in many species and is likely to be disrupted in disabling ways in various neurodevelopmental and neuropsychiatric disorders. Therefore, determining the mechanisms involved in these processes is crucial. A link between N-methyl-d-aspartate (NMDA) receptor function and social behaviors has been clearly established. The cell types in which NMDA receptors are critical for social affiliative behavior, however, remain unclear. Here, we use mice carrying a conditional allele of the NMDA R1 subunit to address this question. Mice bearing a floxed NMDAR1 (NR1) allele were crossed with transgenic calcium/calmodulin-dependent kinase IIα (CaMKIIα)-Cre mice or parvalbumin (PV)-Cre mice targeting postnatal excitatory forebrain or PV-expressing interneurons, respectively, and assessed using the three-chambered Social Approach Test. We found that deletion of NR1 in PV-positive interneurons had no effect on social sniffing, but deletion of NR1 in glutamatergic pyramidal cells resulted in a significant increase in social approach behavior, regardless of age or sex. Therefore, forebrain excitatory neurons expressing NR1 play an important role in regulating social affiliative behavior.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ashley A Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyong Kim
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Holly C Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Praachi Raje
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary McMullen
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Siegel
- Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Intson K, van Eede MC, Islam R, Milenkovic M, Yan Y, Salahpour A, Henkelman RM, Ramsey AJ. Progressive neuroanatomical changes caused by Grin1 loss-of-function mutation. Neurobiol Dis 2019; 132:104527. [DOI: 10.1016/j.nbd.2019.104527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/07/2019] [Accepted: 07/06/2019] [Indexed: 02/04/2023] Open
|
12
|
Shrestha A, Sultana R, Lee CC, Ogundele OM. SK Channel Modulates Synaptic Plasticity by Tuning CaMKIIα/β Dynamics. Front Synaptic Neurosci 2019; 11:18. [PMID: 31736736 PMCID: PMC6834780 DOI: 10.3389/fnsyn.2019.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
N-Methyl-D-Aspartate Receptor 1 (NMDAR)-linked Ca++ current represents a significant percentage of post-synaptic transient that modulates synaptic strength and is pertinent to dendritic spine plasticity. In the hippocampus, Ca++ transient produced by glutamatergic ionotropic neurotransmission facilitates Ca++-Calmodulin-dependent kinase 2 (CaMKII) Thr286 phosphorylation and promote long-term potentiation (LTP) expression. At CA1 post-synaptic densities, Ca++ transients equally activate small conductance (SK2) channel which regulates excitability by suppressing Ca++ movement. Here, we demonstrate that upstream attenuation of GluN1 function in the hippocampus led to a decrease in Thr286 CaMKIIα phosphorylation, and increased SK2 expression. Consistent with the loss of GluN1 function, potentiation of SK channel in wild type hippocampus reduced CaMKIIα expression and abrogate synaptic localization of T286 pCaMKIIα. Our results demonstrate that positive modulation of SK channel at hippocampal synapses likely refine GluN1-linked plasticity by tuning dendritic localization of CaMKIIα.
Collapse
Affiliation(s)
| | | | | | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Lee G, Zhou Y. NMDAR Hypofunction Animal Models of Schizophrenia. Front Mol Neurosci 2019; 12:185. [PMID: 31417356 PMCID: PMC6685005 DOI: 10.3389/fnmol.2019.00185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
The N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis has been proposed to help understand the etiology and pathophysiology of schizophrenia. This hypothesis was based on early observations that NMDAR antagonists could induce a full range of symptoms of schizophrenia in normal human subjects. Accumulating evidence in humans and animal studies points to NMDAR hypofunctionality as a convergence point for various symptoms of schizophrenia. Here we review animal models of NMDAR hypofunction generated by pharmacological and genetic approaches, and how they relate to the pathophysiology of schizophrenia. In addition, we discuss the limitations of animal models of NMDAR hypofunction and their potential utility for therapeutic applications.
Collapse
Affiliation(s)
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| |
Collapse
|
14
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
15
|
Sullivan CR, Mielnik CA, O'Donovan SM, Funk AJ, Bentea E, DePasquale EA, Alganem K, Wen Z, Haroutunian V, Katsel P, Ramsey AJ, Meller J, McCullumsmith RE. Connectivity Analyses of Bioenergetic Changes in Schizophrenia: Identification of Novel Treatments. Mol Neurobiol 2019; 56:4492-4517. [PMID: 30338483 PMCID: PMC7584383 DOI: 10.1007/s12035-018-1390-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/11/2018] [Indexed: 01/21/2023]
Abstract
We utilized a cell-level approach to examine glycolytic pathways in the DLPFC of subjects with schizophrenia (n = 16) and control (n = 16) and found decreased mRNA expression of glycolytic enzymes in pyramidal neurons, but not astrocytes. To replicate these novel bioenergetic findings, we probed independent datasets for bioenergetic targets and found similar abnormalities. Next, we used a novel strategy to build a schizophrenia bioenergetic profile by a tailored application of the Library of Integrated Network-Based Cellular Signatures data portal (iLINCS) and investigated connected cellular pathways, kinases, and transcription factors using Enrichr. Finally, with the goal of identifying drugs capable of "reversing" the bioenergetic schizophrenia signature, we performed a connectivity analysis with iLINCS and identified peroxisome proliferator-activated receptor (PPAR) agonists as promising therapeutic targets. We administered a PPAR agonist to the GluN1 knockdown model of schizophrenia and found it improved long-term memory. Taken together, our findings suggest that tailored bioinformatics approaches, coupled with the LINCS library of transcriptional signatures of chemical and genetic perturbagens, may be employed to identify novel treatment strategies for schizophrenia and related diseases.
Collapse
Affiliation(s)
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | | | - Adam J Funk
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Eduard Bentea
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | - Erica A DePasquale
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Khaled Alganem
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Vahram Haroutunian
- Department of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
16
|
Chen Y, Milenkovic M, Horsfall W, Salahpour A, Soderling SH, Ramsey AJ. Restoring striatal WAVE-1 improves maze exploration performance of GluN1 knockdown mice. PLoS One 2018; 13:e0199341. [PMID: 30352064 PMCID: PMC6198945 DOI: 10.1371/journal.pone.0199341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/06/2018] [Indexed: 11/19/2022] Open
Abstract
NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.
