1
|
Chen R, Zhao H, Zhou J, Liu A, Guo Y, Wu K, Xiang Y, Lei J, Jiang S, Xie W. Structural insights into the Shigella flexneri GmvAT toxin-antitoxin system. FEBS Lett 2025; 599:1246-1259. [PMID: 39973444 DOI: 10.1002/1873-3468.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/21/2025]
Abstract
Toxin-antitoxin (TA) systems are common bicistronic gene elements in bacteria and are critical for stress responses. The toxin members of the GNAT/RHH TA family can acetylate certain aminoacylated tRNA molecules and inhibit global protein translation. One member named GmvT is important for virulence plasmid maintenance in Shigella flexneri, but the underlying mechanism remains poorly understood. Here, we report the cocrystal structures of GmvT in two forms. The binding of the antitoxin mainly relies on the backbone of the toxin while the cofactor is free of contacts with the antitoxin, supported by follow-up in vitro and in vivo studies. Our study provides insight into the protein-protein/protein-ligand interactions of the GmvAT pair and the structural basis for molecular recognition.
Collapse
Affiliation(s)
- Ran Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Hui Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Jie Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Aoyun Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kejue Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongle Xiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Songshan Jiang
- Department of Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Azevedo BOP, Damiano DK, Teixeira AF, Nascimento ALTO, Fernandes LGV, Lopes APY. The VapBC-4 Characterization Indicates It Is a Bona Fide Toxin-Antitoxin Module of Leptospira interrogans: Initial Evidence for a Role in Bacterial Adaptation. Microorganisms 2025; 13:879. [PMID: 40284715 PMCID: PMC12029201 DOI: 10.3390/microorganisms13040879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Toxin-antitoxin (TA) systems are one of the bacterial adaptation mechanisms to adverse conditions. Leptospira interrogans serovar Copenhageni contains nine putative TA systems. To date, only VapBC-3 and VapBC-1 have been experimentally characterized and considered functional modules. This study shows that the VapBC-4 module is a novel bona fide TA system constituted by VapB-4 antitoxin and VapC-4 toxin. Overexpression of the recombinant toxin in Escherichia coli resulted in growth inhibition, which was rescued by co-expression of the VapB-4 antitoxin. The toxin-antitoxin binding capability, essential to TA functionality, was demonstrated by dot blot assay in vitro, while the pull-down assay indicates that the toxin and antitoxin interact in vivo. In addition, we confirmed that VapC-4 is a PIN domain endoribonuclease capable of degrading viral MS2 substrate. The transcriptional studies suggest that vapC-4 may be involved in the virulence and adaptability of L. interrogans serovar Copenhageni for adverse environmental conditions. Taken together, these results show that the VapBC-4 module is functional and can be considered a bona fide module.
Collapse
Affiliation(s)
- Bruna Oliveira Pigatto Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil; (B.O.P.A.); (D.K.D.); (A.F.T.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Deborah Kohn Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil; (B.O.P.A.); (D.K.D.); (A.F.T.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Aline Florencio Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil; (B.O.P.A.); (D.K.D.); (A.F.T.); (A.L.T.O.N.)
| | - Ana Lucia Tabet Oller Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil; (B.O.P.A.); (D.K.D.); (A.F.T.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | | | - Alexandre Paulo Yague Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil; (B.O.P.A.); (D.K.D.); (A.F.T.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| |
Collapse
|
3
|
Whelan R, Cyganek M, Oxley CL, Dickins B, Thomas JC, McVicker G. Genetic and phenotypic analysis of the virulence plasmid of a non-Shigatoxigenic enteroaggregative Escherichia coli O104:H4 outbreak strain. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001550. [PMID: 40146611 PMCID: PMC11950199 DOI: 10.1099/mic.0.001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Enteroaggregative Escherichia coli O104:H4 is best known for causing a worldwide outbreak in 2011 due to the acquisition of a Shiga-like toxin alongside traditional enteroaggregative virulence traits; however, whilst the 2011 outbreak strain has been well studied, the virulence plasmid of O104:H4 has been subjected to far less experimental analysis. In this paper, we analyse the genetic and phenotypic contribution of the pAA virulence plasmid to a non-Shigatoxigenic O104:H4 strain (1070/13) that was nonetheless implicated in a substantial UK outbreak in 2013. We find that pAA1070 is 99.95% identical across 88% of the plasmid sequence to pTY2 from the 2011 outbreak strain and has a copy number of ~2-3 plasmid molecules per chromosome. We demonstrate that pAA1070 carries a functional CcdAB plasmid addiction system that only marginally impacts its stability under the conditions tested. None of the other toxin-antitoxin systems encoded by the plasmid appear to be functional, though we note a surprisingly high stability of the plasmid in vitro regardless. We demonstrate the expected contribution of pAA1070 to intestinal cell adhesion but find that it does not contribute to biofilm formation. When assessing the impact of pAA1070 on motility, we discovered a region of the O104:H4 chromosome that can be excised, abolishing motility via truncation of the fliR gene. Ultimately, this work demonstrates the importance of mobile genetic elements to enteroaggregative E. coli as a pathovar in its own right and highlights the complexity but necessity of experimentally characterizing genuine outbreak strains rather than laboratory strains in order to understand virulence phenotypes.
Collapse
Affiliation(s)
- Rachel Whelan
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Martyna Cyganek
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Charlotte L. Oxley
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Jonathan C. Thomas
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| |
Collapse
|
4
|
Hollingshead S, McVicker G, Nielsen MR, Zhang Y, Pilla G, Jones RA, Thomas JC, Johansen SEH, Exley RM, Brodersen DE, Tang CM. Shared mechanisms of enhanced plasmid maintenance and antibiotic tolerance mediated by the VapBC toxin:antitoxin system. mBio 2025; 16:e0261624. [PMID: 39704502 PMCID: PMC11796401 DOI: 10.1128/mbio.02616-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Toxin:antitoxin (TA) systems are widespread in bacteria and were first identified as plasmid addiction systems that kill bacteria lacking a TA-encoding plasmid following cell division. TA systems have also been implicated in bacterial persistence and antibiotic tolerance, which can be precursors of antibiotic resistance. Here, we identified a clinical isolate of Shigella sonnei (CS14) with a remarkably stable pINV virulence plasmid; pINV is usually frequently lost from S. sonnei, but plasmid loss was not detected from CS14. We found that the plasmid in CS14 is stabilized by a single nucleotide polymorphism (SNP) in its vapBC TA system. VapBC TA systems are the most common Type II TA system in bacteria, and consist of a VapB antitoxin and VapC PIN domain-containing toxin. The plasmid stabilizing SNP leads to a Q12L substitution in the DNA-binding domain of VapB, which reduces VapBC binding to its own promoter, impairing vapBC autorepression. However, VapBL12C mediates high-level plasmid stabilization because VapBL12 is more prone to degradation by Lon than wild-type VapB; this liberates VapC to efficiently kill bacteria that no longer contain a plasmid. Of note, mutations that confer tolerance to antibiotics in Escherichia coli also map to the DNA-binding domain of VapBC encoded by the chromosomally integrated F plasmid. We demonstrate that the tolerance mutations also enhance plasmid stabilization by the same mechanism as VapBL12. Our findings highlight the links between plasmid maintenance and antibiotic tolerance, both of which can promote the development of antimicrobial resistance. IMPORTANCE Our work addresses two processes, the maintenance of plasmids and antibiotic tolerance; both contribute to the development of antimicrobial resistance in bacteria that cause human disease. Here, we found a single nucleotide change in the vapBC toxin:antitoxin system that stabilizes the large virulence plasmid of Shigella sonnei. The mutation is in the vapB antitoxin gene and makes the antitoxin more likely to be degraded, releasing the VapC toxin to efficiently kill cells without the plasmid (and thus unable to produce more antitoxin as an antidote). We found that vapBC mutations in E. coli that lead to antibiotic tolerance (a precursor to resistance) also operate by the same mechanism (i.e., generating VapB that is prone to cleavage); free VapC during tolerance will arrest bacterial growth and prevent susceptibility to antibiotics. This work shows the mechanistic links between plasmid maintenance and tolerance, and has applications in biotech and in the design and evaluation of vaccines against shigellosis.
