1
|
Accili D, Deng Z, Liu Q. Insulin resistance in type 2 diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01114-y. [PMID: 40247011 DOI: 10.1038/s41574-025-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Insulin resistance is an integral pathophysiological feature of type 2 diabetes mellitus. Here, we review established and emerging cellular mechanisms of insulin resistance, their complex integrative features and their relevance to disease progression. While recognizing the heterogeneity of the elusive fundamental disruptions that cause insulin resistance, we endorse the view that effector mechanisms impinge on insulin receptor signalling and its relationship with plasma levels of insulin. We focus on hyperinsulinaemia and its consequences: acutely impaired but persistent insulin action, with reduced ability to lower glucose levels but preserved lipid synthesis and lipoprotein secretion. We emphasize the role of insulin sensitization as a therapeutic goal in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Zhaobing Deng
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Qingli Liu
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
2
|
Xu X, Wang R, Pei L, Wang Q, Liu C. Glucose Transport by Follicle-Stimulating Hormone Is Mediated Through the Akt/FOXO1 Pathway in Ovine Granulosa Cells. Vet Med Sci 2025; 11:e70294. [PMID: 40065595 PMCID: PMC11893720 DOI: 10.1002/vms3.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/29/2024] [Accepted: 12/30/2024] [Indexed: 03/14/2025] Open
Abstract
Glycolysis in granulosa cells (GCs) is the primary location of energy metabolism and its substrates in oocytes and is closely related to follicular development in mammals. The complex morphological structure and physiological functions of GCs are regulated by follicle-stimulating hormone (FSH), but little is known about how FSH regulates glycolysis in GCs, and its mechanism remains unclear. The purpose of this study is to investigate the mechanism by which FSH activates the Akt/FOXO1 pathway, thereby regulating glucose metabolism in ovine GCs. Granulosa cells were cultured in the presence of different concentrations of FSH and a CCK-8 assay was used to measure the proliferation of the treated cells. Next, qRT-PCR was performed to measure the transcription of the target genes, glucose transporter (GLUT). Western-blot analysis of the phospho-Akt and -FOXO1 levels induced by FSH through the glucose signalling pathway, in addition to the effects of these proteins on the expression levels of the downstream GLUT genes, was measured. Results showed that the addition of 10ng/mL FSH to the culture medium increased the viability of granulosa cells. Transcription of GLUT1 and 4 was significantly up-regulated in FSH-treated cells through activation of the Akt/FOXO1 phosphorylation pathway, thereby affecting glucose metabolism. This study contributes to the current understanding of the metabolic features of and the associated developmental pathways of ovine follicular GCs.
Collapse
Affiliation(s)
- Xin Xu
- College of Life Science and TechnologyState Key Laboratory Incubation Base for Conservation and Utilization of Bio‐Resource in Tarim BasinTarim UniversityAlarChina
| | - Ruotong Wang
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| | - Linlin Pei
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| | - Quanfeng Wang
- Jinken Animal Husbandry Technology Co., Ltd.HetianChina
| | - Chunjie Liu
- College of Animal ScienceKey Laboratory of Livestock and Forage Resources Utilization Around Tarim, Ministry of Agriculture and Rural AffairsTarim UniversityAlarChina
| |
Collapse
|
3
|
Choi M, Jeong K, Pak Y. Caveolin-2 controls preadipocyte survival in the mitotic clonal expansion for adipogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119793. [PMID: 39038612 DOI: 10.1016/j.bbamcr.2024.119793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
Here, we report that Caveolin-2 (Cav-2) is a cell cycle regulator in the mitotic clonal expansion (MCE) for adipogenesis. For the G2/M phase transition and re-entry into the G1 phase, dephosphorylated Cav-2 by protein tyrosine phosphatase 1B (PTP1B) controlled epigenetic activation of Ccnb1, Cdk1, and p21 in a lamin A/C-dependent manner, thereby ensuring the survival of preadipocytes. Cav-2, associated with lamin A/C, recruited the repressed promoters of Ccnb1 and Cdk1 for activation, and disengaged the active promoter of p21 from lamin A/C for inactivation through histone H3 modifications at the nuclear periphery. Cav-2 deficiency abrogated the histone H3 modifications and impeded the transactivation of Ccnb1, Cdk1, and p21, leading to a delay in mitotic entry, retardation of re-entry into G1 phase, and the apoptotic cell death of preadipocytes. Re-expression of Cav-2 restored the G2/M phase transition and G1 phase re-entry, preadipocyte survival, and adipogenesis in Cav-2-deficient preadipocytes. Our study uncovers a novel mechanism by which cell cycle transition and apoptotic cell death are controlled for adipocyte hyperplasia.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science, PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
4
|
Li X, Yang J, Blockeel C, Lin M, Tian X, Wu H, Cao Y, Deng L, Zhou X, Xie J, Hu Y, Chen X. Association of severity of menstrual dysfunction with cardiometabolic risk markers among women with polycystic ovary syndrome. Acta Obstet Gynecol Scand 2024; 103:1606-1614. [PMID: 38715377 PMCID: PMC11266638 DOI: 10.1111/aogs.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/23/2024] [Accepted: 04/13/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Polycystic ovary syndrome (PCOS) is associated with a wide range of unfavorable cardiometabolic risk factors, including obesity, hypertension, insulin resistance, impaired glucose metabolism, dyslipidemia, and metabolic syndrome. Compared with women with regular menstrual cycles, women with a history of irregular menstrual periods have an increased unfavorable cardiometabolic risk. Recently, the association between the severity of oligomenorrhea and hyperinsulinemia and insulin resistance has been demonstrated. However, evidence linking the severity of menstrual cyclicity with cardiometabolic risk in PCOS women is scarce. MATERIAL AND METHODS This work was a prospective cross-sectional study. A total of 154 women diagnosed with PCOS by the Rotterdam criteria were recruited from July 2021 to September 2022. PCOS women with eumenorrheic (eumeno group), oligomenorrhea (oligo group), and amenorrhea (ameno group) underwent history and physical examination, gonadal steroid hormone measurement, lipid profile, oral glucose tolerance test, and homeostasis model assessment of insulin resistance. RESULTS A trend toward an increase in unfavorable cardiometabolic risk markers including obesity, hypertension, prevalence of insulin resistance, prediabetes, dyslipidemia, and metabolic syndrome was observed in the ameno group (n = 57) as compared with the eumeno (n = 24) or oligo group (n = 73). A higher prevalence of insulin resistance (odds ratio [OR]: 3.02; 95% confidence interval [CI]: 1.03-8.81) and prediabetes (OR: 3.94; 95% CI: 1.01-15.40) was observed in the ameno group than in the eumeno group, and a higher proportion of dyslipidemia (OR: 2.44; 95% CI: 1.16-5.15) was observed in the ameno group than in the oligo group in the binary logistic regression analysis after adjusting for confounding factors. CONCLUSIONS PCOS women with amenorrhea show a higher prevalence of insulin resistance, prediabetes, and dyslipidemia compared with those with oligomenorrhea or eumenorrhea. The severity of menstrual dysfunction could be used as a readily obtainable marker for the identification of PCOS women at greatest risk of cardiometabolic diseases.
Collapse
Affiliation(s)
- Xuelan Li
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Jie Yang
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Christophe Blockeel
- Brussels, IVF, center for Reproductive MedicineUniversitair Ziekenhuis Brussel, Vrije Universiteit BrusselBrusselsBelgium
| | - Min Lin
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Xiaoyan Tian
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Haocun Wu
- Department of Clinical LaboratoryShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Yaqi Cao
- College of ScienceMinzu University of ChinaBeijingChina
| | - Ling Deng
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Xianli Zhou
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Jinying Xie
- College of ScienceMinzu University of ChinaBeijingChina
| | - Yunzhao Hu
- Department of CardiologyShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Xin Chen
- Reproductive Medicine CenterShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| |
Collapse
|
5
|
Choi M, Lee J, Jeong K, Pak Y. Caveolin-2 palmitoylation turnover facilitates insulin receptor substrate-1-directed lipid metabolism by insulin receptor tyrosine kinase. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167173. [PMID: 38631410 DOI: 10.1016/j.bbadis.2024.167173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Here, we show that insulin induces palmitoylation turnover of Caveolin-2 (Cav-2) in adipocytes. Acyl protein thioesterases-1 (APT1) catalyzes Cav-2 depalmitoylation, and zinc finger DHHC domain-containing protein palmitoyltransferase 21 (ZDHHC21) repalmitoylation of the depalmitoylated Cav-2 for the turnover, thereby controlling insulin receptor (IR)-Cav-2-insulin receptor substrate-1 (IRS-1)-Akt-driven signaling. Insulin-induced palmitoylation turnover of Cav-2 facilitated glucose uptake and fat storage through induction of lipogenic genes. Cav-2-, APT1-, and ZDHHC21-deficient adipocytes, however, showed increased induction of lipolytic genes and glycerol release. In addition, white adipose tissues from insulin sensitive and resistant obese patients exhibited augmented expression of LYPLA1 (APT1) and ZDHHC20 (ZDHHC20). Our study identifies the specific enzymes regulating Cav-2 palmitoylation turnover, and reveals a new mechanism by which insulin-mediated lipid metabolism is controlled in adipocytes.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
6
|
Geng Y, Liu Z, Hu R, Ma W, Wu X, Dong H, Song K, Xu X, Huang Y, Li F, Song Y, Zhang M. Opportunities and challenges: interleukin-22 comprehensively regulates polycystic ovary syndrome from metabolic and immune aspects. J Ovarian Res 2023; 16:149. [PMID: 37525285 PMCID: PMC10388558 DOI: 10.1186/s13048-023-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.
