1
|
Mills DB, Macalady JL, Frank A, Wright JT. A reassessment of the "hard-steps" model for the evolution of intelligent life. SCIENCE ADVANCES 2025; 11:eads5698. [PMID: 39951518 PMCID: PMC11827626 DOI: 10.1126/sciadv.ads5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
According to the "hard-steps" model, the origin of humanity required "successful passage through a number of intermediate steps" (so-called "hard steps") that were intrinsically improbable in the time available for biological evolution on Earth. This model similarly predicts that technological life analogous to human life on Earth is "exceedingly rare" in the Universe. Here, we critically reevaluate core assumptions of the hard-steps model through the lens of historical geobiology. Specifically, we propose an alternative model where there are no hard steps, and evolutionary singularities required for human origins can be explained via mechanisms outside of intrinsic improbability. Furthermore, if Earth's surface environment was initially inhospitable not only to human life, but also to certain key intermediate steps required for human existence, then the timing of human origins was controlled by the sequential opening of new global environmental windows of habitability over Earth history.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
| | - Jennifer L. Macalady
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
- Department of Geosciences, Penn State, University Park, PA 16802, USA
- Astrobiology Research Center, Penn State, University Park, PA 16802, USA
| | - Adam Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14620, USA
| | - Jason T. Wright
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
- Department of Astronomy and Astrophysics, Penn State, University Park, PA 16802, USA
| |
Collapse
|
2
|
Wolf S, Jayawickrama C, Carlson CA, Deutsch C, Davis EW, Daniels BN, Chan F, Giovannoni SJ. Microbial carbon oxidation in seawater below the hypoxic threshold. Sci Rep 2025; 15:2838. [PMID: 39843462 PMCID: PMC11754627 DOI: 10.1038/s41598-024-82438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025] Open
Abstract
Global oxygen minimum zones (OMZs) often reach hypoxia but seldom reach anoxia. Recently it was reported that Michaelis Menten constants (Km) of oxidative enzymes are orders of magnitude higher than respiratory Km values, and in the Hypoxic Barrier Hypothesis it was proposed that, in ecosystems experiencing falling oxygen, oxygenase enzyme activities become oxygen-limited long before respiration. We conducted a mesocosm experiment with a phytoplankton bloom as an organic carbon source and controlled dissolved oxygen (DO) concentrations in the dark to determine whether hypoxia slows carbon oxidation and oxygen decline. Total oxygen utilization (TOU) in hypoxic treatment (ca. 7.1 µM O2) was 21.7% lower than the oxic treatment (ca. 245.1 µM O2) over the first 43 days of the experiment. In addition, following the restoration of fully oxic conditions to the hypoxic treatment, TOU accelerated, demonstrating that oxidative processes are sensitive to DO concentrations found in large volumes of the ocean. Microbial amplicon-based community composition diverged between oxic treatments, indicating a specialized microbiome that included Thioglobaceae (SUP05 Gammaproteobacteria), OM190 (Planctomycetota), ABY1 (Patescibacteria), and SAR86 subclade D2472, thrived in the hypoxic treatment, while the genus Candidatus Actinomarina and SAR11 alphaproteobacteria were sharply inhibited. Our findings support the hypothesis that oxygenase kinetics might slow the progression of ocean deoxygenation in oxygen-poor regions and be a factor in the evolution of microbial taxa adapted to hypoxic environments.
Collapse
Affiliation(s)
- Sarah Wolf
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Clare Jayawickrama
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Craig A Carlson
- Marine Science Institute, UC Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Marine Biology, Santa Barbara, CA, USA
| | - Curtis Deutsch
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Edward W Davis
- Center for Quantitative Life Sciences, Oregon State University, Corvallis, OR, USA
| | - Benjamin N Daniels
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA.
| | - Stephen J Giovannoni
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR, USA.
| |
Collapse
|
3
|
Inskeep WP, Jay ZJ, McKay LJ, Dlakić M. Respiratory processes of early-evolved hyperthermophiles in sulfidic and low-oxygen geothermal microbial communities. Nat Commun 2025; 16:277. [PMID: 39746973 PMCID: PMC11696919 DOI: 10.1038/s41467-024-55079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Thermophilic microbial communities growing in low-oxygen environments often contain early-evolved archaea and bacteria, which hold clues regarding mechanisms of cellular respiration relevant to early life. Here, we conducted replicate metagenomic, metatranscriptomic, microscopic, and geochemical analyses on two hyperthermophilic (82-84 °C) filamentous microbial communities (Conch and Octopus Springs, Yellowstone National Park, WY) to understand the role of oxygen, sulfur, and arsenic in energy conservation and community composition. We report that hyperthermophiles within the Aquificota (Thermocrinis), Pyropristinus (Caldipriscus), and Thermoproteota (Pyrobaculum) are abundant in both communities; however, higher oxygen results in a greater diversity of aerobic heterotrophs. Metatranscriptomics revealed major shifts in respiratory pathways of keystone chemolithotrophs due to differences in oxygen versus sulfide. Specifically, early-evolved hyperthermophiles express high levels of high-affinity cytochrome bd and CydAA' oxidases in suboxic sulfidic environments and low-affinity heme Cu oxidases under microaerobic conditions. These energy-conservation mechanisms using cytochrome oxidases in high-temperature, low-oxygen habitats likely played a crucial role in the early evolution of microbial life.
Collapse
Affiliation(s)
- William P Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA.
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA.
| | - Zackary J Jay
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Luke J McKay
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- LanzaTech, Skokie, IL, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
4
|
Cheung HLS, Simister RL, Not C, Crowe SA. Microbial community respiration kinetics and their dynamics in coastal seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176119. [PMID: 39307367 DOI: 10.1016/j.scitotenv.2024.176119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
Oxygen (O2) concentrations in coastal seawater have been declining for decades and models predict continued deoxygenation into the future. As O2 declines, metabolic energy use is progressively channelled from higher trophic levels into microbial community respiration, which in turn influences coastal ecology and biogeochemistry. Despite its critical role in deoxygenation and ecosystem functioning, the kinetics of microbial respiration at low O2 concentrations in coastal seawater remain uncertain and are mostly modeled based on parameters derived from laboratory cultures and a limited number of environmental observations. To explore microbial responses to declining O2, we measured respiration kinetics in coastal microbial communities in Hong Kong over the course of an entire year. We found the mean maximum respiration rate (Vmax) ranged between 560 ± 280 and 5930 ± 800 nmol O2 L-1 h-1, with apparent half-saturation constants (Km) for O2 uptake of between 50 ± 40 and 310 ± 260 nmol O2 L-1. These kinetic parameters vary seasonally in association with shifts in microbial community composition that were linked to nutrient availability, temperature, and biological productivity. In general, coastal communities in Hong Kong exhibited low affinities for O2, yet communities in the dry season had higher affinities, which may play a key role in shaping the relationship between community size, biomass, and O2 consumption rates through respiration. Overall, parameters derived from these experiments can be employed in models to predict the expansion of deoxygenated waters and associated effects on coastal ecology and biogeochemistry.
Collapse
Affiliation(s)
- Henry L S Cheung
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Rachel L Simister
- Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T19 1Z3, Canada
| | - Christelle Not
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region
| | - Sean A Crowe
- Department of Earth Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; The Swire Institute of Marine Sciences, The University of Hong Kong, Pok Fu Lam Road, Hong Kong Special Administrative Region; Departments of Microbiology and Immunology, and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T19 1Z3, Canada.
| |
Collapse
|
5
|
Li B, Mao Z, Xue J, Xing P, Wu QL. Metabolic versatility of aerobic methane-oxidizing bacteria under anoxia in aquatic ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70002. [PMID: 39232853 PMCID: PMC11374530 DOI: 10.1111/1758-2229.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/26/2024] [Indexed: 09/06/2024]
Abstract
The potential positive feedback between global aquatic deoxygenation and methane (CH4) emission emphasizes the importance of understanding CH4 cycling under O2-limited conditions. Increasing observations for aerobic CH4-oxidizing bacteria (MOB) under anoxia have updated the prevailing paradigm that MOB are O2-dependent; thus, clarification on the metabolic mechanisms of MOB under anoxia is critical and timely. Here, we mapped the global distribution of MOB under anoxic aquatic zones and summarized four underlying metabolic strategies for MOB under anoxia: (a) forming a consortium with oxygenic microorganisms; (b) self-generation/storage of O2 by MOB; (c) forming a consortium with non-oxygenic heterotrophic bacteria that use other electron acceptors; and (d) utilizing alternative electron acceptors other than O2. Finally, we proposed directions for future research. This study calls for improved understanding of MOB under anoxia, and underscores the importance of this overlooked CH4 sink amidst global aquatic deoxygenation.
Collapse
Affiliation(s)
- Biao Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhendu Mao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jingya Xue
- School of Geographical Sciences, Nanjing Normal University, Nanjing, China
| | - Peng Xing
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing, China
- The Fuxianhu Station of Plateau Deep Lake Research, Chinese Academy of Sciences, Yuxi, China
| |
Collapse
|
6
|
Gafni A, Rubin-Blum M, Murrell C, Vigderovich H, Eckert W, Larke-Mejía N, Sivan O. Survival strategies of aerobic methanotrophs under hypoxia in methanogenic lake sediments. ENVIRONMENTAL MICROBIOME 2024; 19:44. [PMID: 38956741 PMCID: PMC11218250 DOI: 10.1186/s40793-024-00586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Microbial methane oxidation, methanotrophy, plays a crucial role in mitigating the release of the potent greenhouse gas methane from aquatic systems. While aerobic methanotrophy is a well-established process in oxygen-rich environments, emerging evidence suggests their activity in hypoxic conditions. However, the adaptability of these methanotrophs to such environments has remained poorly understood. Here, we explored the genetic adaptability of aerobic methanotrophs to hypoxia in the methanogenic sediments of Lake Kinneret (LK). These LK methanogenic sediments, situated below the oxidic and sulfidic zones, were previously characterized by methane oxidation coupled with iron reduction via the involvement of aerobic methanotrophs. RESULTS In order to explore the adaptation of the methanotrophs to hypoxia, we conducted two experiments using LK sediments as inoculum: (i) an aerobic "classical" methanotrophic enrichment with ambient air employing DNA stable isotope probing (DNA-SIP) and (ii) hypoxic methanotrophic enrichment with repeated spiking of 1% oxygen. Analysis of 16S rRNA gene amplicons revealed the enrichment of Methylococcales methanotrophs, being up to a third of the enriched community. Methylobacter, Methylogaea, and Methylomonas were prominent in the aerobic experiment, while hypoxic conditions enriched primarily Methylomonas. Using metagenomics sequencing of DNA extracted from these experiments, we curated five Methylococcales metagenome-assembled genomes (MAGs) and evaluated the genetic basis for their survival in hypoxic environments. A comparative analysis with an additional 62 Methylococcales genomes from various environments highlighted several core genetic adaptations to hypoxia found in most examined Methylococcales genomes, including high-affinity cytochrome oxidases, oxygen-binding proteins, fermentation-based methane oxidation, motility, and glycogen use. We also found that some Methylococcales, including LK Methylococcales, may denitrify, while metals and humic substances may also serve as electron acceptors alternative to oxygen. Outer membrane multi-heme cytochromes and riboflavin were identified as potential mediators for the utilization of metals and humic material. These diverse mechanisms suggest the ability of methanotrophs to thrive in ecological niches previously thought inhospitable for their growth. CONCLUSIONS Our study sheds light on the ability of enriched Methylococcales methanotrophs from methanogenic LK sediments to survive under hypoxia. Genomic analysis revealed a spectrum of genetic capabilities, potentially enabling these methanotrophs to function. The identified mechanisms, such as those enabling the use of alternative electron acceptors, expand our understanding of methanotroph resilience in diverse ecological settings. These findings contribute to the broader knowledge of microbial methane oxidation and have implications for understanding and potential contribution methanotrophs may have in mitigating methane emissions in various environmental conditions.