Collapse
Affiliation(s)
- Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Maria R. Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - YuGeng Zhang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rebekah A. Jones
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan C. Thomas
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Sarah E. H. Johansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ditlev E. Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Loris R. Putting bacteria in alarm. Nat Chem Biol 2025; 21:158-159. [PMID: 39639165 DOI: 10.1038/s41589-024-01788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
- VIB-VUB Center for Structural Biology, Brussels, Belgium.
| |
Collapse
|
6
|
Bhowmick A, Recalde A, Bhattacharyya C, Banerjee A, Das J, Rodriguez-Cruz UE, Albers SV, Ghosh A. Role of VapBC4 toxin-antitoxin system of Sulfolobus acidocaldarius in heat stress adaptation. mBio 2024; 15:e0275324. [PMID: 39535218 PMCID: PMC11633383 DOI: 10.1128/mbio.02753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Toxin-antitoxin (TA) systems are important for stress adaptation in prokaryotes, including persistence, antibiotic resistance, pathogenicity, and biofilm formation. Toxins can cause cell death, reversible growth stasis, and direct inhibition of crucial cellular processes through various mechanisms, while antitoxins neutralize the effects of toxins. In bacteria, these systems have been studied in detail, whereas their function in archaea remains elusive. During heat stress, the thermoacidophilic archaeon Sulfolobus acidocaldarius exhibited an increase in the expression of several bicistronic type II vapBC TA systems, with the highest expression observed in the vapBC4 system. In the current study, we performed a comprehensive biochemical characterization of the VapBC4 TA system, establishing it as a bonafide type II toxin-antitoxin system. The VapC4 toxin is shown to have high-temperature catalyzed RNase activity specific for mRNA and rRNA, while the VapB4 antitoxin inhibits the toxic activity of VapC4 by interacting with it. VapC4 toxin expression led to heat-induced persister-like cell formation, allowing the cell to cope with the stress. Furthermore, this study explored the impact of vapBC4 deletion on biofilm formation, whereby deletion of vapC4 led to increased biofilm formation, suggesting its role in regulating biofilm formation. Thus, during heat stress, the liberated VapC4 toxin in cells could potentially signal a preference for persister cell formation over biofilm growth. Thus, our findings shed light on the diverse roles of the VapC4 toxin in inhibiting translation, inducing persister cell formation, and regulating biofilm formation in S. acidocaldarius, enhancing our understanding of TA systems in archaea. IMPORTANCE This research enhances our knowledge of toxin-antitoxin (TA) systems in archaea, specifically in the thermoacidophilic archaeon Sulfolobus acidocaldarius. TA systems are widespread in both bacterial and archaeal genomes, indicating their evolutionary importance. However, their exact functions in archaeal cellular physiology are still not well understood. This study sheds light on the complex roles of TA systems and their critical involvement in archaeal stress adaptation, including persistence and biofilm formation. By focusing on S. acidocaldarius, which lives in habitats with fluctuating temperatures that can reach up to 90°C, the study reveals the unique challenges and survival mechanisms of this organism. The detailed biochemical analysis of the VapBC4 TA system, and its crucial role during heat stress, provides insights into how extremophiles can survive in harsh conditions. The findings of this study show the various functions of the VapC4 toxin, including inhibiting translation, inducing persister-like cell formation, and regulating biofilm formation. This knowledge improves our understanding of TA systems in thermoacidophiles and has broader implications for understanding how microorganisms adapt to extreme environments.
Collapse
Affiliation(s)
- Arghya Bhowmick
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Alejandra Recalde
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Ankita Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Jagriti Das
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Ulises E. Rodriguez-Cruz
- Department of Evolutionary Ecology, Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Microbiology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
7
|
Deventer AT, Stevens CE, Stewart A, Hobbs JK. Antibiotic tolerance among clinical isolates: mechanisms, detection, prevalence, and significance. Clin Microbiol Rev 2024; 37:e0010624. [PMID: 39364999 PMCID: PMC11629620 DOI: 10.1128/cmr.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYAntibiotic treatment failures in the absence of resistance are not uncommon. Recently, attention has grown around the phenomenon of antibiotic tolerance, an underappreciated contributor to recalcitrant infections first detected in the 1970s. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting resistance. With advances in genomics, we are gaining a better understanding of the molecular mechanisms behind tolerance, and several studies have sought to examine the clinical prevalence of tolerance. Attempts have also been made to assess the clinical significance of tolerance through in vivo infection models and prospective/retrospective clinical studies. Here, we review the data available on the molecular mechanisms, detection, prevalence, and clinical significance of genotypic tolerance that span ~50 years. We discuss the need for standardized methodology and interpretation criteria for tolerance detection and the impact that methodological inconsistencies have on our ability to accurately assess the scale of the problem. In terms of the clinical significance of tolerance, studies suggest that tolerance contributes to worse outcomes for patients (e.g., higher mortality, prolonged hospitalization), but historical data from animal models are varied. Furthermore, we lack the necessary information to effectively treat tolerant infections. Overall, while the tolerance field is gaining much-needed traction, the underlying clinical significance of tolerance that underpins all tolerance research is still far from clear and requires attention.
Collapse
Affiliation(s)
- Ashley T. Deventer
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Claire E. Stevens
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Amy Stewart
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Joanne K. Hobbs
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
8
|
Kurata T, Takegawa M, Ohira T, Syroegin EA, Atkinson GC, Johansson MJ, Polikanov YS, Garcia-Pino A, Suzuki T, Hauryliuk V. Toxic small alarmone synthetase FaRel2 inhibits translation by pyrophosphorylating tRNA Gly and tRNA Thr. SCIENCE ADVANCES 2024; 10:eadr9624. [PMID: 39536105 PMCID: PMC11559606 DOI: 10.1126/sciadv.adr9624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Translation-targeting toxic small alarmone synthetases (toxSAS) are effectors of bacterial toxin-antitoxin systems that pyrophosphorylate the 3'-CCA end of transfer RNA (tRNA) to prevent aminoacylation. toxSAS are implicated in antiphage immunity: Phage detection triggers the toxSAS activity to shut down viral production. We show that the toxSAS FaRel2 inspects the tRNA acceptor stem to specifically select tRNAGly and tRNAThr. The first, second, fourth, and fifth base pairs of the stem act as the specificity determinants. We show that the toxSASs PhRel2 and CapRelSJ46 differ in tRNA specificity from FaRel2 and rationalize this through structural modeling: While the universal 3'-CCA end slots into a highly conserved CCA recognition groove, the acceptor stem recognition region is variable across toxSAS diversity. As phages use tRNA isoacceptors to overcome tRNA-targeting defenses, we hypothesize that highly evolvable modular tRNA recognition allows for the escape of viral countermeasures through tRNA substrate specificity switching.
