1
|
Han C, Liu S, Peng S, Liu S, Zeng J, Chen J, Lin H, Li C, Li S, Zhang Y. Assembly and analysis of Sinipercidae fish sex chromosomes reveals that a supergene drives sex chromosome origin and turnover. ADVANCED BIOTECHNOLOGY 2025; 3:17. [PMID: 40434564 PMCID: PMC12119445 DOI: 10.1007/s44307-025-00068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/04/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025]
Abstract
The sex chromosomes of fish are usually homomorphic and recently derived, making them an ideal model to understand the origin and evolution of sex chromosomes in vertebrates. Here, combined Pacbio, Hi-C, and Illumina sequencing of the male mandarin fish (Siniperca chuatsi) genome enabled the assembly of a high-quality chromosome-level genome, including highly resolved X and Y chromosome assemblies. Genome wide association study (GWAS) and coverage information analysis revealed a 2.0 Mbp sex determining region (SDR). A Y-specific duplication of the anti-Müllerian hormone (amh) gene, amhy, was identified that encoded a truncated AMH protein. Loss of function and overexpression experiments demonstrated that amhy may act as a male sex-determining gene (SDG). GWAS led to the identification of a common sex chromosome (Chr24) and SDG (amhy) in S. scherzeri, while another sex chromosome (Chr11) was identified in Coreoperca whiteheadi. Interestingly, completely conserved protein coding sequences of amhy were commonly identified in male S. chuatsi, S. scherzeri, and S. knerii. These results support a classic model for the origin and evolution of early sex chromosomes and suggest that amhy is a super SDG that can drive the origin and turnover of sex chromosome in vertebrates.
Collapse
Affiliation(s)
- Chong Han
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
- School of Life Sciences, Guangzhou University, Guangzhou, 51006, China
| | - Shiyan Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Suhan Peng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Shuang Liu
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Junyan Zeng
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Jiehu Chen
- Science Corporation of Gene (SCGene), Guangzhou, 510080, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| | - Cai Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shuisheng Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou, 510275, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Shearwin-Whyatt L, Fenelon J, Yu H, Major A, Qu Z, Zhou Y, Shearwin K, Galbraith J, Stuart A, Adelson D, Zhang G, Pyne M, Johnston S, Smith C, Renfree M, Grützner F. AMHY and sex determination in egg-laying mammals. Genome Biol 2025; 26:144. [PMID: 40426235 PMCID: PMC12117775 DOI: 10.1186/s13059-025-03546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 03/17/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Egg-laying mammals (monotremes) evolved multiple sex chromosomes independently of therian mammals and lack the sex-determining gene SRY. The Y-localized anti-Müllerian hormone gene (AMHY) is the candidate sex-determination gene in monotremes. Here, we describe the evolution of monotreme AMHX and AMHY gametologues and for the first time, investigate their expression during gonad sexual differentiation in a monotreme. RESULTS Monotreme AMHX and AMHY have significant sequence divergence at the promoter, gene, and protein level, likely following an original allele inversion in the early stages of monotreme sex chromosome differentiation but retaining the conserved features of TGF-β molecules. We show that the expression of sexual differentiation genes in the echidna fetal gonad, including DMRT1 and SOX9, is significantly different from that of therian mammals. Importantly, AMHY is expressed exclusively in the male gonad during sexual differentiation consistent with a role as the primary sex-determination gene whereas AMHX is expressed in both sexes. Experimental ectopic expression of platypus AMHX or AMHY in the chicken embryo did not masculinize the female urogenital system, as does chicken AMH, a possible result of mammalian-specific changes to AMH proteins preventing function in the chicken. CONCLUSIONS Our results provide insight into the early steps of monotreme sex chromosome evolution and sex determination with developmental expression data strongly supporting AMHY as the primary male sex-determination gene of platypus and echidna.
Collapse
Affiliation(s)
- Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jane Fenelon
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Hongshi Yu
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Andrew Major
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3068, Australia
| | - Zhipeng Qu
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yang Zhou
- State Key Laboratory of Genome and Multi-Omics Technologies, BGI Research, Shenzhen, 518083, China
- BGI Research, Wuhan, 430074, China
| | - Keith Shearwin
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - James Galbraith
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Alexander Stuart
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - David Adelson
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Guojie Zhang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, QLD, 4223, Australia
| | - Stephen Johnston
- School of Environment, The University of Queensland, Gatton, QLD, 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Craig Smith
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3068, Australia
| | - Marilyn Renfree
- School of Biosciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
3
|
Gao R, Yan H, Zhou H, Hu M, Wang J, Shen X, Li M, Chen J, Liu Q, Liu Y, Wang X, Sun Q, Zhou H. The potential regulatory role of non-coding RNAs in mifepristone-induced masculinization in Takifugu rubripes gonads. BMC Genomics 2025; 26:471. [PMID: 40355821 PMCID: PMC12067753 DOI: 10.1186/s12864-025-11647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The regulatory roles of non-coding RNAs (ncRNAs) during sex differentiation in teleosts have received widespread attention recently. Mifepristone (RU486, a progesterone antagonist), which acts as an endocrine disruptor, can affect reproduction and sex differentiation in teleosts. RESULTS The expression of ncRNAs in the gonads of tiger puffer (Takifugu rubripes) during RU486 (500 µg/g diet) induced masculinization process was examined by RNA-sequencing. A total of 4,381 long non-coding RNAs (lncRNAs), 309 circular RNAs (circRNAs), and 1,020 microRNAs (miRNAs) were identified. The expression of 41 differentially expressed (DE) lncRNAs and 20 DE miRNAs, which showed sexual dimorphic expression patterns in genetic female gonads in the control group (C-XX) vs. genetic male gonads in the control group (C-XY), were altered in genetic female gonads in the RU486 treated group (RU-XX). The genes targeted by DE ncRNAs were mainly enriched in sex-related pathways, such as calcium signaling, ovarian steroidogenesis, and cortisol synthesis and secretion. The results of co-expression and competing endogenous RNA (ceRNA) network analysis indicated that miRNAs (e.g., miR-205-z and fru-miR-122) and lncRNAs (including XR_003890915.1 and XR_003885862.1) may have pivotal roles, and lncRNAs (including XR_003890295.1, MSTRG.11750.1, and XR_003888827.1) may act as miRNA sponges, involved in the competition between miRNAs and sex-related genes during tiger puffer masculinization process. Dual luciferase reporter assay results identified that ovarian steroidogenesis related gene hsd17b1 is a downstream target of fru-miR-122. The expression of 4 lncRNAs, 4 circRNAs, and 6 miRNAs were validated by qPCR, indicating the accuracy and dependability of RNA-Seq. CONCLUSIONS This study provided the evidence that ncRNAs may participate in RU486-induced masculinization in T. rubripes, and may enhance our understanding of the regulatory network of sex differentiation in fugu.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China.
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian, 116023, China.
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Jia Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xufang Shen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
| | - Meiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, Liaoning, 116023, China
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian, 116023, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Beijing, 116023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- The Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian, 116023, China
| | - Qunwen Sun
- Dalian Tian Zheng Co., Ltd, Dalian, Liaoning, China
| | - He Zhou
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
4
|
Etherington G, Ciezarek A, Mehta T, Barker T, Durrant A, Fraser F, Henderson S, Irish N, Kaithakottil G, Knitlhoffer V, Ali S, Trong T, Watkins C, Swarbreck D, Gharbi K, Benzie J, Haerty W. Reconstruction of the X and Y haplotypes in the genetically improved Abbassa nile tilapia genome assembly. Sci Rep 2025; 15:16057. [PMID: 40341759 PMCID: PMC12062369 DOI: 10.1038/s41598-025-01300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
The success of the Nile tilapia (Oreochromis niloticus) as an aquaculture species is partly the result of continuous selective breeding leading to high performing strains. These elite strains have been derived from breeding populations of diverse origins and crosses with other Oreochromis species. Owing to the complex and unique evolutionary histories of each strain, existing reference genomes of wild populations are unsuitable to implement genomic selection for beneficial traits such as growth or environmental resilience in aquaculture programmes. Here we generated a high-quality genome assembly and annotation of the WorldFish Genetically Improved Abbassa Nile tilapia (GIANT) elite strain using a combination of PacBio HiFi, and Omni-C Illumina sequencing. As a male Abbassa Nile tilapia was used for the generation of the genome assembly, we reconstructed both X and Y haplotypes, identifying both amhY and amhΔy on LG23 indicating that Abbassa likely shares the same sex determination system as GIFT, and thereby differs from the existing reference genome, whose sex determination loci are located on LG1.
Collapse
Affiliation(s)
| | - Adam Ciezarek
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Tarang Mehta
- Earlham Institute, Norwich Research Park, Norwich, UK
- Department of Biochemistry, Cell and Systems Biology, University of Liverpool, Liverpool, UK
| | - Tom Barker
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Alex Durrant
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Fiona Fraser
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Shimaa Ali
- WorldFish, Abbassa, Abou-Hammad, Sharkia, Egypt
| | - Trinh Trong
- WorldFish, Jalan Batu Maung, Penang, Malaysia
| | - Chris Watkins
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - John Benzie
- WorldFish, Jalan Batu Maung, Penang, Malaysia.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, UK.