Collapse
Affiliation(s)
- Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Wenwen Ma
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiao Wu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Haoxu Dong
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Kunkun Song
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Xiaohu Xu
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
- Department of Traditional Chinese Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Choi M, Kwon H, Pak Y. Caveolin-2 in association with nuclear lamina controls adipocyte hypertrophy. FASEB J 2023; 37:e22745. [PMID: 36637913 DOI: 10.1096/fj.202201028rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Here, we identify that Caveolin-2 (Cav-2), an integral membrane protein, controls adipocyte hypertrophy in association with nuclear lamina. In the hypertrophy stage of adipogenesis, pY19-Cav-2 association with lamin A/C facilitated the disengagement of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ) from lamin A/C and repressed Cav-2 promoter at the nuclear periphery for epigenetic activation of Cav-2, and thereby promoted C/EBPα and PPARγ-induced adipocyte hypertrophy. Stable expression of Cav-2 was required and retained by phosphorylation, deubiquitination, and association with lamin A/C for the adipocyte hypertrophy. However, obese adipocytes exhibited augmented Cav-2 stability resulting from the up-regulation of lamin A/C over lamin B1, protein tyrosine phosphatase 1B (PTP1B), and nuclear deubiquitinating enzyme (DUB), Uchl5. Our findings show a novel epigenetic regulatory mechanism of adipocyte hypertrophy by Cav-2 at the nuclear periphery.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
8
|
He Q, Gao L, Zhang F, Yao W, Wu J, Song N, Luo J, Zhang Y. The FoxO1-ATGL axis alters milk lipolysis homeostasis through PI3K/AKT signaling pathway in dairy goat mammary epithelial cells. J Anim Sci 2023; 101:skad286. [PMID: 37638641 PMCID: PMC10699848 DOI: 10.1093/jas/skad286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Goat milk is enriched in fatty acids which are beneficial to human health. Previous research has revealed that 98% of milk fat is composed of triglycerides. However, the mechanisms regulating milk fat composition remain unclear. Forkhead box protein O1 (FoxO1) is a crucial regulatory factor involved in lipid metabolism across various cell types. Chromatin immunoprecipitation sequencing (ChIP)-seq data) and RNA sequencing (RNA-seq) data revealed that have indicated a close association between FoxO1 was closely related to lipid metabolism during lactation in dairy goats. The objective of this study was to investigate the mechanisms by which FoxO1 regulates lipid metabolism in goat mammary epithelial cells (GMECs). FoxO1 knockdown significantly downregulated the expression of adipose triglyceride lipase (ATGL) and suppressed the activity of the ATGL promoter. Consistently, the number of lipid droplets decreased significantly in FoxO1-overexpressing cells and increased in ATGL-knockdown cells. To further verify the effect of FoxO1 on ATGL promoter activity, cells were transfected with four promoter fragments of different lengths. We found that the core region of the ATGL promoter was located between -882 bp and -524 bp, encompassing two FoxO1 binding sites (FKH1 and FKH2). Mutations in the FoxO1 binding sites significantly downregulated ATGL promoter activity in GMECs. Luciferase reporter assays demonstrated that FoxO1 overexpression markedly enhanced ATGL promoter activity. Furthermore, site-directed mutation confirmed that FKH1 and FKH2 sites were simultaneously mutated significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activities simultaneous mutation of FKH1 and FKH2 sites significantly attenuated the stimulatory effect of FoxO1 on ATGL promoter activity. ChIP assays showed that FoxO1 directly binds to the FKH2 element located in the ATGL promoter in vivo. Finally, immunofluorescence staining revealed that insulin promotes the translocation of FoxO1 from the nucleus to the cytoplasm, thereby attenuating the FoxO1-induced activation of the ATGL promoter. Collectively, these findings uncover a novel pathway where by FoxO1 may regulate lipid metabolism in GMECs specifically by modulating the transcriptional activity of ATGL.
Collapse
Affiliation(s)
- Qiuya He
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liangjiahui Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fuhong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ning Song
- College of Animal Science and Technology, Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yong Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Choi M, Kwon H, Jeong K, Pak Y. Epigenetic regulation of Cebpb activation by pY19-Caveolin-2 at the nuclear periphery in association with the nuclear lamina. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119363. [PMID: 36165916 DOI: 10.1016/j.bbamcr.2022.119363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Here, we show that Caveolin-2 (Cav-2) is an epigenetic regulator for adipogenesis. Upon adipogenic stimulation, inner nuclear membrane (INM)-targeted pY19-Cav-2 interacted with lamin A/C to disengage the repressed Cebpb promoter from lamin A/C, which facilitated the Cebpb promoter association with lamin B1. Consequently, pY19-Cav-2 recruited lysine demethylase 4b (KDM4b) for demethylation of histone H3 lysine 9 trimethylation (H3K9me3) and histone acetyltransferase GCN5 for acetylation of H3K27, and subsequently RNA polymerase II (Pol II) on Cebpb promoter for epigenetic activation of Cebpb, to initiate adipogenesis. Cav-2 knock-down abrogated the Cebpb activation and blocked the Pparg2 and Cebpa activation. Re-expression of Cav-2 restored Cebpb activation and adipogenesis in Cav-2-deficient preadipocytes. Our data identify a new mechanism by which the epigenetic activation of Cebpb is controlled at the nuclear periphery to promote adipogenesis.
Collapse
Affiliation(s)
- Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuho Jeong
- Department of Biochemistry, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
10
|
Najjar SM, Abdolahipour R, Ghadieh HE, Jahromi MS, Najjar JA, Abuamreh BAM, Zaidi S, Kumarasamy S, Muturi HT. Regulation of Insulin Clearance by Non-Esterified Fatty Acids. Biomedicines 2022; 10:biomedicines10081899. [PMID: 36009446 PMCID: PMC9405499 DOI: 10.3390/biomedicines10081899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin stores lipid in adipocytes and prevents lipolysis and the release of non-esterified fatty acids (NEFA). Excessive release of NEFA during sustained energy supply and increase in abdominal adiposity trigger systemic insulin resistance, including in the liver, a major site of insulin clearance. This causes a reduction in insulin clearance as a compensatory mechanism to insulin resistance in obesity. On the other hand, reduced insulin clearance in the liver can cause chronic hyperinsulinemia, followed by downregulation of insulin receptor and insulin resistance. Delineating the cause–effect relationship between reduced insulin clearance and insulin resistance has been complicated by the fact that insulin action and clearance are mechanistically linked to insulin binding to its receptors. This review discusses how NEFA mobilization contributes to the reciprocal relationship between insulin resistance and reduced hepatic insulin clearance, and how this may be implicated in the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2376; Fax: +1-740-593-2320
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand P.O. Box 100, Lebanon
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Internal Medicine, College of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Basil A. M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
11
|
Baboota RK, Spinelli R, Erlandsson MC, Brandao BB, Lino M, Yang H, Mardinoglu A, Bokarewa MI, Boucher J, Kahn CR, Smith U. Chronic hyperinsulinemia promotes human hepatocyte senescence. Mol Metab 2022; 64:101558. [PMID: 35872305 PMCID: PMC9364104 DOI: 10.1016/j.molmet.2022.101558] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes. METHODS Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed. RESULTS Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes. CONCLUSION Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin.
Collapse
Affiliation(s)
- Ritesh K. Baboota
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosa Spinelli
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy,URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden,Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bruna B. Brandao
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, USA
| | - Marsel Lino
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, USA
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden,Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jeremie Boucher
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Metabolic Disease, Evotec International GmbH, Göttingen, Germany
| | - C. Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, USA
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Corresponding author. The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, Blå Stråket 5, SE-413 45, Gothenburg, Sweden.
| |
Collapse
|
12
|
Speelman T, Dale L, Louw A, Verhoog NJD. The Association of Acute Phase Proteins in Stress and Inflammation-Induced T2D. Cells 2022; 11:2163. [PMID: 35883605 PMCID: PMC9321356 DOI: 10.3390/cells11142163] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/06/2023] Open
Abstract
Acute phase proteins (APPs), such as plasminogen activator inhibitor-1 (PAI-1), serum amyloid A (SAA), and C-reactive protein (CRP), are elevated in type-2 diabetes (T2D) and are routinely used as biomarkers for this disease. These APPs are regulated by the peripheral mediators of stress (i.e., endogenous glucocorticoids (GCs)) and inflammation (i.e., pro-inflammatory cytokines), with both implicated in the development of insulin resistance, the main risk factor for the development of T2D. In this review we propose that APPs, PAI-1, SAA, and CRP, could be the causative rather than only a correlative link between the physiological elements of risk (stress and inflammation) and the development of insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Nicolette J. D. Verhoog
- Biochemistry Department, Stellenbosch University, Van der Byl Street, Stellenbosch 7200, South Africa; (T.S.); (L.D.); (A.L.)
| |
Collapse
|
13
|
Tamas I, Major E, Horvath D, Keller I, Ungvari A, Haystead TA, MacDonald JA, Lontay B. Mechanisms by which smoothelin-like protein 1 reverses insulin resistance in myotubules and mice. Mol Cell Endocrinol 2022; 551:111663. [PMID: 35508278 DOI: 10.1016/j.mce.2022.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Insulin resistance (InR) is manifested in skeletal muscle by decreased insulin-stimulated glucose uptake due to impaired insulin signaling and multiple post-receptor intracellular defects. Chronic glucose-induced insulin resistance leads to the activation of Ser/Thr kinases and elevated phosphorylation of insulin receptor substrate 1 (IRS1) on Ser residues. Phosphorylation of IRS1 triggers the dissociation of IRS1 and its downstream effector, phosphatidylinositol 3-kinase. In the present study, we provide evidence for the insulin-sensitizing role of smoothelin-like protein 1 (SMTNL1) that is a ligand-dependent co-regulator of steroid receptors, predominantly the progesterone receptor. SMTNL1 was transiently overexpressed in insulin-resistant C2C12 myotubes. A proteome profiler array revealed that mTOR and Ser/Thr kinases were SMTNL1-dependent signaling pathways. In the presence of progesterone, overexpression was coupled to decreased Ser phosphorylation of IRS1 at Ser307, Ser318, and Ser612 residues. SMTNL1 also induced the expression and activity of the p85 subunit of PI3K. SMTNL1 regulated the expression of PKCε, which phosphorylates IRS1 at Ser318 residue. SMTNL1 also regulated ERK1/2 and JNK, which phosphorylate IRS1 at Ser612 and Ser307, respectively. Real-time metabolic measurements of oxygen consumption rate and extracellular acidification rate revealed that SMTNL1 improved glycolysis and promoted the utilization of alternative carbon fuels. SMTNL1 also rescued the mitochondrial respiration defect induced by chronic insulin exposure. Collectively, SMTNL1 plays a crucial role in maintaining the physiological ratio of Tyr/Ser IRS1 phosphorylation and attenuates the insulin-signaling cascade that contributes to impaired glucose disposal, which makes it a potential therapeutic target for improving InR.
