1
|
Velle KB, Swafford AJM, Garner E, Fritz-Laylin LK. Actin network evolution as a key driver of eukaryotic diversification. J Cell Sci 2024; 137:jcs261660. [PMID: 39120594 PMCID: PMC12050087 DOI: 10.1242/jcs.261660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Eukaryotic cells have been evolving for billions of years, giving rise to wildly diverse cell forms and functions. Despite their variability, all eukaryotic cells share key hallmarks, including membrane-bound organelles, heavily regulated cytoskeletal networks and complex signaling cascades. Because the actin cytoskeleton interfaces with each of these features, understanding how it evolved and diversified across eukaryotic phyla is essential to understanding the evolution and diversification of eukaryotic cells themselves. Here, we discuss what we know about the origin and diversity of actin networks in terms of their compositions, structures and regulation, and how actin evolution contributes to the diversity of eukaryotic form and function.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | | | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
2
|
Tsunemoto H, Sugie J, Enustun E, Pogliano K, Pogliano J. Bacterial cytological profiling reveals interactions between jumbo phage φKZ infection and cell wall active antibiotics in Pseudomonas aeruginosa. PLoS One 2023; 18:e0280070. [PMID: 37418366 PMCID: PMC10328376 DOI: 10.1371/journal.pone.0280070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 07/09/2023] Open
Abstract
The emergence of antibiotic resistance in bacteria has led to the investigation of alternative treatments, such as phage therapy. In this study, we examined the interactions between the nucleus-forming jumbo phage ФKZ and antibiotic treatment against Pseudomonas aeruginosa. Using the fluorescence microscopy technique of bacterial cytological profiling, we identified mechanism-of-action-specific interactions between antibiotics that target different biosynthetic pathways and ФKZ infection. We found that certain classes of antibiotics strongly inhibited phage replication, while others had no effect or only mildly affected progression through the lytic cycle. Antibiotics that caused an increase in host cell length, such as the cell wall active antibiotic ceftazidime, prevented proper centering of the ФKZ nucleus via the PhuZ spindle at midcell, leading us to hypothesize that the kinetic parameters of the PhuZ spindle evolved to match the average length of the host cell. To test this, we developed a computational model explaining how the dynamic properties of the PhuZ spindle contribute to phage nucleus centering and why some antibiotics affect nucleus positioning while others do not. These findings provide an understanding of the molecular mechanisms underlying the interactions between antibiotics and jumbo phage replication.
Collapse
Affiliation(s)
- Hannah Tsunemoto
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States of America
| | - Joseph Sugie
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States of America
| | - Eray Enustun
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States of America
| | - Kit Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States of America
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States of America
| |
Collapse
|
3
|
Knipe DM, Prichard A, Sharma S, Pogliano J. Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells. Annu Rev Virol 2022; 9:307-327. [PMID: 36173697 PMCID: PMC10311714 DOI: 10.1146/annurev-virology-012822-125828] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.
Collapse
Affiliation(s)
- David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Amy Prichard
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Surendra Sharma
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA;
| | - Joe Pogliano
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
4
|
Planchenault C, Pons MC, Schiavon C, Siguier P, Rech J, Guynet C, Dauverd-Girault J, Cury J, Rocha EPC, Junier I, Cornet F, Espéli O. Intracellular Positioning Systems Limit the Entropic Eviction of Secondary Replicons Toward the Nucleoid Edges in Bacterial Cells. J Mol Biol 2020; 432:745-761. [PMID: 31931015 DOI: 10.1016/j.jmb.2019.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Bacterial genomes, organized intracellularly as nucleoids, are composed of the main chromosome coexisting with different types of secondary replicons. Secondary replicons are major drivers of bacterial adaptation by gene exchange. They are highly diverse in type and size, ranging from less than 2 to more than 1000 kb, and must integrate with bacterial physiology, including to the nucleoid dynamics, to limit detrimental costs leading to their counter-selection. We show that large DNA circles, whether from a natural plasmid or excised from the chromosome tend to localize in a dynamic manner in a zone separating the nucleoid from the cytoplasm at the edge of the nucleoid. This localization is in good agreement with silico simulations of DNA circles in the nucleoid volume. Subcellular positioning systems counteract this tendency, allowing replicons to enter the nucleoid space. In enterobacteria, these systems are found in replicons above 25 kb, defining the limit with small randomly segregated plasmids. Larger replicons carry at least one of the three described family of systems, ParAB, ParRM, and StbA. Replicons above 180 kb all carry a ParAB system, suggesting this system is specifically required in the cases of large replicons. Simulations demonstrated that replicon size profoundly affects localization, compaction, and dynamics of DNA circles in the nucleoid volume. The present work suggests that presence of partition systems on the larger plasmids or chromids is not only due to selection for accurate segregation but also to counteract their unmixing with the chromosome and consequent exclusion from the nucleoid.