Collapse
Affiliation(s)
- Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masaki Takegawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656
| | - Egor A. Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gemma C. Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, (1C4 203), 1050 Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, Tartu, Estonia
| |
Collapse
|
9
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
10
|
Kawaichi S, Kotoky R, Fiutowski J, Rotaru AE. Adaptation of a methanogen to Fe 0 corrosion via direct contact. NPJ Biofilms Microbiomes 2024; 10:100. [PMID: 39366964 PMCID: PMC11452385 DOI: 10.1038/s41522-024-00574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Due to unique genomic adaptations, Methanococcus maripaludis Mic1c10 is highly corrosive when in direct contact with Fe0. A critical adaptation involves increased glycosylation of an extracellular [NiFe]-hydrogenase, facilitating its anchoring to cell surface proteins. Corrosive strains adapt to the constructed environment via horizontal gene transfer while retaining ancestral genes important for intraspecies competition and surface attachment. This calls for a reevaluation of how the built environment impacts methane cycling.
Collapse
Affiliation(s)
- Satoshi Kawaichi
- Department of Biology, University of Southern Denmark, Odense, Denmark.
| | - Rhitu Kotoky
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Jacek Fiutowski
- NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | | |
Collapse
|
11
|
Damiano DK, Azevedo BOP, Fernandes GSC, Teixeira AF, Gonçalves VM, Nascimento ALTO, Lopes APY. The Toxin of VapBC-1 Toxin-Antitoxin Module from Leptospira interrogans Is a Ribonuclease That Does Not Arrest Bacterial Growth but Affects Cell Viability. Microorganisms 2024; 12:1660. [PMID: 39203502 PMCID: PMC11356721 DOI: 10.3390/microorganisms12081660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Bacterial ubiquitous Toxin-Antitoxin (TA) systems are considered to be important survival mechanisms during stress conditions. In regular environmental conditions, the antitoxin blocks the toxin, whereas during imbalanced conditions, the antitoxin concentration decreases, exposing the bacteria cell to a range of toxic events. The most evident consequence of this disequilibrium is cell growth arrest, which is the reason why TAs are generally described as active in the function of bacterial growth kinetics. Virulence-associated proteins B and C (VapBC) are a family of type II TA system, in which VapC is predicted to display the toxic ribonuclease activity while VapB counteracts this activity. Previously, using in silico data, we designated four VapBC TA modules in Leptospira interrogans serovar Copenhageni, the main etiological agent of human leptospirosis in Brazil. The present study aimed to obtain the proteins and functionally characterize the VapBC-1 module. The expression of the toxin gene vapC in E. coli did not decrease the cell growth rate in broth culture, as was expected to happen within active TA modules. However, interestingly, when the expression of the toxin was compared to that of the complexed toxin and antitoxin, cell viability was strongly affected, with a decrease of three orders of magnitude in colony forming unity (CFU). The assumption of the affinity between the toxin and the antitoxin was confirmed in vivo through the observation of their co-purification from cultivation of E. coli co-expressing vapB-vapC genes. RNAse activity assays showed that VapC-1 cleaves MS2 RNA and ribosomal RNA from L. interrogans. Our results indicate that the VapBC-1 module is a potentially functional TA system acting on targets that involve specific functions. It is very important to emphasize that the common attribution of the functionality of TA modules cannot be defined based merely on their ability to inhibit bacterial growth in a liquid medium.
Collapse
Affiliation(s)
- Deborah K. Damiano
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Bruna O. P. Azevedo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - George S. C. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Prof. Lineu Prestes, 1730, São Paulo 05508-900, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Viviane M. Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| | - Alexandre P. Y. Lopes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil; (D.K.D.); (B.O.P.A.); (G.S.C.F.); (A.F.T.); (V.M.G.); (A.L.T.O.N.)
| |
Collapse
|
12
|
Hou Y, Li Y, Tao N, Kong X, Li Y, Liu Y, Li H, Wang Z. Toxin-antitoxin system gene mutations driving Mycobacterium tuberculosis transmission revealed by whole genome sequencing. Front Microbiol 2024; 15:1398886. [PMID: 39144214 PMCID: PMC11322068 DOI: 10.3389/fmicb.2024.1398886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Background The toxin-antitoxin (TA) system plays a vital role in the virulence and pathogenicity of Mycobacterium tuberculosis (M. tuberculosis). However, the regulatory mechanisms and the impact of gene mutations on M. tuberculosis transmission remain poorly understood. Objective To investigate the influence of gene mutations in the toxin-antitoxin system on M. tuberculosis transmission dynamics. Method We performed whole-genome sequencing on the analyzed strains of M. tuberculosis. The genes associated with the toxin-antitoxin system were obtained from the National Center for Biotechnology Information (NCBI) Gene database. Mutations correlating with enhanced transmission within the genes were identified by using random forest, gradient boosting decision tree, and generalized linear mixed models. Results A total of 13,518 M. tuberculosis isolates were analyzed, with 42.29% (n = 5,717) found to be part of genomic clusters. Lineage 4 accounted for the majority of isolates (n = 6488, 48%), followed by lineage 2 (n = 5133, 37.97%). 23 single nucleotide polymorphisms (SNPs) showed a positive correlation with clustering, including vapB1 G34A, vapB24 A76C, vapB2 T171C, mazF2 C85T, mazE2 G104A, vapB31 T112C, relB T226A, vapB11 C54T, mazE5 T344C, vapB14 A29G, parE1 (C103T, C88T), and parD1 C134T. Six SNPs, including vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, Rv2653c A80C, and vapB22 C167T, were associated with transmission clades across different countries. Notably, our findings highlighted the positive association of vapB6 A29C, vapB31 T112C, parD1 C134T, vapB37 G205C, vapB19 C188T, and Rv2653c A80C with transmission clades across diverse regions. Furthermore, our analysis identified 32 SNPs that exhibited significant associations with clade size. Conclusion Our study presents potential associations between mutations in genes related to the toxin-antitoxin system and the transmission dynamics of M. tuberculosis. However, it is important to acknowledge the presence of confounding factors and limitations in our study. Further research is required to establish causation and assess the functional significance of these mutations. These findings provide a foundation for future investigations and the formulation of strategies aimed at controlling TB transmission.
Collapse
Affiliation(s)
- Yawei Hou
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yifan Li
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong, China
| | - Ningning Tao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xianglong Kong
- Artificial Intelligence Institute Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yameng Li
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaichen Li
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenguo Wang
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
13
|
Kurata T, Takegawa M, Ohira T, Syroegin EA, Atkinson GC, Johansson MJ, Polikanov YS, Garcia-Pino A, Suzuki T, Hauryliuk V. Toxic Small Alarmone Synthetase FaRel2 inhibits translation by pyrophosphorylating tRNA Gly and tRNA Thr. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602228. [PMID: 39005314 PMCID: PMC11245113 DOI: 10.1101/2024.07.05.602228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Translation-targeting toxic Small Alarmone Synthetases (toxSAS) are effectors of bacterial Toxin-Antitoxin systems that pyrophosphorylate the 3'-CCA end of tRNA to prevent aminoacylation. toxSAS are implicated in antiphage immunity: phage detection triggers the toxSAS activity to shut down viral production. We show that the toxSAS FaRel2 inspects the tRNA acceptor stem to specifically select tRNAGly and tRNAThr. The 1st, 2nd, 4th and 5th base pairs the stem act as the specificity determinants. We show that the toxSASs PhRel2 and CapRelSJ46 differ in tRNA specificity from FaRel2, and rationalise this through structural modelling: while the universal 3'-CCA end slots into a highly conserved CCA recognition groove, the acceptor stem recognition region is variable across toxSAS diversity. As phages use tRNA isoacceptors to overcome tRNA-targeting defences, we hypothesise that highly evolvable modular tRNA recognition allows for the escape of viral countermeasures through tRNA substrate specificity switching.