Collapse
Affiliation(s)
- Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Maxim Rubin-Blum
- Israel Limnology and Oceanography Research, Tel Shikmona, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | | | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Sarkar J, Mondal M, Bhattacharya S, Dutta S, Chatterjee S, Mondal N, N S, Peketi A, Mazumdar A, Ghosh W. Extremely oligotrophic and complex-carbon-degrading microaerobic bacteria from Arabian Sea oxygen minimum zone sediments. Arch Microbiol 2024; 206:179. [PMID: 38498215 DOI: 10.1007/s00203-024-03875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/20/2024]
Abstract
Sediments underlying marine hypoxic zones are huge sinks of unreacted complex organic matter, where despite acute O2 limitation, obligately aerobic bacteria thrive, and steady depletion of organic carbon takes place within a few meters below the seafloor. However, little knowledge exists about the sustenance and complex carbon degradation potentials of aerobic chemoorganotrophs in these sulfidic ecosystems. We isolated and characterized a number of aerobic bacterial chemoorganoheterotrophs from across a ~ 3 m sediment horizon underlying the perennial hypoxic zone of the eastern Arabian Sea. High levels of sequence correspondence between the isolates' genomes and the habitat's metagenomes and metatranscriptomes illustrated that the strains were widespread and active across the sediment cores explored. The isolates catabolized several complex organic compounds of marine and terrestrial origins in the presence of high or low, but not zero, O2. Some of them could also grow anaerobically on yeast extract or acetate by reducing nitrate and/or nitrite. Fermentation did not support growth, but enabled all the strains to maintain a fraction of their cell populations over prolonged anoxia. Under extreme oligotrophy, limited growth followed by protracted stationary phase was observed for all the isolates at low cell density, amid high or low, but not zero, O2 concentration. While population control and maintenance could be particularly useful for the strains' survival in the critically carbon-depleted layers below the explored sediment depths (core-bottom organic carbon: 0.5-1.0% w/w), metagenomic data suggested that in situ anoxia could be surmounted via potential supplies of cryptic O2 from previously reported sources such as Nitrosopumilus species.
Collapse
Affiliation(s)
- Jagannath Sarkar
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India.
| | - Mahamadul Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India
| | - Sabyasachi Bhattacharya
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Subhajit Dutta
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India
| | - Sumit Chatterjee
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India
| | - Nibendu Mondal
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India
- International Institute of Innovation and Technology, Kolkata, West Bengal, India
| | - Saran N
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India
| | - Aditya Peketi
- Geological Oceanography, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Aninda Mazumdar
- Geological Oceanography, CSIR National Institute of Oceanography, Dona Paula, Goa, 403004, India
| | - Wriddhiman Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
8
|
Mills DB, Simister RL, Sehein TR, Hallam SJ, Sperling EA, Crowe SA. Constraining the oxygen requirements for modern microbial eukaryote diversity. Proc Natl Acad Sci U S A 2024; 121:e2303754120. [PMID: 38165897 PMCID: PMC10786294 DOI: 10.1073/pnas.2303754120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/07/2023] [Indexed: 01/04/2024] Open
Abstract
Eukaryotes originated prior to the establishment of modern marine oxygen (O2) levels. According to the body fossil and lipid biomarker records, modern (crown) microbial eukaryote lineages began diversifying in the ocean no later than ~800 Ma. While it has long been predicted that increasing atmospheric O2 levels facilitated the early diversification of microbial eukaryotes, the O2 levels needed to permit this diversification remain unconstrained. Using time-resolved geochemical parameter and gene sequence information from a model marine oxygen minimum zone spanning a range of dissolved O2 levels and redox states, we show that microbial eukaryote taxonomic richness and phylogenetic diversity remain the same until O2 declines to around 2 to 3% of present atmospheric levels, below which these diversity metrics become significantly reduced. Our observations suggest that increasing O2 would have only directly promoted early crown-eukaryote diversity if atmospheric O2 was below 2 to 3% of modern levels when crown-eukaryotes originated and then later met or surpassed this range as crown-eukaryotes diversified. If atmospheric O2 was already consistently at or above 2 to 3% of modern levels by the time that crown-eukaryotes originated, then the subsequent diversification of modern microbial eukaryotes was not directly driven by atmospheric oxygenation.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333Munich, Germany
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA94305
- The Penn State Extraterrestrial Intelligence Center, The Pennsylvania State University, University Park, PA16802
| | - Rachel L. Simister
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Taylor R. Sehein
- Department of Biological Sciences, Smith College, Northampton, MA01063
| | - Steven J. Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Life Sciences Institute, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- Bradshaw Research Initiative for Minerals and Mining, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Ecosystem Services, Commercialization Platforms and Entrepreneurship (ECOSCOPE) Training Program, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Erik A. Sperling
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA94305
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
9
|
Ramoneda J, Hoffert M, Stallard-Olivera E, Casamayor EO, Fierer N. Leveraging genomic information to predict environmental preferences of bacteria. THE ISME JOURNAL 2024; 18:wrae195. [PMID: 39361898 PMCID: PMC11488383 DOI: 10.1093/ismejo/wrae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Genomic information is now available for a broad diversity of bacteria, including uncultivated taxa. However, we have corresponding knowledge on environmental preferences (i.e. bacterial growth responses across gradients in oxygen, pH, temperature, salinity, and other environmental conditions) for a relatively narrow swath of bacterial diversity. These limits to our understanding of bacterial ecologies constrain our ability to predict how assemblages will shift in response to global change factors, design effective probiotics, or guide cultivation efforts. We need innovative approaches that take advantage of expanding genome databases to accurately infer the environmental preferences of bacteria and validate the accuracy of these inferences. By doing so, we can broaden our quantitative understanding of the environmental preferences of the majority of bacterial taxa that remain uncharacterized. With this perspective, we highlight why it is important to infer environmental preferences from genomic information and discuss the range of potential strategies for doing so. In particular, we highlight concrete examples of how both cultivation-independent and cultivation-dependent approaches can be integrated with genomic data to develop predictive models. We also emphasize the limitations and pitfalls of these approaches and the specific knowledge gaps that need to be addressed to successfully expand our understanding of the environmental preferences of bacteria.
Collapse
Affiliation(s)
- Josep Ramoneda
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
| | - Michael Hoffert
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Elias Stallard-Olivera
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Emilio O Casamayor
- Department of Ecology and Complexity, Center of Advanced Studies of Blanes (CEAB), Spanish Research Council (CSIC), Blanes, Spain
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
10
|
Farooq A, Lee M, Han S, Jung GY, Kim SJ, Jung MY. Kinetic, genomic, and physiological analysis reveals diversity in the ecological adaptation and metabolic potential of Brachybacterium equifaecis sp. nov. isolated from horse feces. Microbiol Spectr 2023; 11:e0504822. [PMID: 37707449 PMCID: PMC10581053 DOI: 10.1128/spectrum.05048-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/31/2023] [Indexed: 09/15/2023] Open
Abstract
Brachybacterium species have been identified in various ecological niches and belong to the family Dermabacteriaceae within the phylum Actinobacteria. In this study, we isolated a novel Brachybacterium equifaecis JHP9 strain from horse feces and compared its kinetic, biochemical, and genomic features with those of other Brachybacterium strains. Moreover, comparative genomic analysis using publicly available Brachybacterium genomes was performed to determine the properties involved in their ecological adaptation and metabolic potential. Novel species delineation was determined phylogenetically through 16S rRNA gene similarity (up to 97.9%), average nucleotide identity (79.5-82.5%), average amino acid identity (66.7-75.8%), and in silico DNA-DNA hybridization (23.7-27.9) using closely related strains. This study also presents the first report of the kinetic properties of Brachybacterium species. Most of the Brachybacterium strains displayed high oxygen (K m(app) =1.6-24.2 µM) and glucose (K m(app) =0.73-1.22 µM) affinities, which may manifest niche adaptations. Various carbohydrate metabolisms under aerobic and anaerobic conditions, antibiotic resistance, mobile genetic elements, carbohydrate-active enzymes, lactic acid production, and the clustered regularly interspaced short palindromic repeats-Cas and bacteriophage exclusion systems were observed in the genotypic and/or phenotypic properties of Brachybacterium species, suggesting their genome flexibility, defense mechanisms, and adaptability. Our study contributes to the knowledge of the kinetic, physiological, and genomic properties of Brachybacterium species, including the novel JHP9 strain, which advocates for their tolerant and thriving nature in various environments, leading to their ecological adaptation. IMPORTANCE Basic physiological and genomic properties of most of the Brachybacterium isolates have been studied; however, the ability of this bacterium to adapt to diverse environments, which may demonstrate its role in niche differentiation, is to be identified yet. Therefore, here, we explored cellular kinetics, metabolic diversity, and ecological adaptation/defensive properties of the novel Brachybacterium strain through physiological and comparative genomic analysis. In addition, we presented the first report examining Brachybacterium kinetics, indicating that all strains of Brachybacterium, including the novel one, have high oxygen and glucose affinity. Furthermore, the comparative genomic analysis also revealed that the novel bacterium contains versatile genomic properties, which provide the novel bacterium with significant competitive advantages. Thus, in-depth genotypic and phenotypic analysis with kinetic properties at the species level of this genus is beneficial in clarifying its differential characteristics, conferring the ability to inhabit diverse ecological niches.