Collapse
Affiliation(s)
- Yuxiao Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Scott H. Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Huang XF, Song X. Effects of antipsychotic drugs on neurites relevant to schizophrenia treatment. Med Res Rev 2018; 39:386-403. [PMID: 29785841 DOI: 10.1002/med.21512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/06/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Although antipsychotic drugs are mainly used for treating schizophrenia, they are widely used for treating various psychiatric diseases in adults, the elderly, adolescents and even children. Today, about 1.2% of the worldwide population suffers from psychosis and related disorders, which translates to about 7.5 million subjects potentially targeted by antipsychotic drugs. Neurites project from the cell body of neurons and connect neurons to each other to form neural networks. Deficits in neurite outgrowth and integrity are implicated in psychiatric diseases including schizophrenia. Neurite deficits contribute to altered brain development, neural networking and connectivity as well as symptoms including psychosis and altered cognitive function. This review revealed that (1) antipsychotic drugs could have profound effects on neurites, synaptic spines and synapse, by which they may influence and regulate neural networking and plasticity; (2) antipsychotic drugs target not only neurotransmitter receptors but also intracellular signaling molecules regulating the signaling pathways responsible for neurite outgrowth and maintenance; (3) high doses and chronic administration of antipsychotic drugs may cause some loss of neurites, synaptic spines, or synapsis in the cortical structures. In addition, confounding effects causing neurite deficits may include elevated inflammatory cytokines and antipsychotic drug-induced metabolic side effects in patients on chronic antipsychotic therapy. Unraveling how antipsychotic drugs affect neurites and neural connectivity is essential for improving therapeutic outcomes and preventing aversive effects for patients on antipsychotic drug treatment.
Collapse
Affiliation(s)
- Xu-Feng Huang
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, Australia
| | - Xueqin Song
- Henan Medical Key Laboratory of Translational Research on Psychiatric Diseases, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
14-3-3 Proteins in Glutamatergic Synapses. Neural Plast 2018; 2018:8407609. [PMID: 29849571 PMCID: PMC5937437 DOI: 10.1155/2018/8407609] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
The 14-3-3 proteins are a family of proteins that are highly expressed in the brain and particularly enriched at synapses. Evidence accumulated in the last two decades has implicated 14-3-3 proteins as an important regulator of synaptic transmission and plasticity. Here, we will review previous and more recent research that has helped us understand the roles of 14-3-3 proteins at glutamatergic synapses. A key challenge for the future is to delineate the 14-3-3-dependent molecular pathways involved in regulating synaptic functions.
Collapse
|
19
|
Zhou D, Lv D, Wang Z, Zhang Y, Chen Z, Wang C. GLYX-13 Ameliorates Schizophrenia-Like Phenotype Induced by MK-801 in Mice: Role of Hippocampal NR2B and DISC1. Front Mol Neurosci 2018; 11:121. [PMID: 29695955 PMCID: PMC5904356 DOI: 10.3389/fnmol.2018.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Evidence supports that the hypofunction of N-methyl-D-aspartate receptor (NMDAR) and downregulation of disrupted-in-schizophrenia 1 (DISC1) contribute to the pathophysiology of schizophrenia. N-Methyl D-aspartate receptor subtype 2B (NR2B)-containing NMDAR are associated with cognitive dysfunction in schizophrenia. GLYX-13 is an NMDAR glycine-site functional partial agonist and cognitive enhancer that does not induce psychotomimetic side effects. However, it remains unclear whether NR2B plays a critical role in the GLYX-13-induced alleviation of schizophrenia-like behaviors in mice. Methods: The effect of GLYX-13 was tested by observing changes in locomotor activity, novel object recognition ability, and prepulse inhibition (PPI) induced by dizocilpine (known as MK-801) in mice. Lentivirus-mediated NR2B knockdown in the hippocampus was assessed to confirm the role of NR2B in GLYX-13 pathophysiology, using Western blots and immunohistochemistry. Results: The systemic administration of GLYX-13 (0.5 and 1 mg/kg, i.p.) ameliorates MK-801 (0.5 mg/kg, i.p.)-induced hyperlocomotion, deficits in memory, and PPI in mice. Additionally, GLYX-13 normalized the MK-801-induced alterations in signaling molecules, including NR2B and DISC1 in the hippocampus. Furthermore, we found that NR2B knockdown produced memory and PPI deficits without any changes in locomotor activity. Notably, DISC1 levels significantly decreased by NR2B knockdown. However, the effective dose of GLYX-13 did not alleviate the memory and PPI dysfunctions or downregulation of DISC1 induced by NR2B knockdown. Conclusion: Our results suggest GLYX-13 as a candidate for schizophrenia treatment, and NR2B and DISC1 in the hippocampus may account for the molecular mechanisms of GLYX-13.
Collapse
Affiliation(s)
- Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, China.,Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China
| | - Dan Lv
- Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | - Zhen Wang
- Key Laboratory for Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanhua Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | | | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, School of Medicine, Ningbo University, Ningbo, China.,Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Sialana FJ, Wang AL, Fazari B, Kristofova M, Smidak R, Trossbach SV, Korth C, Huston JP, de Souza Silva MA, Lubec G. Quantitative Proteomics of Synaptosomal Fractions in a Rat Overexpressing Human DISC1 Gene Indicates Profound Synaptic Dysregulation in the Dorsal Striatum. Front Mol Neurosci 2018; 11:26. [PMID: 29467617 PMCID: PMC5808171 DOI: 10.3389/fnmol.2018.00026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/18/2018] [Indexed: 12/12/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a key protein involved in behavioral processes and various mental disorders, including schizophrenia and major depression. A transgenic rat overexpressing non-mutant human DISC1, modeling aberrant proteostasis of the DISC1 protein, displays behavioral, biochemical and anatomical deficits consistent with aspects of mental disorders, including changes in the dorsal striatum, an anatomical region critical in the development of behavioral disorders. Herein, dorsal striatum of 10 transgenic DISC1 (tgDISC1) and 10 wild type (WT) littermate control rats was used for synaptosomal preparations and for performing liquid chromatography-tandem mass spectrometry (LC-MS)-based quantitative proteomics, using isobaric labeling (TMT10plex). Functional enrichment analysis was generated from proteins with level changes. The increase in DISC1 expression leads to changes in proteins and synaptic-associated processes including membrane trafficking, ion transport, synaptic organization and neurodevelopment. Canonical pathway analysis assigned proteins with level changes to actin cytoskeleton, Gαq, Rho family GTPase and Rho GDI, axonal guidance, ephrin receptor and dopamine-DARPP32 feedback in cAMP signaling. DISC1-regulated proteins proposed in the current study are also highly associated with neurodevelopmental and mental disorders. Bioinformatics analyses from the current study predicted that the following biological processes may be activated by overexpression of DISC1, i.e., regulation of cell quantities, neuronal and axonal extension and long term potentiation. Our findings demonstrate that the effects of overexpression of non-mutant DISC1 or its misassembly has profound consequences on protein networks essential for behavioral control. These results are also relevant for the interpretation of previous as well as for the design of future studies on DISC1.