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
5
|
Liu Z, Gao D. The Cause-Effect Model of Master Sex Determination Gene Acquisition and the Evolution of Sex Chromosomes. Int J Mol Sci 2025; 26:3282. [PMID: 40244140 PMCID: PMC11989894 DOI: 10.3390/ijms26073282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
The canonical model of vertebrate sex chromosome evolution predicts a one-way trend toward degradation. However, most sex chromosomes in lower vertebrates are homomorphic. Recent progress in studies of sex determination has resulted in the discovery of more than 30 master sex determination (MSD) genes, most of which are from teleost fish. An analysis of MSD gene acquisition, recombination suppression, and sex chromosome-specific sequences revealed correlations in the modes of MSD gene acquisition and the evolution of sex chromosomes. Sex chromosomes remain homomorphic with MSD genes acquired by simple mutations, gene duplications, allelic variations, or neofunctionalization; in contrast, they become heteromorphic with MSD genes acquired by chromosomal inversion, fusion, and fission. There is no recombination suppression with sex chromosomes carrying MSD genes gained through simple mutations. In contrast, there is extensive recombination suppression with sex chromosomes carrying MSD genes gained through chromosome inversion. There is limited recombination suppression with sex chromosomes carrying MSD genes gained through transposition or translocation. We propose a cause-effect model that predicts sex chromosome evolution as a consequence of the acquisition modes of MSD genes, which explains the evolution of sex chromosomes in various vertebrates. A key factor determining the trend of sex chromosome evolution is whether non-homologous regions are created during the acquisition of MSD genes. Chromosome inversion creates inversely homologous but directly non-homologous sequences, which lead to recombination suppression but retain recombination potential. Over time, recurrent recombination in the inverted regions leads to the formation of strata and may cause the degradation of sex chromosomes. Depending on the nature of deletions in the inverted regions, sex chromosomes may evolve with dosage compensation, or the selective retention of haplo-insufficient genes may be used as an alternative strategy.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN 38505, USA
| | | |
Collapse
|
6
|
Wu K, Yue Y, Zhou L, Zhang Z, Shan H, He H, Ge W. Disrupting Amh and androgen signaling reveals their distinct roles in zebrafish gonadal differentiation and gametogenesis. Commun Biol 2025; 8:371. [PMID: 40044757 PMCID: PMC11882886 DOI: 10.1038/s42003-025-07719-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Sex determination and differentiation in zebrafish involve a complex interaction of male and female-promoting factors. While Dmrt1 has been established as a critical male-promoting factor, the roles of Anti-Müllerian hormone (Amh) and androgen signaling remain less clear. This study employed an estrogen-deficient zebrafish model (cyp19a1a-/-) to dissect individual and combined roles of Amh and androgen receptor (Ar) signaling in gonadal differentiation and gametogenesis. Loss of amh, but not ar, could rescue all-male phenotype of cyp19a1a-/-, leading to female or intersex, confirming the role of Amh in promoting male differentiation. This rescue was recapitulated in bmpr2a-/- but not bmpr2b-/-, supporting Bmpr2a as the type II receptor for Amh in zebrafish. Interestingly, while disruption of amh or ar had delayed spermatogenesis, the double mutant (amh-/-;ar-/-) exhibited severely impaired spermatogenesis, highlighting their compensatory roles. While Amh deficiency led to testis hypertrophy, likely involving a compensatory increase in Ar signaling, Ar deficiency resulted in reduced hypertrophy in double mutant males. Furthermore, phenotype analysis of triple mutant (amh-/-;ar-/-;cyp19a1a-/-) provided evidence that Ar participated in early follicle development. This study provides novel insights into complex interplay between Amh and androgen signaling in zebrafish sex differentiation and gametogenesis, highlighting their distinct but cooperative roles in male development.
Collapse
Affiliation(s)
- Kun Wu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
- Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yiming Yue
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Lingling Zhou
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Huanhuan He
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, 519000, Zhuhai, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China.
| |
Collapse
|
7
|
Zheng S, Tao H, Song Y, Li M, Yang H, Li J, Yan H, Sheraliev B, Tao W, Peng Z, Zhang Y, Wang D. The origin, evolution, and translocation of sex chromosomes in Silurus catfish mediated by transposons. BMC Biol 2025; 23:54. [PMID: 39984975 PMCID: PMC11846232 DOI: 10.1186/s12915-025-02160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Sex chromosome (SC) evolution is a longstanding topic of focus in evolutionary biology. Teleosts often exhibit rapid turnover of SCs and sex-determining (SD) genes, alongside a diverse range of SC differentiation mechanisms. RESULTS On the basis of new chromosome-scale assemblies of three Silurus species (S. microdorsalis, S. glanis, and S. lanzhouensis) and two outgroup species (Pterocryptis cochinchinensis and Kryptopterus bicirrhis), along with our previous assemblies of S. meridionalis and S. asotus, we traced the evolution of SC in the Silurus genus (Siluriformes), following the fate of the known SD gene amhr2y. Phylogenetic analysis showed that amhr2y occurred at least before the divergence of Pterocryptis, Kryptopterus, and Silurus and lost in P. cochinchinensis and K. bicirrhis. Chr24 has become the SC in the ancestor of five Silurus species due to the duplication-and-translocation of amhr2 mediated by LTR transposon. Then, a proto Y was formed and maintained with a shared 60 kb male-specific region of the Y chromosome (MSY) by transposable elements (TEs) expansion and gene gathering. Due to the continuous TEs accumulation, genes other than amhr2y in MSYs have degenerated or been lost, while non-recombinant regions continue to expend, forming MSYs of different sizes in different Silurus species (from 320 to 550 kb). Two turnover events, one homologous (from the left arm to the right arm of Chr24) and one nonhomologous (from Chr24 to Chr5), occurring among five Silurus species were possibly mediated by hAT and Helitron transposons. CONCLUSIONS Our results on the dynamic evolutionary trajectory of SD gene amhr2y, MSYs, and SCs in Silurus catfish indicated the variability and diversity of fish SCs and confirmed that frequent turnover is an important way to maintain the homology and low differentiation of fish SCs.
Collapse
Affiliation(s)
- Shuqing Zheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Hongyan Tao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yuheng Song
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Mao Li
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Haowen Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Bakhtiyor Sheraliev
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Zuogang Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Yaoguang Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
8
|
Zhao H, Li J, Xiao Z, Xiao Y. Dose-dependent role of AMH and AMHR2 signaling in male differentiation and regulation of sex determination in Spotted knifejaw (Oplegnathus punctatus) with X 1X 1X 2X 2/X 1X 2Y chromosome system. Cell Commun Signal 2025; 23:59. [PMID: 39893368 PMCID: PMC11786412 DOI: 10.1186/s12964-025-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Sex determination mechanisms vary significantly across different chromosomal systems and evolutionary contexts. Nonetheless, the regulatory framework governing the multi-sex chromosome system (X1X1X2X2/X1X2Y) remains enigmatic. Through an examination of sex-related genes (dmrt1, hsd11b2, amh, sox9a, sox9b, foxl2, cyp19a), hormonal influences (E2, 11-KT), and histological analyses of gonadal development, we demonstrate that the critical period for sexual differentiation occurs between 35 to 60 days post-hatching (dph). Our multi-omics analysis identified amhr2 as a candidate sex-determining gene, revealing that the males possess three distinct amhr2 transcripts (amhr2ay, amhr2by, amhr2cy), whereas females express only one (amhr2a). In situ hybridization assays demonstrated that amhr2 is predominantly localized to primary spermatocyte and Sertoli cells of male testes. Notably, the specific mRNA expression of amhr2 is significantly enriched in amhr2cy, whose extracellular domain exhibits the highest binding affinity for Amh protein, with sexual expression differences manifesting as early as 5 dph. The outcomes of amhr2 interference (RNAi) experiments indicate that amhr2 knockdown leads to a reduction in the expression of male-related gene (dmrt1, amh, sox9a, sox9b), androgen synthesis genes (hsd11b2, cyp11a), and female-related genes (wnt4, foxl2, cyp19a, cyp19b). Conversely, overexpression of amhr2 yielded contrasting results. Our research supports the role of amhr2 as a pivotal candidate sex-determining gene. Furthermore, the dosage effect of amhr2, reflected in transcript abundance, mRNA expression levels, and binding efficacy, serves as a fundamental mechanism driving male differentiation and regulatory processes in Spotted knifejaw.
Collapse
Affiliation(s)
- Haixia Zhao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Marine Biology Institute of Shandong Province, Qingdao, Shandong, China
| | - Jun Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yongshuang Xiao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences (CAS), Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
9
|
Zhu Z, Younas L, Zhou Q. Evolution and regulation of animal sex chromosomes. Nat Rev Genet 2025; 26:59-74. [PMID: 39026082 DOI: 10.1038/s41576-024-00757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Animal sex chromosomes typically carry the upstream sex-determining gene that triggers testis or ovary development and, in some species, are regulated by global dosage compensation in response to functional decay of the Y chromosome. Despite the importance of these pathways, they exhibit striking differences across species, raising fundamental questions regarding the mechanisms underlying their evolutionary turnover. Recent studies of non-model organisms, including insects, reptiles and teleosts, have yielded a broad view of the diversity of sex chromosomes that challenges established theories. Moreover, continued studies in model organisms with recently developed technologies have characterized the dynamics of sex determination and dosage compensation in three-dimensional nuclear space and at single-cell resolution. Here, we synthesize recent insights into sex chromosomes from a variety of species to review their evolutionary dynamics with respect to the canonical model, as well as their diverse mechanisms of regulation.
Collapse
Affiliation(s)
- Zexian Zhu
- Evolutionary and Organismal Biology Research Center and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lubna Younas
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Qi Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
- State Key Laboratory of Transvascular Implantation Devices, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Wang J, Tao W, Kocher TD, Wang D. Sex chromosome turnover and biodiversity in fishes. J Genet Genomics 2024; 51:1351-1360. [PMID: 39233051 DOI: 10.1016/j.jgg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of sex chromosomes and their turnover in speciation remains a subject of ongoing debate in the field of evolutionary biology. Fishes are the largest group of vertebrates, and they exhibit unparalleled sexual plasticity, as well as diverse sex-determining (SD) genes, sex chromosomes, and sex-determination mechanisms. This diversity is hypothesized to be associated with the frequent turnover of sex chromosomes in fishes. Although it is evident that amh and amhr2 are repeatedly and independently recruited as SD genes, their relationship with the rapid turnover of sex chromosomes and the biodiversity of fishes remains unknown. We summarize the canonical models of sex chromosome turnover and highlight the vital roles of gene mutation and hybridization with empirical evidence. We revisit Haldane's rule and the large X-effect and propose the hypothesis that sex chromosomes accelerate speciation by multiplying genotypes via hybridization. By integrating recent findings on the turnover of SD genes, sex chromosomes, and sex-determination systems in fish species, this review provides insights into the relationship between sex chromosome evolution and biodiversity in fishes.