Collapse
Affiliation(s)
- Adeel Farooq
- Research Institute for Basic Sciences (RIBS), Jeju National University, Jeju, South Korea
| | - Myunglip Lee
- Department of Marine Life Science, Jeju National University, Jeju, South Korea
| | - Saem Han
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Gi-Yong Jung
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | - So-Jeong Kim
- Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Department of Science Education, Jeju National University, Jeju, South Korea
- Jeju Microbiome Center, Jeju National University, Jeju, South Korea
| |
Collapse
|
11
|
Wu Z, Nguyen D, Shrestha S, Raskin L, Khanal SK, Lee PH. Evaluation of Nanaerobic Digestion as a Mechanism to Explain Surplus Methane Production in Animal Rumina and Engineered Digesters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12302-12314. [PMID: 37565790 PMCID: PMC10448717 DOI: 10.1021/acs.est.2c07813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Nanaerobes are a newly described class of microorganisms that use a unique cytochrome bd oxidase to achieve nanaerobic respiration at <2 μM dissolved oxygen (∼1% of atmospheric oxygen) but are not viable above this value due to the lack of other terminal oxidases. Although sharing an overlapping ecological niche with methanogenic archaea, the role of nanaerobes in methanogenic systems has not been studied so far. To explore their occurrence and significance, we re-analyzed published meta-omic datasets from animal rumina and waste-to-energy digesters, including conventional anaerobic digesters and anaerobic digesters with ultra-low oxygenation. Results show that animal rumina share broad similarities in the microbial community and system performance with oxygenated digesters, rather than with conventional anaerobic digesters, implying that trace levels of oxygen drive the efficient digestion in ruminants. The rumen system serves as an ideal model for the newly named nanaerobic digestion, as it relies on the synergistic co-occurrence of nanaerobes and methanogens for methane yield enhancement. The most abundant ruminal bacterial family Prevotellaceae contains many nanaerobes, which perform not only anaerobic fermentation but also nanaerobic respiration using cytochrome bd oxidase. These nanaerobes generally accompany hydrogenotrophic methanogens to constitute a thermodynamically and physiologically consistent framework for efficient methane generation. Our findings provide new insights into ruminal methane emissions and strategies to enhance methane generation from biomass.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
- Shanghai
Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Duc Nguyen
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
- The
Lyell Centre, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Shilva Shrestha
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
- Joint
BioEnergy Institute, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lutgarde Raskin
- Department
of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor 48109, Michigan, United States
| | - Samir Kumar Khanal
- Department
of Molecular Biosciences and Bioengineering, University of Hawai’i at Ma̅noa, Honolulu 96822, Hawaii, United States
| | - Po-Heng Lee
- Department
of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United
Kingdom
| |
Collapse
|
12
|
Kasahara K, Leygeber M, Seiffarth J, Ruzaeva K, Drepper T, Nöh K, Kohlheyer D. Enabling oxygen-controlled microfluidic cultures for spatiotemporal microbial single-cell analysis. Front Microbiol 2023; 14:1198170. [PMID: 37408642 PMCID: PMC10318409 DOI: 10.3389/fmicb.2023.1198170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Microfluidic cultivation devices that facilitate O2 control enable unique studies of the complex interplay between environmental O2 availability and microbial physiology at the single-cell level. Therefore, microbial single-cell analysis based on time-lapse microscopy is typically used to resolve microbial behavior at the single-cell level with spatiotemporal resolution. Time-lapse imaging then provides large image-data stacks that can be efficiently analyzed by deep learning analysis techniques, providing new insights into microbiology. This knowledge gain justifies the additional and often laborious microfluidic experiments. Obviously, the integration of on-chip O2 measurement and control during the already complex microfluidic cultivation, and the development of image analysis tools, can be a challenging endeavor. A comprehensive experimental approach to allow spatiotemporal single-cell analysis of living microorganisms under controlled O2 availability is presented here. To this end, a gas-permeable polydimethylsiloxane microfluidic cultivation chip and a low-cost 3D-printed mini-incubator were successfully used to control O2 availability inside microfluidic growth chambers during time-lapse microscopy. Dissolved O2 was monitored by imaging the fluorescence lifetime of the O2-sensitive dye RTDP using FLIM microscopy. The acquired image-data stacks from biological experiments containing phase contrast and fluorescence intensity data were analyzed using in-house developed and open-source image-analysis tools. The resulting oxygen concentration could be dynamically controlled between 0% and 100%. The system was experimentally tested by culturing and analyzing an E. coli strain expressing green fluorescent protein as an indirect intracellular oxygen indicator. The presented system allows for innovative microbiological research on microorganisms and microbial ecology with single-cell resolution.
Collapse
Affiliation(s)
- Keitaro Kasahara
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Leygeber
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Seiffarth
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Computational Systems Biotechnology (AVT.CSB), RWTH Aachen University, Aachen, Germany
| | - Karina Ruzaeva
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
- Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, Aachen, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Katharina Nöh
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dietrich Kohlheyer
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
13
|
Butler NL, Ito T, Foreman S, Morgan JE, Zagorevsky D, Malamy MH, Comstock LE, Barquera B. Bacteroides fragilis Maintains Concurrent Capability for Anaerobic and Nanaerobic Respiration. J Bacteriol 2023; 205:e0038922. [PMID: 36475831 PMCID: PMC9879120 DOI: 10.1128/jb.00389-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteroides species can use fumarate and oxygen as terminal electron acceptors during cellular respiration. In the human gut, oxygen diffuses from intestinal epithelial cells supplying "nanaerobic" oxygen levels. Many components of the anaerobic respiratory pathway have been determined, but such analyses have not been performed for nanaerobic respiration. Here, we present genetic, biochemical, enzymatic, and mass spectrometry analyses to elucidate the nanaerobic respiratory pathway in Bacteroides fragilis. Under anaerobic conditions, the transfer of electrons from NADH to the quinone pool has been shown to be contributed by two enzymes, NQR and NDH2. We find that the activity contributed by each under nanaerobic conditions is 77 and 23%, respectively, similar to the activity levels under anaerobic conditions. Using mass spectrometry, we show that the quinone pool also does not differ under these two conditions and consists of a mixture of menaquinone-8 to menaquinone-11, with menaquinone-10 predominant under both conditions. Analysis of fumarate reductase showed that it is synthesized and active under anaerobic and nanaerobic conditions. Previous RNA sequencing data and new transcription reporter assays show that expression of the cytochrome bd oxidase gene does not change under these conditions. Under nanaerobic conditions, we find both increased CydA protein and increased cytochrome bd activity. Reduced-minus-oxidized spectra of membranes showed the presence of heme d when the bacteria were grown in the presence of protoporphyrin IX and iron under both anaerobic and nanaerobic conditions, suggesting that the active oxidase can be assembled with or without oxygen. IMPORTANCE By performing a comprehensive analysis of nanaerobic respiration in Bacteroides fragilis, we show that this organism maintains capabilities for anaerobic respiration on fumarate and nanaerobic respiration on oxygen simultaneously. The contribution of the two NADH:quinone oxidoreductases and the composition of the quinone pool are the same under both conditions. Fumarate reductase and cytochrome bd are both present, and which of these terminal enzymes is active in electron transfer depends on the availability of the final electron acceptor: fumarate or oxygen. The synthesis of cytochrome bd and fumarate reductase under both conditions serves as an adaptation to an environment with low oxygen concentrations so that the bacteria can maximize energy conservation during fluctuating environmental conditions or occupation of different spatial niches.
Collapse
Affiliation(s)
- Nicole L. Butler
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takeshi Ito
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sara Foreman
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Joel E. Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Dmitry Zagorevsky
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Michael H. Malamy
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Laurie E. Comstock
- Duchossois Family Institute and Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Blanca Barquera
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
14
|
Soundaram Jeevarathinam A, Saleem W, Martin N, Hu C, McShane MJ. NIR Luminescent Oxygen-Sensing Nanoparticles for Continuous Glucose and Lactate Monitoring. BIOSENSORS 2023; 13:bios13010141. [PMID: 36671976 PMCID: PMC9855917 DOI: 10.3390/bios13010141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 05/09/2023]
Abstract
A highly sensitive, biocompatible, and scalable phosphorescent oxygen sensor formulation is designed and evaluated for use in continuous metabolite sensors for biological systems. Ethyl cellulose (EC) and polystyrene (PS) nanoparticles (NPs) stabilized with Pluronic F68 (PF 68), Polydimethylsiloxane-b-polyethyleneglycol methyl ether (PDMS-PEG), sodium dodecylsulfate (SDS), and cetyltimethylammonium bromide (CTAB) were prepared and studied. The resulting NPs with eight different surfactant−polymer matrix combinations were evaluated for physical properties, oxygen sensitivity, effect of changes in dispersion matrix, and cytotoxicity. The EC NPs exhibited a narrower size distribution and 40% higher sensitivity than PS, with Stern−Volmer constants (Ksv) 0.041−0.052 µM−1 for EC, compared to 0.029−0.034 µM−1 for PS. Notably, ethyl cellulose NPs protected with PF68 were selected as the preferred formulation, as they were not cytotoxic towards 3T3 fibroblasts and exhibited a wide phosphorescence lifetime response of >211.1 µs over 258−0 µM and ~100 µs over 2.58−0 µM oxygen, with a limit of detection (LoD) of oxygen in aqueous phase of 0.0016 µM. The EC-PF68 NPs were then efficiently encapsulated in alginate microparticles along with glucose oxidase (GOx) and catalase (CAT) to form phosphorescent nanoparticles-in-microparticle (NIMs) glucose sensing microdomains. The fabricated glucose sensors showed a sensitivity of 0.40 µs dL mg−1 with a dynamic phosphorescence lifetime range of 46.6−197.1 µs over 0−150 mg dL−1 glucose, with a glucose LoD of 18.3 mg dL−1 and maximum distinguishable concentration of 111.1 mg dL−1. Similarly, lactate sensors were prepared with NIMs microdomains containing lactate oxidase (LOx) and found to have a detection range of 0−14 mg dL−1 with LoD of 1.8 mg dL−1 and maximum concentration of 13.7 mg dL−1 with lactate sensitivity of 10.7 µs dL mg−1. Owing to its versatility, the proposed NIMs-based design can be extended to a wide range of metabolites and different oxygen-sensing dyes with different excitation wavelengths based on specific application.
Collapse
Affiliation(s)
| | - Waqas Saleem
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nya Martin
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Connie Hu
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Michael J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Materials Science and Engineering, Texas A&M University, College Station, TX 77845, USA
- Correspondence: (M.J.M.)
| |
Collapse
|
15
|
Ayala-Muñoz D, Macalady JL, Sánchez-España J, Falagán C, Couradeau E, Burgos WD. Microbial carbon, sulfur, iron, and nitrogen cycling linked to the potential remediation of a meromictic acidic pit lake. THE ISME JOURNAL 2022; 16:2666-2679. [PMID: 36123522 PMCID: PMC9666448 DOI: 10.1038/s41396-022-01320-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Cueva de la Mora is a permanently stratified acidic pit lake and a model system for extreme acid mine drainage (AMD) studies. Using a combination of amplicon sequencing, metagenomics and metatranscriptomics we performed a taxonomically resolved analysis of microbial contributions to carbon, sulfur, iron, and nitrogen cycling. We found that active green alga Coccomyxa onubensis dominated the upper layer and chemocline. The chemocline had activity for iron(II) oxidation carried out by populations of Ca. Acidulodesulfobacterium, Ferrovum, Leptospirillium, and Armatimonadetes. Predicted activity for iron(III) reduction was only detected in the deep layer affiliated with Proteobacteria. Activity for dissimilatory nitrogen cycling including nitrogen fixation and nitrate reduction was primarily predicted in the chemocline. Heterotrophic archaeal populations with predicted activity for sulfide oxidation related to uncultured Thermoplasmatales dominated in the deep layer. Abundant sulfate-reducing Desulfomonile and Ca. Acidulodesulfobacterium populations were active in the chemocline. In the deep layer, uncultured populations from the bacterial phyla Actinobacteria, Chloroflexi, and Nitrospirae contributed to both sulfate reduction and sulfide oxidation. Based on this information we evaluated the potential for sulfide mineral precipitation in the deep layer as a tool for remediation. We argue that sulfide precipitation is not limited by microbial genetic potential but rather by the quantity and quality of organic carbon reaching the deep layer as well as by oxygen additions to the groundwater enabling sulfur oxidation. Addition of organic carbon and elemental sulfur should stimulate sulfate reduction and limit reoxidation of sulfide minerals.