Collapse
Affiliation(s)
- Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - An-Li Wang
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | - Benedetta Fazari
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | - Martina Kristofova
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Roman Smidak
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, University of Düsseldorf, Düsseldorf, Germany
| | | | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Private Medical University, Salzburg, Austria
| |
Collapse
|
21
|
Funk AJ, Mielnik CA, Koene R, Newburn E, Ramsey AJ, Lipska BK, McCullumsmith RE. Postsynaptic Density-95 Isoform Abnormalities in Schizophrenia. Schizophr Bull 2017; 43:891-899. [PMID: 28126896 PMCID: PMC5472126 DOI: 10.1093/schbul/sbw173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Postsynaptic density-95 (PSD-95) protein expression is dysregulated in schizophrenia in a variety of brain regions. We have designed experiments to examine PSD-95 mRNA splice variant expression in the dorsolateral prefrontal cortex from subjects with schizophrenia. METHODS We performed quantitative PCR and western blot analysis to measure PSD-95 expression in schizophrenia vs control subjects, rodent haloperidol treatment studies, rodent postmortem interval studies, and GluN1 knockdown (KD) mice vs controls. RESULTS We found decreased mRNA expression of beta (t = 4.506, df = 383, P < .0001) and truncated (t = 3.378, df = 383, P = .0008) isoforms of PSD-95, whereas alpha was unchanged. Additionally, we found decreased PSD-95 protein expression in schizophrenia (t = 2.746, df = 71, P = .0076). We found no correlation between PSD-95 protein and alpha, beta, or truncated mRNA isoforms in schizophrenia. PSD-95 beta transcript was increased (t = 3.346, df = 14, P < .05) in the GluN1 KD mouse model of schizophrenia. There was an increase in PSD-95 alpha mRNA expression (t = 2.905, df = 16, P < .05) in rats following long-term haloperidol administration. CONCLUSIONS Our findings describe a unique pathophysiology of specific PSD-95 isoform dysregulation in schizophrenia, chronic neuroleptic treatment, and a genetic lesion mouse model of drastically reduced N-methyl-d-aspartate receptor (NMDAR) complex expression. These data indicate that regulation of PSD-95 is multifaceted, may be isoform specific, and biologically relevant for synaptic signaling function. Specifically, NMDAR-mediated synaptic remodeling, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking and interaction may be impaired in schizophrenia by decreased PSD-95 beta and truncated expression (respectively). Further, increased PSD-95 beta transcript in the GluN1 KD mouse model poses a potential compensatory rescue of NMDAR-mediated function via increased postsynaptic throughput of the severely reduced GluN1 signal. Together, these data propose that disruption of excitatory signaling complexes through genetic (GluN1 KD), pharmacologic (antipsychotics), or disease (schizophrenia) mechanisms specifically dysregulates PSD-95 expression.
Collapse
Affiliation(s)
- Adam J. Funk
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Catharine A. Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Rachael Koene
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Barbara K. Lipska
- Human Brain Collection Core, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD,Co-senior authors
| | - Robert E. McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH;,Co-senior authors
| |
Collapse
|
22
|
Misassembly of full-length Disrupted-in-Schizophrenia 1 protein is linked to altered dopamine homeostasis and behavioral deficits. Mol Psychiatry 2016; 21:1561-1572. [PMID: 26754951 PMCID: PMC5078859 DOI: 10.1038/mp.2015.194] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a mental illness gene first identified in a Scottish pedigree. So far, DISC1-dependent phenotypes in animal models have been confined to expressing mutant DISC1. Here we investigated how pathology of full-length DISC1 protein could be a major mechanism in sporadic mental illness. We demonstrate that a novel transgenic rat model, modestly overexpressing the full-length DISC1 transgene, showed phenotypes consistent with a significant role of DISC1 misassembly in mental illness. The tgDISC1 rat displayed mainly perinuclear DISC1 aggregates in neurons. Furthermore, the tgDISC1 rat showed a robust signature of behavioral phenotypes that includes amphetamine supersensitivity, hyperexploratory behavior and rotarod deficits, all pointing to changes in dopamine (DA) neurotransmission. To understand the etiology of the behavioral deficits, we undertook a series of molecular studies in the dorsal striatum of tgDISC1 rats. We observed an 80% increase in high-affinity DA D2 receptors, an increased translocation of the dopamine transporter to the plasma membrane and a corresponding increase in DA inflow as observed by cyclic voltammetry. A reciprocal relationship between DISC1 protein assembly and DA homeostasis was corroborated by in vitro studies. Elevated cytosolic dopamine caused an increase in DISC1 multimerization, insolubility and complexing with the dopamine transporter, suggesting a physiological mechanism linking DISC1 assembly and dopamine homeostasis. DISC1 protein pathology and its interaction with dopamine homeostasis is a novel cellular mechanism that is relevant for behavioral control and may have a role in mental illness.
Collapse
|
23
|
Hayashi-Takagi A. Synapse pathology and translational applications for schizophrenia. Neurosci Res 2016; 114:3-8. [PMID: 27633835 DOI: 10.1016/j.neures.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/14/2016] [Accepted: 08/31/2016] [Indexed: 01/01/2023]
Abstract
Schizophrenia is a chronic, severe, and disabling brain disorder, with an estimated lifetime prevalence of 0.7%. Despite its relatively low prevalence, the onset of schizophrenia usually occurs early in life, resulting in a severe lifelong disability for patients and increasing the economic and care burden on their families. This makes schizophrenia one of the most catastrophic mental illnesses. Although the etiology of schizophrenia remains poorly understood, clinical, genetic, and pharmacological studies have indicated that its pathophysiology involves synaptic disturbances. Here, I review the evidence suggesting synaptic disturbance as the causal pathophysiology of schizophrenia and discuss the possible application of synaptic intervention as a novel therapeutic strategy for schizophrenia.
Collapse
Affiliation(s)
- Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebachi, Gunma 371-8512, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
24
|
Social Preference and Glutamatergic Dysfunction: Underappreciated Prerequisites for Social Dysfunction in Schizophrenia. Trends Neurosci 2016; 39:587-596. [PMID: 27477199 DOI: 10.1016/j.tins.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Impaired social functioning is pervasive in schizophrenia. Unfortunately, existing treatments have limited efficacy, and possible psychological or neurobiological mechanisms underlying social dysfunction in this disorder remain obscure. Here, we evaluate whether social preference, one key aspect of social processing that has been largely overlooked in schizophrenia research, and N-methyl-d-aspartate receptor (NMDAR) dysfunction can provide insights into the mechanism underlying social dysfunction in schizophrenia. Based on evidence from developmental psychology, and behavioral and clinical neuroscience, we propose a heuristic model in which reduced NMDAR function may induce disrupted social preference that can subsequently lead to social cognitive impairment and social disability. We discuss its implications in terms of the pathophysiology of schizophrenia, other disorders with marked social disability, and potential treatments.