Collapse
Affiliation(s)
- Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Masaki Takegawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656
| | - Egor A. Syroegin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gemma C. Atkinson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Yury S. Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, Building BC, (1C4 203), 1050 Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656
| | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- University of Tartu, Institute of Technology, Tartu, Estonia
| |
Collapse
|
14
|
Beardslee PC, Schmitz KR. Toxin-based screening of C-terminal tags in Escherichia coli reveals the exceptional potency of ssrA-like degrons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.576913. [PMID: 38352471 PMCID: PMC10862746 DOI: 10.1101/2024.01.29.576913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
All bacteria possess ATP-dependent proteases that destroy cytosolic proteins. These enzymes help cells mitigate proteotoxic stress, adapt to changing nutrient availability, regulate virulence phenotypes, and transition to pathogenic lifestyles. Moreover, ATP-dependent proteases have emerged as promising antibacterial and antivirulence targets in a variety of pathogens. The physiological roles of these proteases are largely defined by the complement of proteins that they degrade. Substrates are typically recognized in a highly selective manner, often via short unstructured sequences termed degrons. While a few degrons have been identified and rigorously characterized, we lack a systematic understanding of how proteases select valid degrons from the vast complexity of protein sequence space. Here, we describe a novel high-throughput screening approach in Escherichia coli that couples proteolysis of a protein toxin to cell survival. We used this method to screen a combinatorial library of C-terminal pentapeptide sequences for functionality as proteolytic degrons in wild type E. coli, and in strains lacking components of the ClpXP and ClpAP proteases. By examining the competitive enrichment of sequences over time, we found that about one percent of pentapeptide tags lead to toxin proteolysis. Interestingly, the most enriched degrons were ClpXP-dependent and highly similar to the ssrA tag, one of the most extensively characterized degrons in bacteria. Among ssrA-like sequences, we observed that specific upstream residues correlate with successful recognition. The lack of diversity among strongly enriched sequences suggests that ssrA-like tags comprise a uniquely potent class of short C-terminal degron in E. coli. Efficient proteolysis of substrates lacking such degrons likely requires adaptors or multivalent interactions. These findings broaden our understanding of the constraints that shape the bacterial proteolytic landscape. Our screening approach may be broadly applicable to probing aspects of proteolytic substrate selection in other bacterial systems.
Collapse
Affiliation(s)
- Patrick C. Beardslee
- Department of Chemistry & Biochemistry, University of Delaware, Newark DE, 19716
| | - Karl R. Schmitz
- Department of Chemistry & Biochemistry, University of Delaware, Newark DE, 19716
- Department of Biological Sciences, University of Delaware, Newark DE, 19716
| |
Collapse
|
15
|
Fraikin N, Van Melderen L. Single-cell evidence for plasmid addiction mediated by toxin-antitoxin systems. Nucleic Acids Res 2024; 52:1847-1859. [PMID: 38224456 PMCID: PMC10899753 DOI: 10.1093/nar/gkae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
Toxin-antitoxin (TA) systems are small selfish genetic modules that increase vertical stability of their replicons. They have long been thought to stabilize plasmids by killing cells that fail to inherit a plasmid copy through a phenomenon called post-segregational killing (PSK) or addiction. While this model has been widely accepted, no direct observation of PSK was reported in the literature. Here, we devised a system that enables visualization of plasmid loss and PSK at the single-cell level using meganuclease-driven plasmid curing. Using the ccd system, we show that cells deprived of a ccd-encoding plasmid show hallmarks of DNA damage, i.e. filamentation and induction of the SOS response. Activation of ccd triggered cell death in most plasmid-free segregants, although some intoxicated cells were able to resume growth, showing that PSK-induced damage can be repaired in a SOS-dependent manner. Damage induced by ccd activates resident lambdoid prophages, which potentiate the killing effect of ccd. The loss of a model plasmid containing TA systems encoding toxins presenting various molecular mechanisms induced different morphological changes, growth arrest and loss of viability. Our experimental setup enables further studies of TA-induced phenotypes and suggests that PSK is a general mechanism for plasmid stabilization by TA systems.
Collapse
Affiliation(s)
- Nathan Fraikin
- Bacterial Genetics and Physiology, Department of Molecular Biology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Bacterial Genetics and Physiology, Department of Molecular Biology, Faculté des Sciences, Université Libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| |
Collapse
|
16
|
Khan S, Ahmad F, Ansari MI, Ashfaque M, Islam MH, Khubaib M. Toxin-Antitoxin system of Mycobacterium tuberculosis: Roles beyond stress sensor and growth regulator. Tuberculosis (Edinb) 2023; 143:102395. [PMID: 37722233 DOI: 10.1016/j.tube.2023.102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 08/10/2023] [Indexed: 09/20/2023]
Abstract
The advent of effective drug regimen and BCG vaccine has significantly decreased the rate of morbidity and mortality of TB. However, lengthy treatment and slower recovery rate, as well as reactivation of the disease with the emergence of multi-drug, extensively-drug, and totally-drug resistance strains, pose a serious concern. The complexities associated are due to the highly evolved and complex nature of the bacterium itself. One of the unique features of Mycobacterium tuberculosis [M.tb] is that it has undergone reductive evolution while maintaining and amplified a few gene families. One of the critical gene family involved in the virulence and pathogenesis is the Toxin-Antitoxin system. These families are believed to harbor virulence signature and are strongly associated with various stress adaptations and pathogenesis. The M.tb TA systems are linked with growth regulation machinery during various environmental stresses. The genes of TA systems are differentially expressed in the host during an active infection, oxidative stress, low pH stress, and starvation, which essentially indicate their role beyond growth regulators. Here in this review, we have discussed different roles of TA gene families in various stresses and their prospective role at the host-pathogen interface, which could be exploited to understand the M.tb associated pathomechanisms better and further designing the new strategies against the pathogen.