Collapse
Affiliation(s)
- Jingrong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Yang H, Li YL, Xing TF, Liu JX. Characterization of the sex determining region and development of a molecular sex identification method in a Salangid fish. BMC Genomics 2024; 25:1120. [PMID: 39567903 PMCID: PMC11580623 DOI: 10.1186/s12864-024-11047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The short-snout icefish, Neosalanx brevirostris, a member of the Salangidae family, is an economically important fishery species in China. Understanding the mechanisms underlying sex determination in this species has crucial implications for conservation, ecology and evolution. Meanwhile, there is a shortage of rapid and cost-effective genetic methods for sex identification, which poses challenges in identifying the sex of immature individuals in sex determination mechanism studies and aquaculture breeding applications. RESULTS Based on whole genome resequencing data, sex-specific loci and regions were found to be concentrated in a region on chromosome 2. All sex-specific loci exhibited excess heterozygosity in females and complete homozygosity in males. This sex determining region contains seven genes, including cytochrome P450 aromatase CYP19B, which is involved in steroidogenesis and is associated with 24 sex-specific loci and two W-deletions. A haploid female-specific sequence was identified as paralogous to a diploid sequence with a significant length difference, making it suitable for rapid and cost-effective genetic sex identification by traditional PCR and agarose gel electrophoresis, which were further validated in 24 females and 24 males with known phenotypic sexes. CONCLUSIONS Our results confirm that N. brevirostris exhibits a female heterogametic sex determination system (ZZ/ZW), with chromosome 2 identified as the putative sex chromosome containing a relatively small sex determining region (~ 48 Kb). The gene CYP19B is proposed as a candidate sex determining gene. Moreover, the development of PCR based method enables genetic sex identification at any developmental stage, thereby facilitating further studies on sex determination mechanisms and advancing aquaculture breeding applications for this species.
Collapse
Affiliation(s)
- Hao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
12
|
Fu Y, Luo L, Wang S, Yu Y, Wang Y, Gao Z. Identification of sex-specific markers using genome re-sequencing in the blunt snout bream (Megalobrama amblycephala). BMC Genomics 2024; 25:963. [PMID: 39407110 PMCID: PMC11481317 DOI: 10.1186/s12864-024-10884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The blunt snout bream (Megalobrama amblycephala) is an important economic freshwater fish in China with tender flesh and high nutritional value. With the cultivation of superior new varieties and the expansion of breeding scale, it becomes imperative to employ sex-control technology to cultivate monosexual populations of M. amblycephala, thereby preventing the deterioration of desirable traits. The development of specific markers capable of accurately identifying the sex of M. amblycephala would facilitate the determination of the genetic sex of the breeding population before gonad maturation, thereby expediting the processes of sex-controlled breeding of M. amblycephala. RESULTS A whole-genome re-sequencing was performed for 116 females and 141 males M. amblycephala collected from nine populations. Seven candidate male-specific sequences were identified through comparative analysis of male and female genomes, which were further compared with the sequencing data of 257 individuals, and finally three male-specific sequences were generated. These three sequences were further validated by PCR amplification in 32 males and 32 females to confirm their potential as male-specific molecular markers for M. amblycephala. One of these markers showed potential applicability in M. pellegrini as well, enabling males to be identified using this specific molecular marker. CONCLUSIONS The study provides a high-efficiency and cost-effective approach for the genetic sex identification in two species of Megalobrama. The developed markers in this study have great potential in facilitating sex-controlled breeding of M. amblycephala and M. pellegrini, while also contributing valuable insights into the underlying mechanisms of fish sex determination.
Collapse
Affiliation(s)
- Yuye Fu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lifei Luo
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shilong Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yu
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zexia Gao
- College of Fisheries, Hubei Hongshan Laboratory / Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs / Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
13
|
Zhang X, Wu Y, Zhang Y, Zhang J, Chu P, Chen K, Liu H, Luo Q, Fei S, Zhao J, Ou M. Histological observations and transcriptome analyses reveal the dynamic changes in the gonads of the blotched snakehead (Channa maculata) during sex differentiation and gametogenesis. Biol Sex Differ 2024; 15:70. [PMID: 39244546 PMCID: PMC11380785 DOI: 10.1186/s13293-024-00643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jin Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, 510380, Guangdong, China.
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, China.
| |
Collapse
|
14
|
Yi X, Wang D, Reid K, Feng X, Löytynoja A, Merilä J. Sex chromosome turnover in hybridizing stickleback lineages. Evol Lett 2024; 8:658-668. [PMID: 39328282 PMCID: PMC11424075 DOI: 10.1093/evlett/qrae019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/19/2024] [Indexed: 09/28/2024] Open
Abstract
Recent discoveries of sex chromosome diversity across the tree of life have challenged the canonical model of conserved sex chromosome evolution and evoked new theories on labile sex chromosomes that maintain less differentiation and undergo frequent turnover. However, theories of labile sex chromosome evolution lack direct empirical support due to the paucity of case studies demonstrating ongoing sex chromosome turnover in nature. Two divergent lineages (viz. WL & EL) of nine-spined sticklebacks (Pungitius pungitius) with different sex chromosomes (linkage group [LG] 12 in the EL, unknown in the WL) hybridize in a natural secondary contact zone in the Baltic Sea, providing an opportunity to study ongoing turnover between coexisting sex chromosomes. In this study, we first identify an 80 kbp genomic region on LG3 as the sex-determining region (SDR) using whole-genome resequencing data of family crosses of a WL population. We then verify this region as the SDR in most other WL populations and demonstrate a potentially ongoing sex chromosome turnover in admixed marine populations where the evolutionarily younger and homomorphic LG3 sex chromosome replaces the older and heteromorphic LG12 sex chromosome. The results provide a rare glimpse of sex chromosome turnover in the wild and indicate the possible existence of additional yet undiscovered sex chromosome diversity in Pungitius sticklebacks.
Collapse
Affiliation(s)
- Xueling Yi
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Dandan Wang
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Xueyun Feng
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Yu H, Du X, Chen X, Liu L, Wang X. Transforming growth factor-β (TGF-β): A master signal pathway in teleost sex determination. Gen Comp Endocrinol 2024; 355:114561. [PMID: 38821217 DOI: 10.1016/j.ygcen.2024.114561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Sex determination and differentiation in fish has always been a hot topic in genetic breeding of aquatic animals. With the advances in next-generation sequencing (NGS) in recent years, sex chromosomes and sex determining genes can be efficiently identified in teleosts. To date, master sex determination genes have been elucidated in 114 species, of which 72 species have sex determination genes belonging to TGF-β superfamily. TGF-β is the only signaling pathway that the largest proportion of components, which including ligands (amhy, gsdfy, gdf6), receptors (amhr, bmpr), and regulator (id2bby), have opportunity recognized as a sex determination gene. In this review, we focus on the recent studies about teleost sex-determination genes within TGF-β superfamily and propose several hypotheses on how these genes regulate sex determination process. Differing from other reviews, our review specifically devotes significant attention to all members of the TGF-β signal pathway, not solely the sex determination genes within the TGF-β superfamily. However, the functions of the paralogous genes of TGF superfamily are still needed ongoing research. Further studies are required to more accurately interpret the molecular mechanism of TGF-β superfamily sex determination genes.
Collapse
Affiliation(s)
- Haiyang Yu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xinxin Du
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xue Chen
- School of Resource & Environment and Safety Engineering, Jining University, Qufu, Shandong, China
| | - Longxue Liu
- School of Life Science and Engineering, Jining University, Qufu, Shandong, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China.
| |
Collapse
|
16
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Lopez-Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson WA, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of anti-Mullerian hormone receptor type 2 as a candidate master sex-determining gene in Percidae. BMC Biol 2024; 22:141. [PMID: 38926709 PMCID: PMC11209984 DOI: 10.1186/s12915-024-01935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany.
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cédric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | | | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes Cedex, France
| | | | | | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wesley A Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Auke Bay LaboratoriesJuneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587, Berlin, Germany
| | | |
Collapse
|
17
|
Wilson CA, Batzel P, Postlethwait JH. Direct male development in chromosomally ZZ zebrafish. Front Cell Dev Biol 2024; 12:1362228. [PMID: 38529407 PMCID: PMC10961373 DOI: 10.3389/fcell.2024.1362228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish (Danio rerio), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome, or fewer than two Z chromosomes, is essential to initiate oocyte development; and without the W factor, or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
18
|
Ruan Y, Li X, Wang X, Zhai G, Lou Q, Jin X, He J, Mei J, Xiao W, Gui J, Yin Z. New insights into the all-testis differentiation in zebrafish with compromised endogenous androgen and estrogen synthesis. PLoS Genet 2024; 20:e1011170. [PMID: 38451917 PMCID: PMC10919652 DOI: 10.1371/journal.pgen.1011170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
The regulatory mechanism of gonadal sex differentiation, which is complex and regulated by multiple factors, remains poorly understood in teleosts. Recently, we have shown that compromised androgen and estrogen synthesis with increased progestin leads to all-male differentiation with proper testis development and spermatogenesis in cytochrome P450 17a1 (cyp17a1)-/- zebrafish. In the present study, the phenotypes of female-biased sex ratio were positively correlated with higher Fanconi anemia complementation group L (fancl) expression in the gonads of doublesex and mab-3 related transcription factor 1 (dmrt1)-/- and cyp17a1-/-;dmrt1-/- fish. The additional depletion of fancl in cyp17a1-/-;dmrt1-/- zebrafish reversed the gonadal sex differentiation from all-ovary to all-testis (in cyp17a1-/-;dmrt1-/-;fancl-/- fish). Luciferase assay revealed a synergistic inhibitory effect of Dmrt1 and androgen signaling on fancl transcription. Furthermore, an interaction between Fancl and the apoptotic factor Tumour protein p53 (Tp53) was found in vitro. The interaction between Fancl and Tp53 was observed via the WD repeat domain (WDR) and C-terminal domain (CTD) of Fancl and the DNA binding domain (DBD) of Tp53, leading to the K48-linked polyubiquitination degradation of Tp53 activated by the ubiquitin ligase, Fancl. Our results show that testis fate in cyp17a1-/- fish is determined by Dmrt1, which is thought to stabilize Tp53 by inhibiting fancl transcription during the critical stage of sexual fate determination in zebrafish.