Collapse
Affiliation(s)
- Diana Ayala-Muñoz
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
| | - Jennifer L Macalady
- Department of Geosciences, The Pennsylvania State University, 211 Deike Building University Park, University Park, PA, 16802, USA
| | - Javier Sánchez-España
- Centro Nacional Instituto Geológico Minero de España (IGME), CSIC, Calera 1, 28760 Tres Cantos, Madrid, Spain
| | - Carmen Falagán
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry 1st St., Portsmouth, PO1 2DY, UK
| | - Estelle Couradeau
- Department of Ecosystem Science and Management, The Pennsylvania State University, 50 ASI University Park, University Park, PA, 16802, USA
| | - William D Burgos
- Department of Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, PA, 16802, USA.
| |
Collapse
|
16
|
Canfield DE, Kraft B. The 'oxygen' in oxygen minimum zones. Environ Microbiol 2022; 24:5332-5344. [PMID: 36054074 PMCID: PMC9828761 DOI: 10.1111/1462-2920.16192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Aerobic processes require oxygen, and anaerobic processes are typically hindered by it. In many places in the global ocean, oxygen is completely removed at mid-water depths forming anoxic oxygen minimum zones (A-OMZs). Within the oxygen gradients linking oxygenated waters with A-OMZs, there is a transition from aerobic to anaerobic microbial processes. This transition is not sharp and there is an overlap between processes using oxygen and those using other electron acceptors. This review will focus on the oxygen control of aerobic and anaerobic metabolisms and will explore how this overlap impacts both the carbon and nitrogen cycles in A-OMZ environments. We will discuss new findings on non-phototrophic microbial processes that produce oxygen, and we focus on how oxygen impacts the loss of fixed nitrogen (as N2 ) from A-OMZ waters. There are both physiological and environmental controls on the activities of microbial processes responsible for N2 loss, and the environmental controls are active at extremely low levels of oxygen. Understanding how these controls function will be critical to understanding and predicting how fixed-nitrogen loss in the oceans will respond to future global warming.
Collapse
Affiliation(s)
- Don E. Canfield
- Department of Biology and NordceeUniversity of Southern Denmark, Campusvej 55OdenseDenmark,Danish Institute for Advanced Studies (DIAS)Denmark,PetrochinaBeijingChina
| | - Beate Kraft
- Department of Biology and NordceeUniversity of Southern Denmark, Campusvej 55OdenseDenmark
| |
Collapse
|
17
|
Kapadiya KM, Kavadia KM, Khedkar VM, Dholaria PV, Jivani AJ, Khunt RC. Synthesis of fluoro-rich pyrimidine-5-carbonitriles as antitubercular agents against H37Rv receptor. HETEROCYCL COMMUN 2022. [DOI: 10.1515/hc-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The purpose of this study was to prepare various derivatives of 4-amino-2-(3-fluoro-5-(trifluoromethyl)phenyl)-6-arylpyrimidine-5-carbonitrile (6a–6h) using a three-step procedure. The derivatives were screened in vitro for activity against Mycobacterium tuberculosis strain H37Rv. The activity was expressed as the minimum inhibitory concentration (MIC) in μg/mL (μM). Eight compounds showed activity against Mtb H37Rv, and among them, 6f showed the best value of MIC, IC50 (53 μM) and IC90 (62 μM). Minimum bactericidal concentration of compound 6f was higher than its MIC and was more time-dependent than the concentration. Compound 6f was more active against M. tuberculosis H37Rv under low oxygen than metronidazole and did not show good potency in different treatments and non-tuberculous mycobacteria. Furthermore, a molecular docking study against mycobacterial enoyl-ACP reductase (InhA) could provide valuable insights into the plausible mechanism of action, which could set the theme for lead optimization.
Collapse
Affiliation(s)
- Khushal M. Kapadiya
- Department of Chemistry, Bio-Research and Characterization Centre, School of Science, RK University , Rajkot- 360 020 , Gujarat , India
| | - Kishor M. Kavadia
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University , Rajkot- 360 005 , Gujarat , India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University , Pune , Maharashtra, 411 048 , India
| | - Piyush V. Dholaria
- Department of Chemistry, Bio-Research and Characterization Centre, School of Science, RK University , Rajkot- 360 020 , Gujarat , India
| | - Amita J. Jivani
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University , Rajkot- 360 005 , Gujarat , India
| | - Ranjan C. Khunt
- Department of Chemistry, Chemistry Research Laboratory, Saurashtra University , Rajkot- 360 005 , Gujarat , India
| |
Collapse
|
18
|
Identification of nosZ-expressing microorganisms consuming trace N 2O in microaerobic chemostat consortia dominated by an uncultured Burkholderiales. THE ISME JOURNAL 2022; 16:2087-2098. [PMID: 35676322 PMCID: PMC9381517 DOI: 10.1038/s41396-022-01260-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Microorganisms possessing N2O reductases (NosZ) are the only known environmental sink of N2O. While oxygen inhibition of NosZ activity is widely known, environments where N2O reduction occurs are often not devoid of O2. However, little is known regarding N2O reduction in microoxic systems. Here, 1.6-L chemostat cultures inoculated with activated sludge samples were sustained for ca. 100 days with low concentration (<2 ppmv) and feed rate (<1.44 µmoles h−1) of N2O, and the resulting microbial consortia were analyzed via quantitative PCR (qPCR) and metagenomic/metatranscriptomic analyses. Unintended but quantified intrusion of O2 sustained dissolved oxygen concentration above 4 µM; however, complete N2O reduction of influent N2O persisted throughout incubation. Metagenomic investigations indicated that the microbiomes were dominated by an uncultured taxon affiliated to Burkholderiales, and, along with the qPCR results, suggested coexistence of clade I and II N2O reducers. Contrastingly, metatranscriptomic nosZ pools were dominated by the Dechloromonas-like nosZ subclade, suggesting the importance of the microorganisms possessing this nosZ subclade in reduction of trace N2O. Further, co-expression of nosZ and ccoNO/cydAB genes found in the metagenome-assembled genomes representing these putative N2O-reducers implies a survival strategy to maximize utilization of scarcely available electron acceptors in microoxic environmental niches.
Collapse
|
19
|
Møller TE, Le Moine Bauer S, Hannisdal B, Zhao R, Baumberger T, Roerdink DL, Dupuis A, Thorseth IH, Pedersen RB, Jørgensen SL. Mapping Microbial Abundance and Prevalence to Changing Oxygen Concentration in Deep-Sea Sediments Using Machine Learning and Differential Abundance. Front Microbiol 2022; 13:804575. [PMID: 35663876 PMCID: PMC9158483 DOI: 10.3389/fmicb.2022.804575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units. We find that some of the most abundant classes of microorganisms can be used to classify samples according to oxygen concentration. At the level of Operational Taxonomic Units, however, representatives of common classes are not differentially abundant from high-oxic to low-oxic conditions. This weakened response to changing oxygen concentration suggests that the abundance and prevalence of highly abundant OTUs may be better explained by other variables than oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the benthos, and that the microbiome then becomes more heterogeneous as oxygen drops below 25 μM. Our analytical approach takes into account the oft-ignored compositional nature of relative abundance data, and provides a framework for extracting biologically meaningful associations from datasets spanning multiple sedimentary cores.
Collapse
Affiliation(s)
- Tor Einar Møller
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Sven Le Moine Bauer
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Bjarte Hannisdal
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Rui Zhao
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tamara Baumberger
- Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State University, Newport, OR, United States
| | - Desiree L Roerdink
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - Ingunn H Thorseth
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Rolf Birger Pedersen
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Steffen Leth Jørgensen
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Eukaryogenesis and oxygen in Earth history. Nat Ecol Evol 2022; 6:520-532. [PMID: 35449457 DOI: 10.1038/s41559-022-01733-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
Abstract
The endosymbiotic origin of mitochondria during eukaryogenesis has long been viewed as an adaptive response to the oxygenation of Earth's surface environment, presuming a fundamentally aerobic lifestyle for the free-living bacterial ancestors of mitochondria. This oxygen-centric view has been robustly challenged by recent advances in the Earth and life sciences. While the permanent oxygenation of the atmosphere above trace concentrations is now thought to have occurred 2.2 billion years ago, large parts of the deep ocean remained anoxic until less than 0.5 billion years ago. Neither fossils nor molecular clocks correlate the origin of mitochondria, or eukaryogenesis more broadly, to either of these planetary redox transitions. Instead, mitochondria-bearing eukaryotes are consistently dated to between these two oxygenation events, during an interval of pervasive deep-sea anoxia and variable surface-water oxygenation. The discovery and cultivation of the Asgard archaea has reinforced metabolic evidence that eukaryogenesis was initially mediated by syntrophic H2 exchange between an archaeal host and an α-proteobacterial symbiont living under anoxia. Together, these results temporally, spatially and metabolically decouple the earliest stages of eukaryogenesis from the oxygen content of the surface ocean and atmosphere. Rather than reflecting the ancestral metabolic state, obligate aerobiosis in eukaryotes is most probably derived, having only become globally widespread over the past 1 billion years as atmospheric oxygen approached modern levels.
Collapse
|
21
|
Shebs E, Giotto F, de Mello A. Effects of MS bacteriophages, ultraviolet light, and organic acid applications on beef trim contaminated with STEC O157:H7 and the “Big Six” serotypes after a simulated High Event Period Scenario. Meat Sci 2022; 188:108783. [DOI: 10.1016/j.meatsci.2022.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 10/19/2022]
|
22
|
Fuchsman CA, Cherubini L, Hays MD. An analysis of protists in Pacific oxygen deficient zones: implications for Prochlorococcus and N 2 -producing bacteria. Environ Microbiol 2022; 24:1790-1804. [PMID: 34995411 DOI: 10.1111/1462-2920.15893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Ocean oxygen deficient zones (ODZs) host 30%-50% of marine N2 production. Cyanobacteria photosynthesizing in the ODZ create a secondary chlorophyll maximum and provide organic matter to N2 -producing bacteria. This chlorophyll maximum is thought to occur due to reduced grazing in anoxic waters. We first examine ODZ protists with long amplicon reads. We then use non-primer-based methods to examine the composition and relative abundance of protists in metagenomes from the Eastern Tropical North and South Pacific ODZs and compare these data to the oxic Hawaii Ocean Time-series (HOT) in the North Pacific. We identify and quantify protists in proportion to the total microbial community. From metagenomic data, we see a large drop in abundance of fungi and protists such as choanoflagellates, radiolarians, cercozoa and ciliates in the ODZs but not in the oxic mesopelagic at HOT. Diplonemid euglenozoa were the only protists that increased in the ODZ. Dinoflagellates and foraminifera reads were also present in the ODZ though less abundant compared to oxic waters. Denitrification has been found in foraminifera but not yet in dinoflagellates. DNA techniques cannot separate dinoflagellate cells and cysts. Metagenomic analysis found taxonomic groups missed by amplicon sequencing and identified trends in abundance.
Collapse
Affiliation(s)
- Clara A Fuchsman
- University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, MD, 21613, USA
| | - Luca Cherubini
- Maryland Sea Grant College, College Park, MD, 20740, USA
| | - Matthew D Hays
- University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, MD, 21613, USA
| |
Collapse
|
23
|
Berg JS, Ahmerkamp S, Pjevac P, Hausmann B, Milucka J, Kuypers MMM. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6517451. [PMID: 35094062 PMCID: PMC9075580 DOI: 10.1093/femsre/fuac006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022] Open
Abstract
Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia, including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance and evolutionary origin.