Collapse
Affiliation(s)
- Istvan Tamas
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Evelin Major
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Horvath
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ilka Keller
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Ungvari
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Timothy A Haystead
- Duke University School of Medicine, Department of Pharmacology and Cancer Biology, Durham, NC, USA
| | - Justin A MacDonald
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
14
|
Integrating adipocyte insulin signaling and metabolism in the multi-omics era. Trends Biochem Sci 2022; 47:531-546. [PMID: 35304047 DOI: 10.1016/j.tibs.2022.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 12/16/2022]
Abstract
Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omics approaches help to elucidate adipocyte insulin action in cellular time and space.
Collapse
|
15
|
Ezeh U, Pisarska MD, Azziz R. Association of severity of menstrual dysfunction with hyperinsulinemia and dysglycemia in polycystic ovary syndrome. Hum Reprod 2022; 37:553-564. [PMID: 35048126 PMCID: PMC8888996 DOI: 10.1093/humrep/deac001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/15/2021] [Indexed: 01/22/2023] Open
Abstract
STUDY QUESTION Is the severity of menstrual cyclicity related to hyperinsulinemia and dysglycemia in women with hyperandrogenic polycystic ovary syndrome (PCOS)? SUMMARY ANSWER Hyperandrogenic PCOS women with amenorrhea, compared to those with oligomenorrhea or eumenorrhea, had a greater risk of post-challenge hyperinsulinemia, which may explain their higher prevalence of dysglycemia. WHAT IS KNOWN ALREADY PCOS is associated with metabolic dysregulation including insulin resistance (IR) and hyperinsulinemia, risk factors for type 2 diabetes mellitus (T2DM) and other vascular-metabolic morbidities. Although the severity of menstrual cyclicity is associated with IR in PCOS, it is unclear whether, and to what extent, it is related to hyperinsulinemia and glycemic abnormalities. STUDY DESIGN, SIZE, DURATION We prospectively compared the degree of menstrual cyclicity with the presence of dysglycemia (elevated 1-h plasma glucose ≥155 mg/dl; abnormal glucose tolerance [AGT], including prediabetes and T2DM; and AUC for glucose [G-AUC]) or dynamic state hyperinsulinemia (peak insulin levels either at 1 or 2 h of the oral glucose tolerance test (oGTT) and AUC for insulin [I-AUC]) in 333 hyperandrogenic PCOS women. PARTICIPANTS/MATERIALS, SETTING, METHODS In a tertiary care setting, hyperandrogenic PCOS participants with ovulatory eumenorrhea (Ov-Eumeno, n = 25), anovulatory eumenorrhea (Anov-Eumeno, n = 33), oligomenorrhea (Oligo, n = 150) and amenorrhea (Ameno, n = 125) underwent comprehensive phenotyping and a 2-h 75 g oGTT. MAIN RESULTS AND THE ROLE OF CHANCE Mean BMI was greater among Ameno women than among Oligo, Anov-Eumeno or Ov-Eumeno women. Adjusting for BMI, the Ameno group demonstrated higher mean 1- and 2-h insulin and glucose, peak insulin and I-AUC and G-AUC, and either had a higher, or tended toward having a higher, prevalence of elevated 1-h glucose level and prevalence of AGT than the Oligo, Anov-Eumeno or Ov-Eumeno groups. In logistic regression, adjusting for BMI, Ameno women were more likely to have: AGT than Oligo women (odds ratio [OR]: 2.3; 95% CI: 1.3 to 4.2); elevated 1-h glucose (OR: 10.2; CI: 1.3-79.7) than those with Ov-Eumeno; and both AGT (OR: 1.7; CI: 1.1-2.6) and elevated 1-h glucose (OR: 1.8; CI: 1.1-2.8) than those with Anov-Eumeno or Ov-Eumeno when combined. Race/ethnicity, age, waist-to-hip ratio, fasting insulin and glucose, and biochemical or clinical measures of hyperandrogenism were similar across the four menstrual categories. LIMITATIONS, REASONS FOR CAUTION Our study was limited by its cross-sectional nature and by studying women affected by PCOS as defined by the Androgen Excess & PCOS Society criteria (i.e. Rotterdam Phenotypes A, B and C) who were identified in the clinical setting. Consequently, extrapolation of the present data to other PCOS phenotypes (e.g. PCOS Phenotype D) should be made with caution. WIDER IMPLICATIONS OF THE FINDINGS In hyperandrogenic PCOS phenotypes, a history of amenorrhea, compared to oligomenorrhea or eumenorrhea, suggests a more severe cardiometabolic risk, including a higher degree of hyperinsulinemia and greater prevalence of glycemic abnormalities. These findings may assist in refining the treatment and screening guidelines for glycemic abnormalities in PCOS. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by grants R01-DK073632 and R01-HD29364 from the NIH and an endowment of the Helping Hand of Los Angeles, Inc. (to R.A.). M.D.P. has no competing interests to declare. U.E. is an investor in Concentric Analgesics, Inc. R.A. serves as a consultant for Spruce Biosciences and Fortress Biotech and an advisor for Aurora Forge. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- U Ezeh
- Department Obstetrics & Gynecology, Alta Bates Summit Medical Center/Sutter Health, Berkeley, CA, USA
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Department of Obstetrics & Gynecology, and Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M D Pisarska
- Department of Obstetrics & Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - R Azziz
- Department of Obstetrics & Gynecology, and Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Albany, NY, USA
- Department of Healthcare Organization & Policy, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Correspondence address. Womens, Infant & Children, Ste. 10390, 1700 6th Ave, South, Birmingham, AL 35249-7333, USA. Tel: +1-205-934-1030; E-mail:
| |
Collapse
|
16
|
Nathanael J, Suardana P, Vianney YM, Dwi Putra SE. The role of FoxO1 and its modulation with small molecules in the development of diabetes mellitus: A review. Chem Biol Drug Des 2021; 99:344-361. [PMID: 34862852 DOI: 10.1111/cbdd.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 2 (T2D) is one of the metabolic disorders suffered by a global human being. Certain factors, such as lifestyle and heredity, can increase a person's tendency for T2D. Various genes and proteins play a role in the development of insulin resistance and ultimately diabetes in which one central protein that is discussed in this review is FoxO1. In this review, we regard FoxO1 activation as detrimental, promote high plasma glucose level, and induce insulin resistance. Indeed, many contrasting studies arise since FoxO1 is an important protein to alleviate oxidative stress and promote cell survival, for example, also by preventing hyperglycemic-induced cell death. Inter-relation to PPARG, another important protein in metabolism, is also discussed. Ultimately, we discussed contrasting approaches of targeting FoxO1 to combat diabetes mellitus by small molecules.
Collapse
Affiliation(s)
- Joshua Nathanael
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Putu Suardana
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Yoanes Maria Vianney
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| | - Sulistyo Emantoko Dwi Putra
- Department of Biotechnology, Faculty of Biotechnology, University of Surabaya, Surabaya, East Java, Indonesia
| |
Collapse
|
17
|
Abstract
The Akt isoforms-AS160-GLUT4 axis is the primary axis that governs glucose homeostasis in the body. The first step on the path to insulin resistance is deregulated Akt isoforms. This could be Akt isoform expression, its phosphorylation, or improper isoform-specific redistribution to the plasma membrane in a specific tissue system. The second step is deregulated AS160 expression, its phosphorylation, improper dissociation from glucose transporter storage vesicles (GSVs), or its inability to bind to 14-3-3 proteins, thus not allowing it to execute its function. The final step is improper GLUT4 translocation and aberrant glucose uptake. These processes lead to insulin resistance in a tissue-specific way affecting the whole-body glucose homeostasis, eventually progressing to an overt diabetic phenotype. Thus, the relationship between these three key proteins and their proper regulation comes out as the defining axis of insulin signaling and -resistance. This review summarizes the role of this central axis in insulin resistance and disease in a new light.
Collapse
Affiliation(s)
- Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
18
|
Viswambharan H, Yuldasheva NY, Imrie H, Bridge K, Haywood NJ, Skromna A, Hemmings KE, Clark ER, Gatenby VK, Cordell P, Simmons KJ, Makava N, Abudushalamu Y, Endesh N, Brown J, Walker AMN, Futers ST, Porter KE, Cubbon RM, Naseem K, Shah AM, Beech DJ, Wheatcroft SB, Kearney MT, Sukumar P. Novel Paracrine Action of Endothelium Enhances Glucose Uptake in Muscle and Fat. Circ Res 2021; 129:720-734. [PMID: 34420367 PMCID: PMC8448413 DOI: 10.1161/circresaha.121.319517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Nadira Y Yuldasheva
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Helen Imrie
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Anna Skromna
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Karen E Hemmings
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Emily R Clark
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - V Kate Gatenby
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Paul Cordell
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Katie J Simmons
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Natallia Makava
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Yilizila Abudushalamu
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Naima Endesh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Jane Brown
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Andrew M N Walker
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Simon T Futers
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Khalid Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, King's College London (A.M.S.)
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| |
Collapse
|
19
|
Coppola A, Capuani B, Pacifici F, Pastore D, Arriga R, Bellia A, Andreadi A, Di Daniele N, Lauro R, Della-Morte D, Sconocchia G, Lauro D. Activation of Peripheral Blood Mononuclear Cells and Leptin Secretion: New Potential Role of Interleukin-2 and High Mobility Group Box (HMGB)1. Int J Mol Sci 2021; 22:7988. [PMID: 34360753 PMCID: PMC8347813 DOI: 10.3390/ijms22157988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
Activation of innate immunity and low-grade inflammation contributes to hyperglycemia and an onset of Type 2 Diabetes Mellitus (T2DM). Interleukin-2 (IL-2), leptin, High Mobility Group Box-1 (HMGB-1), and increased glucose concentrations are mediators of these processes also by modulating peripheral blood mononuclear cells (PBMCs) response. The aim of this study was to investigate if HMGB-1 and IL-2 turn on PBMCs and their leptin secretion. In isolated human PBMCs and their subpopulations from healthy individuals and naïve T2DM patients, leptin release, pro-inflammatory response and Toll-like Receptors (TLRs) activation was measured. After treatment with IL-2 and HMGB1, NK (Natural Killer) have the highest amount of leptin secretion, whilst NK-T have the maximal release in basal conditions. TLR4 (TAK242) and/or TLR2 (TLR2-IgA) inhibitors decreased leptin secretion after IL-2 and HMGB1 treatment. A further non-significant increase in leptin secretion was reported in PBMCs of naive T2DM patients in response to IL-2 and HMGB-1 stimulation. Finally, hyperglycemia or hyperinsulinemia might stimulate leptin secretion from PBMCs. The amount of leptin released from PBMCs after the different treatments was enough to stimulate the secretion of IL-1β from monocytes. Targeting leptin sera levels and secretion from PBMCs could represent a new therapeutic strategy to counteract metabolic diseases such as T2DM.