Collapse
Affiliation(s)
- Yonglin Ruan
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuehui Li
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Wang
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Gang Zhai
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyong Lou
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wuhan Xiao
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jianfang Gui
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| | - Zhan Yin
- State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agriculture University, Wuhan, China
| |
Collapse
|
19
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
20
|
Zhao H, Xiao Y, Xiao Z, Wu Y, Ma Y, Li J. Genome-wide investigation of the DMRT gene family sheds new insight into the regulation of sex differentiation in spotted knifejaw (Oplegnathus punctatus) with fusion chromosomes (Y). Int J Biol Macromol 2024; 257:128638. [PMID: 38070801 DOI: 10.1016/j.ijbiomac.2023.128638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The role of the DMRT family in male sex determination and differentiation is significant, but its regulatory role in spotted knifejaw with Y fusion chromosomes remains unclear. Through genome-wide scanning, transcriptome analysis, qPCR, FISH, and RNA interference (RNAi), we investigated the DMRT family and the dmrt1-based sex regulation network. Seven DMRTs were identified (DMRT1/2 (2a,2b)/6, DMRT4/5, DMRT3), and dmrt gene dispersion among chromosomes is possibly driven by three whole-genome duplications. Transcriptome analysis enriched genes were associated with sex regulation and constructed a network associated with dmrt1. qPCR and FISH results showed the expression dimorphism of sex-related genes in dmrt-related regulatory networks. RNAi experiments indicated a distinct sex regulation mode in spotted knifejaw. Dmrt1 knockdown upregulated male-related genes (sox9a, sox9b, dmrt1, amh, amhr2) and hsd11b2 expression, which is critical for androgen synthesis. Amhr2 is located on the heterozygous chromosome (Y) and is specifically localized in primary spermatocytes, and is extremely upregulated after dmrt1 knockdown which suggested besides the important role of dmrt1 in male differentiation, the amhr2 along with amhr2/amh system, also play important regulatory roles in maintaining high expression of the hsd11b2 and male differentiation. This study aims to further investigate sex regulatory mechanisms in species with fusion chromosomes.
Collapse
Affiliation(s)
- Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
21
|
Shen X, Hu J, Yáñez JM, Bastos Gomes G, Poon ZWJ, Foster D, Alarcon JF, Shao L, Guo X, Shao Y, Huerlimann R, Li C, Goulden E, Anderson K, Fan G, Domingos JA. Exploring the cobia (Rachycentron canadum) genome: unveiling putative male heterogametic regions and identification of sex-specific markers. Gigascience 2024; 13:giae034. [PMID: 38995143 PMCID: PMC11240236 DOI: 10.1093/gigascience/giae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Cobia (Rachycentron canadum) is the only member of the Rachycentridae family and exhibits considerable sexual dimorphism in growth rate. Sex determination in teleosts has been a long-standing basic biological question, and the molecular mechanisms of sex determination/differentiation in cobia are completely unknown. RESULTS Here, we reported 2 high-quality, chromosome-level annotated male and female cobia genomes with assembly sizes of 586.51 Mb (contig/scaffold N50: 86.0 kb/24.3 Mb) and 583.88 Mb (79.9 kb/22.5 Mb), respectively. Synteny inference among perciform genomes revealed that cobia and the remora Echeneis naucrates were sister groups. Further, whole-genome resequencing of 31 males and 60 females, genome-wide association study, and sequencing depth analysis identified 3 short male-specific regions within a 10.7-kb continuous genomic region on male chromosome 18, which hinted at an undifferentiated sex chromosome system with a putative XX/XY mode of sex determination in cobia. Importantly, the only 2 genes within/between the male-specific regions, epoxide hydrolase 1 (ephx1, renamed cephx1y) and transcription factor 24 (tcf24, renamed ctcf24y), showed testis-specific/biased gene expression, whereas their counterparts cephx1x and ctf24x, located in female chromosome 18, were similarly expressed in both sexes. In addition, male-specific PCR targeting the cephx1y gene revealed that this genomic feature is conserved in cobia populations from Panama, Brazil, Australia, and Japan. CONCLUSION The first comprehensive genomic survey presented here is a valuable resource for future studies on cobia population structure and dynamics, conservation, and evolutionary history. Furthermore, it establishes evidence of putative male heterogametic regions with 2 genes playing a potential role in the sex determination of the species, and it provides further support for the rapid evolution of sex-determining mechanisms in teleost fish.
Collapse
Affiliation(s)
- Xueyan Shen
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
| | - Jie Hu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile
| | - Giana Bastos Gomes
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | | | | | | | - Libin Shao
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Xinyu Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yunchang Shao
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
- Geogia Tech Shenzhen Institute (GTSI), Tianjin University, Shen Zhen 518067, China
| | - Roger Huerlimann
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Chengze Li
- Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Okinawa, 904-0495, Japan
| | - Evan Goulden
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Kelli Anderson
- Department of Agriculture and Fisheries, Queensland Government, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jose A Domingos
- Tropical Futures Institute, James Cook University Singapore, 387380, Singapore
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville QLD 4811, Australia
| |
Collapse
|
22
|
Zhang Q, Chen J, Wang W, Lin J, Guo J. Genome-wide investigation of the TGF-β superfamily in scallops. BMC Genomics 2024; 25:24. [PMID: 38166626 PMCID: PMC10763453 DOI: 10.1186/s12864-023-09942-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Transforming growth factor β (TGF-β) superfamily genes can regulate various processes, especially in embryogenesis, adult development, and homeostasis. To understand the evolution and divergence patterns of the TGF-β superfamily in scallops, genome-wide data from the Bay scallop (Argopecten irradians), the Zhikong scallop (Chlamys farreri) and the Yesso scallop (Mizuhopecten yessoensis) were systematically analysed using bioinformatics methods. RESULTS Twelve members of the TGF-β superfamily were identified for each scallop. The phylogenetic tree showed that these genes were grouped into 11 clusters, including BMPs, ADMP, NODAL, GDF, activin/inhibin and AMH. The number of exons and the conserved motif showed some differences between different clusters, while genes in the same cluster exhibited high similarity. Selective pressure analysis revealed that the TGF-β superfamily in scallops was evolutionarily conserved. The spatiotemporal expression profiles suggested that different TGF-β members have distinct functions. Several BMP-like and NODAL-like genes were highly expressed in early developmental stages, patterning the embryonic body plan. GDF8/11-like genes showed high expression in striated muscle and smooth muscle, suggesting that these genes may play a critical role in regulating muscle growth. Further analysis revealed a possible duplication of AMH, which played a key role in gonadal growth/maturation in scallops. In addition, this study found that several genes were involved in heat and hypoxia stress in scallops, providing new insights into the function of the TGF-β superfamily. CONCLUSION Characteristics of the TGF-β superfamily in scallops were identified, including sequence structure, phylogenetic relationships, and selection pressure. The expression profiles of these genes in different tissues, at different developmental stages and under different stresses were investigated. Generally, the current study lays a foundation for further study of their pleiotropic biological functions in scallops.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Minjiang University, Fuzhou, 350108, China.
| | - Jingyu Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Jiabao Guo
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
23
|
Lasalle A, Benech-Correa G, Brunet FG, Vizziano-Cantonnet D. hsd17b1 is a key gene for ovarian differentiation of the Siberian sturgeon. Mol Reprod Dev 2024; 91:e23729. [PMID: 38282315 DOI: 10.1002/mrd.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17β. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.
Collapse
Affiliation(s)
- André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Germán Benech-Correa
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon, France
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
24
|
Wilson CA, Batzel P, Postlethwait JH. Direct Male Development in Chromosomally ZZ Zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.27.573483. [PMID: 38234788 PMCID: PMC10793451 DOI: 10.1101/2023.12.27.573483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The genetics of sex determination varies across taxa, sometimes even within a species. Major domesticated strains of zebrafish ( Danio rerio ), including AB and TU, lack a strong genetic sex determining locus, but strains more recently derived from nature, like Nadia (NA), possess a ZZ male/ZW female chromosomal sex-determination system. AB strain fish pass through a juvenile ovary stage, forming oocytes that survive in fish that become females but die in fish that become males. To understand mechanisms of gonad development in NA zebrafish, we studied histology and single cell transcriptomics in developing ZZ and ZW fish. ZW fish developed oocytes by 22 days post-fertilization (dpf) but ZZ fish directly formed testes, avoiding a juvenile ovary phase. Gonads of some ZW and WW fish, however, developed oocytes that died as the gonad became a testis, mimicking AB fish, suggesting that the gynogenetically derived AB strain is chromosomally WW. Single-cell RNA-seq of 19dpf gonads showed similar cell types in ZZ and ZW fish, including germ cells, precursors of gonadal support cells, steroidogenic cells, interstitial/stromal cells, and immune cells, consistent with a bipotential juvenile gonad. In contrast, scRNA-seq of 30dpf gonads revealed that cells in ZZ gonads had transcriptomes characteristic of testicular Sertoli, Leydig, and germ cells while ZW gonads had granulosa cells, theca cells, and developing oocytes. Hematopoietic and vascular cells were similar in both sex genotypes. These results show that juvenile NA zebrafish initially develop a bipotential gonad; that a factor on the NA W chromosome or fewer than two Z chromosomes is essential to initiate oocyte development; and without the W factor or with two Z doses, NA gonads develop directly into testes without passing through the juvenile ovary stage. Sex determination in AB and TU strains mimics NA ZW and WW zebrafish, suggesting loss of the Z chromosome during domestication. Genetic analysis of the NA strain will facilitate our understanding of the evolution of sex determination mechanisms.