Collapse
|
25
|
Qing Y, Sun L, Yang C, Jiang J, Yang X, Hu X, Cui D, Xu Y, He L, Han D, Wan C. Dysregulated 14-3-3 Family in Peripheral Blood Leukocytes of Patients with Schizophrenia. Sci Rep 2016; 6:23791. [PMID: 27030512 PMCID: PMC4814835 DOI: 10.1038/srep23791] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022] Open
Abstract
The 14-3-3 family, which is composed of seven distinct members in humans, plays important roles in the cell cycle, apoptosis, synaptic plasticity and neuronal differentiation and migration. Previous genetic and post-mortem gene expression studies have linked this family to schizophrenia. However, the direction of gene expression changes in these studies has been inconsistent, and reports of 14-3-3 gene expression in living schizophrenic patients are still lacking. Here, we assessed 14-3-3 gene and protein expression levels in peripheral blood leukocytes from drug-naïve first-episode schizophrenic patients and matched controls. mRNA and protein expression levels were quantified by qRT-PCR and UPLC-MRM/MS, respectively. Expression analysis revealed four downregulated and one upregulated mRNA transcripts as well as five downregulated protein levels of 14-3-3 isoforms in schizophrenia. Moreover, significant positive correlations between 14-3-3 mRNA and protein expression levels were found in schizophrenia, and we also identified negative correlations between ε, θ and ζ isoform expression levels and positive symptoms of schizophrenia. Our results suggest that gene and protein expression levels for the 14-3-3 family are dysregulated in schizophrenia, perhaps owing to specific regulatory mechanisms, and we also suggest that expression of the 14-3-3ε, θ and ζ isoform genes could be useful indicators of disease severity.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Liya Sun
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Chao Yang
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jie Jiang
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuhan Yang
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaowen Hu
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Donghong Cui
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yifeng Xu
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin He
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dongmei Han
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunling Wan
- Shanghai Mental Health Center, Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Key Laboratory of Translational Psychiatry, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
26
|
Ju P, Cui D. The involvement of N-methyl-D-aspartate receptor (NMDAR) subunit NR1 in the pathophysiology of schizophrenia. Acta Biochim Biophys Sin (Shanghai) 2016; 48:209-19. [PMID: 26837414 DOI: 10.1093/abbs/gmv135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/26/2015] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world population. Although the exact pathophysiology of schizophrenia is unknown, the N-methyl-d-aspartate receptor (NMDAR), a major glutamate receptor subtype, has received great attention. The NR1 subunit is often considered indispensable for functional NMDAR assemblies, abnormal modulation of which is found in patients with schizophrenia. In this review, we discuss how disrupted function of NR1 subunits in NMDAR leads to the progression and development of symptoms of schizophrenia-like behaviors in a variety of genetically modified mouse models. We also discuss some of the susceptible genes and shared signaling pathways among the schizophrenia, and how their mutations lead to NR1 subunits hypofunction. Finally, we suggest that the subunit-selective modulators of NR1 subunits in NMDA receptors may be promising tools for the therapy of schizophrenia.
Collapse
Affiliation(s)
- Peijun Ju
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 201108, China
| |
Collapse
|
27
|
Gao R, Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 2015; 15:146-67. [PMID: 25732149 DOI: 10.2174/1566524015666150303003028] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 12/20/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
Autism Spectrum Disorders (ASD) and Schizophrenia (SCZ) are cognitive disorders with complex genetic architectures but overlapping behavioral phenotypes, which suggests common pathway perturbations. Multiple lines of evidence implicate imbalances in excitatory and inhibitory activity (E/I imbalance) as a shared pathophysiological mechanism. Thus, understanding the molecular underpinnings of E/I imbalance may provide essential insight into the etiology of these disorders and may uncover novel targets for future drug discovery. Here, we review key genetic, physiological, neuropathological, functional, and pathway studies that suggest alterations to excitatory/inhibitory circuits are keys to ASD and SCZ pathogenesis.
Collapse
Affiliation(s)
| | - P Penzes
- Department of Physiology, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
28
|
Foote M, Qiao H, Graham K, Wu Y, Zhou Y. Inhibition of 14-3-3 Proteins Leads to Schizophrenia-Related Behavioral Phenotypes and Synaptic Defects in Mice. Biol Psychiatry 2015; 78:386-95. [PMID: 25863357 PMCID: PMC4544659 DOI: 10.1016/j.biopsych.2015.02.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/19/2015] [Accepted: 02/08/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND The 14-3-3 family of proteins is implicated in the regulation of several key neuronal processes. Previous human and animal studies suggested an association between 14-3-3 dysregulation and schizophrenia. METHODS We characterized behavioral and functional changes in transgenic mice that express an isoform-independent 14-3-3 inhibitor peptide in the brain. RESULTS We recently showed that 14-3-3 functional knockout mice (FKO) exhibit impairments in associative learning and memory. We report here that these 14-3-3 FKO mice display other behavioral deficits that correspond to the core symptoms of schizophrenia. These behavioral deficits may be attributed to alterations in multiple neurotransmission systems in the 14-3-3 FKO mice. In particular, inhibition of 14-3-3 proteins results in a reduction of dendritic complexity and spine density in forebrain excitatory neurons, which may underlie the altered synaptic connectivity in the prefrontal cortical synapse of the 14-3-3 FKO mice. At the molecular level, this dendritic spine defect may stem from dysregulated actin dynamics secondary to a disruption of the 14-3-3-dependent regulation of phosphorylated cofilin. CONCLUSIONS Collectively, our data provide a link between 14-3-3 dysfunction, synaptic alterations, and schizophrenia-associated behavioral deficits.
Collapse
Affiliation(s)
- Molly Foote
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Haifa Qiao
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Kourtney Graham
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yuying Wu
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, Florida..
| |
Collapse
|
29
|
Nona CN, Bermejo MK, Ramsey AJ, Nobrega JN. Changes in dendritic spine density in the nucleus accumbens do not underlie ethanol sensitization. Synapse 2015; 69:607-10. [PMID: 26340045 DOI: 10.1002/syn.21862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/31/2015] [Accepted: 08/25/2015] [Indexed: 01/31/2023]
Abstract
Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior.