Collapse
Affiliation(s)
- Andrea Coppola
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Aikaterini Andreadi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| | - Renato Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Rome Open University, 00166 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council Rome, 00133 Rome, Italy;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (A.C.); (B.C.); (F.P.); (D.P.); (R.A.); (A.B.); (A.A.); (N.D.D.); (R.L.); (D.D.-M.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
20
|
Mileti E, Kwok KHM, Andersson DP, Mathelier A, Raman A, Bäckdahl J, Jalkanen J, Massier L, Thorell A, Gao H, Arner P, Mejhert N, Daub CO, Rydén M. Human White Adipose Tissue Displays Selective Insulin Resistance in the Obese State. Diabetes 2021; 70:1486-1497. [PMID: 33863803 DOI: 10.2337/db21-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022]
Abstract
Selective hepatic insulin resistance is a feature of obesity and type 2 diabetes. Whether similar mechanisms operate in white adipose tissue (WAT) of those with obesity and to what extent these are normalized by weight loss are unknown. We determined insulin sensitivity by hyperinsulinemic euglycemic clamp and insulin response in subcutaneous WAT by RNA sequencing in 23 women with obesity before and 2 years after bariatric surgery. To control for effects of surgery, women postsurgery were matched to never-obese women. Multidimensional analyses of 138 samples allowed us to classify the effects of insulin into three distinct expression responses: a common set was present in all three groups and included genes encoding several lipid/cholesterol biosynthesis enzymes; a set of obesity-attenuated genes linked to tissue remodeling and protein translation was selectively regulated in the two nonobese states; and several postobesity-enriched genes encoding proteins involved in, for example, one-carbon metabolism were only responsive to insulin in the women who had lost weight. Altogether, human WAT displays a selective insulin response in the obese state, where most genes are normalized by weight loss. This comprehensive atlas provides insights into the transcriptional effects of insulin in WAT and may identify targets to improve insulin action.
Collapse
Affiliation(s)
- Enrichetta Mileti
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kelvin H M Kwok
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Daniel P Andersson
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Jesper Bäckdahl
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jutta Jalkanen
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lucas Massier
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Thorell
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Surgery, Ersta Hospital, Stockholm, Sweden
| | - Hui Gao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Carsten O Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Norris D, Yang P, Shin SY, Kearney AL, Kim HJ, Geddes T, Senior AM, Fazakerley DJ, Nguyen LK, James DE, Burchfield JG. Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. iScience 2021; 24:102118. [PMID: 33659881 PMCID: PMC7892930 DOI: 10.1016/j.isci.2021.102118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin's activation of PI3K/Akt signaling, stimulates glucose uptake by enhancing delivery of GLUT4 to the cell surface. Here we examined the origins of intercellular heterogeneity in insulin signaling. Akt activation alone accounted for ~25% of the variance in GLUT4, indicating that additional sources of variance exist. The Akt and GLUT4 responses were highly reproducible within the same cell, suggesting the variance is between cells (extrinsic) and not within cells (intrinsic). Generalized mechanistic models (supported by experimental observations) demonstrated that the correlation between the steady-state levels of two measured signaling processes decreases with increasing distance from each other and that intercellular variation in protein expression (as an example of extrinsic variance) is sufficient to account for the variance in and between Akt and GLUT4. Thus, the response of a population to insulin signaling is underpinned by considerable single-cell heterogeneity that is largely driven by variance in gene/protein expression between cells. Insulin signaling is heterogeneous between cells in the same population The temporal response of signaling components within a cell is highly reproducible Upstream responses (Akt) can only partially predict downstream response (GLUT4) Protein expression variance is a driver of intercellular signaling heterogeneity
Collapse
Affiliation(s)
- Dougall Norris
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pengyi Yang
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sung-Young Shin
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Alison L Kearney
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hani Jieun Kim
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Thomas Geddes
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia.,Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Alistair M Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lan K Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia.,Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David E James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Rossi A, Eid M, Dodgson J, Davies G, Musial B, Wabitsch M, Church C, Hornigold D. In vitro characterization of the effects of chronic insulin stimulation in mouse 3T3-L1 and human SGBS adipocytes. Adipocyte 2020; 9:415-426. [PMID: 32718202 PMCID: PMC7469436 DOI: 10.1080/21623945.2020.1798613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hyperinsulinemia is the hallmark of the development of insulin resistance and precedes the diagnosis of type 2 diabetes. Here we evaluated the effects of prolonged exposure (≥4 days) to high insulin doses (150 nM) in vitro in two adipose cell types, mouse 3T3-L1 and human SGBS. Chronic insulin treatment significantly decreased lipid droplet size, insulin signalling and insulin-stimulated glucose uptake. 3T3-L1 displayed an increased basal glucose internalization following chronic insulin treatment, which was associated with increased GLUT1 expression. In addition, both cells showed increased basal lipolysis. In conclusion, we report the effects of prolonged hyperinsulinemia in 3T3-L1 and SGBS, highlighting similarities and discrepancies between the cell types, to be considered when using these cells to model insulin-induced insulin resistance.
Collapse
Affiliation(s)
- A. Rossi
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - M. Eid
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - J. Dodgson
- Biologics Therapeutics, Antibody and Protein Engineering, R&D, AstraZeneca, Cambridge, UK
| | - G. Davies
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - B. Musial
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - M. Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - C. Church
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - D.C. Hornigold
- Bioscience Metabolism, Research And Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
23
|
Tanataweethum N, Zhong F, Trang A, Lee C, Cohen RN, Bhushan A. Towards an Insulin Resistant Adipose Model on a Chip. Cell Mol Bioeng 2020; 14:89-99. [PMID: 33643468 DOI: 10.1007/s12195-020-00636-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Adipose tissue and adipocytes are primary regulators of insulin sensitivity and energy homeostasis. Defects in insulin sensitivity of the adipocytes predispose the body to insulin resistance (IR) that could lead to diabetes. However, the mechanisms mediating adipocyte IR remain elusive, which emphasizes the need to develop experimental models that can validate the insulin signaling pathways and discover new mechanisms in the search for novel therapeutics. Currently in vitro adipose organ-chip devices show superior cell function over conventional cell culture. However, none of these models represent disease states. Only when these in vitro models can represent both healthy and disease states, they can be useful for developing therapeutics. Here, we establish an organ-on-chip model of insulin-resistant adipocytes, as well as characterization in terms of insulin signaling pathway and lipid metabolism. Methods We differentiated, maintained, and induced insulin resistance into primary adipocytes in a microfluidic organ-on-chip. We then characterized IR by looking at the insulin signaling pathway and lipid metabolism, and validated by studying a diabetic drug, rosiglitazone. Results We confirmed the presence of insulin resistance through reduction of Akt phosphorylation, Glut4 expression, Glut4 translocation and glucose uptake. We also confirmed defects of disrupted insulin signaling through reduction of lipid accumulation from fatty acid uptake and elevation of glycerol secretion. Testing with rosiglitazone showed a significant improvement in insulin sensitivity and fatty acid metabolism as suggested by previous reports. Conclusions The adipose-chip exhibited key characteristics of IR and can serve as model to study diabetes and facilitate discovery of novel therapeutics.
Collapse
Affiliation(s)
- Nida Tanataweethum
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Franklin Zhong
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Allyson Trang
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Chaeeun Lee
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Ronald N Cohen
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Abhinav Bhushan
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| |
Collapse
|
24
|
Ezeh U, Chen IYD, Chen YH, Azziz R. Adipocyte Insulin Resistance in PCOS: Relationship With GLUT-4 Expression and Whole-Body Glucose Disposal and β-Cell Function. J Clin Endocrinol Metab 2020; 105:5834379. [PMID: 32382742 PMCID: PMC7274487 DOI: 10.1210/clinem/dgaa235] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 01/16/2023]
Abstract
CONTEXT Impaired sensitivity to the antilipolytic action of insulin in adipose tissue (AT) may play a role in determining metabolic dysfunction in polycystic ovary syndrome (PCOS). OBJECTIVES To test the hypothesis that insulin resistance (IR) in AT is associated with whole-body insulin sensitivity and β-cell function in PCOS. RESEARCH DESIGN AND SETTING Prospective cross-sectional study. METHODS Eighteen participants with PCOS and 18-matched control participants underwent a modified frequently sampled intravenous glucose tolerance test (mFSIVGTT); subgroups underwent single-slice computed tomography scans determining AT distribution and adipocyte glucose transporter type 4 (GLUT-4) expression. MAIN OUTCOME MEASURES IR in AT in basal (by the adipose insulin resistance index [Adipo-IR]) and dynamic (mFSIVGTT-derived indices of insulin-mediated nonesterified fatty acids [NEFA] suppression [NEFAnadir, TIMEnadir, and %NEFAsupp]) states; whole-body insulin-mediated glucose uptake and insulin secretion in basal (by homeostatic model assessment [HOMA]-IR and HOMA-β%) and dynamic (mFSIVGTT-derived insulin sensitivity index [Si], acute insulin response to glucose [AIRg], and disposition index [Di]) states. RESULTS Participants with PCOS had higher HOMA-IR and HOMA-β%, lower Si and Di, higher longer TIMEnadir, higher Adipo-IR and NEFAnadir, and a trend toward lower GLUT-4, than the control group participants. Adipo-IR was associated with dynamic state IR in AT (NEFAnadir TIMEnadir, and %NEFAsupp), but only in PCOS, and with HOMA-IR and HOMA-β% in both groups. NEFAnadir and TIMEnadir were negatively and %NEFAsupp positively associated with Si only in PCOS, but not with AIRg and Di, or GLUT-4 expression. CONCLUSION Women with PCOS demonstrated increased IR in AT, which is closely associated with whole-body IR but not with dynamic state β-cell function or adipocyte GLUT-4 gene expression.