Collapse
Affiliation(s)
- Charlène Planchenault
- Center for Interdisciplinary Research in Biology - Collège de France, CNRS UMR7241, INSERM U1050, PSL University, France
| | - Marine C Pons
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Caroline Schiavon
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Patricia Siguier
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Jérôme Rech
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Catherine Guynet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Julie Dauverd-Girault
- Center for Interdisciplinary Research in Biology - Collège de France, CNRS UMR7241, INSERM U1050, PSL University, France
| | - Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Ivan Junier
- CNRS, Univ. Grenoble Alpes, TIMC-IMAG, F-38000 Grenoble, France
| | - François Cornet
- Centre de Biologie Intégrative de Toulouse (CBI Toulouse), Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Université de Toulouse, UPS, CNRS, France
| | - Olivier Espéli
- Center for Interdisciplinary Research in Biology - Collège de France, CNRS UMR7241, INSERM U1050, PSL University, France.
| |
Collapse
|
5
|
Abstract
Plasmids are ubiquitous in the microbial world and have been identified in almost all species of bacteria that have been examined. Their localization inside the bacterial cell has been examined for about two decades; typically, they are not randomly distributed, and their positioning depends on copy number and their mode of segregation. Low-copy-number plasmids promote their own stable inheritance in their bacterial hosts by encoding active partition systems, which ensure that copies are positioned in both halves of a dividing cell. High-copy plasmids rely on passive diffusion of some copies, but many remain clustered together in the nucleoid-free regions of the cell. Here we review plasmid localization and partition (Par) systems, with particular emphasis on plasmids from Enterobacteriaceae and on recent results describing the in vivo localization properties and molecular mechanisms of each system. Partition systems also cause plasmid incompatibility such that distinct plasmids (with different replicons) with the same Par system cannot be stably maintained in the same cells. We discuss how partition-mediated incompatibility is a consequence of the partition mechanism.
Collapse
Affiliation(s)
- Jean-Yves Bouet
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Centre National de la Recherche Scientifique (CNRS), Université de Toulouse, UPS, F-31000 Toulouse, France
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
6
|
Stoddard PR, Williams TA, Garner E, Baum B. Evolution of polymer formation within the actin superfamily. Mol Biol Cell 2017; 28:2461-2469. [PMID: 28904122 PMCID: PMC5597319 DOI: 10.1091/mbc.e15-11-0778] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/02/2023] Open
Abstract
While many are familiar with actin as a well-conserved component of the eukaryotic cytoskeleton, it is less often appreciated that actin is a member of a large superfamily of structurally related protein families found throughout the tree of life. Actin-related proteins include chaperones, carbohydrate kinases, and other enzymes, as well as a staggeringly diverse set of proteins that use the energy from ATP hydrolysis to form dynamic, linear polymers. Despite differing widely from one another in filament structure and dynamics, these polymers play important roles in ordering cell space in bacteria, archaea, and eukaryotes. It is not known whether these polymers descended from a single ancestral polymer or arose multiple times by convergent evolution from monomeric actin-like proteins. In this work, we provide an overview of the structures, dynamics, and functions of this diverse set. Then, using a phylogenetic analysis to examine actin evolution, we show that the actin-related protein families that form polymers are more closely related to one another than they are to other nonpolymerizing members of the actin superfamily. Thus all the known actin-like polymers are likely to be the descendants of a single, ancestral, polymer-forming actin-like protein.
Collapse
Affiliation(s)
- Patrick R Stoddard
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Ethan Garner
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Buzz Baum
- MRC-Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
- Institute of Physics of Living Systems, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Forde AJ, Albrecht N, Klingl A, Donovan C, Bramkamp M. Polymerization Dynamics of the Prophage-Encoded Actin-Like Protein AlpC Is Influenced by the DNA-Binding Adapter AlpA. Front Microbiol 2017; 8:1429. [PMID: 28824563 PMCID: PMC5539076 DOI: 10.3389/fmicb.2017.01429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Abstract
The Corynebacterium glutamicum ATCC 13032 prophage CGP3 encodes an actin-like protein, AlpC that was shown to be involved in viral DNA transport and efficient viral DNA replication. AlpC binds to an adapter, AlpA that in turn binds to specific DNA sequences, termed alpS sites. Thus, the AlpAC system is similar to the known plasmid segregation system ParMRS. So far it is unclear how the AlpACS system mediates DNA transport and, whether AlpA and AlpC functionally interact. We show here that AlpA modulates AlpC filamentation dynamics in a dual way. Unbound AlpA stimulates AlpC filament disassembly, while AlpA bound to alpS sites allows for AlpC filament formation. Based on these results we propose a simple search and capture model that explains DNA segregation by viral AlpACS DNA segregation system.