Collapse
Affiliation(s)
- Christina N Nona
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Behavioural Neurobiology Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada
| | - Marie Kristel Bermejo
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - José N Nobrega
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.,Behavioural Neurobiology Laboratory, Campbell Family Mental Health Research Institute, CAMH, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Zhang X, Li X, Li M, Ren J, Yun K, An Y, Lin L, Zhang H. Venlafaxine increases cell proliferation and regulates DISC1, PDE4B and NMDA receptor 2B expression in the hippocampus in chronic mild stress mice. Eur J Pharmacol 2015; 755:58-65. [PMID: 25769842 DOI: 10.1016/j.ejphar.2015.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Recent evidence has identified disrupted in schizophrenia-1 (DISC1) as an important genetic risk factor for the development of many psychiatric disorders, including major depressive disorders. In addition, studies using animal models have demonstrated that chronic stress affects hippocampal structure and function. However, the functional effects of chronic stress on DISC1 remain unknown. Using a chronic mild stress (CMS) paradigm, we investigated the effects of CMS on depressive-like behaviors, hippocampal cell proliferation, and hippocampal protein expression of DISC1, phosphodiesterase 4B (PDE4B) and N-methyl-d-aspartate receptor 2B subunit (NMDA receptor 2B), which may be involved in the regulation of DISC1 and neurogenesis. We also examined the effects and possible mechanisms of the antidepressant venlafaxine in CMS mice. CMS increased the expression of DISC1 and PDE4B. Chronic treatment with venlafaxine blocked the increases in these proteins, and also reversed the CMS-induced decrease in neurogenesis and NMDA receptor 2B protein in the hippocampus. These results suggest that DISC1 may play an important role in the etiology of depression and in the action of antidepressants.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Min Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jintao Ren
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yun
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan An
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hailong Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
31
|
Milenkovic M, Mielnik CA, Ramsey AJ. NMDA receptor-deficient mice display sexual dimorphism in the onset and severity of behavioural abnormalities. GENES BRAIN AND BEHAVIOR 2014; 13:850-62. [PMID: 25327402 DOI: 10.1111/gbb.12183] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 01/14/2023]
Abstract
N-methyl-d-aspartate (NMDA) receptor-deficient mice can be used to understand the role that NMDA receptors (NMDARs) play in the pathophysiology of neurodevelopmental disorders such as schizophrenia. Genetically modified mice with low levels of NR1 subunit (NR1 knockdown mice) have reduced receptor levels throughout development, and have robust abnormalities in behaviours that are relevant to schizophrenia. We traced the onset and severity of these behaviours at three developmental stages to understand when in development the underlying circuits depend on intact NMDAR function. We examined social behaviour, working memory, executive function, locomotor activity and stereotypy at 3, 6 and 12 weeks of age in NR1 knockdown mice and their wild-type littermates. We discovered that each of these behaviours had a unique developmental trajectory in mutant mice, and males showed an earlier onset and severity than females in several behaviours. Hyperlocomotion was most substantial in juvenile mice and plateaued in adult mice, whereas stereotypy progressively worsened with age. Impairments in working memory and sociability were sexually dimorphic, with deficits first detected in peri-adolescent males but only detected in adult females. Interestingly, executive function was most impaired in peri-adolescent mice of either sex. Furthermore, while juvenile mutant mice had some ability to problem solve in the puzzle box test, the same mice lost this ability when tested 4 weeks later. Our studies highlight key developmental periods for males and females in the expression of behaviours that are relevant to psychiatric disorders.
Collapse
Affiliation(s)
- M Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
32
|
Ruddy RM, Chen Y, Milenkovic M, Ramsey AJ. Differential effects of NMDA receptor antagonism on spine density. Synapse 2014; 69:52-6. [PMID: 25220437 DOI: 10.1002/syn.21784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/27/2014] [Accepted: 08/30/2014] [Indexed: 11/10/2022]
Abstract
The authors demonstrate that different NMDAR antagonists (ketamine and MK-801) have varying effects on spine density depending on dose, drug regimen, and brain region. While acute ketamine treatment increases cortical spine density in mice, subchronic exposure to either drug reduces spine density in both the cortex and striatum.
Collapse
Affiliation(s)
- Rebecca M Ruddy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | | | | | | |
Collapse
|
33
|
Mielnik CA, Horsfall W, Ramsey AJ. Diazepam improves aspects of social behaviour and neuron activation in NMDA receptor-deficient mice. GENES BRAIN AND BEHAVIOR 2014; 13:592-602. [PMID: 25040071 DOI: 10.1111/gbb.12155] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/24/2014] [Accepted: 07/11/2014] [Indexed: 11/28/2022]
Abstract
NR1 knockdown (NR1KD) mice are genetically modified to express low levels of the NR1 subunit of N-methyl-D-aspartate (NMDA) receptors, and show deficits in affiliative social behaviour. In this study, we determined which brain regions were selectively activated in response to social stimulation and asked whether differences in neuronal activation could be observed in mice with reduced sociability. Furthermore, we aimed to determine whether brain activation patterns correlated with the amelioration of social deficits through pharmacological intervention. The cingulate cortex, lateral septal nuclei, hypothalamus, thalamus and amygdala showed an increase in c-Fos immunoreactivity that was selective for exposure to social stimuli. NR1KD mice displayed a reduction in social behaviour and a reduction in c-Fos immunoreactivity in the cingulate cortex and septal nuclei. Acute clozapine did not significantly alter sociability; however, diazepam treatment did increase sociability and neuronal activation in the lateral septal region. This study has identified the lateral septal region as a neural substrate of social behaviour and the GABA system as a potential therapeutic target for social dysfunction.
Collapse
Affiliation(s)
- C A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
34
|
Gender-dependent effects of maternal immune activation on the behavior of mouse offspring. PLoS One 2014; 9:e104433. [PMID: 25111339 PMCID: PMC4128679 DOI: 10.1371/journal.pone.0104433] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/24/2014] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorders are neurodevelopmental disorders characterized by two core symptoms; impaired social interactions and communication, and ritualistic or repetitive behaviors. Both epidemiological and biochemical evidence suggests that a subpopulation of autistics may be linked to immune perturbations that occurred during fetal development. These findings have given rise to an animal model, called the "maternal immune activation" model, whereby the offspring from female rodents who were subjected to an immune stimulus during early or mid-pregnancy are studied. Here, C57BL/6 mouse dams were treated mid-gestation with saline, lipopolysaccharide (LPS) to mimic a bacterial infection, or polyinosinic:polycytidylic acid (Poly IC) to mimic a viral infection. Autism-associated behaviors were examined in the adult offspring of the treated dams. Behavioral tests were conducted to assess motor activity, exploration in a novel environment, sociability, and repetitive behaviors, and data analyses were carried independently on male and female mice. We observed a main treatment effect whereby male offspring from Poly IC-treated dams showed reduced motor activity. In the marble burying test of repetitive behavior, male offspring but not female offspring from both LPS and Poly IC-treated mothers showed increased marble burying. Our findings indicate that offspring from mothers subjected to immune stimulation during gestation show a gender-specific increase in stereotyped repetitive behavior.