Collapse
Affiliation(s)
- Uche Ezeh
- Department of Obstetrics and Gynecology, Stanford Healthcare-ValleyCare Hospital, Pleasanton, California
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ida Y-D Chen
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Yen-Hao Chen
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Obstetrics & Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Ricardo Azziz
- Department of Obstetrics & Gynecology and Center for Androgen-Related Disorders, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Obstetrics & Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
- Department of Health Policy, Management and Behavior, School of Public Health, University at Albany, SUNY, Albany, New York
- Department of Obstetrics & Gynecology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Correspondence and Reprint Requests: Ricardo Azziz, American Society for Reproductive Medicine, 1209 Montgomery Hwy, Birmingham, AL. E-mail:
| |
Collapse
|
25
|
Hauffe R, Stein V, Chudoba C, Flore T, Rath M, Ritter K, Schell M, Wardelmann K, Deubel S, Kopp JF, Schwarz M, Kappert K, Blüher M, Schwerdtle T, Kipp AP, Kleinridders A. GPx3 dysregulation impacts adipose tissue insulin receptor expression and sensitivity. JCI Insight 2020; 5:136283. [PMID: 32369454 DOI: 10.1172/jci.insight.136283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin receptor signaling is crucial for white adipose tissue (WAT) function. Consequently, lack of insulin receptor (IR) in WAT results in a diabetes-like phenotype. Yet, causes for IR downregulation in WAT of patients with diabetes are not well understood. By using multiple mouse models of obesity and insulin resistance, we identify a common downregulation of IR with a reduction of mRNA expression of selenoproteins Txnrd3, Sephs2, and Gpx3 in gonadal adipose tissue. Consistently, GPX3 is also decreased in adipose tissue of insulin-resistant and obese patients. Inducing Gpx3 expression via selenite treatment enhances IR expression via activation of the transcription factor Sp1 in 3T3-L1 preadipocytes and improves adipocyte differentiation and function. Feeding mice a selenium-enriched high-fat diet alleviates diet-induced insulin resistance with increased insulin sensitivity, decreased tissue inflammation, and elevated IR expression in WAT. Again, IR expression correlated positively with Gpx3 expression, a phenotype that is also conserved in humans. Consequently, decreasing GPx3 using siRNA technique reduced IR expression and insulin sensitivity in 3T3-L1 preadipocytes. Overall, our data identify GPx3 as a potentially novel regulator of IR expression and insulin sensitivity in adipose tissue.
Collapse
Affiliation(s)
- Robert Hauffe
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Vanessa Stein
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Chantal Chudoba
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Tanina Flore
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Michaela Rath
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katrin Ritter
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Mareike Schell
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kristina Wardelmann
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition, Nuthetal, Germany
| | - Johannes Florian Kopp
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Nuthetal, Germany.,DFG-Research Group #2558 TraceAGE Potsdam-Berlin-Jena, Germany
| | - Maria Schwarz
- DFG-Research Group #2558 TraceAGE Potsdam-Berlin-Jena, Germany.,Institute of Nutritional Sciences, Department of Molecular Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Kappert
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Nuthetal, Germany.,DFG-Research Group #2558 TraceAGE Potsdam-Berlin-Jena, Germany
| | - Anna P Kipp
- DFG-Research Group #2558 TraceAGE Potsdam-Berlin-Jena, Germany.,Institute of Nutritional Sciences, Department of Molecular Nutritional Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - André Kleinridders
- Junior Research Group Central Regulation of Metabolism, German Institute of Human Nutrition, Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany.,Institute of Nutritional Science, Department of Molecular and Experimental Nutritional Medicine, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
26
|
Adipose Tissue and FoxO1: Bridging Physiology and Mechanisms. Cells 2020; 9:cells9040849. [PMID: 32244542 PMCID: PMC7226803 DOI: 10.3390/cells9040849] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/22/2022] Open
Abstract
Forkhead box O class proteins (FoxOs) are expressed nearly in all tissues and are involved in different functions such as energy metabolism, redox homeostasis, differentiation, and cell cycle arrest. The plasticity of FoxOs is demonstrated by post-translational modifications that determine diverse levels of transcriptional regulations also controlled by their subcellular localization. Among the different members of the FoxO family, we will focus on FoxO1 in adipose tissue, where it is abundantly expressed and is involved in differentiation and transdifferentiation processes. The capability of FoxO1 to respond differently in dependence of adipose tissue subtype underlines the specific involvement of the transcription factor in energy metabolism and the “browning” process of adipocytes. FoxO1 can localize to nuclear, cytoplasm, and mitochondrial compartments of adipocytes responding to different availability of nutrients and source of reactive oxygen species (ROS). Specifically, fasted state produced-ROS enhance the nuclear activity of FoxO1, triggering the transcription of lipid catabolism and antioxidant response genes. The enhancement of lipid catabolism, in combination with ROS buffering, allows systemic energetic homeostasis and metabolic adaptation of white/beige adipocytes. On the contrary, a fed state induces FoxO1 to accumulate in the cytoplasm, but also in the mitochondria where it affects mitochondrial DNA gene expression. The importance of ROS-mediated signaling in FoxO1 subcellular localization and retrograde communication will be discussed, highlighting key aspects of FoxO1 multifaceted regulation in adipocytes.
Collapse
|
27
|
Gong L, Zou Z, Huang L, Guo S, Xing D. Photobiomodulation therapy decreases free fatty acid generation and release in adipocytes to ameliorate insulin resistance in type 2 diabetes. Cell Signal 2020; 67:109491. [DOI: 10.1016/j.cellsig.2019.109491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
|
28
|
Martinez Calejman C, Trefely S, Entwisle SW, Luciano A, Jung SM, Hsiao W, Torres A, Hung CM, Li H, Snyder NW, Villén J, Wellen KE, Guertin DA. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun 2020; 11:575. [PMID: 31996678 PMCID: PMC6989638 DOI: 10.1038/s41467-020-14430-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
mTORC2 phosphorylates AKT in a hydrophobic motif site that is a biomarker of insulin sensitivity. In brown adipocytes, mTORC2 regulates glucose and lipid metabolism, however the mechanism has been unclear because downstream AKT signaling appears unaffected by mTORC2 loss. Here, by applying immunoblotting, targeted phosphoproteomics and metabolite profiling, we identify ATP-citrate lyase (ACLY) as a distinctly mTORC2-sensitive AKT substrate in brown preadipocytes. mTORC2 appears dispensable for most other AKT actions examined, indicating a previously unappreciated selectivity in mTORC2-AKT signaling. Rescue experiments suggest brown preadipocytes require the mTORC2/AKT/ACLY pathway to induce PPAR-gamma and establish the epigenetic landscape during differentiation. Evidence in mature brown adipocytes also suggests mTORC2 acts through ACLY to increase carbohydrate response element binding protein (ChREBP) activity, histone acetylation, and gluco-lipogenic gene expression. Substrate utilization studies additionally implicate mTORC2 in promoting acetyl-CoA synthesis from acetate through acetyl-CoA synthetase 2 (ACSS2). These data suggest that a principal mTORC2 action is controlling nuclear-cytoplasmic acetyl-CoA synthesis. mTORC2 activates Akt, a regulator of cell growth and metabolism, however, the role of mTORC2 in adipocytes is incompletely understood. Here the authors report that a mTORC2-Akt axis specifically activates ACLY to promote lipid synthesis and histone acetylation during brown adipocyte differentiation.
Collapse
Affiliation(s)
- C Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - S Trefely
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.,AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - S W Entwisle
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - A Luciano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - S M Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - W Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - A Torres
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - C M Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - H Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - N W Snyder
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, 19104, USA
| | - J Villén
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.,Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, 98195, USA
| | - K E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - D A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Obesity is a major risk factor for type 2 diabetes. Although adipose tissue allows storage of excess calories in periods of overnutrition, in obesity, adipose tissue metabolism becomes dysregulated and can promote metabolic diseases. This review discusses recent advances in understandings how adipocyte metabolism impacts metabolic homeostasis. RECENT FINDINGS The ability of adipocytes to synthesize lipids from glucose is a marker of metabolic fitness, e.g., low de novo lipogenesis (DNL) in adipocytes correlates with insulin resistance in obesity. Adipocyte DNL may promote synthesis of special "insulin sensitizing" signaling lipids that act hormonally. However, each metabolic intermediate in the DNL pathway (i.e., citrate, acetyl-CoA, malonyl-CoA, and palmitate) also has second messenger functions. Mounting evidence suggests these signaling functions may also be important for maintaining healthy adipocytes. While adipocyte DNL contributes to lipid storage, lipid precursors may have additional second messenger functions critical for maintaining adipocyte health, and thus systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Wen-Yu Hsiao
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
30
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
31
|
Ghadieh HE, Russo L, Muturi HT, Ghanem SS, Manaserh IH, Noh HL, Suk S, Kim JK, Hill JW, Najjar SM. Hyperinsulinemia drives hepatic insulin resistance in male mice with liver-specific Ceacam1 deletion independently of lipolysis. Metabolism 2019; 93:33-43. [PMID: 30664851 PMCID: PMC6401268 DOI: 10.1016/j.metabol.2019.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND CEACAM1 regulates insulin sensitivity by promoting insulin clearance. Accordingly, global C57BL/6J.Cc1-/- null mice display hyperinsulinemia due to impaired insulin clearance at 2 months of age, followed by insulin resistance, steatohepatitis, visceral obesity and leptin resistance at 6 months. The study aimed at investigating the primary role of hepatic CEACAM1 in insulin and lipid homeostasis independently of its metabolic effect in extra-hepatic tissues. METHODS Liver-specific C57BL/6J.AlbCre+Cc1fl/fl mice were generated and their metabolic phenotype was characterized by comparison to that of their littermate controls at 2-9 months of age, using hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry. The effect of hyperphagia on insulin resistance was assessed by pair-feeding experiments. RESULTS Liver-specific AlbCre+Cc1fl/fl mutants exhibited impaired insulin clearance and hyperinsulinemia at 2 months, followed by hepatic insulin resistance (assessed by hyperinsulinemic-euglycemic clamp analysis) and steatohepatitis at ~ 7 months of age, at which point visceral obesity and hyperphagia developed, in parallel to hyperleptinemia and blunted hypothalamic STAT3 phosphorylation in response to an intraperitoneal injection of leptin. Hyperinsulinemia caused hypothalamic insulin resistance, followed by increased fatty acid synthase activity, which together with defective hypothalamic leptin signaling contributed to hyperphagia and reduced physical activity. Pair-feeding experiment showed that hyperphagia caused systemic insulin resistance, including blunted insulin signaling in white adipose tissue and lipolysis, at 8-9 months of age. CONCLUSION AlbCre+Cc1fl/fl mutants provide an in vivo demonstration of the key role of impaired hepatic insulin clearance and hyperinsulinemia in the pathogenesis of secondary hepatic insulin resistance independently of lipolysis. They also reveal an important role for the liver-hypothalamic axis in the regulation of energy balance and subsequently, systemic insulin sensitivity.