Collapse
Affiliation(s)
- Saima Khan
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | | | | | | | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
17
|
Ernits K, Saha CK, Brodiazhenko T, Chouhan B, Shenoy A, Buttress JA, Duque-Pedraza JJ, Bojar V, Nakamoto JA, Kurata T, Egorov AA, Shyrokova L, Johansson MJO, Mets T, Rustamova A, Džigurski J, Tenson T, Garcia-Pino A, Strahl H, Elofsson A, Hauryliuk V, Atkinson GC. The structural basis of hyperpromiscuity in a core combinatorial network of type II toxin-antitoxin and related phage defense systems. Proc Natl Acad Sci U S A 2023; 120:e2305393120. [PMID: 37556498 PMCID: PMC10440598 DOI: 10.1073/pnas.2305393120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Toxin-antitoxin (TA) systems are a large group of small genetic modules found in prokaryotes and their mobile genetic elements. Type II TAs are encoded as bicistronic (two-gene) operons that encode two proteins: a toxin and a neutralizing antitoxin. Using our tool NetFlax (standing for Network-FlaGs for toxins and antitoxins), we have performed a large-scale bioinformatic analysis of proteinaceous TAs, revealing interconnected clusters constituting a core network of TA-like gene pairs. To understand the structural basis of toxin neutralization by antitoxins, we have predicted the structures of 3,419 complexes with AlphaFold2. Together with mutagenesis and functional assays, our structural predictions provide insights into the neutralizing mechanism of the hyperpromiscuous Panacea antitoxin domain. In antitoxins composed of standalone Panacea, the domain mediates direct toxin neutralization, while in multidomain antitoxins the neutralization is mediated by other domains, such as PAD1, Phd-C, and ZFD. We hypothesize that Panacea acts as a sensor that regulates TA activation. We have experimentally validated 16 NetFlax TA systems and used domain annotations and metabolic labeling assays to predict their potential mechanisms of toxicity (such as membrane disruption, and inhibition of cell division or protein synthesis) as well as biological functions (such as antiphage defense). We have validated the antiphage activity of a RosmerTA system encoded by Gordonia phage Kita, and used fluorescence microscopy to confirm its predicted membrane-depolarizing activity. The interactive version of the NetFlax TA network that includes structural predictions can be accessed at http://netflax.webflags.se/.
Collapse
Affiliation(s)
- Karin Ernits
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Chayan Kumar Saha
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Bhanu Chouhan
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Department of Molecular Biology, Umeå University, Umeå901 87, Sweden
| | - Aditi Shenoy
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Jessica A. Buttress
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | | | - Veda Bojar
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Jose A. Nakamoto
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Tatsuaki Kurata
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Artyom A. Egorov
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | - Lena Shyrokova
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
| | | | - Toomas Mets
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Aytan Rustamova
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | | | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu50411, Estonia
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Brussels1050, Belgium
| | - Henrik Strahl
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4AX, United Kingdom
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm University, Solna171 21, Sweden
| | - Vasili Hauryliuk
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Institute of Technology, University of Tartu, Tartu50411, Estonia
- Science for Life Laboratory, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| | - Gemma C. Atkinson
- Department of Experimental Medicine, Lund University, Lund221 84, Sweden
- Lund University Virus Centre, Lund221 84, Sweden
| |
Collapse
|
18
|
Qureshi A, Connolly JB. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Malar J 2023; 22:234. [PMID: 37580703 PMCID: PMC10426224 DOI: 10.1186/s12936-023-04665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Population suppression gene drive is currently being evaluated, including via environmental risk assessment (ERA), for malaria vector control. One such gene drive involves the dsxFCRISPRh transgene encoding (i) hCas9 endonuclease, (ii) T1 guide RNA (gRNA) targeting the doublesex locus, and (iii) DsRed fluorescent marker protein, in genetically-modified mosquitoes (GMMs). Problem formulation, the first stage of ERA, for environmental releases of dsxFCRISPRh previously identified nine potential harms to the environment or health that could occur, should expressed products of the transgene cause allergenicity or toxicity. METHODS Amino acid sequences of hCas9 and DsRed were interrogated against those of toxins or allergens from NCBI, UniProt, COMPARE and AllergenOnline bioinformatic databases and the gRNA was compared with microRNAs from the miRBase database for potential impacts on gene expression associated with toxicity or allergenicity. PubMed was also searched for any evidence of toxicity or allergenicity of Cas9 or DsRed, or of the donor organisms from which these products were originally derived. RESULTS While Cas9 nuclease activity can be toxic to some cell types in vitro and hCas9 was found to share homology with the prokaryotic toxin VapC, there was no evidence from previous studies of a risk of toxicity to humans and other animals from hCas9. Although hCas9 did contain an 8-mer epitope found in the latex allergen Hev b 9, the full amino acid sequence of hCas9 was not homologous to any known allergens. Combined with a lack of evidence in the literature of Cas9 allergenicity, this indicated negligible risk to humans of allergenicity from hCas9. No matches were found between the gRNA and microRNAs from either Anopheles or humans. Moreover, potential exposure to dsxFCRISPRh transgenic proteins from environmental releases was assessed as negligible. CONCLUSIONS Bioinformatic and literature assessments found no convincing evidence to suggest that transgenic products expressed from dsxFCRISPRh were allergens or toxins, indicating that environmental releases of this population suppression gene drive for malaria vector control should not result in any increased allergenicity or toxicity in humans or animals. These results should also inform evaluations of other GMMs being developed for vector control and in vivo clinical applications of CRISPR-Cas9.
Collapse
Affiliation(s)
- Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK
| | - John B Connolly
- Department of Life Sciences, Imperial College London, Silwood Park, Sunninghill, Ascot, UK.
| |
Collapse
|
19
|
Rastogi N, Zarin S, Alam A, Konduru GV, Manjunath P, Mishra A, Kumar S, Nagarajaram HA, Hasnain SE, Ehtesham NZ. Structural and Biophysical properties of therapeutically important proteins Rv1509 and Rv2231A of Mycobacterium tuberculosis. Int J Biol Macromol 2023; 245:125455. [PMID: 37331537 DOI: 10.1016/j.ijbiomac.2023.125455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Through comparative analyses using BLASTp and BLASTn of the 25 target sequences, our research identified two unique post-transcriptional modifiers, Rv1509 and Rv2231A, which serve as distinctive and characteristic proteins of M.tb - the Signature Proteins. Here, we have characterized these two signature proteins associated with pathophysiology of M.tb which may prove to be therapeutically important targets. Dynamic Light Scattering and Analytical Gel Filtration Chromatography exhibited that Rv1509 exists as a monomer while Rv2231A as a dimer in solution. Secondary structures were determined using Circular Dichroism and further validated through Fourier Transform Infrared spectroscopy. Both the proteins are capable of withstanding a wide range of temperature and pH variations. Fluorescence spectroscopy based binding affinity experiments showed that Rv1509 binds to iron and may promote organism growth by chelating iron. In the case of Rv2231A, a high affinity for its substrate RNA was observed, which is facilitated in presence of Mg2+ suggesting it might have RNAse activity, supporting the prediction through in-silico studies. This is the first study on biophysical characterization of these two therapeutically important proteins, Rv1509 and Rv2231A, providing important insights into their structure -function correlations which are crucial for development of new drugs/ early diagnostics tools targeting these proteins.