Collapse
|
25
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson W, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of the anti-Mullerian hormone receptor type 2 gene, an old master sex determining gene, in Percidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566804. [PMID: 38014084 PMCID: PMC10680665 DOI: 10.1101/2023.11.13.566804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, Indiana, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cedric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | | | - Thomas Lecocq
- University of Lorraine, INRAE, UR AFPA, Nancy, France
| | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wes Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Point Lena Loop Road, Juneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | | |
Collapse
|
26
|
Shen X, Yan H, Li W, Zhou H, Wang J, Zhang Q, Zhang L, Liu Q, Liu Y. Estrodiol-17β and aromatase inhibitor treatment induced alternations of genome-wide DNA methylation pattern in Takifugu rubripes gonads. Gene 2023; 882:147641. [PMID: 37460000 DOI: 10.1016/j.gene.2023.147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/12/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Estradiol-17β (E2) and aromatase inhibitor (AI) exposure can change the phenotypic sex of fish gonads. To investigated whether alterations in DNA methylation is involved in this process, the level of genome-wide DNA methylation in Takifugu rubripes gonads was quantitatively analyzed during the E2-induced feminization and AI-induced masculinization processes in this study. The methylation levels of the total cytosine (C) in control-XX(C-XX), control-XY (C-XY), E2-treated-XY (E-XY) and AI-treated-XX (AI-XX) were 9.11%, 9.19%, 8.63% and 9.23%, respectively. In the C-XX vs C-XY comparison, 4,196 differentially methylated regions (DMRs) overlapped with the gene body of 2,497 genes and 608 DMRs overlapped with the promoter of 575 genes. In the E-XY vs C-XY comparison, 6,539 DMRs overlapped with the gene body of 3,416 genes and 856 DMRs overlapped with the promoter of 776 genes. In the AI-XX vs C-XX comparison, 2,843 DMRs overlapped with the gene body of 1,831 genes and 461 DMRs overlapped with the promoter of 421 genes. Gonadal genomic methylation mainly occurred at CG sites and the genes that overlapped with DMRs on CG context were most enriched in the signaling pathways related to gonad differentiation, such as the Wnt, TGF-β, MAPK, CAM and GnRH pathways. The DNA methylation levels of steroid synthesis genes and estrogen receptor genes promoter or gene body were negative correlated with their expression. After bisulfite sequencing verification, the DNA methylation level of the amhr2 promoter in XY was increased after E2 treatment, which consistent with the data from the genome-wide DNA methylation sequencing. In C-XY group, the expression of amhr2 was significantly higher than that in E-XY (p < 0.05). Additionally, dnmt1, which is responsible for methylation maintenance, expressed at similar level in four groups (p > 0.05). dnmt3, tet2, and setd1b, which were responsible for methylation modification, expressed at significantly higher levels in E-XY compared to the C-XY (p < 0.05). Dnmt3 and tet2 were expressed at significantly higher levels in AI-XX than that in C-XX (p < 0.05). These results indicated that E2 and AI treatment lead to the aberrant genome-wide DNA methylation level and expression level of dnmt3, tet2, and setd1b in T. rubripes gonad.
Collapse
Affiliation(s)
- Xufang Shen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Life Sciences, Liaoning Normal University, Dalian, Liaoning 116029, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Weiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Huiting Zhou
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Jia Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian, Liaoning 116023, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China; College of Marine Science and Environment Engineering, Dalian Ocean University, 116023 Dalian, Liaoning, China; Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, 116023 Dalian, Liaoning, China.
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of Education, 116023, China
| |
Collapse
|
27
|
Liu S, Lian Y, Song Y, Chen Q, Huang J. De Novo Assembly, Characterization and Comparative Transcriptome Analysis of the Gonads of Jade Perch ( Scortum barcoo). Animals (Basel) 2023; 13:2254. [PMID: 37508032 PMCID: PMC10376888 DOI: 10.3390/ani13142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high meat yield and rich nutritional content, jade perch (Scortum barcoo) has become an important commercial aquaculture species in China. Jade perch has a slow growth rate, taking 3-4 years to reach sexual maturity, and has almost no difference in body size between males and females. However, the study of its gonad development and reproduction regulation is still blank, which limited the yield increase. Herein, the gonad transcriptomes of juvenile males and females of S. barcoo were identified for the first time. A total of 107,060 unigenes were successfully annotated. By comparing male and female gonad transcriptomes, a total of 23,849 differentially expressed genes (DEGs) were identified, of which 9517 were downregulated, and 14,332 were upregulated in the testis. In addition, a large number of DEGs involved in sex differentiation, gonadal development and differentiation and gametogenesis were identified, and the differential expression patterns of some genes were further verified using real-time fluorescence quantitative PCR. The results of this study will provide a valuable resource for further studies on sex determination and gonadal development of S. barcoo.
Collapse
Affiliation(s)
- Shiyan Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingying Lian
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yikun Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qinghua Chen
- South China Institute of Environmental Science, MEE, Guangzhou 510610, China
| | - Jianrong Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Xu Y, Zhong ZW, Feng Y, Zhang ZY, Ao LL, Liu H, Wang YL, Jiang YH. Expression pattern analysis of anti-Mullerian hormone in testis development of pearlscale angelfish (Centropyge vrolikii). JOURNAL OF FISH BIOLOGY 2023; 102:1067-1078. [PMID: 36840532 DOI: 10.1111/jfb.15358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 05/13/2023]
Abstract
In vertebrates, anti-Mullerian hormone (Amh) secreted by Sertoli cells (SC) performs a pivotal function in male sex differentiation. Compared with that of higher vertebrates, the expression pattern of Amh is more diversified in fish. In this study, the full-length complementary DNA (cDNA) of Amh in Centropyge vrolikii (Cv-Amh) was cloned and analysed, which was 2,470 bp, including a 238 bp 5'UTR, a 1,602 bp ORF and a 633 bp 3'UTR; the similarity of Amh between Cv-Amh and other fish is relatively high. The quantitative real-time PCR (qRT-PCR) results of healthy tissues and gonads at sex reversal stages in C. vrolikii showed that the expression level of Amh in the testis was significantly higher than that in other tissues (P < 0.05). Amh was weakly expressed in the vitellogenic stage ovary and perinucleolus stage ovary, but its expression significantly increased in the gonads at the hermaphroditic stage, and finally reached the highest in the pure testis after sexual reversal. The results of in situ hybridization indicated that the positive signal of Amh was strongly concentrated in SCs of testis. After Amh knockdown in the gonads, the effect on sex-related genes was tested using qRT-PCR. Among these, the expression of Dmrt1, Cyp11a, Hsd11b2, Sox8 and Sox9 significantly decreased, whereas that of Cyp19a, Sox4, Foxl2 and Sox3 increased. These results suggested that Amh could be the pivotal gene in reproductive regulation in C. vrolikii, and the data will contribute to sex-related research of C. vrolikii in the future.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Ze-Yu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Hongwei Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| |
Collapse
|
29
|
Balogh RE, Csorbai B, Guti C, Keszte S, Urbányi B, Orbán L, Kovács B. Validation of a male-specific DNA marker confirms XX/XY-type sex determination in several Hungarian strains of African catfish (Clarias gariepinus). Theriogenology 2023; 205:106-113. [PMID: 37116410 DOI: 10.1016/j.theriogenology.2023.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/15/2023] [Indexed: 04/30/2023]
Abstract
African catfish (Clarias gariepinus) is a promising food fish species with significant potential and growing mass of production in freshwater aquaculture. Male African catfish possess improved production characteristics over females, therefore the use of monosex populations could be advantageous for aquaculture production. However, our knowledge about the sex determination mechanism of this species is still limited and controversial. A previously isolated male-specific DNA marker (CgaY1) was validated using offspring groups from targeted crosses (n = 630) and it was found to predict the sex of 608 individuals correctly (96.43% accuracy). Using the proportion of recombinants, we estimated the average genetic distance between the potential sex determination locus and the sex-specific marker to be 3.57 cM. As an earlier study suggested that both XX/XY and ZZ/ZW systems coexist in this species, we tested the applicability of their putative 'moderately sex-linked loci' and found that no sex-specific amplification could be detected for any of them. In addition, temperature-induced masculinization suggested by others was also tested, but no such effect was detected in our stocks when the published parameters were used for heat treatment. Altogether, our results support an exclusive XX/XY sex determination system in our African catfish stock and indicate a good potential for the future use of this male-specific DNA marker in research and commercial production.
Collapse
Affiliation(s)
- Réka Enikő Balogh
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Csorbai
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csaba Guti
- The Hungarian National Fishing Association, Budapest, Hungary
| | - Szilvia Keszte
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Béla Urbányi
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, Hungary.
| | - Balázs Kovács
- Institute of Aquaculture and Environmental Safety, Szent István Campus, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
30
|
Du J, Liu Q, Zheng Y. Screening and characterization of sex-specific sequences through 2b-RAD sequencing in American shad (Alosa sapidissima). PLoS One 2023; 18:e0282165. [PMID: 36862741 PMCID: PMC9980781 DOI: 10.1371/journal.pone.0282165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
American shad (Alosa sapidissima), introduced from the United States, has become one of the most expensive farmed fish in the aquatic product market of China. The shad reveals significant sexual dimorphism in growth and behaviors. For the study, five male-specific tags were identified in two-generation breeding populations of Alosa sapidissima and were verified by PCR amplification. Averages of 10,245,091 and 8,685,704 raw and enzyme reads were obtained by high-throughput sequencing of the 2b-RAD library, respectively. 301,022 unique tags were obtained from the sequences of twenty samples with sequencing depths of 0 to 500. Finally, 274,324 special tags and 29,327 SNPs were selected with a sequencing depth of 3 to 500. Eleven preliminary screening male-specific tags and three male heterogametic SNP loci were isolated. After verification by PCR amplification, five male-specific sequences of 27 bp located on chromosome 3 were screened out. Chromosome 3 could be assumed to be the sex chromosome of Alosa sapidissima. Sex-specific markers will provide invaluable and systematic animal germplasm resources to allow for the precise identification of neo-males for the all-female breeding of Alosa sapidissima in commercial aquaculture.
Collapse
Affiliation(s)
- Jia Du
- Suzhou Fishseeds Bio-Technology, Suzhou, Jiangsu, China,College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang, China,* E-mail: (JD); (QL)
| | - Qinghua Liu
- Suzhou Fishseeds Bio-Technology, Suzhou, Jiangsu, China,Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China,* E-mail: (JD); (QL)
| | - Yuhong Zheng
- Suzhou Health-Origin Bio-Technology, Suzhou, Jiangsu, China
| |
Collapse
|
31
|
Nacif CL, Kratochwil CF, Kautt AF, Nater A, Machado-Schiaffino G, Meyer A, Henning F. Molecular parallelism in the evolution of a master sex-determining role for the anti-Mullerian hormone receptor 2 gene (amhr2) in Midas cichlids. Mol Ecol 2023; 32:1398-1410. [PMID: 35403749 DOI: 10.1111/mec.16466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022]
Abstract
The evolution of sex chromosomes and their differentiation from autosomes is a major event during genome evolution that happened many times in several lineages. The repeated evolution and lability of sex-determination mechanisms in fishes makes this a well-suited system to test for general patterns in evolution. According to current theory, differentiation is triggered by the suppression of recombination following the evolution of a new master sex-determining gene. However, the molecular mechanisms that establish recombination suppression are known from few examples, owing to the intrinsic difficulties of assembling sex-determining regions (SDRs). The development of forward-genetics and long-read sequencing have generated a wealth of data questioning central aspects of the current theory. Here, we demonstrate that sex in Midas cichlids is determined by an XY system, and identify and assemble the SDR by combining forward-genetics, long-read sequencing and optical mapping. We show how long-reads aid in the detection of artefacts in genotype-phenotype mapping that arise from incomplete genome assemblies. The male-specific region is restricted to a 100-kb segment on chromosome 4 that harbours transposable elements and a Y-specific duplicate of the anti-Mullerian receptor 2 gene, which has evolved master sex-determining functions repeatedly. Our data suggest that amhr2Y originated by an interchromosomal translocation from chromosome 20 to 4 pre-dating the split of Midas and Flier cichlids. In the latter, it is pseudogenized and translocated to another chromosome. Duplication of anti-Mullerian genes is a common route to establishing new sex determiners, highlighting the role of molecular parallelism in the evolution of sex determination.