Collapse
Affiliation(s)
- Jasmine S Berg
- Corrresponding author: Géopolis, Quartier Unil-Mouline, Université de Lausanne, 1015 Lausanne, Switzerland. E-mail:
| | - Soeren Ahmerkamp
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna and the Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna 1090, Austria
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1090, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna 1090, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna 1090, Austria
| | - Jana Milucka
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| | - Marcel M M Kuypers
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 2359, Germany
| |
Collapse
|
24
|
Beman JM, Vargas SM, Wilson JM, Perez-Coronel E, Karolewski JS, Vazquez S, Yu A, Cairo AE, White ME, Koester I, Aluwihare LI, Wankel SD. Substantial oxygen consumption by aerobic nitrite oxidation in oceanic oxygen minimum zones. Nat Commun 2021; 12:7043. [PMID: 34857761 PMCID: PMC8639706 DOI: 10.1038/s41467-021-27381-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Oceanic oxygen minimum zones (OMZs) are globally significant sites of biogeochemical cycling where microorganisms deplete dissolved oxygen (DO) to concentrations <20 µM. Amid intense competition for DO in these metabolically challenging environments, aerobic nitrite oxidation may consume significant amounts of DO and help maintain low DO concentrations, but this remains unquantified. Using parallel measurements of oxygen consumption rates and 15N-nitrite oxidation rates applied to both water column profiles and oxygen manipulation experiments, we show that the contribution of nitrite oxidation to overall DO consumption systematically increases as DO declines below 2 µM. Nitrite oxidation can account for all DO consumption only under DO concentrations <393 nM found in and below the secondary chlorophyll maximum. These patterns are consistent across sampling stations and experiments, reflecting coupling between nitrate reduction and nitrite-oxidizing Nitrospina with high oxygen affinity (based on isotopic and omic data). Collectively our results demonstrate that nitrite oxidation plays a pivotal role in the maintenance and biogeochemical dynamics of OMZs.
Collapse
Affiliation(s)
- J. M. Beman
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - S. M. Vargas
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - J. M. Wilson
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA ,grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - E. Perez-Coronel
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - J. S. Karolewski
- grid.56466.370000 0004 0504 7510Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - S. Vazquez
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - A. Yu
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - A. E. Cairo
- grid.266096.d0000 0001 0049 1282Life and Environmental Sciences, University of California, Merced, Merced, CA USA
| | - M. E. White
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - I. Koester
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - L. I. Aluwihare
- grid.266100.30000 0001 2107 4242Scripps Institution of Oceanography, University of California, San Diego, CA USA
| | - S. D. Wankel
- grid.56466.370000 0004 0504 7510Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| |
Collapse
|
25
|
Atashgahi S, Oosterkamp MJ, Peng P, Frank J, Kraft B, Hornung B, Schleheck D, Lücker S, Jetten MSM, Stams AJM, Smidt H. Proteogenomic analysis of Georgfuchsia toluolica revealed unexpected concurrent aerobic and anaerobic toluene degradation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:841-851. [PMID: 34374217 PMCID: PMC9290046 DOI: 10.1111/1758-2229.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Denitrifying Betaproteobacteria play a key role in the anaerobic degradation of monoaromatic hydrocarbons. We performed a multi-omics study to better understand the metabolism of the representative organism Georgfuchsia toluolica strain G5G6 known as a strict anaerobe coupling toluene oxidation with dissimilatory nitrate and Fe(III) reduction. Despite the genomic potential for degradation of different carbon sources, we did not find sugar or organic acid transporters, in line with the inability of strain G5G6 to use these substrates. Using a proteomics analysis, we detected proteins of fumarate-dependent toluene activation, membrane-bound nitrate reductase, and key components of the metal-reducing (Mtr) pathway under both nitrate- and Fe(III)-reducing conditions. High abundance of the multiheme cytochrome MtrC implied that a porin-cytochrome complex was used for respiratory Fe(III) reduction. Remarkably, strain G5G6 contains a full set of genes for aerobic toluene degradation, and we detected enzymes of aerobic toluene degradation under both nitrate- and Fe(III)-reducing conditions. We further detected an ATP-dependent benzoyl-CoA reductase, reactive oxygen species detoxification proteins, and cytochrome c oxidase indicating a facultative anaerobic lifestyle of strain G5G6. Correspondingly, we found diffusion through the septa a substantial source of oxygen in the cultures enabling concurrent aerobic and anaerobic toluene degradation by strain G5G6.
Collapse
Affiliation(s)
- Siavash Atashgahi
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Margreet J. Oosterkamp
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Sub‐department of Environmental TechnologyWageningen University & Research, Bornse weilanden 9Wageningen6708 DWThe Netherlands
| | - Peng Peng
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Department of Civil and Environmental EngineeringUniversity of Michigan, 1351 Beal AvenueAnn ArborMI48109‐2125USA
| | - Jeroen Frank
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Beate Kraft
- Nordic Center for Earth EvolutionUniversity of Southern DenmarkOdenseDK‐5230Denmark
| | - Bastian Hornung
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, 163 avenue de Luminy13288 Aix Marseille UniversitéMarseilleFrance
| | - David Schleheck
- Department of BiologyUniversity of KonstanzKonstanz78457Germany
| | - Sebastian Lücker
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, IWWRRadboud UniversityHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Alfons J. M. Stams
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135Nijmegen6525 AJThe Netherlands
- Centre of Biological EngineeringUniversity of Minho, Campus de GualtarBraga4710‐057Portugal
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen University & ResearchWageningen6708 WEThe Netherlands
| |
Collapse
|
26
|
Murali R, Gennis RB, Hemp J. Evolution of the cytochrome bd oxygen reductase superfamily and the function of CydAA' in Archaea. THE ISME JOURNAL 2021; 15:3534-3548. [PMID: 34145390 PMCID: PMC8630170 DOI: 10.1038/s41396-021-01019-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Cytochrome bd-type oxygen reductases (cytbd) belong to one of three enzyme superfamilies that catalyze oxygen reduction to water. They are widely distributed in Bacteria and Archaea, but the full extent of their biochemical diversity is unknown. Here we used phylogenomics to identify three families and several subfamilies within the cytbd superfamily. The core architecture shared by all members of the superfamily consists of four transmembrane helices that bind two active site hemes, which are responsible for oxygen reduction. While previously characterized cytochrome bd-type oxygen reductases use quinol as an electron donor to reduce oxygen, sequence analysis shows that only one of the identified families has a conserved quinol binding site. The other families are missing this feature, suggesting that they use an alternative electron donor. Multiple gene duplication events were identified within the superfamily, resulting in significant evolutionary and structural diversity. The CydAA' cytbd, found exclusively in Archaea, is formed by the co-association of two superfamily paralogs. We heterologously expressed CydAA' from Caldivirga maquilingensis and demonstrated that it performs oxygen reduction with quinol as an electron donor. Strikingly, CydAA' is the first isoform of cytbd containing only b-type hemes shown to be active when isolated from membranes, demonstrating that oxygen reductase activity in this superfamily is not dependent on heme d.
Collapse
Affiliation(s)
- Ranjani Murali
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - James Hemp
- The Metrodora Institute, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
He H, Wu X, Xian H, Zhu J, Yang Y, Lv Y, Li Y, Konhauser KO. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nat Commun 2021; 12:6611. [PMID: 34785682 PMCID: PMC8595356 DOI: 10.1038/s41467-021-26916-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
The evolution of oxygenic photosynthesis is a pivotal event in Earth's history because the O2 released fundamentally changed the planet's redox state and facilitated the emergence of multicellular life. An intriguing hypothesis proposes that hydrogen peroxide (H2O2) once acted as the electron donor prior to the evolution of oxygenic photosynthesis, but its abundance during the Archean would have been limited. Here, we report a previously unrecognized abiotic pathway for Archean H2O2 production that involves the abrasion of quartz surfaces and the subsequent generation of surface-bound radicals that can efficiently oxidize H2O to H2O2 and O2. We propose that in turbulent subaqueous environments, such as rivers, estuaries and deltas, this process could have provided a sufficient H2O2 source that led to the generation of biogenic O2, creating an evolutionary impetus for the origin of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China.
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Xiao Wu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Haiyang Xian
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiping Yang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Lv
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640, Guangzhou, China
- CAS Center for Excellence in Deep Earth Science, 510640, Guangzhou, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yiliang Li
- Department of Earth Sciences, The University of Hong Kong, 999077, Hong Kong, China.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
28
|
Trojan D, Garcia-Robledo E, Meier DV, Hausmann B, Revsbech NP, Eichorst SA, Woebken D. Microaerobic Lifestyle at Nanomolar O 2 Concentrations Mediated by Low-Affinity Terminal Oxidases in Abundant Soil Bacteria. mSystems 2021; 6:e0025021. [PMID: 34227829 PMCID: PMC8407424 DOI: 10.1128/msystems.00250-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 11/23/2022] Open
Abstract
High-affinity terminal oxidases (TOs) are believed to permit microbial respiration at low oxygen (O2) levels. Genes encoding such oxidases are widespread, and their existence in microbial genomes is taken as an indicator for microaerobic respiration. We combined respiratory kinetics determined via highly sensitive optical trace O2 sensors, genomics, and transcriptomics to test the hypothesis that high-affinity TOs are a prerequisite to respire micro- and nanooxic concentrations of O2 in environmentally relevant model soil organisms: acidobacteria. Members of the Acidobacteria harbor branched respiratory chains terminating in low-affinity (caa3-type cytochrome c oxidases) as well as high-affinity (cbb3-type cytochrome c oxidases and/or bd-type quinol oxidases) TOs, potentially enabling them to cope with varying O2 concentrations. The measured apparent Km (Km(app)) values for O2 of selected strains ranged from 37 to 288 nmol O2 liter-1, comparable to values previously assigned to low-affinity TOs. Surprisingly, we could not detect the expression of the conventional high-affinity TO (cbb3 type) at micro- and nanomolar O2 concentrations but detected the expression of low-affinity TOs. To the best of our knowledge, this is the first observation of microaerobic respiration imparted by low-affinity TOs at O2 concentrations as low as 1 nM. This challenges the standing hypothesis that a microaerobic lifestyle is exclusively imparted by the presence of high-affinity TOs. As low-affinity TOs are more efficient at generating ATP than high-affinity TOs, their utilization could provide a great benefit, even at low-nanomolar O2 levels. Our findings highlight energy conservation strategies that could promote the success of Acidobacteria in soil but might also be important for as-yet-unrevealed microorganisms. IMPORTANCE Low-oxygen habitats are widely distributed on Earth, ranging from the human intestine to soils. Microorganisms are assumed to have the capacity to respire low O2 concentrations via high-affinity terminal oxidases. By utilizing strains of a ubiquitous and abundant group of soil bacteria, the Acidobacteria, and combining respiration kinetics, genomics, and transcriptomics, we provide evidence that these microorganisms use the energetically more efficient low-affinity terminal oxidases to respire low-nanomolar O2 concentrations. This questions the standing hypothesis that the ability to respire traces of O2 stems solely from the activity of high-affinity terminal oxidases. We propose that this energetically efficient strategy extends into other, so-far-unrevealed microbial clades. Our findings also demonstrate that physiological predictions regarding the utilization of different O2 concentrations based solely on the presence or absence of terminal oxidases in bacterial genomes can be misleading.