Collapse
Affiliation(s)
- Nilisha Rastogi
- Cell Signaling and Inflammation Biology Lab, ICMR-National Institute of Pathology, New Delhi 110029, India
| | - Sheeba Zarin
- Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, India; Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Anwar Alam
- Department of Biotechnology, School of Engineering Sciences and Technology, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Guruprasad Varma Konduru
- Laboratory of Computational Biology, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India; Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P Manjunath
- Cell Signaling and Inflammation Biology Lab, ICMR-National Institute of Pathology, New Delhi 110029, India
| | - Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Hampapathalu Adimurthy Nagarajaram
- Laboratory of Computational Biology, Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof C.R. Rao Road, Hyderabad 500007, India
| | - Seyed Ehtesham Hasnain
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India.
| | - Nasreen Zafar Ehtesham
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India.
| |
Collapse
|
20
|
Troian EA, Maldonado HM, Chauhan U, Barth VC, Woychik NA. Mycobacterium abscessus VapC5 toxin potentiates evasion of antibiotic killing by ribosome overproduction and activation of multiple resistance pathways. Nat Commun 2023; 14:3705. [PMID: 37349306 PMCID: PMC10287673 DOI: 10.1038/s41467-023-38844-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Mycobacterium abscessus (Mab) infections are inexplicably intractable to clearing after aggressive and lengthy treatment regimens. Here we discovered that acquisition of a single toxin-antitoxin system enables Mab to activate a phenotypic switch that enhances survival upon treatment with current first-line antibiotics. This switch is tripped when the VapC5 toxin inactivates tRNASerCGA by cleavage at only one site within its anticodon, leading to growth arrest. Concomitant tRNASerCGA depletion then reprograms the transcriptome to favor synthesis of proteins naturally low in the cognate Ser UCG codon including the transcription factor WhiB7 and members of its regulon as well as the ribosomal protein family. This programmed stockpiling of ribosomes is predicted to override the efficacy of ribosome-targeting antibiotics while the growth arrest phenotype attenuates antibiotics targeting cell wall synthesis. In agreement, VapC5 increases Mab persister formation upon exposure to amikacin and the next-generation oxazolidinone tedizolid (both target ribosomes) or cefoxitin (inhibits cell wall synthesis). These findings expand the repertoire of genetic adaptations harnessed by Mab to survive assaults intended to eradicate it, as well as provide a much-needed framework for selection of shorter and more efficacious alternate treatment options for Mab infections using currently available antimicrobials whose targets are not confounded by VapC5.
Collapse
Affiliation(s)
- Eduardo A Troian
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Heather M Maldonado
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Unnati Chauhan
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Valdir C Barth
- Immunotherapy Laboratory, Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), R. Sarmento Leite, 245 - Centro Histórico, Porto Alegre, 90050-170, Brazil
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
- Member, Rutgers Cancer Institute of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
21
|
Zhang F, Ji Q, Chaturvedi J, Morales M, Mao Y, Meng X, Dong L, Deng J, Qian SB, Xiang Y. Human SAMD9 is a poxvirus-activatable anticodon nuclease inhibiting codon-specific protein synthesis. SCIENCE ADVANCES 2023; 9:eadh8502. [PMID: 37285440 PMCID: PMC10246899 DOI: 10.1126/sciadv.adh8502] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
As a defense strategy against viruses or competitors, some microbes use anticodon nucleases (ACNases) to deplete essential tRNAs, effectively halting global protein synthesis. However, this mechanism has not been observed in multicellular eukaryotes. Here, we report that human SAMD9 is an ACNase that specifically cleaves phenylalanine tRNA (tRNAPhe), resulting in codon-specific ribosomal pausing and stress signaling. While SAMD9 ACNase activity is normally latent in cells, it can be activated by poxvirus infection or rendered constitutively active by SAMD9 mutations associated with various human disorders, revealing tRNAPhe depletion as an antiviral mechanism and a pathogenic condition in SAMD9 disorders. We identified the N-terminal effector domain of SAMD9 as the ACNase, with substrate specificity primarily determined by a eukaryotic tRNAPhe-specific 2'-O-methylation at the wobble position, making virtually all eukaryotic tRNAPhe susceptible to SAMD9 cleavage. Notably, the structure and substrate specificity of SAMD9 ACNase differ from known microbial ACNases, suggesting convergent evolution of a common immune defense strategy targeting tRNAs.
Collapse
Affiliation(s)
- Fushun Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Quanquan Ji
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Juhi Chaturvedi
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Marisol Morales
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Xiangzhi Meng
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yan Xiang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
22
|
Lin J, Guo Y, Yao J, Tang K, Wang X. Applications of toxin-antitoxin systems in synthetic biology. ENGINEERING MICROBIOLOGY 2023; 3:100069. [PMID: 39629251 PMCID: PMC11610964 DOI: 10.1016/j.engmic.2023.100069] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 12/07/2024]
Abstract
Toxin-antitoxin (TA) systems are ubiquitous in bacteria and archaea. Most are composed of two neighboring genetic elements, a stable toxin capable of inhibiting crucial cellular processes, including replication, transcription, translation, cell division and membrane integrity, and an unstable antitoxin to counteract the toxicity of the toxin. Many new discoveries regarding the biochemical properties of the toxin and antitoxin components have been made since the first TA system was reported nearly four decades ago. The physiological functions of TA systems have been hotly debated in recent decades, and it is now increasingly clear that TA systems are important immune systems in prokaryotes. In addition to being involved in biofilm formation and persister cell formation, these modules are antiphage defense systems and provide host defenses against various phage infections via abortive infection. In this review, we explore the potential applications of TA systems based on the recent progress made in elucidating TA functions. We first describe the most recent classification of TA systems and then introduce the biochemical functions of toxins and antitoxins, respectively. Finally, we primarily focus on and devote considerable space to the application of TA complexes in synthetic biology.
Collapse
Affiliation(s)
- Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
VapC toxin switches M. smegmatis cells into dormancy through 23S rRNA cleavage. Arch Microbiol 2023; 205:28. [DOI: 10.1007/s00203-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
|
24
|
Identification of chromosomal type II toxin–antitoxin system from plant pathogenic Pseudomonas cichorii JBC 1. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Kotta-Loizou I, Giuliano MG, Jovanovic M, Schaefer J, Ye F, Zhang N, Irakleidi DA, Liu X, Zhang X, Buck M, Engl C. The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain. iScience 2022; 25:105425. [PMID: 36388977 PMCID: PMC9650030 DOI: 10.1016/j.isci.2022.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/21/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
CRISPR-associated Rossmann fold (CARF) domain signaling underpins modulation of CRISPR-Cas nucleases; however, the RtcR CARF domain controls expression of two conserved RNA repair enzymes, cyclase RtcA and ligase RtcB. Here, we demonstrate that RtcAB are required for RtcR-dependent transcription activation and directly bind to RtcR CARF. RtcAB catalytic activity is not required for complex formation with CARF, but is essential yet not sufficient for RtcRAB-dependent transcription activation, implying the need for an additional RNA repair-dependent activating signal. This signal differs from oligoadenylates, a known ligand of CARF domains, and instead appears to originate from the translation apparatus: RtcB repairs a tmRNA that rescues stalled ribosomes and increases translation elongation speed. Taken together, our data provide evidence for an expanded range for CARF domain signaling, including the first evidence of its control via in trans protein-protein interactions, and a feed-forward mechanism to regulate RNA repair required for a functioning translation apparatus.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Maria Grazia Giuliano
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Milija Jovanovic
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jorrit Schaefer
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Fuzhou Ye
- Section of Structural Biology, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Nan Zhang
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
- Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Danai Athina Irakleidi
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Xiaojiao Liu
- Section of Structural Biology, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Xiaodong Zhang
- Section of Structural Biology, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Christoph Engl
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
26
|
Wiradiputra MRD, Khuntayaporn P, Thirapanmethee K, Chomnawang MT. Toxin-Antitoxin Systems: A Key Role on Persister Formation in Salmonella enterica Serovar Typhimurium. Infect Drug Resist 2022; 15:5813-5829. [PMID: 36213766 PMCID: PMC9541301 DOI: 10.2147/idr.s378157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
The toxin and antitoxin modules in bacteria consist of a toxin molecule that has activity to inhibit various cellular processes and its cognate antitoxin that neutralizes the toxin. This system is considered taking part in the formation of persister cells, which are a subpopulation of recalcitrant cells able to survive antimicrobial treatment without any resistance mechanisms. Importantly, persisters have been associated with long-term infections and treatment failures in healthcare settings. It is a public health concern since persisters can be involved in the evolution and dissemination of antimicrobial resistance amidst the aggravating spread of multidrug-resistant bacteria and insufficient novel antimicrobial therapy to tackle this issue. Salmonella enterica serovar Typhimurium is one of the most prevalent Salmonella serotypes in the world and is a leading cause of food-borne salmonellosis. S. Typhimurium has been known to cause persistent infection and a wealth of investigations on Salmonella persisters indicates that toxin and antitoxin modules play a role in mediating the phenotypic switch of persisters, rendering its survival ability in the presence of antimicrobial agents. In this review, we discuss findings regarding mechanisms that underly persistence in S. Typhimurium, especially the involvement of toxin and antitoxin modules.