Collapse
|
8
|
Abstract
Traditionally eukaryotes exclusive cytoskeleton has been found in bacteria and other prokaryotes. FtsZ, MreB and CreS are bacterial counterpart of eukaryotic tubulin, actin filaments and intermediate filaments, respectively. FtsZ can assemble to a Z-ring at the cell division site, regulate bacterial cell division; MreB can form helical structure, and involve in maintaining cell shape, regulating chromosome segregation; CreS, found in Caulobacter crescentus (C. crescentus), can form curve or helical filaments in intracellular membrane. CreS is crucial for cell morphology maintenance. There are also some prokaryotic unique cytoskeleton components playing crucial roles in cell division, chromosome segregation and cell morphology. The cytoskeleton components of Mycobacterium tuberculosis (M. tuberculosis), together with their dynamics during exposure to antibiotics are summarized in this article to provide insights into the unique organization of this formidable pathogen and druggable targets for new antibiotics.
Collapse
Affiliation(s)
- Huan Wang
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Longxiang Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Hongping Luo
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Jianping Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| |
Collapse
|
9
|
Jékely G. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles. Cold Spring Harb Perspect Biol 2014; 6:a016030. [PMID: 25183829 DOI: 10.1101/cshperspect.a016030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming.
Collapse
Affiliation(s)
- Gáspár Jékely
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| |
Collapse
|
10
|
Theriot JA. Why are bacteria different from eukaryotes? BMC Biol 2013; 11:119. [PMID: 24330667 PMCID: PMC3874686 DOI: 10.1186/1741-7007-11-119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 01/09/2023] Open
Affiliation(s)
- Julie A Theriot
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Wegrzyn K, Witosinska M, Schweiger P, Bury K, Jenal U, Konieczny I. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation. MICROBIOLOGY-SGM 2013; 159:1010-1022. [PMID: 23538715 DOI: 10.1099/mic.0.065490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Pawel Schweiger
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Urs Jenal
- Center for Molecular Life Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
12
|
Abstract
Far from being simple 'bags' of enzymes, bacteria are richly endowed with ultrastructures that challenge and expand standard definitions of the cytoskeleton. Here we review rods, rings, twisted pairs, tubes, sheets, spirals, moving patches, meshes and composites, and suggest defining the term 'bacterial cytoskeleton' as all cytoplasmic protein filaments and their superstructures that move or scaffold (stabilize/position/recruit) other cellular materials. The evolution of each superstructure has been driven by specific functional requirements. As a result, while homologous proteins with different functions have evolved to form surprisingly divergent superstructures, those of unrelated proteins with similar functions have converged.
Collapse
Affiliation(s)
- Martin Pilhofer
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, 1200 E California Blvd, M/C 114-96, Pasadena, CA, USA.
| | | |
Collapse
|
13
|
Dobruk-Serkowska A, Caccamo M, Rodríguez-Castañeda F, Wu M, Bryce K, Ng I, Schumacher MA, Barillà D, Hayes F. Uncoupling of nucleotide hydrolysis and polymerization in the ParA protein superfamily disrupts DNA segregation dynamics. J Biol Chem 2012; 287:42545-53. [PMID: 23093445 DOI: 10.1074/jbc.m112.410324] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA segregation in bacteria is mediated most frequently by proteins of the ParA superfamily that transport DNA molecules attached via the segrosome nucleoprotein complex. Segregation is governed by a cycle of ATP-induced polymerization and subsequent depolymerization of the ParA factor. Here, we establish that hyperactive ATPase variants of the ParA homolog ParF display altered segrosome dynamics that block accurate DNA segregation. An arginine finger-like motif in the ParG centromere-binding factor augments ParF ATPase activity but is ineffective in stimulating nucleotide hydrolysis by the hyperactive proteins. Moreover, whereas polymerization of wild-type ParF is accelerated by ATP and inhibited by ADP, filamentation of the mutated proteins is blocked indiscriminately by nucleotides. The mutations affect a triplet of conserved residues that are situated neither in canonical nucleotide binding and hydrolysis motifs in the ParF tertiary structure nor at interfaces implicated in ParF polymerization. Instead the residues are involved in shaping the contours of the binding pocket so that nucleotide binding locks the mutant proteins into a configuration that is refractory to polymerization. Thus, the architecture of the pocket not only is crucial for optimal ATPase kinetics but also plays a key role in the polymerization dynamics of ParA proteins that drive DNA segregation ubiquitously in procaryotes.