Collapse
Affiliation(s)
- Daniela Trojan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Emilio Garcia-Robledo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Cádiz, Spain
| | - Dimitri V. Meier
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Stephanie A. Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
30
|
Abstract
The kinetics of microbial respiration suggests that, if excess organic matter is present, oxygen should fall to nanomolar levels in the range of the Michaelis-Menten constants (Km). Yet even in many biologically productive coastal regions, lowest observed O2 concentrations often remain several orders of magnitude higher than respiratory Km values. We propose the hypoxic barrier hypothesis (HBH) to explain this apparent discrepancy. The HBH postulates that oxidative enzymes involved in organic matter catabolism are kinetically limited by O2 at concentrations far higher than the thresholds for respiration. We found support for the HBH in a meta-analysis of 1,137 O2 Km values reported in the literature: the median value for terminal respiratory oxidases was 350 nM, but for other oxidase types, the median value was 67 μM. The HBH directs our attention to the kinetic properties of an important class of oxygen-dependent reactions that could help explain the trajectories of ocean ecosystems experiencing O2 stress. IMPORTANCE Declining ocean oxygen associated with global warming and climate change is impacting marine ecosystems across scales from microscopic planktonic communities to global fisheries. We report a fundamental dichotomy in the affinities of enzymes for oxygen-the terminal proteins catalyzing respiration are active at much lower oxygen concentrations than oxygenase enzymes involved in organic matter catabolism. We hypothesize that this dichotomy in oxygen affinities will cause some types of organic matter to accumulate in hypoxic ecosystems and will slow rates of oxygen decline. This proposed biochemical barrier may explain why many ocean ecosystems rarely reach anoxia. Competition between intracellular enzymes for oxygen may also have impacted microbial strategies of adaptation to low oxygen, requiring cells to regulate oxygen respiration so that it does not compete with other cellular processes that also require oxygen.
Collapse
|
31
|
Wu Z, Nguyen D, Lam TYC, Zhuang H, Shrestha S, Raskin L, Khanal SK, Lee PH. Synergistic association between cytochrome bd-encoded Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass. WATER RESEARCH 2021; 190:116721. [PMID: 33326896 DOI: 10.1016/j.watres.2020.116721] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Intermittent (every other day) microaerobic [picomolar oxygen by oxidation-reduction potential (ORP) set at +25 mV above anaerobic baseline] digestion of lignocellulosic biomass showed higher digestibility and better stability at a high organic loading rate (OLR) of 5 g volatile solids (VS)/L/d than that under strict anaerobic conditions. However, the microbial mechanisms supporting the delicate balance under microaeration remain underexplored. On the basis of our previous findings that microbial communities in replicate experiments were dominated by strains of the genus Proteiniphilum but contained diverse taxa of methanogenic archaea, here we recovered related genomes and reconstructed the putative metabolic pathways using a genome-centric metagenomic approach. The highly enriched Proteiniphilum strains were identified as efficient cellulolytic facultative bacterium, which directly degraded lignocellulose to carbon dioxide, formate, and acetate via aerobic respiration and anaerobic fermentation, alternatively. Moreover, high oxygen affinity cytochromes, bd-type terminal oxidases, in Proteiniphilum strains were found to be closely associated with such picomolar oxygen conditions, which has long been overlooked in anaerobic digestion. Furthermore, hydrogenotrophic methanogenesis was the prevalent pathway for methane production while Methanosarcina, Methanobrevibacter, and Methanocorpusculum were the dominant methanogens in the replicate experiments. Importantly, the two functional groups, namely cellulolytic facultative Proteiniphilum strains and methanogens, encoded various antioxidant enzymes. Energy-dependent reactive oxygen species (ROS) scavengers (superoxide reductase (SOR) and rubrerythrin (rbr) were ubiquitously present in different methanogenic taxa in response to replicate-specific ORP levels (-470, -450 and -475 mV). Collectively, cytochrome bd oxidase and ROS defenders may play roles in improving the digestibility and stability observed in intermittent microaerobic digestion.
Collapse
Affiliation(s)
- Zhuoying Wu
- Department of Civil and Environmental Engineering, Imperial College, London, The United Kingdom
| | - Duc Nguyen
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Theo Y C Lam
- Department of Civil and Environmental Engineering, Imperial College, London, The United Kingdom; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Huichuan Zhuang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Shilva Shrestha
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, 107 EWRE Building, Ann Arbor, MI 48109-2125, USA
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College, London, The United Kingdom.
| |
Collapse
|
32
|
Yang C, Yang C, Li X, Zhang A, He G, Wu Q, Liu X, Huang S, Huang X, Cui G, Hu N, Xie X, Hang T. Liquid-like Polymer Coating as a Promising Candidate for Reducing Electrode Contamination and Noise in Complex Biofluids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4450-4462. [PMID: 33443399 DOI: 10.1021/acsami.0c18419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biosensors that can automatically and continuously track fluctuations in biomarker levels over time are essential for real-time sensing in biomedical and environmental applications. Although many electrochemical sensors have been developed to quickly and sensitively monitor biomarkers, their sensing stability in complex biofluids is disturbed by unavoidable nonspecific adhesion of proteins or bacteria. Recently, various substrate surface modification techniques have been developed to resist biofouling, yet functionalization of electrodes in sensors to be anti-biofouling is rarely achieved. Here, we report an integrated three-electrode system (ITES) modified with a "liquid-like" polydimethylsiloxane (PDMS) brush that can continuously and stably monitor reactive oxygen species (ROS) in complex fluids. Based on the slippery "liquid-like" coating, the modified ITES surface could prevent the adhesion of various liquids as well as the adhesion of proteins and bacteria. The "liquid-like" coating does not significantly affect the sensitivity of the electrode in detecting ROS, while the sensing performance could remain stable and free of bacterial attack even after 3 days of incubation with bacteria. In addition, the PDMS brush-modified ITES (PMITES) could continuously record ROS levels in bacterial-rich fluids with excellent stability over 24 h due to the reduced bacterial contamination on the electrode surface. This technique offers new opportunities for continuous and real-time monitoring of biomarkers that will facilitate the development of advanced sensors for biomedical and environmental applications.
Collapse
Affiliation(s)
- Chengduan Yang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Yang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangling Li
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Zhang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Gen He
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinshuo Huang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guofeng Cui
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tian Hang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
33
|
Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, Antonovsky N, Ravishankar S, Noor E, Bar-Even A, Milo R, Savage DF. Functional reconstitution of a bacterial CO 2 concentrating mechanism in Escherichia coli. eLife 2020; 9:59882. [PMID: 33084575 PMCID: PMC7714395 DOI: 10.7554/elife.59882] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
Collapse
Affiliation(s)
- Avi I Flamholz
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shira Amram
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Sumedha Ravishankar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
34
|
Sasaki S, Yoshida K. Cell activity evaluation during bacterial bioluminescence oscillation. J GEN APPL MICROBIOL 2020; 66:201-206. [PMID: 31827021 DOI: 10.2323/jgam.2019.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oscillation in bacterial bioluminescence from Photobacterium kishitanii liquid culture was examined regarding reproducibility and bacterial cell activities, i.e., dissolved oxygen (DO) consumption, esterase activity, and product production rate. A frequent increase in DO was suspected to be due to a rapid decrease in luminescence, and a simple model describing not only the monotonous decrease in cell activity, but also the luminescence-DO relationship is proposed.
Collapse
Affiliation(s)
- Satoshi Sasaki
- Faculty of Medical Technology, School of Health Science, Tokyo University of Technology
| | - Kurumi Yoshida
- Faculty of Medical Technology, School of Health Science, Tokyo University of Technology
| |
Collapse
|
35
|
Shi LD, Lv PL, Wang M, Lai CY, Zhao HP. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139310. [PMID: 32442771 DOI: 10.1016/j.scitotenv.2020.139310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Though methane-based selenate reduction has been reported, neither the selenate load nor the removal rate could satisfy practical applications, thus limiting this technique to bio-remediate selenate pollution. In the present study, using a membrane biofilm batch reactor (MBBR), we successfully enriched a consortium performing methane-dependent selenate reduction, with enhanced reduction rates from 16.1 to 28.9 μM-day-1 under a comparable Se concentration to industrial wastewaters (i.e., ~500 μM). During active reduction, 16S rRNA gene copies of Archaea and Bacteria were both increased more than one order of magnitude. Clone library construction and high-throughput sequencing indicated that Methanosarcina and Methylocystis were the only methane-oxidizing microorganisms. The presence of 20 mM bromoethanesulphonate or 0.15 mM acetylene both significantly, but not completely, inhibited methane-dependent selenate reduction, indicating the concurrent contributions of methanotrophic archaea and bacteria. Fluorescence in situ hybridization (FISH) revealed that archaea directly adhered to the surface of the membrane while bacteria were in the outer layer, together forming the mature biofilm. This study highlights the crucial role of both methanotrophic archaea and bacteria in methane-dependent selenate reduction, and lays foundations in applying methane to bio-remediate practical selenate pollution.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan-Long Lv
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Savvichev AS, Kadnikov VV, Rusanov II, Beletsky AV, Krasnova ED, Voronov DA, Kallistova AY, Veslopolova EF, Zakharova EE, Kokryatskaya NM, Losyuk GN, Demidenko NA, Belyaev NA, Sigalevich PA, Mardanov AV, Ravin NV, Pimenov NV. Microbial Processes and Microbial Communities in the Water Column of the Polar Meromictic Lake Bol'shie Khruslomeny at the White Sea Coast. Front Microbiol 2020; 11:1945. [PMID: 32849486 PMCID: PMC7432294 DOI: 10.3389/fmicb.2020.01945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Microbiological, molecular ecological, biogeochemical, and isotope geochemical research was carried out at the polar Lake Bol'shie Khruslomeny at the coast of the Kandalaksha Bay, White Sea in March and September 2017. The uppermost mixolimnion was oxic, with low salinity (3-5%). The lower chemocline layer was brown-green colored, with very high content of particulate organic matter (up to 11.8 mg C L-1). The lowermost monimolimnion had marine salinity (22-24%) and very high concentrations of sulfide (up to 18 mmol L-1) and CH4 (up to 1.8 mmol L-1). In the chemocline, total microbial abundance and the rate of anoxygenic photosynthesis were 8.8 × 106 cells mL-1 and 34.4 μmol C L-1 day-1, respectively. Both in March and September, sulfate reduction rate increased with depth, peaking (up to 0.6-1.1 μmol S L-1 day-1) in the lower chemocline. Methane oxidation rates in the chemocline were up to 85 and 180 nmol CH4 L-1 day-1 in March and September, respectively; stimulation of this process by light was observed in September. The percentages of cyanobacteria and methanotrophs in the layer where light-induced methane oxidation occurred were similar, ∼2.5% of the microbial community. Light did not stimulate methane oxidation in deeper layers. The carbon isotope composition of particulate organic matter (δ13C-Corg), dissolved carbonates (δ13C-DIC), and methane (δ13C- CH4) indicated high microbial activity in the chemocline. Analysis of the 16S rRNA gene sequences revealed predominance of Cyanobium cyanobacteria (order Synechococcales) in the mixolimnion. Green sulfur bacteria Chlorobium phaeovibrioides capable of anoxygenic photosynthesis constituted ∼20% of the chemocline community both in March and in September. Methyloprofundus gammaptoteobacteria (family Methylomonaceae) were present in the upper chemocline, where active methane oxidation occurred. During winter, cyanobacteria were less abundant in the chemocline, while methanotrophs occurred in higher horizons, including the under-ice layer. Chemolithotrophic gammaproteobacteria of the genus Thiomicrorhabdus, oxidizing reduced sulfur compounds at low oxygen concentrations, were revealed in the chemocline in March. Both in March and September archaea constituted up to 50% of all microorganisms in the hypolimnion. The percentage of putative methanogens in the archaeal community was low, and they occurred mainly in near-bottom horizons.