Collapse
Affiliation(s)
- Hilda E Ghadieh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Iyad H Manaserh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA; Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jennifer W Hill
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Sonia M Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
32
|
Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res 2018; 60:1720-1732. [PMID: 30054342 DOI: 10.1194/jlr.r087510] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance is a major risk factor for numerous diseases, including type 2 diabetes and cardiovascular disease. These disorders have dramatically increased in incidence with modern life, suggesting that excess nutrients and obesity are major causes of "common" insulin resistance. Despite considerable effort, the mechanisms that contribute to common insulin resistance are not resolved. There is universal agreement that extracellular perturbations, such as nutrient excess, hyperinsulinemia, glucocorticoids, or inflammation, trigger intracellular stress in key metabolic target tissues, such as muscle and adipose tissue, and this impairs the ability of insulin to initiate its normal metabolic actions in these cells. Here, we present evidence that the impairment in insulin action is independent of proximal elements of the insulin signaling pathway and is likely specific to the glucoregulatory branch of insulin signaling. We propose that many intracellular stress pathways act in concert to increase mitochondrial reactive oxygen species to trigger insulin resistance. We speculate that this may be a physiological pathway to conserve glucose during specific states, such as fasting, and that, in the presence of chronic nutrient excess, this pathway ultimately leads to disease. This review highlights key points in this pathway that require further research effort.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - James R Krycer
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Alison L Kearney
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia
| | - Samantha L Hocking
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- School of Life and Environmental Sciences, Central Clinical School, University of Sydney, Camperdown, New South Wales, Australia .,Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
33
|
Kwon H, Jang D, Choi M, Lee J, Jeong K, Pak Y. Alternative translation initiation of Caveolin-2 desensitizes insulin signaling through dephosphorylation of insulin receptor by PTP1B and causes insulin resistance. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2169-2182. [PMID: 29604334 DOI: 10.1016/j.bbadis.2018.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/08/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022]
Abstract
Insulin resistance, defined as attenuated sensitivity responding to insulin, impairs insulin action. Direct causes and molecular mechanisms of insulin resistance have thus far remained elusive. Here we show that alternative translation initiation (ATI) of Caveolin-2 (Cav-2) regulates insulin sensitivity. Cav-2β isoform yielded by ATI desensitizes insulin receptor (IR) via dephosphorylation by protein-tyrosine phosphatase 1B (PTP1B), and subsequent endocytosis and lysosomal degradation of IR, causing insulin resistance. Blockage of Cav-2 ATI protects against insulin resistance by preventing Cav-2β-PTP1B-directed IR desensitization, thereby normalizing insulin sensitivity and glucose uptake. Our findings show that Cav-2β is a negative regulator of IR signaling, and identify a mechanism causing insulin resistance through control of insulin sensitivity via Cav-2 ATI.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Caveolin 2/genetics
- Caveolin 2/metabolism
- Codon, Initiator/genetics
- Endocytosis
- HEK293 Cells
- Humans
- Insulin Resistance/genetics
- Lysosomes/metabolism
- Mice
- Mutagenesis, Site-Directed
- Peptide Chain Initiation, Translational/drug effects
- Peptide Chain Initiation, Translational/genetics
- Phosphorylation
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Proteolysis
- RNA Interference
- RNA, Small Interfering/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
Collapse
Affiliation(s)
- Hayeong Kwon
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Donghwan Jang
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Moonjeong Choi
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jaewoong Lee
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Kyuho Jeong
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yunbae Pak
- Division of Life Science, Graduate School of Applied Life Science (BK21 Plus Program), PMBBRC, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
34
|
Ma M, Quan Y, Li Y, He X, Xiao J, Zhan M, Zhao W, Xin Y, Lu L, Luo L. Bidirectional modulation of insulin action by reactive oxygen species in 3T3‑L1 adipocytes. Mol Med Rep 2018; 18:807-814. [PMID: 29767231 PMCID: PMC6059710 DOI: 10.3892/mmr.2018.9016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/04/2018] [Indexed: 01/20/2023] Open
Abstract
Reactive oxygen species (ROS) serve an important role in glucose‑lipid metabolic regulation. In the present study, the results demonstrated that there was bidirectional regulation of insulin action in 3T3‑L1 adipocytes treated with ROS. Transient and acute ROS exposure improved insulin‑induced metabolic effects in 3T3‑L1 adipocytes. Hydrogen peroxide (H2O2), as a stable and diffusible ROS, diffused into adipocytes and altered intracellular redox homeostasis, resulting in oxidation and inactivation of phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Inactivation of PTEN enhanced the activation of insulin‑induced protein kinase B (AKT), leading to increased glucose transporter 4 (GLUT4) redistribution and glucose uptake in 3T3‑L1 adipocytes. However, chronic ROS treatment induced insulin resistance in 3T3‑L1 adipocytes. It was also revealed that insulin‑induced AKT activation, GLUT4 translocation to cell membrane and glucose uptake were significantly inhibited in chronic ROS‑treated 3T3‑L1 adipocytes. Taken together, the present study provided further demonstration that transient ROS treatment improved insulin sensitivity; however, chronic ROS exposure induced insulin resistance in 3T3‑L1 adipocytes.
Collapse
Affiliation(s)
- Mingfeng Ma
- Department of Cardiology, Zhuhai Hospital Affiliated with Jinan University (Zhuhai People's Hospital), Zhuhai, Guangdong 519000, P.R. China
| | - Yingyao Quan
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Yong Li
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Xu He
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Jing Xiao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Meixiao Zhan
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Wei Zhao
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Yongjie Xin
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Ligong Lu
- Center of Intervention Radiology, Zhuhai Precision Medicine Center, Zhuhai People's Hospital, Zhuhai, Guangdong 519000, P.R. China
| | - Liangping Luo
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
35
|
Turner MC, Player DJ, Martin NR, Akam EC, Lewis MP. The effect of chronic high insulin exposure upon metabolic and myogenic markers in C2C12 skeletal muscle cells and myotubes. J Cell Biochem 2018; 119:5686-5695. [DOI: 10.1002/jcb.26748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mark C. Turner
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise MedicineLoughborough UniversityLeicestershireUnited Kingdom
| | - Darren J. Player
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise MedicineLoughborough UniversityLeicestershireUnited Kingdom
- Institute of Orthopaedics and Musculoskeletal ScienceDivision of Surgery and Interventional ScienceUniversity College LondonStanmoreMiddlesexUnited Kingdom
| | - Neil R.W. Martin
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise MedicineLoughborough UniversityLeicestershireUnited Kingdom
| | - Elizabeth C. Akam
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise MedicineLoughborough UniversityLeicestershireUnited Kingdom
| | - Mark P. Lewis
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise MedicineLoughborough UniversityLeicestershireUnited Kingdom
| |
Collapse
|
36
|
Fazakerley DJ, Minard AY, Krycer JR, Thomas KC, Stöckli J, Harney DJ, Burchfield JG, Maghzal GJ, Caldwell ST, Hartley RC, Stocker R, Murphy MP, James DE. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. J Biol Chem 2018; 293:7315-7328. [PMID: 29599292 PMCID: PMC5950018 DOI: 10.1074/jbc.ra117.001254] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/19/2018] [Indexed: 01/02/2023] Open
Abstract
Mitochondrial oxidative stress, mitochondrial dysfunction, or both have been implicated in insulin resistance. However, disentangling the individual roles of these processes in insulin resistance has been difficult because they often occur in tandem, and tools that selectively increase oxidant production without impairing mitochondrial respiration have been lacking. Using the dimer/monomer status of peroxiredoxin isoforms as an indicator of compartmental hydrogen peroxide burden, we provide evidence that oxidative stress is localized to mitochondria in insulin-resistant 3T3-L1 adipocytes and adipose tissue from mice. To dissociate oxidative stress from impaired oxidative phosphorylation and study whether mitochondrial oxidative stress per se can cause insulin resistance, we used mitochondria-targeted paraquat (MitoPQ) to generate superoxide within mitochondria without directly disrupting the respiratory chain. At ≤10 μm, MitoPQ specifically increased mitochondrial superoxide and hydrogen peroxide without altering mitochondrial respiration in intact cells. Under these conditions, MitoPQ impaired insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation to the plasma membrane in both adipocytes and myotubes. MitoPQ recapitulated many features of insulin resistance found in other experimental models, including increased oxidants in mitochondria but not cytosol; a more profound effect on glucose transport than on other insulin-regulated processes, such as protein synthesis and lipolysis; an absence of overt defects in insulin signaling; and defective insulin- but not AMP-activated protein kinase (AMPK)-regulated GLUT4 translocation. We conclude that elevated mitochondrial oxidants rapidly impair insulin-regulated GLUT4 translocation and significantly contribute to insulin resistance and that MitoPQ is an ideal tool for studying the link between mitochondrial oxidative stress and regulated GLUT4 trafficking.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Annabel Y Minard
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Kristen C Thomas
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Dylan J Harney
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Stuart T Caldwell
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Richard C Hartley
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, Hills Road, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia; Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2006, Australia.