Collapse
Affiliation(s)
- Camila L Nacif
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | - Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Frederico Henning
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
32
|
Clinton M, Zhao D. Avian Sex Determination: A Chicken and Egg Conundrum. Sex Dev 2023; 17:120-133. [PMID: 36796340 PMCID: PMC10659007 DOI: 10.1159/000529754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Primary sex determination is the developmental process that results in the sexual differentiation of the gonads. Vertebrate sex determination is generally considered to follow the model based on the mammalian system, where a sex-specific master regulatory gene activates one of the two different gene networks that underlie testis and ovary differentiation. SUMMARY It is now known that, while many of the molecular components of these pathways are conserved across different vertebrates, a wide variety of different trigger factors are utilized to initiate primary sex determination. In birds, the male is the homogametic sex (ZZ), and significant differences exist between the avian system of sex determination and that of mammals. For example, DMRT1, FOXL2, and estrogen are key factors in gonadogenesis in birds, but none are essential for primary sex determination in mammals. KEY MESSAGE Gonadal sex determination in birds is thought to depend on a dosage-based mechanism involving expression of the Z-linked DMRT1 gene, and it may be that this "mechanism" is simply an extension of the cell autonomous sex identity associated with avian tissues, with no sex-specific trigger required.
Collapse
Affiliation(s)
- Michael Clinton
- Roslin Institute Chicken Embryology (RICE) Group, Gene Function and Development, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| | - Debiao Zhao
- Roslin Institute Chicken Embryology (RICE) Group, Gene Function and Development, The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK
| |
Collapse
|
33
|
Feng Y, Zhong Z, Wan H, Zhang Z, Zou P, Lin P, Jiang Y, Wang Y. dmrtb1 is involved in the testicular development in Larimichthys crocea. Reproduction 2023; 165:159-170. [PMID: 36342669 DOI: 10.1530/rep-22-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
In brief dmrtb1 performs critical functions in sex determination/differentiation and gonadal development in many organisms, but its role in teleost is rarely studied. Through gene cloning, in situ hybridization, and RNA interference technology, the function of dmrtb1 in testicular development of large yellow croaker (Larimichthys crocea) was studied; our study will be helpful in understanding further the molecular regulation mechanism of Lcdmrtb1/Lcdmrt6 in testicular development in L. crocea, and our results enrich the theory of fish dmrts involved in reproductive regulation and provide a new idea for sex control breeding of L. crocea by manipulating reproductive pathway. Abstract Doublesex- and mab-3-related transcription factor B1 (dmrtb1/dmrt6) belongs to one of the members of DMRT family, which performs critical functions in sex determination and differentiation, gonadal development, and functional maintenance. However, knowledge of its exact mechanism remains unclear in teleost. Very little is known about the role of dmrtb1 in the gonad development of Larimichthys crocea. In this study, a dmrtb1 homolog in L. crocea named as Lcdmrtb1 with the full-length cDNA was isolated and characterized. Except for the conserved DM domain, the other regions had low homology. Of the tissues sampled, Lcdmrtb1 was only found to be highly expressed in the testis. In situ hybridization of testis revealed Lcdmrtb1 in both spermatogonia and spermatocytes. After Lcdmrtb1 interference in the testis cells (LYCT) of L. crocea, the expression levels of Lcdmrtb1 and Lcdmrt1 were significantly decreased; subsequently, testicular cell morphology changed from fibrous to round and their growth rate slowed. Similarly, the expression levels of Lcdmrtb1, Lcdmrt1, sox9a/b, and amh were significantly decreased after RNAi in the testis. Furthermore, it was discovered that the spermatogonia had disappeared, and the Sertoli cells had been reduced. The results of immunohistochemistry showed that the expression of Sox9 protein in the testis was not detected after dmrtb1 was knocked down. These results indicated that the absence of Lcdmrtb1 not only greatly inhibited cell growth and destroyed the morphology of testis cells but also down-regulated Lcdmrt1 expression in the testis. This study will be helpful in understanding further the molecular regulation mechanism of Lcdmrtb1/Lcdmrt6 in testicular development in L. crocea.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.,College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Peng Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China.,Fujian Engineering Research center of Aquatic Breeding and Healthy Aquaculture, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| |
Collapse
|
34
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
35
|
Li S, Li W, Jiang S, Jing Y, Xiao L, Yu Y, Liu Y, Li Y, Wang D, Li J, Peng C, Chen J, Lu D, Wu B, Guang X, Ma J, You X, Yang Y, Liu S, Fang X, Gao Q, Shi Q, Lin H, Schartl M, Yue Z, Zhang Y. Mechanisms of sex differentiation and sex reversal in hermaphrodite fish as revealed by the Epinephelus coioides genome. Mol Ecol Resour 2023; 23:920-932. [PMID: 36631404 DOI: 10.1111/1755-0998.13753] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Most grouper species are functional protogynous hermaphrodites, but the genetic basis and the molecular mechanisms underlying the regulation of this unique reproductive strategy remain enigmatic. In this study, we report a high-quality chromosome-level genome assembly of the representative orange-spotted grouper (Epinephelus coioides). No duplication or deletion of sex differentiation-related genes was found in the genome, suggesting that sex development in this grouper may be related to changes in regulatory sequences or environmental factors. Transcriptomic analyses showed that aromatase and retinoic acid are probably critical to promoting ovarian fate determination, and follicle-stimulating hormone triggers the female-to-male sex change. Socially controlled sex-change studies revealed that, in sex-changing fish, the brain's response to the social environment may be mediated by activation of the phototransduction cascade and the melatonin synthesis pathway. In summary, our genomic and experimental results provide novel insights into the molecular mechanisms of sex differentiation and sex change in the protogynous groupers.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Shoujia Jiang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, Shenzhen, China
| | - Yi Jing
- BGI-Shenzhen, Shenzhen, China.,BGI-Sanya, BGI-Shenzhen, Sanya, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | - Yun Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yanhong Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Junping Ma
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, Shenzhen, China
| | - Yuqing Yang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | - Su Liu
- Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| | | | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, Shenzhen, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Manfred Schartl
- Developmental Biochemistry, University of Würzburg, Biozentrum, Am Hubland, Würzburg, and Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany.,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Zhen Yue
- BGI-Shenzhen, Shenzhen, China.,BGI-Sanya, BGI-Shenzhen, Sanya, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
36
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
37
|
Del Fresno PS, Garcia de Souza JR, Colautti DC, Yamamoto Y, Yokota M, Strüssmann CA, Miranda LA. Sex reversal of pejerrey (Odontesthes bonariensis), a species with temperature-dependent sex determination, in a seminatural environment. JOURNAL OF FISH BIOLOGY 2023; 102:75-82. [PMID: 36217918 DOI: 10.1111/jfb.15241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This study examined the changes in sex ratios and sex reversal rates in pejerrey Odontesthes bonariensis that occur with the progression of the spawning season in a seminatural setting. Four groups of hatchery-produced pejerrey larvae were stocked in floating cages in La Salada de Monasterio lake (Pampas region), a natural habitat of this species, and reared from hatching beyond gonadal sex determination with minimum human interference. Cage 1 was stocked at the beginning of the spring spawning season and the other cages were stocked with monthly delays until cage 4 in early summer. The genotypic (amhy+, XY/YY; amhy-, XX) and phenotypic (testis, male; ovary, female) sex ratios and proportions of genotype/phenotype mismatched individuals were estimated and their relation to water temperature and daylength during the experiment was analysed by generalized linear modelling. Water temperature varied between 11 and 30.5°C, and daylength duration between 11 h 22 min and 14 h 35 min. Sex genotyping revealed nearly balanced sex ratios of XY/YY (46%-49.1%) and XX (50.9%-54%) fish in cages 2-4 whereas the genotypic sex ratio in cage 1 was clearly biased towards XY/YY fish (60.6%). Phenotypic males ranged from 42% to 54.4% in cages 1-3. Cage 4, in turn, had significantly more phenotypic males (66%). The percentage of XX males (phenotypic male/genotypic female) was 23.1% in cage 1, decreased to a minimum of 5.4% in cage 2 and gradually increased in cages 3 and 4 to a maximum of 40.7% in the latter. The percentages of XY/YY females (phenotypic female/genotypic male) were highest in cage 1 (30%) and decreased progressively in the other cages to a significantly lower value (4.3%) in cage 4. These results generally support the findings of laboratory studies on the effect of temperature on the sex determination of this species and also provide novel evidence of a XX genotype-specific masculinizing effect of short daylength.