Collapse
|
14
|
Kraemer JA, Erb ML, Waddling CA, Montabana EA, Zehr EA, Wang H, Nguyen K, Pham DSL, Agard DA, Pogliano J. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell. Cell 2012; 149:1488-99. [PMID: 22726436 DOI: 10.1016/j.cell.2012.04.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/27/2012] [Accepted: 04/13/2012] [Indexed: 01/24/2023]
Abstract
Tubulins are essential for the reproduction of many eukaryotic viruses, but historically, bacteriophage were assumed not to require a cytoskeleton. Here, we identify a tubulin-like protein, PhuZ, from bacteriophage 201φ2-1 and show that it forms filaments in vivo and in vitro. The PhuZ structure has a conserved tubulin fold, with an unusual, extended C terminus that we demonstrate to be critical for polymerization in vitro and in vivo. Longitudinal packing in the crystal lattice mimics packing observed by EM of in-vitro-formed filaments, indicating how interactions between the C terminus and the following monomer drive polymerization. PhuZ forms a filamentous array that is required for positioning phage DNA within the bacterial cell. Correct positioning to the cell center and optimal phage reproduction only occur when the PhuZ filament is dynamic. Thus, we show that PhuZ assembles a spindle-like array that functions analogously to the microtubule-based spindles of eukaryotes.
Collapse
Affiliation(s)
- James A Kraemer
- Department of Biochemistry and Biophysics and the Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Popp D, Narita A, Lee LJ, Larsson M, Robinson RC. Microtubule-like properties of the bacterial actin homolog ParM-R1. J Biol Chem 2012; 287:37078-88. [PMID: 22908230 DOI: 10.1074/jbc.m111.319491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In preparation for mammalian cell division, microtubules repeatedly probe the cytoplasm to capture chromosomes and assemble the mitotic spindle. Critical features of this microtubule system are the formation of radial arrays centered at the centrosomes and dynamic instability, leading to persistent cycles of polymerization and depolymerization. Here, we show that actin homolog, ParM-R1 that drives segregation of the R1 multidrug resistance plasmid from Escherichia coli, can also self-organize in vitro into asters, which resemble astral microtubules. ParM-R1 asters grow from centrosome-like structures consisting of interconnected nodes related by a pseudo 8-fold symmetry. In addition, we show that ParM-R1 is able to perform persistent microtubule-like oscillations of assembly and disassembly. In vitro, a whole population of ParM-R1 filaments is synchronized between phases of growth and shrinkage, leading to prolonged synchronous oscillations even at physiological ParM-R1 concentrations. These results imply that the selection pressure to reliably segregate DNA during cell division has led to common mechanisms within diverse segregation machineries.
Collapse
Affiliation(s)
- David Popp
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, 138673, Singapore.
| | | | | | | | | |
Collapse
|
16
|
Ingerson-Mahar M, Gitai Z. A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev 2011; 36:256-66. [PMID: 22092065 DOI: 10.1111/j.1574-6976.2011.00316.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/02/2011] [Accepted: 11/10/2011] [Indexed: 12/16/2022] Open
Abstract
Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes.
Collapse
|
17
|
Graumann PL. Subcellular positioning: unstable filaments on the move. Curr Biol 2011; 21:R663-5. [PMID: 21920299 DOI: 10.1016/j.cub.2011.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A key question in cell biology is how proteins and entire protein complexes localize to defined subcellular positions in non-compartmentalized cells or within cell compartments. A recent report involving computational modeling and live-cell imaging suggests that dynamically unstable protein filaments provide an adaptable and versatile positioning system.
Collapse
|
18
|
Aylett CH, Löwe J, Amos LA. New Insights into the Mechanisms of Cytomotive Actin and Tubulin Filaments. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:1-71. [DOI: 10.1016/b978-0-12-386033-0.00001-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|