| |
Collapse
|
37
|
Functional Analysis of Promoters from Three Subtypes of the PI3K Family and Their Roles in the Regulation of Lipid Metabolism by Insulin in Yellow Catfish Pelteobagrus fulvidraco. Int J Mol Sci 2018; 19:ijms19010265. [PMID: 29337882 PMCID: PMC5796211 DOI: 10.3390/ijms19010265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 12/21/2022] Open
Abstract
In the present study, the length of 360, 1848 and 367 bp sequences of promoters from three subtypes of PI3K family (PI3KCa, PI3KC2b and PI3KC3) of yellow catfish Pelteobagrus fulvidraco were cloned and characterized. Bioinformatics analysis revealed that PI3KCa, PI3KC2b and PI3KC3 had different structures in their core promoter regions. The promoter regions of PI3KCa and PI3KC2b had CpG islands but no CAAT and TATA box. In contrast, the promoter of PI3KC3 had the canonical TATA and CAAT box but no CpG island. The binding sites of several transcription factors, such as HNF1, STAT and NF-κB, were predicted on PI3KCa promoter. The binding sites of transcription factors, such as FOXO1, PPAR-RXR, STAT, IK1, HNF6 and HNF3, were predicted on PI3KC2b promoter and the binding sites of FOXO1 and STAT transcription factors were predicted on PI3KC3 promoter. Deletion analysis indicated that these transcriptional factors were the potential regulators to mediate the activities of their promoters. Subsequent mutation analysis and electrophoretic mobility-shift assay (EMSA) demonstrated that HNF1 and IK1 directly bound with PI3KCa and PI3KC2b promoters and negatively regulated the activities of PI3KCa and PI3KC2b promoters, respectively. Conversely, FOXO1 directly bound with the PI3KC2b and PI3KC3 promoters and positively regulated their promoter activities. In addition, AS1842856 (AS, a potential FOXO1 inhibitor) incubation significantly reduced the relative luciferase activities of several plasmids of PI3KC2b and PI3KC3 but did not significantly influence the relative luciferase activities of the PI3KCa plasmids. Moreover, by using primary hepatocytes from yellow catfish, AS incubation significantly down-regulated the mRNA levels of PI3KCa, PI3KC2b and PI3KC3 and reduced triacylglyceride (TG) accumulation and insulin-induced TG accumulation, as well as the activities and the mRNA levels of several genes involved in lipid metabolism. Thus, the present study offers new insights into the mechanisms for transcriptional regulation of PI3Ks and for PI3Ks-mediated regulation of lipid metabolism by insulin in fish.
Collapse
|
38
|
Translocation and Redistribution of GLUT4 Using a Dual-Labeled Reporter Assay. Methods Mol Biol 2017. [PMID: 29218525 DOI: 10.1007/978-1-4939-7507-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is crucial to determine the regulation of GLUT4 translocation and redistribution to the plasma membrane. The HA-GLUT4-GFP dual-reporter construct has become an important tool in the assessment of GLUT4 recycling in cultured adipocytes and myocytes. Through the use of light microscopy, this reporter construct allows for visualization of GLUT4 specifically at the cell surface or GLUT4 that has recycled from the cell surface while simultaneously marking the total GLUT4 pool. Here, we discuss and outline the general application of this reporter construct and its use in evaluating GLUT4 translocation within cultured adipocytes.
Collapse
|
39
|
Russo L, Muturi HT, Ghadieh HE, Ghanem SS, Bowman TA, Noh HL, Dagdeviren S, Dogbey GY, Kim JK, Heinrich G, Najjar SM. Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia 2017; 60:2463-2474. [PMID: 28913658 PMCID: PMC5788286 DOI: 10.1007/s00125-017-4432-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Mice with global null mutation (Cc1 -/-) or with liver-specific inactivation (L-SACC1) of Cc1 (also known as Ceacam1) gene display hyperinsulinaemia resulting from impaired insulin clearance, insulin resistance, steatohepatitis and obesity. Because increased lipolysis contributes to the metabolic phenotype caused by transgenic inactivation of CEACAM1 in the liver, we aimed to further investigate the primary role of hepatic CEACAM1-dependent insulin clearance in insulin and lipid homeostasis. To this end, we examined whether transgenic reconstitution of CEACAM1 in the liver of global Cc1 -/- mutant mice reverses their abnormal metabolic phenotype. METHODS Insulin response was assessed by hyperinsulinaemic-euglycaemic clamp analysis and energy balance was analysed by indirect calorimetry. Mice were overnight-fasted and refed for 7 h to assess fatty acid synthase activity in the liver and the hypothalamus in response to insulin release during refeeding. RESULTS Liver-based rescuing of CEACAM1 restored insulin clearance, plasma insulin level, insulin sensitivity and steatohepatitis caused by global deletion of Cc1. It also reversed the gain in body weight and total fat mass observed with Cc1 deletion, in parallel to normalising energy balance. Mechanistically, reversal of hyperphagia appeared to result from reducing fatty acid synthase activity and restoring insulin signalling in the hypothalamus. CONCLUSIONS/INTERPRETATION Despite the potential confounding effects of deleting Cc1 from extrahepatic tissues, liver-based rescuing of CEACAM1 resulted in full normalisation of the metabolic phenotype, underscoring the key role that CEACAM1-dependent hepatic insulin clearance pathways play in regulating systemic insulin sensitivity, lipid homeostasis and energy balance.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Godwin Y Dogbey
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Jason K Kim
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
40
|
Chaudhary N, Gonzalez E, Chang SH, Geng F, Rafii S, Altorki NK, McGraw TE. Adenovirus Protein E4-ORF1 Activation of PI3 Kinase Reveals Differential Regulation of Downstream Effector Pathways in Adipocytes. Cell Rep 2017; 17:3305-3318. [PMID: 28009298 DOI: 10.1016/j.celrep.2016.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/05/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
Insulin activation of phosphatidylinositol 3-kinase (PI3K) regulates metabolism, including the translocation of the Glut4 glucose transporter to the plasma membrane and inactivation of the FoxO1 transcription factor. Adenoviral protein E4-ORF1 stimulates cellular glucose metabolism by mimicking growth-factor activation of PI3K. We have used E4-ORF1 as a tool to dissect PI3K-mediated signaling in adipocytes. E4-ORF1 activation of PI3K in adipocytes recapitulates insulin regulation of FoxO1 but not regulation of Glut4. This uncoupling of PI3K effects occurs despite E4-ORF1 activating PI3K and downstream signaling to levels achieved by insulin. Although E4-ORF1 does not fully recapitulate insulin's effects on Glut4, it enhances insulin-stimulated insertion of Glut4-containing vesicles to the plasma membrane independent of Rab10, a key regulator of Glut4 trafficking. E4-ORF1 also stimulates plasma membrane translocation of ubiquitously expressed Glut1 glucose transporter, an effect that is likely essential for E4-ORF1 to promote an anabolic metabolism in a broad range of cell types.
Collapse
Affiliation(s)
- Natasha Chaudhary
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eva Gonzalez
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sung-Hee Chang
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY 10065, USA; Lung Cancer Program, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
41
|
Vijayakumar A, Aryal P, Wen J, Syed I, Vazirani RP, Moraes-Vieira PM, Camporez JP, Gallop MR, Perry RJ, Peroni OD, Shulman GI, Saghatelian A, McGraw TE, Kahn BB. Absence of Carbohydrate Response Element Binding Protein in Adipocytes Causes Systemic Insulin Resistance and Impairs Glucose Transport. Cell Rep 2017; 21:1021-1035. [PMID: 29069585 PMCID: PMC5771491 DOI: 10.1016/j.celrep.2017.09.091] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/06/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
Lower adipose-ChREBP and de novo lipogenesis (DNL) are associated with insulin resistance in humans. Here, we generated adipose-specific ChREBP knockout (AdChREBP KO) mice with negligible sucrose-induced DNL in adipose tissue (AT). Chow-fed AdChREBP KO mice are insulin resistant with impaired insulin action in the liver, muscle, and AT and increased AT inflammation. HFD-fed AdChREBP KO mice are also more insulin resistant than controls. Surprisingly, adipocytes lacking ChREBP display a cell-autonomous reduction in insulin-stimulated glucose transport that is mediated by impaired Glut4 translocation and exocytosis, not lower Glut4 levels. AdChREBP KO mice have lower levels of palmitic acid esters of hydroxy stearic acids (PAHSAs) in serum, and AT. 9-PAHSA supplementation completely rescues their insulin resistance and AT inflammation. 9-PAHSA also normalizes impaired glucose transport and Glut4 exocytosis in ChREBP KO adipocytes. Thus, loss of adipose-ChREBP is sufficient to cause insulin resistance, potentially by regulating AT glucose transport and flux through specific lipogenic pathways.
Collapse
Affiliation(s)
- Archana Vijayakumar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Pratik Aryal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Jennifer Wen
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ismail Syed
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Reema P Vazirani
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Pedro M Moraes-Vieira
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Joao Paulo Camporez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Molly R Gallop
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Rachel J Perry
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Odile D Peroni
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alan Saghatelian
- Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, Helmsley Center for Genomic Medicine, La Jolla, CA 92037, USA
| | - Timothy E McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Barbara B Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA 02215, USA.
| |
Collapse
|
42
|
Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23:804-814. [PMID: 28697184 DOI: 10.1038/nm.4350] [Citation(s) in RCA: 838] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Nutritional excess is a major forerunner of type 2 diabetes. It enhances the secretion of insulin, but attenuates insulin's metabolic actions in the liver, skeletal muscle and adipose tissue. However, conflicting evidence indicates a lack of knowledge of the timing of these events during the development of obesity and diabetes, pointing to a key gap in our understanding of metabolic disease. This Perspective reviews alternate viewpoints and recent results on the temporal and mechanistic connections between hyperinsulinemia, obesity and insulin resistance. Although much attention has addressed early steps in the insulin signaling cascade, insulin resistance in obesity seems to be largely elicited downstream of these steps. New findings also connect insulin resistance to extensive metabolic cross-talk between the liver, adipose tissue, pancreas and skeletal muscle. These and other advances over the past 5 years offer exciting opportunities and daunting challenges for the development of new therapeutic strategies for the treatment of type 2 diabetes.