Collapse
Affiliation(s)
- Alexander S. Savvichev
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Vitaly V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Igor I. Rusanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey V. Beletsky
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena D. Krasnova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A. Voronov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Yu. Kallistova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena F. Veslopolova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elena E. Zakharova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nataliya M. Kokryatskaya
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | - Galina N. Losyuk
- N. Laverov Federal Center for Integrated Arctic Research, Ural Branch, Russian Academy of Sciences, Moscow, Russia
| | | | - Nikolai A. Belyaev
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel A. Sigalevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey V. Mardanov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
37
|
Nobu MK, Narihiro T, Mei R, Kamagata Y, Lee PKH, Lee PH, McInerney MJ, Liu WT. Catabolism and interactions of uncultured organisms shaped by eco-thermodynamics in methanogenic bioprocesses. MICROBIOME 2020; 8:111. [PMID: 32709258 PMCID: PMC7382037 DOI: 10.1186/s40168-020-00885-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/25/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Current understanding of the carbon cycle in methanogenic environments involves trophic interactions such as interspecies H2 transfer between organotrophs and methanogens. However, many metabolic processes are thermodynamically sensitive to H2 accumulation and can be inhibited by H2 produced from co-occurring metabolisms. Strategies for driving thermodynamically competing metabolisms in methanogenic environments remain unexplored. RESULTS To uncover how anaerobes combat this H2 conflict in situ, we employ metagenomics and metatranscriptomics to revisit a model ecosystem that has inspired many foundational discoveries in anaerobic ecology-methanogenic bioreactors. Through analysis of 17 anaerobic digesters, we recovered 1343 high-quality metagenome-assembled genomes and corresponding gene expression profiles for uncultured lineages spanning 66 phyla and reconstructed their metabolic capacities. We discovered that diverse uncultured populations can drive H2-sensitive metabolisms through (i) metabolic coupling with concurrent H2-tolerant catabolism, (ii) forgoing H2 generation in favor of interspecies transfer of formate and electrons (cytochrome- and pili-mediated) to avoid thermodynamic conflict, and (iii) integration of low-concentration O2 metabolism as an ancillary thermodynamics-enhancing electron sink. Archaeal populations support these processes through unique methanogenic metabolisms-highly favorable H2 oxidation driven by methyl-reducing methanogenesis and tripartite uptake of formate, electrons, and acetate. CONCLUSION Integration of omics and eco-thermodynamics revealed overlooked behavior and interactions of uncultured organisms, including coupling favorable and unfavorable metabolisms, shifting from H2 to formate transfer, respiring low-concentration O2, performing direct interspecies electron transfer, and interacting with high H2-affinity methanogenesis. These findings shed light on how microorganisms overcome a critical obstacle in methanogenic carbon cycles we had hitherto disregarded and provide foundational insight into anaerobic microbial ecology. Video Abstract.
Collapse
Affiliation(s)
- Masaru K. Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Narihiro
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Patrick K. H. Lee
- School of Energy and Environment, City University of Hong Kong, Kowloon, HK Hong Kong
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College, London, UK
| | - Michael J. McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma USA
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL 61801 USA
| |
Collapse
|
38
|
Simkins JW, Stewart PS, Codd SL, Seymour JD. Microbial growth rates and local external mass transfer coefficients in a porous bed biofilm system measured by 19 F magnetic resonance imaging of structure, oxygen concentration, and flow velocity. Biotechnol Bioeng 2020; 117:1458-1469. [PMID: 31956979 DOI: 10.1002/bit.27275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 11/06/2022]
Abstract
19 F nuclear magnetic resonance (NMR) oximetry and 1 H NMR velocimetry were used to noninvasively map oxygen concentrations and hydrodynamics in space and time in a model packed bed biofilm system in the presence and absence of flow. The development of a local oxygen sink associated with a single gel bead inoculated with respiring Escherichia coli was analyzed with a phenomenological model to determine the specific growth rate of the bacteria in situ, returning a value (0.66 hr-1 ) that was close to that measured independently in planktonic culture (0.62 hr-1 ). The decay of oxygen concentration in and around the microbiologically active bead was delayed and slower in experiments conducted under continuous flow in comparison to no-flow experiments. Concentration boundary layer thicknesses were determined and Sherwood numbers calculated to quantify external mass transfer resistance. Boundary layers were thicker in no-flow experiments compared to experiments with flow. Whereas the oxygen concentration profile across a reactive biofilm particle was symmetric in no-flow experiments, it was asymmetric with respect to flow direction in flow experiments with Sherwood numbers on the leading edge (Sh = 7) being larger than the trailing edge (Sh = 3.5). The magnitude of the experimental Sh was comparable to values predicted by a variety of correlations. These spatially resolved measurements of oxygen distribution in a geometrically complex model reveal in innovative detail the local coupling between microbial growth, oxygen consumption, and external mass transfer.
Collapse
Affiliation(s)
- Jeffrey W Simkins
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| | - Philip S Stewart
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| | - Sarah L Codd
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana.,Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana
| | - Joseph D Seymour
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana.,Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana
| |
Collapse
|
39
|
Injarabian L, Devin A, Ransac S, Marteyn BS. Neutrophil Metabolic Shift during their Lifecycle: Impact on their Survival and Activation. Int J Mol Sci 2019; 21:E287. [PMID: 31906243 PMCID: PMC6981538 DOI: 10.3390/ijms21010287] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune cells, which represent 50% to 70% of the total circulating leukocytes. How PMNs adapt to various microenvironments encountered during their life cycle, from the bone marrow, to the blood plasma fraction, and to inflamed or infected tissues remains largely unexplored. Metabolic shifts have been reported in other immune cells such as macrophages or lymphocytes, in response to local changes in their microenvironment, and in association with a modulation of their pro-inflammatory or anti-inflammatory functions. The potential contribution of metabolic shifts in the modulation of neutrophil activation or survival is anticipated even though it is not yet fully described. If neutrophils are considered to be mainly glycolytic, the relative importance of alternative metabolic pathways, such as the pentose phosphate pathway, glutaminolysis, or the mitochondrial oxidative metabolism, has not been fully considered during activation. This statement may be explained by the lack of knowledge regarding the local availability of key metabolites such as glucose, glutamine, and substrates, such as oxygen from the bone marrow to inflamed tissues. As highlighted in this review, the link between specific metabolic pathways and neutrophil activation has been outlined in many reports. However, the impact of neutrophil activation on metabolic shifts' induction has not yet been explored. Beyond its importance in neutrophil survival capacity in response to available metabolites, metabolic shifts may also contribute to neutrophil population heterogeneity reported in cancer (tumor-associated neutrophil) or auto-immune diseases (Low/High Density Neutrophils). This represents an active field of research. In conclusion, the characterization of neutrophil metabolic shifts is an emerging field that may provide important knowledge on neutrophil physiology and activation modulation. The related question of microenvironmental changes occurring during inflammation, to which neutrophils will respond to, will have to be addressed to fully appreciate the importance of neutrophil metabolic shifts in inflammatory diseases.
Collapse
Affiliation(s)
- Louise Injarabian
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France;
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Anne Devin
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Stéphane Ransac
- Université de Bordeaux, IBGC, UMR 5095, 1 rue Camille Saint Saëns, 33077 Bordeaux Cedex, France; (A.D.); (S.R.)
| | - Benoit S. Marteyn
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000 Strasbourg, France;
- Institut Pasteur, Unité de Pathogenèse des Infections Vasculaires, 75724 Paris, France
| |
Collapse
|
40
|
Finke N, Simister RL, O'Neil AH, Nomosatryo S, Henny C, MacLean LC, Canfield DE, Konhauser K, Lalonde SV, Fowle DA, Crowe SA. Mesophilic microorganisms build terrestrial mats analogous to Precambrian microbial jungles. Nat Commun 2019; 10:4323. [PMID: 31541087 PMCID: PMC6754388 DOI: 10.1038/s41467-019-11541-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/03/2019] [Indexed: 12/02/2022] Open
Abstract
Development of Archean paleosols and patterns of Precambrian rock weathering suggest colonization of continents by subaerial microbial mats long before evolution of land plants in the Phanerozoic Eon. Modern analogues for such mats, however, have not been reported, and possible biogeochemical roles of these mats in the past remain largely conceptual. We show that photosynthetic, subaerial microbial mats from Indonesia grow on mafic bedrocks at ambient temperatures and form distinct layers with features similar to Precambrian mats and paleosols. Such subaerial mats could have supported a substantial aerobic biosphere, including nitrification and methanotrophy, and promoted methane emissions and oxidative weathering under ostensibly anoxic Precambrian atmospheres. High C-turnover rates and cell abundances would have made these mats prime locations for early microbial diversification. Growth of landmass in the late Archean to early Proterozoic Eons could have reorganized biogeochemical cycles between land and sea impacting atmospheric chemistry and climate.
Collapse
Affiliation(s)
- N Finke
- Departments of Microbiology and Immunology and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
- Nordic center for earth evolution (NordCEE), University of Southern Denmark, Odense, Denmark
| | - R L Simister
- Departments of Microbiology and Immunology and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | | | - S Nomosatryo
- Research center for Limnology, Indonesian Institute of Sciences (LIPI), Jawa Barat, Indonesia
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - C Henny
- Research center for Limnology, Indonesian Institute of Sciences (LIPI), Jawa Barat, Indonesia
| | | | - D E Canfield
- Nordic center for earth evolution (NordCEE), University of Southern Denmark, Odense, Denmark
| | - K Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| | - S V Lalonde
- European Institute for Marine Studies, Technopôle Brest-Iroise, Plouzané, France
| | - D A Fowle
- Department of Geology, University of Kansas, Lawrence, KS, USA
| | - S A Crowe
- Departments of Microbiology and Immunology and Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
41
|
Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 2019; 140:61-73. [PMID: 30862543 DOI: 10.1016/j.freeradbiomed.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
One of the former definitions of "obligate anaerobiosis" was based on three main criteria: 1) it occurs in organisms, so-called obligate anaerobes, which live in environments without oxygen (O2), 2) O2-dependent (aerobic) respiration, and 3) antioxidant enzymes are absent in obligate anaerobes. In contrast, aerobes need O2 in order to grow and develop properly. Obligate (or strict) anaerobes belong to prokaryotic microorganisms from two domains, Bacteria and Archaea. A closer look at anaerobiosis covers a wide range of microorganisms that permanently or in a time-dependent manner tolerate different concentrations of O2 in their habitats. On this basis they can be classified as obligate/facultative anaerobes, microaerophiles and nanaerobes. Paradoxically, O2 tolerance in strict anaerobes is usually, as in aerobes, associated with the activity of the antioxidant response system, which involves different antioxidant enzymes responsible for removing excess reactive oxygen species (ROS). In our opinion, the traditional definition of "obligate anaerobiosis" loses its original sense. Strict anaerobiosis should only be restricted to the occurrence of O2-independent pathways involved in energy generation. For that reason, a term better than "obligate anaerobes" would be O2/ROS tolerant anaerobes, where the role of the O2/ROS detoxification system is separated from O2-independent metabolic pathways that supply energy. Ubiquitous key antioxidant enzymes like superoxide dismutase (SOD) and superoxide reductase (SOR) in contemporary obligate anaerobes might suggest that their origin is ancient, maybe even the beginning of the evolution of life on Earth. It cannot be ruled out that c. 3.5 Gyr ago, local microquantities of O2/ROS played a role in the evolution of the last universal common ancestor (LUCA) of all modern organisms. On the basis of data in the literature, the hypothesis that LUCA could be an O2/ROS tolerant anaerobe is discussed together with the question of the abiotic sources of O2/ROS and/or the early evolution of cyanobacteria that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Monika Kula
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
42
|
Ubiquinone Biosynthesis over the Entire O 2 Range: Characterization of a Conserved O 2-Independent Pathway. mBio 2019; 10:mBio.01319-19. [PMID: 31289180 PMCID: PMC6747719 DOI: 10.1128/mbio.01319-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In order to colonize environments with large O2 gradients or fluctuating O2 levels, bacteria have developed metabolic responses that remain incompletely understood. Such adaptations have been recently linked to antibiotic resistance, virulence, and the capacity to develop in complex ecosystems like the microbiota. Here, we identify a novel pathway for the biosynthesis of ubiquinone, a molecule with a key role in cellular bioenergetics. We link three uncharacterized genes of Escherichia coli to this pathway and show that the pathway functions independently from O2. In contrast, the long-described pathway for ubiquinone biosynthesis requires O2 as a substrate. In fact, we find that many proteobacteria are equipped with the O2-dependent and O2-independent pathways, supporting that they are able to synthesize ubiquinone over the entire O2 range. Overall, we propose that the novel O2-independent pathway is part of the metabolic plasticity developed by proteobacteria to face various environmental O2 levels. Most bacteria can generate ATP by respiratory metabolism, in which electrons are shuttled from reduced substrates to terminal electron acceptors, via quinone molecules like ubiquinone. Dioxygen (O2) is the terminal electron acceptor of aerobic respiration and serves as a co-substrate in the biosynthesis of ubiquinone. Here, we characterize a novel, O2-independent pathway for the biosynthesis of ubiquinone. This pathway relies on three proteins, UbiT (YhbT), UbiU (YhbU), and UbiV (YhbV). UbiT contains an SCP2 lipid-binding domain and is likely an accessory factor of the biosynthetic pathway, while UbiU and UbiV (UbiU-UbiV) are involved in hydroxylation reactions and represent a novel class of O2-independent hydroxylases. We demonstrate that UbiU-UbiV form a heterodimer, wherein each protein binds a 4Fe-4S cluster via conserved cysteines that are essential for activity. The UbiT, -U, and -V proteins are found in alpha-, beta-, and gammaproteobacterial clades, including several human pathogens, supporting the widespread distribution of a previously unrecognized capacity to synthesize ubiquinone in the absence of O2. Together, the O2-dependent and O2-independent ubiquinone biosynthesis pathways contribute to optimizing bacterial metabolism over the entire O2 range.