Collapse
Affiliation(s)
- Pamela S Del Fresno
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús (CONICET-UNSAM) Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | | | - Darío C Colautti
- Instituto de Limnología "Dr. Raúl A. Ringuelet" ILPLA-(CONICET-UNLP), Buenos Aires, Argentina
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masashi Yokota
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Leandro A Miranda
- Laboratorio de Ictiofisiología y Acuicultura, Instituto Tecnológico de Chascomús (CONICET-UNSAM) Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| |
Collapse
|
38
|
de la Herrán R, Hermida M, Rubiolo JA, Gómez-Garrido J, Cruz F, Robles F, Navajas-Pérez R, Blanco A, Villamayor PR, Torres D, Sánchez-Quinteiro P, Ramirez D, Rodríguez ME, Arias-Pérez A, Cross I, Duncan N, Martínez-Peña T, Riaza A, Millán A, De Rosa MC, Pirolli D, Gut M, Bouza C, Robledo D, Rebordinos L, Alioto T, Ruíz-Rejón C, Martínez P. A chromosome-level genome assembly enables the identification of the follicule stimulating hormone receptor as the master sex-determining gene in the flatfish Solea senegalensis. Mol Ecol Resour 2023; 23:886-904. [PMID: 36587276 DOI: 10.1111/1755-0998.13750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Sex determination (SD) shows huge variation among fish and a high evolutionary rate, as illustrated by the Pleuronectiformes (flatfishes). This order is characterized by its adaptation to demersal life, compact genomes and diversity of SD mechanisms. Here, we assembled the Solea senegalensis genome, a flatfish of great commercial value, into 82 contigs (614 Mb) combining long- and short-read sequencing, which were next scaffolded using a highly dense genetic map (28,838 markers, 21 linkage groups), representing 98.9% of the assembly. Further, we established the correspondence between the assembly and the 21 chromosomes by using BAC-FISH. Whole genome resequencing of six males and six females enabled the identification of 41 single nucleotide polymorphism variants in the follicle stimulating hormone receptor (fshr) consistent with an XX/XY SD system. The observed sex association was validated in a broader independent sample, providing a novel molecular sexing tool. The fshr gene displayed differential expression between male and female gonads from 86 days post-fertilization, when the gonad is still an undifferentiated primordium, concomitant with the activation of amh and cyp19a1a, testis and ovary marker genes, respectively, in males and females. The Y-linked fshr allele, which included 24 nonsynonymous variants and showed a highly divergent 3D protein structure, was overexpressed in males compared to the X-linked allele at all stages of gonadal differentiation. We hypothesize a mechanism hampering the action of the follicle stimulating hormone driving the undifferentiated gonad toward testis.
Collapse
Affiliation(s)
- Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Hermida
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Juan Andres Rubiolo
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Jèssica Gómez-Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Fernando Cruz
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Blanco
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Paula Rodriguez Villamayor
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Dorinda Torres
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Sánchez-Quinteiro
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Daniel Ramirez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Maria Esther Rodríguez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Alberto Arias-Pérez
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Ismael Cross
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Neil Duncan
- IRTA Sant Carles de la Rapita, Tarragona, Spain
| | | | - Ana Riaza
- Stolt Sea Farm SA, Departamento I+D, A Coruña, Spain
| | | | - M Cristina De Rosa
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, Rome, Italy
| | - Davide Pirolli
- Institute of Chemical Sciences and Technologies "Giulio Natta" (SCITEC) - CNR c/o Catholic University of Rome, Rome, Italy
| | - Marta Gut
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain
| | - Carmen Bouza
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Laureana Rebordinos
- Departamento de Biomedicina, Biotecnología y Salud Pública CASEM - Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genómica, Parc Científic de Barcelona, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmelo Ruíz-Rejón
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física; Facultad de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
39
|
Wang W, Yang Y, Tan S, Zhou T, Liu Y, Tian C, Bao L, Xing D, Su B, Wang J, Zhang Y, Liu S, Shi H, Gao D, Dunham R, Liu Z. Genomic imprinting-like monoallelic paternal expression determines sex of channel catfish. SCIENCE ADVANCES 2022; 8:eadc8786. [PMID: 36542716 PMCID: PMC9770954 DOI: 10.1126/sciadv.adc8786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - De Xing
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
40
|
Wang D, Pan Z, Wang G, Ye B, Wang Q, Zuo Z, Zou J, Xie S. Gonadal Transcriptome Analysis and Sequence Characterization of Sex-Related Genes in Cranoglanis bouderius. Int J Mol Sci 2022; 23:ijms232415840. [PMID: 36555482 PMCID: PMC9779447 DOI: 10.3390/ijms232415840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 12/15/2022] Open
Abstract
In China, the Cranoglanis bouderius is classified as a national class II-protected animal. The development of C. bouderius populations has been affected by a variety of factors over the past few decades, with severe declines occurring. Considering the likelihood of continued population declines of the C. bouderius in the future, it is critical to investigate the currently unknown characteristics of gonadal differentiation and sex-related genes for C. bouderius conservation. In this study, the Illumina sequencing platform was used to sequence the gonadal transcriptome of the C. bouderius to identify the pathways and genes related to gonadal development and analyze the expression differences in the gonads. A total of 12,002 DEGs were identified, with 7220 being significantly expressed in the ovary and 4782 being significantly expressed in the testis. According to the functional enrichment results, the cell cycle, RNA transport, apoptosis, Wnt signaling pathway, p53 signaling pathway, and prolactin signaling pathway play important roles in sex development in the C. bouderius. Furthermore, the sequence characterization and evolutionary analysis revealed that AMH, DAX1, NANOS1, and AR of the C. bouderius are highly conserved. Specifically, the qRT-PCR results from various tissues showed significant differences in AMH, DAX1, NANOS1, and AR expression levels in the gonads of both sexes of C. bouderius. These analyses indicated that AMH, DAX1, NANOS1, and AR may play important roles in the differentiation and development of C. bouderius gonads. To our best knowledge, this study is the first to analyze the C. bouderius gonadal transcriptome and identify the structures of sex-related genes, laying the foundation for future research.
Collapse
Affiliation(s)
- Dongjie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Pan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Guoxia Wang
- Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, Guangzhou 510640, China
- Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Bin Ye
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiujie Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiheng Zuo
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jixing Zou
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.Z.); (S.X.); Tel.: +86-020-87571321 (J.Z.); +86-020-87571321 (S.X.)
| | - Shaolin Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (J.Z.); (S.X.); Tel.: +86-020-87571321 (J.Z.); +86-020-87571321 (S.X.)
| |
Collapse
|
41
|
Jin L, Sun W, Bao H, Liang X, Li P, Shi S, Wang Z, Qian G, Ge C. The forkhead factor Foxl2 participates in the ovarian differentiation of Chinese soft-shelled turtle Pelodiscus sinensis. Dev Biol 2022; 492:101-110. [DOI: 10.1016/j.ydbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/24/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
42
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
43
|
Hattori RS, Kumazawa K, Nakamoto M, Nakano Y, Yamaguchi T, Kitano T, Yamamoto E, Fuji K, Sakamoto T. Y-specific amh allele, amhy, is the master sex-determining gene in Japanese flounder Paralichthys olivaceus. Front Genet 2022; 13:1007548. [PMID: 36186422 PMCID: PMC9523440 DOI: 10.3389/fgene.2022.1007548] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Japanese flounder (Paralichthys olivaceus) is an important marine fish species of both fisheries and aquaculture in Northeast Asia. The commercial interest for all-female progenies due to several sex-related traits has prompted basic research on the mechanisms of sex determination in this species. By conducting a linkage analysis of the sex-determining locus, we initially identified 12 microsatellite markers linked to sex in 11 scaffolds, whose localization was restricted to a specific region of linkage group 9. Sequence analysis of this region identified 181 genes based on the UniProt database annotations. Among them, the amh gene was considered a potential candidate for sex determination because this gene is known to have taken over the role of sex determination in many teleosts. An in-depth sequence analysis of both the coding and non-coding regions of amh in XX and XY individuals detected nine SNPs linked with maleness. However, because these substitutions were synonymous, the upstream and downstream regions of amh were also investigated and a male-specific variant with deletions in the promoter region was detected. This truncated Y-specific amh variant was named amhy, and the amh shared by both sexes was named amhx. The association analysis using both females and males of the genotypic sex inferred by the presence/absence of amhy found complete association with phenotypic sex and genotype. Gene expression analysis in larvae derived from a single-pair progeny by quantitative real-time PCR detected amhy transcripts in the larval trunks between 20 and 100 days after hatching only in XY larvae. Localization of amhy by in situ hybridization was detected in presumptive Sertoli cells of XY gonads. Expression of amhx was almost undetectable in both XX and XY genotypes. Loss of Amh function by CRISPR-Cas9 induced male-to-female sex reversal, indicating that this gene was necessary for the masculinization of XY individuals. In conclusion, the complete linkage of amhy with males, its early expression in XY gonads before testicular differentiation, and the induction of sex reversal by loss-of-function mutation support the view that amhy is the sex-determining gene in this species.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Keiichiro Kumazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masatoshi Nakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuki Nakano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Toshiya Yamaguchi
- Nansei Field Station, National Research and Development Agency, Japan Fisheries Research and Education Agency, Mie, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Eiichi Yamamoto
- Tottori Prefectural Fisheries Experimental Station, Tottori, Japan
| | - Kanako Fuji
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takashi Sakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Takashi Sakamoto,
| |
Collapse
|
44
|
Wen M, Pan Q, Larson W, Eché C, Guiguen Y. Characterization of the sex determining region of channel catfish (Ictalurus punctatus) and development of a sex-genotyping test. Gene X 2022; 850:146933. [DOI: 10.1016/j.gene.2022.146933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022] Open
|
45
|
Tang L, Huang F, You W, Poetsch A, Nóbrega RH, Power DM, Zhu T, Liu K, Wang HY, Wang Q, Xu X, Feng B, Schartl M, Shao C. ceRNA crosstalk mediated by ncRNAs is a novel regulatory mechanism in fish sex determination and differentiation. Genome Res 2022; 32:1502-1515. [PMID: 35961776 PMCID: PMC9435745 DOI: 10.1101/gr.275962.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Competing endogenous RNAs (ceRNAs) are vital regulators of gene networks in mammals. The involvement of noncoding RNAs (ncRNAs) as ceRNA in genotypic sex determination (GSD) and environmental sex determination (ESD) in fish is unknown. The Chinese tongue sole, which has both GSD and ESD mechanisms, was used to map the dynamic expression pattern of ncRNAs and mRNA in gonads during sex determination and differentiation. Transcript expression patterns shift during the sex differentiation phase, and ceRNA modulation occurs through crosstalk of differentially expressed long ncRNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and sex-related genes in fish. Of note was the significant up-regulation of a circRNA from the sex-determining gene dmrt1 (circular RNA dmrt1) and a lncRNA, called AMSDT (which stands for associated with male sex differentiation of tongue sole) in Chinese tongue sole testis. These two ncRNAs both share the same miRNA response elements with gsdf, which has an up-regulated expression when they bind to miRNA cse-miR-196 and concurrent down-regulated female sex-related genes to facilitate testis differentiation. This is the first demonstration in fish that ceRNA crosstalk mediated by ncRNAs modulates sexual development and unveils a novel regulatory mechanism for sex determination and differentiation.