Collapse
|
35
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
14-3-3 proteins are required for hippocampal long-term potentiation and associative learning and memory. J Neurosci 2014; 34:4801-8. [PMID: 24695700 DOI: 10.1523/jneurosci.4393-13.2014] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
14-3-3 is a family of regulatory proteins highly expressed in the brain. Previous invertebrate studies have demonstrated the importance of 14-3-3 in the regulation of synaptic functions and learning and memory. However, the in vivo role of 14-3-3 in these processes has not been determined using mammalian animal models. Here, we report the behavioral and electrophysiological characterization of a new animal model of 14-3-3 proteins. These transgenic mice, considered to be a 14-3-3 functional knock-out, express a known 14-3-3 inhibitor in various brain regions of different founder lines. We identify a founder-specific impairment in hippocampal-dependent learning and memory tasks, as well as a correlated suppression in long-term synaptic plasticity of the hippocampal synapses. Moreover, hippocampal synaptic NMDA receptor levels are selectively reduced in the transgenic founder line that exhibits both behavioral and synaptic plasticity deficits. Collectively, our findings provide evidence that 14-3-3 is a positive regulator of associative learning and memory at both the behavioral and cellular level.
Collapse
|
37
|
Abazyan B, Dziedzic J, Hua K, Abazyan S, Yang C, Mori S, Pletnikov MV, Guilarte TR. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study. Schizophr Bull 2014; 40:575-84. [PMID: 23716713 PMCID: PMC3984515 DOI: 10.1093/schbul/sbt071] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.
Collapse
Affiliation(s)
- Bagrat Abazyan
- *To whom correspondence should be addressed; Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 722 West 168th Street, Room 1105-E, New York, NY 10032, US; tel: 212-305-3959, fax: 212-305-3857, e-mail:
| | - Jenifer Dziedzic
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY
| | - Kegang Hua
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Sofya Abazyan
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Chunxia Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD;
| | - Mikhail V. Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD;,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD;,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tomas R. Guilarte
- Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, New York, NY;,*To whom correspondence should be addressed; Department of Environmental Health Sciences, Columbia University, Mailman School of Public Health, 722 West 168th Street, Room 1105-E, New York, NY 10032, US; tel: 212-305-3959, fax: 212-305-3857, e-mail:
| |
Collapse
|
38
|
Ferris MJ, Milenkovic M, Liu S, Mielnik CA, Beerepoot P, John CE, España RA, Sotnikova TD, Gainetdinov RR, Borgland SL, Jones SR, Ramsey AJ. Sustained N-methyl-d-aspartate receptor hypofunction remodels the dopamine system and impairs phasic signaling. Eur J Neurosci 2014; 40:2255-63. [PMID: 24754704 DOI: 10.1111/ejn.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/23/2014] [Accepted: 03/21/2014] [Indexed: 12/13/2022]
Abstract
Chronic N-methyl-d-aspartate receptor (NMDAR) hypofunction has been proposed as a contributing factor to symptoms of schizophrenia. However, it is unclear how sustained NMDAR hypofunction throughout development affects other neurotransmitter systems that have been implicated in the disease. Dopamine neuron biochemistry and activity were examined to determine whether sustained NMDAR hypofunction causes a state of hyperdopaminergia. We report that a global, genetic reduction in NMDARs led to a remodeling of dopamine neurons, substantially affecting two key regulators of dopamine homeostasis, i.e., tyrosine hydroxylase and the dopamine transporter. In NR1 knockdown mice, dopamine synthesis and release were attenuated, and dopamine clearance was increased. Although these changes would have the effect of reducing dopamine transmission, we demonstrated that a state of hyperdopaminergia existed in these mice because dopamine D2 autoreceptors were desensitized. In support of this conclusion, NR1 knockdown dopamine neurons have higher tonic firing rates. Although the tonic firing rates are higher, phasic signaling is impaired, and dopamine overflow cannot be achieved with exogenous high-frequency stimulation that models phasic firing. Through the examination of several parameters of dopamine neurotransmission, we provide evidence that chronic NMDAR hypofunction leads to a state of elevated synaptic dopamine. Compensatory mechanisms to attenuate hyperdopaminergia also impact the ability to generate dopamine surges through phasic firing.
Collapse
Affiliation(s)
- Mark J Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
PAKs inhibitors ameliorate schizophrenia-associated dendritic spine deterioration in vitro and in vivo during late adolescence. Proc Natl Acad Sci U S A 2014; 111:6461-6. [PMID: 24706880 DOI: 10.1073/pnas.1321109111] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Drug discovery in psychiatry has been limited to chemical modifications of compounds originally discovered serendipitously. Therefore, more mechanism-oriented strategies of drug discovery for mental disorders are awaited. Schizophrenia is a devastating mental disorder with synaptic disconnectivity involved in its pathophysiology. Reduction in the dendritic spine density is a major alteration that has been reproducibly reported in the cerebral cortex of patients with schizophrenia. Disrupted-in-Schizophrenia-1 (DISC1), a factor that influences endophenotypes underlying schizophrenia and several other neuropsychiatric disorders, has a regulatory role in the postsynaptic density in association with the NMDA-type glutamate receptor, Kalirin-7, and Rac1. Prolonged knockdown of DISC1 leads to synaptic deterioration, reminiscent of the synaptic pathology of schizophrenia. Thus, we tested the effects of novel inhibitors to p21-activated kinases (PAKs), major targets of Rac1, on synaptic deterioration elicited by knockdown expression of DISC1. These compounds not only significantly ameliorated the synaptic deterioration triggered by DISC1 knockdown but also partially reversed the size of deteriorated synapses in culture. One of these PAK inhibitors prevented progressive synaptic deterioration in adolescence as shown by in vivo two-photon imaging and ameliorated a behavioral deficit in prepulse inhibition in adulthood in a DISC1 knockdown mouse model. The efficacy of PAK inhibitors may have implications in drug discovery for schizophrenia and related neuropsychiatric disorders in general.