Collapse
|
43
|
Ward LM, Stamenković V, Hand K, Fischer WW. Follow the Oxygen: Comparative Histories of Planetary Oxygenation and Opportunities for Aerobic Life. ASTROBIOLOGY 2019; 19:811-824. [PMID: 31188035 DOI: 10.1089/ast.2017.1779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aerobic respiration-the reduction of molecular oxygen (O2) coupled to the oxidation of reduced compounds such as organic carbon, ferrous iron, reduced sulfur compounds, or molecular hydrogen while conserving energy to drive cellular processes-is the most widespread and bioenergetically favorable metabolism on Earth today. Aerobic respiration is essential for the development of complex multicellular life; thus the presence of abundant O2 is an important metric for planetary habitability. O2 on Earth is supplied by oxygenic photosynthesis, but it is becoming more widely understood that abiotic processes may supply meaningful amounts of O2 on other worlds. The modern atmosphere and rock record of Mars suggest a history of relatively high O2 as a result of photochemical processes, potentially overlapping with the range of O2 concentrations used by biology. Europa may have accumulated high O2 concentrations in its subsurface ocean due to the radiolysis of water ice at its surface. Recent modeling efforts suggest that coexisting water and O2 may be common on exoplanets, with confirmation from measurements of exoplanet atmospheres potentially coming soon. In all these cases, O2 accumulates through abiotic processes-independent of water-oxidizing photosynthesis. We hypothesize that abiogenic O2 may enhance the habitability of some planetary environments, allowing highly energetic aerobic respiration and potentially even the development of complex multicellular life which depends on it, without the need to first evolve oxygenic photosynthesis. This hypothesis is testable with further exploration and life-detection efforts on O2-rich worlds such as Mars and Europa, and comparison to O2-poor worlds such as Enceladus. This hypothesis further suggests a new dimension to planetary habitability: "Follow the Oxygen," in which environments with opportunities for energy-rich metabolisms such as aerobic respiration are preferentially targeted for investigation and life detection.
Collapse
Affiliation(s)
- Lewis M Ward
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| | - Vlada Stamenković
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Kevin Hand
- 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Woodward W Fischer
- 1 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
44
|
Gong X, Garcia-Robledo E, Lund MB, Lehner P, Borisov SM, Klimant I, Revsbech NP, Schramm A. Gene expression of terminal oxidases in two marine bacterial strains exposed to nanomolar oxygen concentrations. FEMS Microbiol Ecol 2019; 94:4983120. [PMID: 29688454 DOI: 10.1093/femsec/fiy072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/18/2018] [Indexed: 11/12/2022] Open
Abstract
The final step of aerobic respiration is carried out by a terminal oxidase transporting electrons to oxygen (O2). Prokaryotes harbor diverse terminal oxidases that differ in phylogenetic origin, structure, biochemical function, and affinity for O2. Here we report on the expression of high-affinity (cytochrome cbb3 oxidase), low-affinity (cytochrome aa3 oxidase), and putative low-affinity (cyanide-insensitive oxidase (CIO)) terminal oxidases in the marine bacteria Idiomarina loihiensis L2-TR and Marinobacter daepoensis SW-156 upon transition to very low O2 concentrations (<200 nM), measured by RT-qPCR. In both strains, high-affinity cytochrome cbb3 oxidase showed the highest expression levels and was significantly up-regulated upon transition to low O2 concentrations. Low-affinity cytochrome aa3 oxidase showed very low transcription levels throughout the incubation. Surprisingly, however, it was also up-regulated upon transition to low O2 concentrations. In contrast, putative low-affinity CIO had much lower expression levels and markedly different regulation patterns between the two strains. These results demonstrate that exposure to low O2 concentrations regulates the gene expression of different types of terminal oxidases, but also that the type and magnitude of transcriptional response is species-dependent. Therefore, in situ transcriptome data cannot, without detailed knowledge of the transcriptional regulation of the species involved, be translated into relative respiratory activity.
Collapse
Affiliation(s)
- Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, PR China.,Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| | - Emilio Garcia-Robledo
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark.,Department of Biology, University of Cadiz, Spain
| | - Marie Braad Lund
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Denmark
| | - Philipp Lehner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | - Ingo Klimant
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Austria
| | | | - Andreas Schramm
- Section for Microbiology, Department of Bioscience, Aarhus University, Denmark
| |
Collapse
|
45
|
Abstract
Sam Granick opened his seminal 1957 paper titled 'Speculations on the origins and evolution of photosynthesis' with the assertion that there is a constant urge in human beings to seek beginnings (I concur). This urge has led to an incessant stream of speculative ideas and debates on the evolution of photosynthesis that started in the first half of the twentieth century and shows no signs of abating. Some of these speculative ideas have become commonplace, are taken as fact, but find little support. Here, I review and scrutinize three widely accepted ideas that underpin the current study of the evolution of photosynthesis: first, that the photochemical reaction centres used in anoxygenic photosynthesis are more primitive than those in oxygenic photosynthesis; second, that the probability of acquiring photosynthesis via horizontal gene transfer is greater than the probability of losing photosynthesis; and third, and most important, that the origin of anoxygenic photosynthesis pre-dates the origin of oxygenic photosynthesis. I shall attempt to demonstrate that these three ideas are often grounded in incorrect assumptions built on more assumptions with no experimental or observational support. I hope that this brief review will not only serve as a cautionary tale but also that it will open new avenues of research aimed at disentangling the complex evolution of photosynthesis and its impact on the early history of life and the planet.
Collapse
Affiliation(s)
- Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
46
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
47
|
Nguyen D, Khanal SK. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process. Biotechnol Adv 2018; 36:1971-1983. [DOI: 10.1016/j.biotechadv.2018.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
|
48
|
Tang Q, Gu F, Zhang Y, Zhang Y, Mo J. Impact of biological clogging on the barrier performance of landfill liners. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:44-53. [PMID: 29800864 DOI: 10.1016/j.jenvman.2018.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
The durability of landfill mainly relies on the anti-seepage characteristic of liner system. The accumulation of microbial biomass is effective in reducing the hydraulic conductivity of soils. This study aimed at evaluating the impact of the microorganism on the barrier performance of landfill liners. According to the results, Escherichia coli. produced huge amounts of extracellular polymeric substances and coalesced to form a confluent plugging biofilm. This microorganism eventually resulted in the decrease of soil permeability by 81%-95%. Meanwhile, the increase of surface roughness inside the internal pores improved the adhesion between microorganism colonization and particle surface. Subsequently, an extensive parametric sensitivity analysis was undertaken for evaluating the contaminant transport in landfill liners. Decreasing the hydraulic conductivity from 1 × 10-8 m/s to 1 × 10-10 m/s resulted in the increase of the breakthrough time by 345.2%. This indicates that a low hydraulic conductivity was essential for the liner systems to achieve desirable barrier performance.
Collapse
Affiliation(s)
- Qiang Tang
- School of Rail Transportation, Soochow University, Yangchenghu Campus, Xiangcheng District, Suzhou, 215131, China; Graduate School of Global Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Fan Gu
- National Center for Asphalt Technology, Auburn University, 277 Technology PKWY, Auburn, AL 36830, USA.
| | - Yu Zhang
- School of Rail Transportation, Soochow University, Yangchenghu Campus, Xiangcheng District, Suzhou, 215131, China
| | - Yuqing Zhang
- School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jialin Mo
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
49
|
Lange J, Münch E, Müller J, Busche T, Kalinowski J, Takors R, Blombach B. Deciphering the Adaptation of Corynebacterium glutamicum in Transition from Aerobiosis via Microaerobiosis to Anaerobiosis. Genes (Basel) 2018; 9:E297. [PMID: 29899275 PMCID: PMC6027265 DOI: 10.3390/genes9060297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/02/2023] Open
Abstract
Zero-growth processes are a promising strategy for the production of reduced molecules and depict a steady transition from aerobic to anaerobic conditions. To investigate the adaptation of Corynebacterium glutamicum to altering oxygen availabilities, we conceived a triple-phase fermentation process that describes a gradual reduction of dissolved oxygen with a shift from aerobiosis via microaerobiosis to anaerobiosis. The distinct process phases were clearly bordered by the bacteria’s physiologic response such as reduced growth rate, biomass substrate yield and altered yield of fermentation products. During the process, sequential samples were drawn at six points and analyzed via RNA-sequencing, for metabolite concentrations and for enzyme activities. We found transcriptional alterations of almost 50% (1421 genes) of the entire protein coding genes and observed an upregulation of fermentative pathways, a rearrangement of respiration, and mitigation of the basic cellular mechanisms such as transcription, translation and replication as a transient response related to the installed oxygen dependent process phases. To investigate the regulatory regime, 18 transcriptionally altered (putative) transcriptional regulators were deleted, but none of the deletion strains showed noticeable growth kinetics under an oxygen restricted environment. However, the described transcriptional adaptation of C. glutamicum resolved to varying oxygen availabilities provides a useful basis for future process and strain engineering.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Eugenia Münch
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Jan Müller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Tobias Busche
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
- Institute for Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195 Berlin, Germany.
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| | - Bastian Blombach
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
50
|
Affiliation(s)
- Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|