Collapse
Affiliation(s)
- Lili Tang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Fei Huang
- Genosys, Incorporated, Shenzhen, Guangdong, 518000, China
| | - Wuxin You
- NCU-QMUL Joint Research Institute of Precision Medical Sciences, Queen Mary School, Nanchang University, Nanchang, 330036, China
| | - Ansgar Poetsch
- College of Marine Life Science, Ocean University of China, Qingdao, Shandong, 266003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, North Rhine-Westphalia, 44801, Germany
| | - Rafael Henrique Nóbrega
- Institute of Biosciences Department of Structural and Functional Biology Division Morphology Reproductive and Molecular Biology Group, São Paulo State University, Botucatu, São Paulo, 01049-010, Brazil
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Algarve, 8005-139, Portugal
| | - Tengfei Zhu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Hong-Yan Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Xiwen Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bayern, 97074, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, China
| |
Collapse
|
46
|
Ansai S, Montenegro J, Masengi KWA, Nagano AJ, Yamahira K, Kitano J. Diversity of sex chromosomes in Sulawesian medaka fishes. J Evol Biol 2022; 35:1751-1764. [DOI: 10.1111/jeb.14076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/30/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Satoshi Ansai
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| | | | - Atsushi J. Nagano
- Faculty of Agriculture Ryukoku University Otsu Japan
- Institute for Advanced Biosciences Keio University Tsuruoka Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research Center University of the Ryukyus Nishihara Japan
| | - Jun Kitano
- Ecological Genetics Laboratory National Institute of Genetics Shizuoka Japan
| |
Collapse
|
47
|
Wang H, Qu M, Tang W, Liu S, Ding S. Transcriptome Profiling and Expression Localization of Key Sex-Related Genes in a Socially-Controlled Hermaphroditic Clownfish, Amphiprion clarkii. Int J Mol Sci 2022; 23:ijms23169085. [PMID: 36012348 PMCID: PMC9409170 DOI: 10.3390/ijms23169085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Clownfish can be an excellent research model for investigating the socially-controlled sexual development of sequential hermaphrodite teleosts. However, the molecular cascades underlying the social cues that orchestrate the sexual development process remain poorly understood. Here, we performed a comparative transcriptomic analysis of gonads from females, males, and nonbreeders of Amphiprion clarkii, which constitute a complete social group, allowing us to investigate the molecular regulatory network under social control. Our analysis highlighted that the gonads of nonbreeders and males exhibited high similarities but were far from females, both in global transcriptomic profiles and histological characteristics, and identified numerous candidate genes involved in sexual development, some well-known and some novel. Significant upregulation of cyp19a1a, foxl2, nr5a1a, wnt4a, hsd3b7, and pgr in females provides strong evidence for the importance of steroidogenesis in ovarian development and maintenance, with cyp19a1a playing a central role. Amh and sox8 are two potential key factors that may regulate testicular tissue development in early and late stages, respectively, as they are expressed at higher levels in males than in females, but with slightly different expression timings. Unlike previous descriptions in other fishes, the unique expression pattern of dmrt1 in A. clarkii implied its potential function in both male and female gonads, and we speculated that it might play promoting roles in the early development of both testicular and ovarian tissues.
Collapse
Affiliation(s)
- Huan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Meng Qu
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Southern Marine Science and Engineering Guangdong Laboratory (GML, Guangzhou), Guangzhou 511458, China
| | - Wei Tang
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Shufang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence: (S.L.); (S.D.)
| | - Shaoxiong Ding
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
- Correspondence: (S.L.); (S.D.)
| |
Collapse
|
48
|
Wen M, Pan Q, Jouanno E, Montfort J, Zahm M, Cabau C, Klopp C, Iampietro C, Roques C, Bouchez O, Castinel A, Donnadieu C, Parrinello H, Poncet C, Belmonte E, Gautier V, Avarre JC, Dugue R, Gustiano R, Hà TTT, Campet M, Sriphairoj K, Ribolli J, de Almeida FL, Desvignes T, Postlethwait JH, Bucao CF, Robinson-Rechavi M, Bobe J, Herpin A, Guiguen Y. An ancient truncated duplication of the anti-Müllerian hormone receptor type 2 gene is a potential conserved master sex determinant in the Pangasiidae catfish family. Mol Ecol Resour 2022; 22:2411-2428. [PMID: 35429227 PMCID: PMC9555307 DOI: 10.1111/1755-0998.13620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The evolution of sex determination (SD) in teleosts is amazingly dynamic, as reflected by the variety of different master sex-determining genes identified. Pangasiids are economically important catfishes in South Asian countries, but little is known about their SD system. Here, we generated novel genomic resources for 12 Pangasiids and characterized their SD system. Based on a Pangasianodon hypophthalmus chromosome-scale genome assembly, we identified an anti-Müllerian hormone receptor type Ⅱ gene (amhr2) duplication, which was further characterized as being sex-linked in males and expressed only in testes. These results point to a Y chromosome male-specific duplication (amhr2by) of the autosomal amhr2a. Sequence annotation revealed that the P. hypophthalmus Amhr2by is truncated in its N-terminal domain, lacking the cysteine-rich extracellular part of the receptor that is crucial for ligand binding, suggesting a potential route for its neofunctionalization. Reference-guided assembly of 11 additional Pangasiids, along with sex-linkage studies, revealed that this truncated amhr2by duplication is a male-specific conserved gene in Pangasiids. Reconstructions of the amhr2 phylogeny suggested that amhr2by arose from an ancient duplication/insertion event at the root of the Siluroidei radiation that is dated to ~100 million years ago. Together these results bring multiple lines of evidence supporting that amhr2by is an ancient and conserved master sex-determining gene in Pangasiids, a finding that highlights the recurrent use of the transforming growth factor β pathway, which is often used for the recruitment of teleost master SD genes, and provides another empirical case towards firther understanding of dynamics of SD systems.
Collapse
Affiliation(s)
- Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
- INRAE, LPGP, Rennes, France
| | - Qiaowei Pan
- INRAE, LPGP, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | | - Margot Zahm
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
| | - Cédric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | | | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Adrien Castinel
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Hugues Parrinello
- Montpellier GenomiX (MGX), C/O Institut de Génomique Fonctionnelle, Montpellier, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Elodie Belmonte
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Véronique Gautier
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Remi Dugue
- ISEM, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Rudhy Gustiano
- Research Institute of Freshwater Fisheries (CRIFI-RIFF), Instalasi Penelitian Perikanan Air Tawar, Jakarta, Indonesia
| | - Trần Thị Thúy Hà
- Research Institute for Aquaculture No.1. Dinh Bang, Tu Son, Bac Ninh, Viet Nam
| | | | - Kednapat Sriphairoj
- Faculty of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Josiane Ribolli
- Laboratório de Biologia e Cultivo de Peixes de Água Doce, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | - Christabel Floi Bucao
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | |
Collapse
|
49
|
Jeffries DL, Mee JA, Peichel CL. Identification of a candidate sex determination gene in Culaea inconstans suggests convergent recruitment of an Amh duplicate in two lineages of stickleback. J Evol Biol 2022; 35:1683-1695. [PMID: 35816592 PMCID: PMC10083969 DOI: 10.1111/jeb.14034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/07/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes vary greatly in their age and levels of differentiation across the tree of life. This variation is largely due to the rates of sex chromosome turnover in different lineages; however, we still lack an explanation for why sex chromosomes are so conserved in some lineages (e.g. mammals, birds) but so labile in others (e.g. teleosts, amphibians). To identify general mechanisms driving transitions in sex determination systems or forces which favour their conservation, we first require empirical data on sex chromosome systems from multiple lineages. Stickleback fishes are a valuable model lineage for the study of sex chromosome evolution due to variation in sex chromosome systems between closely-related species. Here, we identify the sex chromosome and a strong candidate for the master sex determination gene in the brook stickleback, Culaea inconstans. Using whole-genome sequencing of wild-caught samples and a lab cross, we identify AmhY, a male specific duplication of the gene Amh, as the candidate master sex determination gene. AmhY resides on Chromosome 20 in C. inconstans and is likely a recent duplication, as both AmhY and the sex-linked region of Chromosome 20 show little sequence divergence. Importantly, this duplicate AmhY represents the second independent duplication and recruitment of Amh as the sex determination gene in stickleback and the eighth example known across teleosts. We discuss this convergence in the context of sex chromosome turnovers and the role that the Amh/AmhrII pathway, which is crucial for sex determination, may play in the evolution of sex chromosomes in teleosts.
Collapse
Affiliation(s)
- Daniel L Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Jonathan A Mee
- Department of Biology, Mount Royal University, Calgary, Alberta, Canada
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
50
|
Chikami Y, Okuno M, Toyoda A, Itoh T, Niimi T. Evolutionary History of Sexual Differentiation Mechanism in Insects. Mol Biol Evol 2022; 39:msac145. [PMID: 35820410 PMCID: PMC9290531 DOI: 10.1093/molbev/msac145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alternative splicing underpins functional diversity in proteins and the complexity and diversity of eukaryotes. An example is the doublesex gene, the key transcriptional factor in arthropod sexual differentiation. doublesex is controlled by sex-specific splicing and promotes both male and female differentiation in holometabolan insects, whereas in hemimetabolan species, doublesex has sex-specific isoforms but is not required for female differentiation. How doublesex evolved to be essential for female development remains largely unknown. Here, we investigate ancestral states of doublesex using Thermobia domestica belonging to Zygentoma, the sister group of Pterygota, that is, winged insects. We find that, in T. domestica, doublesex expresses sex-specific isoforms but is only necessary for male differentiation of sexual morphology. This result supports the hypothesis that doublesex initially promoted male differentiation during insect evolution. However, T. domestica doublesex has a short female-specific region and upregulates the expression of vitellogenin homologs in females, suggesting that doublesex may already play some role in female morphogenesis of the common ancestor of Pterygota. Reconstruction of the ancestral sequence and prediction of protein structures show that the female-specific isoform of doublesex has an extended C-terminal disordered region in holometabolan insects but not in nonholometabolan species. We propose that doublesex acquired its function in female morphogenesis through a change in the protein motif structure rather than the emergence of the female-specific exon.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, School of Medicine, Kurume University, 67 Asahi-machi, Kurume, Fukuoka, 830-0011, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8550, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| |
Collapse
|