Collapse
|
40
|
Regulation of N-methyl-D-aspartate receptors by disrupted-in-schizophrenia-1. Biol Psychiatry 2014; 75:414-424. [PMID: 23906531 PMCID: PMC3864617 DOI: 10.1016/j.biopsych.2013.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Genetic studies have implicated disrupted-in-schizophrenia-1 (DISC1) as a risk factor for a wide range of mental conditions, including schizophrenia. Because N-methyl-D-aspartate receptor (NMDAR) dysfunction has been strongly linked to the pathophysiology of these conditions, we examined whether the NMDAR is a potential target of DISC1. METHODS DISC1 was knocked down with a small inference RNA. NMDAR-mediated currents were recorded and NMDAR expression was measured. RESULTS We found that cellular knockdown of DISC1 significantly increased NMDAR currents in cortical cultures, which were accompanied by an increase in the expression of NMDAR subunit, GluN2A. NMDAR-mediated synaptic response in prefrontal cortical pyramidal neurons was also increased by DISC1 knockdown in vivo. The effect of DISC1 knockdown on NMDAR currents in cortical cultures was blocked by protein kinase A (PKA) inhibitor, occluded by PKA activator, and prevented by phosphodiesterase 4 inhibitor. Knockdown of DISC1 caused a significant increase of cyclic adenosine monophosphate response element-binding protein (CREB) activity. Inhibiting CREB prevented the DISC1 deficiency-induced increase of NMDAR currents and GluN2A clusters. CONCLUSIONS Our results suggest that DISC1 exerts an important impact on NMDAR expression and function through a phosphodiesterase 4/PKA/CREB-dependent mechanism, which provides a potential molecular basis for the role of DISC1 in influencing NMDAR-dependent cognitive and emotional processes.
Collapse
|
41
|
Ogawa F, Malavasi EL, Crummie DK, Eykelenboom JE, Soares DC, Mackie S, Porteous DJ, Millar JK. DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet 2014; 23:906-19. [PMID: 24092329 PMCID: PMC3900104 DOI: 10.1093/hmg/ddt485] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these observations, in neuronal axons DISC1 promotes specifically anterograde mitochondrial transport. DISC1 thus participates directly in mitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal human DISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterograde mitochondrial transport. This is likely related to a number of mitochondrial abnormalities induced by expression of DISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex.
Collapse
Affiliation(s)
- Fumiaki Ogawa
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Elise L.V. Malavasi
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Darragh K. Crummie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Jennifer E. Eykelenboom
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
- Now at Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Dinesh C. Soares
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Shaun Mackie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - David J. Porteous
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - J. Kirsty Millar
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| |
Collapse
|
42
|
Jha MK, Kim JH, Suk K. Proteome of brain glia: the molecular basis of diverse glial phenotypes. Proteomics 2013; 14:378-98. [PMID: 24124134 DOI: 10.1002/pmic.201300236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
Abstract
Several different types of nonneuronal glial cells with diverse phenotypes are present in the CNS, and all have distinct indispensible functions. Although glial cells primarily provide neurons with metabolic and structural support in the healthy brain, they may switch phenotype from a "resting" to a "reactive" state in response to pathological insults. Furthermore, this reactive gliosis is an invariant feature of the pathogeneses of CNS maladies. The glial proteome serves as a signature of glial phenotype, and not only executes physiological functions, but also acts as a molecular mediator of the reactive glial phenotype. The glial proteome is also involved in intra- and intercellular communications as exemplified by glia-glia and neuron-glia interactions. The utilization of authoritative proteomic tools and the bioinformatic analyses have helped to profile the brain glial proteome and explore the molecular mechanisms of diverse glial phenotypes. Furthermore, technologic innovations have equipped the field of "glioproteomics" with refined tools for studies of the expression, interaction, and function of glial proteins in the healthy and in the diseased CNS. Glioproteomics is expected to contribute to the elucidation of the molecular mechanisms of CNS pathophysiology and to the discovery of biomarkers and theragnostic targets in CNS disorders.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | |
Collapse
|
43
|
Ma T, Abazyan S, Abazyan B, Nomura J, Yang C, Seshadri S, Sawa A, Snyder S, Pletnikov M. Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Mol Psychiatry 2013; 18:557-67. [PMID: 22801410 PMCID: PMC3475769 DOI: 10.1038/mp.2012.97] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Perturbation of Disrupted-In-Schizophrenia-1 (DISC1) and D-serine/NMDA receptor hypofunction have both been implicated in the pathophysiology of schizophrenia and other psychiatric disorders. In the present study, we demonstrate that these two pathways intersect with behavioral consequences. DISC1 binds to and stabilizes serine racemase (SR), the enzyme that generates D-serine, an endogenous co-agonist of the NMDA receptor. Mutant DISC1 fails to bind to SR, facilitating ubiquitination and degradation of SR and a decrease in D-serine production. To elucidate DISC1-SR interactions in vivo, we generated a mouse model of selective and inducible expression of mutant DISC1 in astrocytes, the main source of D-serine in the brain. Expression of mutant DISC1 downregulates endogenous DISC1 and decreases protein but not mRNA levels of SR, resulting in diminished production of D-serine. In contrast, mutant DISC1 does not alter levels of ALDH1L1, connexins, GLT-1 or binding partners of DISC1 and SR, LIS1 or PICK1. Adult male and female mice with lifelong expression of mutant DISC1 exhibit behavioral abnormalities consistent with hypofunction of NMDA neurotransmission. Specifically, mutant mice display greater responses to an NMDA antagonist, MK-801, in open field and pre-pulse inhibition of the acoustic startle tests and are significantly more sensitive to the ameliorative effects of D-serine. These findings support a model wherein mutant DISC1 leads to SR degradation via dominant negative effects, resulting in D-serine deficiency that diminishes NMDA neurotransmission thus linking DISC1 and NMDA pathophysiological mechanisms in mental illness.
Collapse
Affiliation(s)
- T.M. Ma
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - S. Abazyan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - B. Abazyan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - J. Nomura
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD,Division of Molecular Medical Science, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - C. Yang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - S. Seshadri
- Division of Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - A. Sawa
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Division of Molecular Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - S.H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Departments of Pharmacology and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD,co-corresponding authors
| | - M.V. Pletnikov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD,co-corresponding authors
| |
Collapse
|
44
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
45
|
Banerjee HN, Hyman G, Evans S, Manglik V, Gwebu E, Banerjee A, Vaughan D, Medley J, Krauss C, Wilkins J, Smith V, Banerji A, Rousch J. Identification of the Transmembrane Glucose Regulated Protein 78 as a Biomarker for the Brain Cancer Glioblastoma Multiforme by Gene Expression and Proteomic Studies. ACTA ACUST UNITED AC 2013. [PMID: 26207187 PMCID: PMC4508859 DOI: 10.4172/2155-9589.1000126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prognosis of patients with Glioblastoma Multiforme (GBM), the most malignant adult glial brain tumor, remains poor in spite of advances in treatment procedures, including surgical resection, irradiation and chemotherapy. Genetic heterogeneity of GBM warrants extensive studies to gain a thorough understanding of the biology of this tumor. While there have been several studies of global transcript profiling of glioma with the identification of gene signatures for diagnosis and disease management, translation into clinics is yet to happen. In the present study, we report a novel proteomic approach by using two-dimensional difference gel electrophoresis (2D-DIGE) followed by spot picking and analysis of proteins/peptides by Mass Spectrometry. We report Glucose Regulated Protein 78 (GRP78) as a differentially expressed protein in the GBM cell line compared to human normal Astrocyte cells. In addition to proteomic studies, we performed microarray analysis which further confirmed up regulation of GRP78 in GBM cells compared to human normal Astrocyte cells. GRP78 has long been recognized as a molecular chaperone in the endoplasmic reticulum (ER) and can be induced by the ER stress response. Besides its location in the ER, GRP78 has been found in cell plasma membrane, cytoplasm, mitochondria, nucleus and other cellular secretions. GRP78 is implicated in tumor cell proliferation, apoptosis resistance, immune escape, metastasis and angiogenesis, and its elevated expression usually correlates with a variety of tumor micro environmental stresses, including hypoxia, glucose deprivation, lactic acidosis and inflammatory response. GRP78 protein acts as a centrally located sensor of stress, which senses and facilitates the adaptation to the tumor microenvironment. Our findings showed differential expression of this gene in brain cancer GBM and thus confirm similarities in findings in existing transcriptional and translational studies. Thus, these findings could be of further importance for diagnostic, therapeutic and prognostic approaches for dealing with this highly malignant cancer.