Collapse
Affiliation(s)
- Made Rai Dwitya Wiradiputra
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Biopharmaceutical Sciences Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Piyatip Khuntayaporn
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Krit Thirapanmethee
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Mullika Traidej Chomnawang
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand,Correspondence: Mullika Traidej Chomnawang, Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand, Tel +66 2 644 8692, Email
| |
Collapse
|
27
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
28
|
Wang H, Wang X, Wang L, Lu Z. Nutritional stress induced intraspecies competition revealed by transcriptome analysis in Sphingomonas melonis TY. Appl Microbiol Biotechnol 2022; 106:5675-5686. [PMID: 35927333 DOI: 10.1007/s00253-022-12097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Bacteria have developed various mechanisms by which they can compete or cooperate with other bacteria. This study showed that in the cocultures of wild-type Sphingomonas melonis TY and its isogenic mutant TYΔndpD grow with nicotine, the former can outcompete the latter. TYΔndpD undergoes growth arrest after four days when cocultured with wild-type TY, whereas the coculture has just entered a stationary phase and the substrate was nearly depleted, and the interaction between the two related strains was revealed by transcriptomic analysis. Analysis of the differential expression genes indicated that wild-type TY inhibited the growth of TYΔndpD mainly through toxin-antitoxin (TA) systems. The four upregulated antitoxin coding genes belong to type II TA systems in which the bactericidal effect of the cognate toxin was mainly through inhibition of translation or DNA replication, whereas wild-type TY with upregulated antitoxin genes can regenerate cognate immunity protein continuously and thus prevent the lethal action of toxin to itself. In addition, colicin-mediated antibacterial activity against closely related species may also be involved in the competition between wild-type TY and TYΔndpD under nutritional stress. Moreover, upregulation of carbon and nitrogen catabolism related-, stress response related-, DNA repair related-, and DNA replication-related genes in wild-type TY showed that it triggered a series of response mechanisms when facing dual stress of competition from isogenic mutant cells and nutritional limitation. Thus, we proposed that S. melonis TY employed the TA systems and colicin to compete with TYΔndpD under nutritional stress, thereby maximally acquiring and exploiting finite resources. KEY POINTS: • Cross-feeding between isogenic mutants and the wild-type strain. • Nutrition stress caused a shift from cooperation to competition. • TYΔndpD undergo growth arrest by exogenous and endogenous toxins.
Collapse
Affiliation(s)
- Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Fijalkowski I, Willems P, Jonckheere V, Simoens L, Van Damme P. Hidden in plain sight: challenges in proteomics detection of small ORF-encoded polypeptides. MICROLIFE 2022; 3:uqac005. [PMID: 37223358 PMCID: PMC10117744 DOI: 10.1093/femsml/uqac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 05/25/2023]
Abstract
Genomic studies of bacteria have long pointed toward widespread prevalence of small open reading frames (sORFs) encoding for short proteins, <100 amino acids in length. Despite the mounting genomic evidence of their robust expression, relatively little progress has been made in their mass spectrometry-based detection and various blanket statements have been used to explain this observed discrepancy. In this study, we provide a large-scale riboproteogenomics investigation of the challenging nature of proteomic detection of such small proteins as informed by conditional translation data. A panel of physiochemical properties alongside recently developed mass spectrometry detectability metrics was interrogated to provide a comprehensive evidence-based assessment of sORF-encoded polypeptide (SEP) detectability. Moreover, a large-scale proteomics and translatomics compendium of proteins produced by Salmonella Typhimurium (S. Typhimurium), a model human pathogen, across a panel of growth conditions is presented and used in support of our in silico SEP detectability analysis. This integrative approach is used to provide a data-driven census of small proteins expressed by S. Typhimurium across growth phases and infection-relevant conditions. Taken together, our study pinpoints current limitations in proteomics-based detection of novel small proteins currently missing from bacterial genome annotations.
Collapse
Affiliation(s)
- Igor Fijalkowski
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Patrick Willems
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Veronique Jonckheere
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Laure Simoens
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
30
|
tRNA fMet Inactivating Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems as Therapeutic Targets. Antimicrob Agents Chemother 2022; 66:e0189621. [PMID: 35404073 DOI: 10.1128/aac.01896-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mycobacterium tuberculosis genome contains an abundance of toxin-antitoxin (TA) systems, 50 of which belong to the VapBC family. The activity of VapC toxins is controlled by dynamic association with their cognate antitoxins-the toxin is inactive when complexed with VapB antitoxin but active when freed. Here, we determined the cellular target of two phylogenetically related VapC toxins and demonstrate how their properties can be harnessed for drug development. First, we used a specialized RNA sequencing (RNA-seq) approach, 5' RNA-seq, to accurately identify the in vivo RNA target of M. tuberculosis VapC2 and VapC21 toxins. Both toxins exclusively disable initiator tRNAfMet through cleavage at a single, identical site within their anticodon loop. Consistent with the essential role and global requirement for initiator tRNAfMet in bacteria, expression of each VapC toxin resulted in potent translation inhibition followed by growth arrest and cell death. Guided by previous structural studies, we then mutated two conserved amino acids in the antitoxin (WR→AA) that resided in the toxin-antitoxin interface and were predicted to inhibit toxin activity. Both mutants were markedly less efficient in rescuing growth over time, suggesting that screens for high-affinity small-molecule inhibitors against this or other crucial VapB-VapC interaction sites could drive constitutive inactivation of tRNAfMet by these VapC toxins. Collectively, the properties of the VapBC2 and VapBC21 TA systems provide a framework for development of bactericidal antitubercular agents with high specificity for M. tuberculosis cells.