Collapse
|
43
|
Wei Y, Gokhale RH, Sonnenschein A, Montgomery KM, Ingersoll A, Arnosti DN. Complex cis-regulatory landscape of the insulin receptor gene underlies the broad expression of a central signaling regulator. Development 2017; 143:3591-3603. [PMID: 27702787 DOI: 10.1242/dev.138073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Insulin signaling plays key roles in development, growth and metabolism through dynamic control of glucose uptake, global protein translation and transcriptional regulation. Altered levels of insulin signaling are known to play key roles in development and disease, yet the molecular basis of such differential signaling remains obscure. Expression of the insulin receptor (InR) gene itself appears to play an important role, but the nature of the molecular wiring controlling InR transcription has not been elucidated. We characterized the regulatory elements driving Drosophila InR expression and found that the generally broad expression of this gene is belied by complex individual switch elements, the dynamic regulation of which reflects direct and indirect contributions of FOXO, EcR, Rbf and additional transcription factors through redundant elements dispersed throughout ∼40 kb of non-coding regions. The control of InR transcription in response to nutritional and tissue-specific inputs represents an integration of multiple cis-regulatory elements, the structure and function of which may have been sculpted by evolutionary selection to provide a highly tailored set of signaling responses on developmental and tissue-specific levels.
Collapse
Affiliation(s)
- Yiliang Wei
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Anne Sonnenschein
- Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| | - Kelly Mone't Montgomery
- Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew Ingersoll
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - David N Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA Genetics Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
44
|
Li M, Qian M, Xu J. Vascular Endothelial Regulation of Obesity-Associated Insulin Resistance. Front Cardiovasc Med 2017; 4:51. [PMID: 28848738 PMCID: PMC5552760 DOI: 10.3389/fcvm.2017.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic that predisposes individuals to metabolic complications, such as type 2 diabetes mellitus and non-alcoholic fatty liver disease, all of which are related to an imbalance between food intake and energy expenditure. Identification of the pathogenic molecular mechanisms and effective therapeutic approaches are urgently needed. A well-accepted paradigm is that crosstalk between organs/tissues contributes to diseases. Endothelial dysfunction characterizes metabolic disorders and the related vascular complications. Over the past two decades, overwhelming studies have focused on mechanisms that lead to endothelial dysfunction. New investigations, however, have begun to appreciate the opposite direction of the crosstalk: endothelial regulation of metabolism, although the underlying mechanisms remain to be elucidated. This review summarizes the evidence that supports the concept of endothelial regulation of obesity and the associated insulin resistance in fat, liver, and skeletal muscles, the classic targets of insulin. Outstanding questions and future research directions are highlighted. Identification of the mechanisms of vascular endothelial regulation of metabolism may offer strategies for prevention and treatment of obesity and the related metabolic complications.
Collapse
Affiliation(s)
- Manna Li
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ming Qian
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
45
|
Freyberg Z, Aslanoglou D, Shah R, Ballon JS. Intrinsic and Antipsychotic Drug-Induced Metabolic Dysfunction in Schizophrenia. Front Neurosci 2017; 11:432. [PMID: 28804444 PMCID: PMC5532378 DOI: 10.3389/fnins.2017.00432] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
For decades, there have been observations demonstrating significant metabolic disturbances in people with schizophrenia including clinically relevant weight gain, hypertension, and disturbances in glucose and lipid homeostasis. Many of these findings pre-date the use of antipsychotic drugs (APDs) which on their own are also strongly associated with metabolic side effects. The combination of APD-induced metabolic changes and common adverse environmental factors associated with schizophrenia have made it difficult to determine the specific contributions of each to the overall metabolic picture. Data from drug-naïve patients, both from the pre-APD era and more recently, suggest that there may be an intrinsic metabolic risk associated with schizophrenia. Nevertheless, these findings remain controversial due to significant clinical variability in both psychiatric and metabolic symptoms throughout patients' disease courses. Here, we provide an extensive review of classic and more recent literature describing the metabolic phenotype associated with schizophrenia. We also suggest potential mechanistic links between signaling pathways associated with schizophrenia and metabolic dysfunction. We propose that, beyond its symptomatology in the central nervous system, schizophrenia is also characterized by pathophysiology in other organ systems directly related to metabolic control.
Collapse
Affiliation(s)
- Zachary Freyberg
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
- Department of Cell Biology, University of PittsburghPittsburgh, PA, United States
| | - Despoina Aslanoglou
- Department of Psychiatry, University of PittsburghPittsburgh, PA, United States
| | - Ripal Shah
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanford, CA, United States
| | - Jacob S. Ballon
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanford, CA, United States
| |
Collapse
|
46
|
Exosomes derived from pancreatic cancer cells induce insulin resistance in C2C12 myotube cells through the PI3K/Akt/FoxO1 pathway. Sci Rep 2017; 7:5384. [PMID: 28710412 PMCID: PMC5511275 DOI: 10.1038/s41598-017-05541-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 05/10/2017] [Indexed: 12/20/2022] Open
Abstract
Prospective epidemiological studies have consistently suggested that pancreatic cancer-associated new-onset diabetes mellitus (PC-DM) represents a potential platform for early diagnose of pancreatic cancer (PC). Despite the studies performed, the mechanism behind this phenomenon remains ambiguous. In this study, we explored the effects of two types of exosomes released by murine pancreatic cancer and ductal epithelial cells on murine skeletal muscle cells. The results show that PC-derived exosomes can readily enter C2C12 myotubes, triggering lipidosis and glucose intake inhibition. We also demonstrate that PC-derived exosomes can inhibit insulin and PI3K/Akt signalling, in which insulin-induced FoxO1 nuclear exclusion is preserved and Glut4 trafficking is impaired. Microarray and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses show that exosomal microRNAs (miRNAs) probably play key roles in this process, an assumption that is corroborated by in vitro studies. These results confirm that the insulin resistance (IR) of skeletal muscle cells is governed by PC-derived exosomes through the insulin and PI3K/Akt/FoxO1 signalling pathways, where exosomal miRNAs potentially contribute to this phenomenon. These novel findings pave the way towards a comprehensive understanding of the cancer theories: "metabolic reprogramming" and "metabolic crosstalk".
Collapse
|
47
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
48
|
Li Y, Ma Z, Jiang S, Hu W, Li T, Di S, Wang D, Yang Y. A global perspective on FOXO1 in lipid metabolism and lipid-related diseases. Prog Lipid Res 2017; 66:42-49. [PMID: 28392404 DOI: 10.1016/j.plipres.2017.04.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
Lipid metabolism is a complex physiological process that is involved in nutrient adjustment, hormone regulation, and homeostasis. An unhealthy lifestyle and chronic nutrient overload can cause lipid metabolism disorders, which may lead to serious lipid-related diseases, including obesity, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes mellitus (T2DM). Therefore, tools for preventing dysfunctional lipid metabolism are urgently needed. The transcription factor forkhead box protein O1 (FOXO1) is involved in lipid metabolism and plays a critical role in the development of lipid-related diseases. In this review, we provide a global perspective on the role of FOXO1 in lipid metabolism and lipid-related diseases. The information included here may be useful for the design of future studies and advancing investigations of FOXO1 as a therapeutic target.
Collapse
Affiliation(s)
- Yue Li
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
49
|
Audzeyenka I, Rogacka D, Piwkowska A, Angielski S, Jankowski M. Viability of primary cultured podocytes is associated with extracellular high glucose-dependent autophagy downregulation. Mol Cell Biochem 2017; 430:11-19. [PMID: 28236091 PMCID: PMC5437172 DOI: 10.1007/s11010-017-2949-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022]
Abstract
Structural and functional impairment of podocytes plays an important role in the development of diabetic nephropathy, a chronic complication of diabetes mellitus and leading cause of renal failure requiring renal replacement therapy. Autophagy plays a crucial role in podocyte viability and function, and its activity is modulated by a variety of pathophysiological factors found in diabetic milieu. Here we show that downregulation of autophagy is critical for podocyte survival in hyperglycemic environment. Moreover, long-term exposure to high glucose leads to inhibition of autophagy as well as to the development of insulin resistance in podocytes. Furthermore, impairment of autophagy is involved in alteration of insulin-dependent glucose uptake in podocytes, suggesting a relationship between these two processes. Taken together, our findings suggest that downregulation of podocyte autophagy, observed after long-term exposure to high glucose, results from their suppressed sensitivity to insulin, and may therefore lead to diminished podocyte cell viability as well as their reduced number in glomerulus.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland.
| | - Dorota Rogacka
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland
| | - Agnieszka Piwkowska
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland
| | - Stefan Angielski
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland
| | - Maciej Jankowski
- Department of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Dębinki 7, 80-211, Gdansk, Poland.,Department of Clinical Chemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
50
|
Heinrich G, Ghadieh HE, Ghanem SS, Muturi HT, Rezaei K, Al-Share QY, Bowman TA, Zhang D, Garofalo RS, Yin L, Najjar SM. Loss of Hepatic CEACAM1: A Unifying Mechanism Linking Insulin Resistance to Obesity and Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2017; 8:8. [PMID: 28184213 PMCID: PMC5266688 DOI: 10.3389/fendo.2017.00008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of human non-alcoholic fatty liver disease (NAFLD) remains unclear, in particular in the context of its relationship to insulin resistance and visceral obesity. Work on the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) in mice has resolved some of the related questions. CEACAM1 promotes insulin clearance by enhancing the rate of uptake of the insulin-receptor complex. It also mediates a negative acute effect of insulin on fatty acid synthase activity. This positions CEACAM1 to coordinate the regulation of insulin and lipid metabolism. Fed a regular chow diet, global null mutation of Ceacam1 manifest hyperinsulinemia, insulin resistance, obesity, and steatohepatitis. They also develop spontaneous chicken-wire fibrosis, characteristic of non-alcoholic steatohepatitis. Reduction of hepatic CEACAM1 expression plays a significant role in the pathogenesis of diet-induced metabolic abnormalities, as bolstered by the protective effect of hepatic CEACAM1 gain-of-function against the metabolic response to dietary fat. Together, this emphasizes that loss of hepatic CEACAM1 links NAFLD to insulin resistance and obesity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
| | - Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S. Ghanem
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Khadijeh Rezaei
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qusai Y. Al-Share
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Deqiang Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Lei Yin
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Heritage College of Osteopathic Medicine, Diabetes Institute, Ohio University, Athens, OH, USA
- *Correspondence: Sonia M. Najjar,
| |
Collapse
|