Collapse
Affiliation(s)
- H N Banerjee
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA ; Department of Pharmaceutical Sciences, Elizabeth City State University, Elizabeth City, NC, USA
| | - G Hyman
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - S Evans
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - V Manglik
- Department of Mathematics and Computer Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - E Gwebu
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - A Banerjee
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - D Vaughan
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - J Medley
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - C Krauss
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - J Wilkins
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - V Smith
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| | - A Banerji
- Department of Pharmaceutical Sciences, Elizabeth City State University, Elizabeth City, NC, USA
| | - J Rousch
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC, USA
| |
Collapse
|
46
|
He Y, Han JR, Chang O, Oh M, James SE, Lu Q, Seo YW, Kim H, Kim K. 14-3-3ɛ/ζ Affects the stability of δ-catenin and regulates δ-catenin-induced dendrogenesis. FEBS Open Bio 2012; 3:16-21. [PMID: 23772369 PMCID: PMC3668525 DOI: 10.1016/j.fob.2012.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022] Open
Abstract
Accumulated evidence suggests that aberrant regulation of δ-catenin leads to pathological consequences such as mental retardation and cognitive dysfunction. This study revealed that 14-3-3ɛ/ζ stabilizes δ-catenin, with different binding regions involved in the interaction. Furthermore, the specific inhibition of the interaction of 14-3-3 with δ-catenin reduced levels of δ-catenin and significantly impaired the capacity of δ-catenin to induce dendritic branching in both NIH3T3 fibroblasts and primary hippocampal neurons. However, the S1094A δ-catenin mutant, which cannot interact with 14-3-3ζ, still retained the capability of inducing dendrogenesis. Taken together, these results elucidate the underlying events that regulate the stability of δ-catenin and δ-catenin-induced dendrogenesis.
Collapse
Affiliation(s)
- Yongfeng He
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hikida T, Gamo NJ, Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin Ther Targets 2012; 16:1151-60. [PMID: 23130881 DOI: 10.1517/14728222.2012.719879] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Many genetic studies have indicated that DISC1 is not merely "disrupted-in-schizophrenia," but is more generally implicated in various brain dysfunctions associated with aberrant neurodevelopment and intracellular signaling pathways. Thus, the DISC1 gene is mildly associated with a variety of brain disorders, including schizophrenia, mood disorders, and autism. This novel concept fits with the results from biological studies of DISC1, which include cell and animal models. AREAS COVERED We review the molecular structure and functions of DISC1, particularly those in conjunction with its important interactors. Functions of these interacting proteins are also introduced under the concept of the "DISC1 interactome." Finally, we discuss how the DISC1 interactome can provide potential therapeutic targets for mental illnesses. EXPERT OPINION Modulation of DISC1 stability and post-transcriptional modifications may be key targets to address DISC1-related pathology. In addition, modulation of DISC1 interactors and the mechanisms of their interactions with DISC1 may also provide drug targets. Disc1 rodent models can subsequently be used as templates for in vivo validations of compounds designed for DISC1 and its interacting proteins. Furthermore, these rodents will serve as genetic models for schizophrenia and related conditions, especially in conjunction with their pathologies during the neurodevelopmental trajectory.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Kyoto University School of Medicine, Medical Innovation Center, Kyoto, Japan.
| | | | | |
Collapse
|
48
|
Abstract
Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.
Collapse
Affiliation(s)
- Joseph T. Coyle
- Department of Psychiatry and Neuroscience, Harvard Medical School, McLean Hospital, Belmont, MA,*To whom correspondence should be addressed; tel: 617-855-2101, fax: 617-855-2705, e-mail:
| |
Collapse
|
49
|
Teo JT, Edwards MJ, Bhatia K. Tardive dyskinesia is caused by maladaptive synaptic plasticity: A hypothesis. Mov Disord 2012; 27:1205-15. [DOI: 10.1002/mds.25107] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
|
50
|
Guilarte TR, Opler M, Pletnikov M. Is lead exposure in early life an environmental risk factor for Schizophrenia? Neurobiological connections and testable hypotheses. Neurotoxicology 2012; 33:560-74. [PMID: 22178136 PMCID: PMC3647679 DOI: 10.1016/j.neuro.2011.11.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/30/2011] [Accepted: 11/30/2011] [Indexed: 02/06/2023]
Abstract
Schizophrenia is a devastating neuropsychiatric disorder of unknown etiology. There is general agreement in the scientific community that schizophrenia is a disorder of neurodevelopmental origin in which both genes and environmental factors come together to produce a schizophrenia phenotype later in life. The challenging questions have been which genes and what environmental factors? Although there is evidence that different chromosome loci and several genes impart susceptibility for schizophrenia; and epidemiological studies point to broad aspects of the environment, only recently there has been an interest in studying gene × environment interactions. Recent evidence of a potential association between prenatal lead (Pb(2+)) exposure and schizophrenia precipitated the search for plausible neurobiological connections. The most promising connection is that in schizophrenia and in developmental Pb(2+) exposure there is strong evidence for hypoactivity of the N-methyl-d-aspartate (NMDA) subtype of excitatory amino acid receptors as an underlying neurobiological mechanism in both conditions. A hypofunction of the NMDA receptor (NMDAR) complex during critical periods of development may alter neurobiological processes that are essential for brain growth and wiring, synaptic plasticity and cognitive and behavioral outcomes associated with schizophrenia. We also describe on-going proof of concept gene-environment interaction studies of early life Pb(2+) exposure in mice expressing the human mutant form of the disrupted in schizophrenia 1 (DISC-1) gene, a gene that is strongly associated with schizophrenia and allied mental disorders.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, United States.
| | | | | |
Collapse
|