Collapse
|
31
|
Abstract
Toxin-antitoxin (TA) systems are ubiquitous genetic elements in bacteria that consist of a growth-inhibiting toxin and its cognate antitoxin. These systems are prevalent in bacterial chromosomes, plasmids, and phage genomes, but individual systems are not highly conserved, even among closely related strains. The biological functions of TA systems have been controversial and enigmatic, although a handful of these systems have been shown to defend bacteria against their viral predators, bacteriophages. Additionally, their patterns of conservation-ubiquitous, but rapidly acquired and lost from genomes-as well as the co-occurrence of some TA systems with known phage defense elements are suggestive of a broader role in mediating phage defense. Here, we review the existing evidence for phage defense mediated by TA systems, highlighting how toxins are activated by phage infection and how toxins disrupt phage replication. We also discuss phage-encoded systems that counteract TA systems, underscoring the ongoing coevolutionary battle between bacteria and phage. We anticipate that TA systems will continue to emerge as central players in the innate immunity of bacteria against phage. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Michele LeRoux
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
32
|
Kandel PP, Naumova M, Fautt C, Patel RR, Triplett LR, Hockett KL. Genome Mining Shows Ubiquitous Presence and Extensive Diversity of Toxin-Antitoxin Systems in Pseudomonas syringae. Front Microbiol 2022; 12:815911. [PMID: 35095819 PMCID: PMC8790059 DOI: 10.3389/fmicb.2021.815911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems consist of two or more adjacent genes, encoding a toxin and an antitoxin. TA systems are implicated in evolutionary and physiological functions including genome maintenance, antibiotics persistence, phage defense, and virulence. Eight classes of TA systems have been described, based on the mechanism of toxin neutralization by the antitoxin. Although studied well in model species of clinical significance, little is known about the TA system abundance and diversity, and their potential roles in stress tolerance and virulence of plant pathogens. In this study, we screened the genomes of 339 strains representing the genetic and lifestyle diversity of the Pseudomonas syringae species complex for TA systems. Using bioinformatic search and prediction tools, including SLING, BLAST, HMMER, TADB2.0, and T1TAdb, we show that P. syringae strains encode 26 different families of TA systems targeting diverse cellular functions. TA systems in this species are almost exclusively type II. We predicted a median of 15 TA systems per genome, and we identified six type II TA families that are found in more than 80% of strains, while others are more sporadic. The majority of predicted TA genes are chromosomally encoded. Further functional characterization of the predicted TA systems could reveal how these widely prevalent gene modules potentially impact P. syringae ecology, virulence, and disease management practices.
Collapse
Affiliation(s)
- Prem P. Kandel
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,*Correspondence: Prem P. kandel,
| | - Marina Naumova
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Chad Fautt
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States
| | - Ravikumar R. Patel
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Kevin L. Hockett
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA, United States,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States,Kevin L. Hockett,
| |
Collapse
|
33
|
Maintenance of the Shigella sonnei virulence plasmid is dependent on its repertoire and amino acid sequence of toxin:antitoxin systems. J Bacteriol 2022; 204:e0051921. [PMID: 34978459 PMCID: PMC8923223 DOI: 10.1128/jb.00519-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella sonnei is a major cause of bacillary dysentery and an increasing concern due to the spread of multidrug resistance. S. sonnei harbors pINV, an ∼210 kb plasmid that encodes a type III secretion system (T3SS), which is essential for virulence. During growth in the laboratory, avirulence arises spontaneously in S. sonnei at high frequency, hampering studies on and vaccine development against this important pathogen. Here, we investigated the molecular basis for the emergence of avirulence in S. sonnei and showed that avirulence mainly results from pINV loss, which is consistent with previous findings. Ancestral deletions have led to the loss from S. sonnei pINV of two toxin-antitoxin (TA) systems involved in plasmid maintenance, CcdAB and GmvAT, which are found on pINV in Shigella flexneri. We showed that the introduction of these TA systems into S. sonnei pINV reduced but did not eliminate pINV loss, while the single amino acid polymorphisms found in the S. sonnei VapBC TA system compared with S. flexneri VapBC also contributed to pINV loss. Avirulence also resulted from deletions of T3SS-associated genes in pINV through recombination between insertion sequences (ISs) on the plasmid. These events differed from those observed in S. flexneri due to the different distribution and repertoire of ISs. Our findings demonstrated that TA systems and ISs influenced plasmid dynamics and loss in S. sonnei and could be exploited for the design and evaluation of vaccines. IMPORTANCEShigella sonnei is the major cause of shigellosis in high-income and industrializing countries and is an emerging, multidrug-resistant pathogen. A significant challenge when studying this bacterium is that it spontaneously becomes avirulent during growth in the laboratory through loss of its virulence plasmid (pINV). Here, we deciphered the mechanisms leading to avirulence in S. sonnei and how the limited repertoire and amino acid sequences of plasmid-encoded toxin-antitoxin (TA) systems make the maintenance of pINV in this bacterium less efficient compared with Shigella flexneri. Our findings highlighted how subtle differences in plasmids in closely related species have marked effects and could be exploited to reduce plasmid loss in S. sonnei. This should facilitate research on this bacterium and vaccine development.
Collapse
|
34
|
Abstract
Toxin-antitoxin systems are widespread in bacterial genomes. They are usually composed of two elements: a toxin that inhibits an essential cellular process and an antitoxin that counteracts its cognate toxin. In the past decade, a number of new toxin-antitoxin systems have been described, bringing new growth inhibition mechanisms to light as well as novel modes of antitoxicity. However, recent advances in the field profoundly questioned the role of these systems in bacterial physiology, stress response and antimicrobial persistence. This shifted the paradigm of the functions of toxin-antitoxin systems to roles related to interactions between hosts and their mobile genetic elements, such as viral defence or plasmid stability. In this Review, we summarize the recent progress in understanding the biology and evolution of these small genetic elements, and discuss how genomic conflicts could shape the diversification of toxin-antitoxin systems.
Collapse
|
35
|
Singh G, Yadav M, Ghosh C, Rathore JS. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100047. [PMID: 34841338 PMCID: PMC8610362 DOI: 10.1016/j.crmicr.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitously present bacterial Toxin-Antitoxin (TA) modules consist of stable toxin associated with labile antitoxin. Classification of TAs modules based on inhibition of toxin through antitoxin in 8 different classes. Variety of specific toxin targets and the abundance of TA modules in various deadly pathogens. Specific role of TAs modules in conservation of the resistant genes, emergence of persistence & biofilm formation. Proposed antibacterial strategies involving TA modules for elimination of multi-drug resistance.
Toxin-antitoxin (TA) modules are ubiquitous gene loci among bacteria and are comprised of a toxin part and its cognate antitoxin part. Under normal physiological conditions, antitoxin counteracts the toxicity of the toxin whereas, during stress conditions, TA modules play a crucial role in bacterial physiology through involvement in the post-segregational killing, abortive infection, biofilms, and persister cell formation. Most of the toxins are proteinaceous that affect translation or DNA replication, although some other intracellular molecular targets have also been described. While antitoxins may be a protein or RNA, that generally neutralizes its cognate toxin by direct interaction or with the help of other signaling elements and thus helps in the TA module regulation. In this review, we have discussed the current state of the multifaceted TA (type I–VIII) modules by highlighting their classification and specific targets. We have also discussed the presence of TA modules in the various pathogens and their role in antibiotic persistence development as well as biofilm formation, by influencing the different cellular processes. In the end, assembling knowledge about ubiquitous TA systems from pathogenic bacteria facilitated us to propose multiple novel antibacterial strategies involving artificial activation of TA modules.
Collapse
Affiliation(s)
- Garima Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Mohit Yadav
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| | - Chaitali Ghosh
- Department of Zoology Gargi College, University of Delhi, New Delhi, India
| | - Jitendra Singh Rathore
- School of Biotechnology, Gautam Buddha University, Greater Noida, Yamuna Expressway, Uttar Pradesh, India
| |
Collapse
|
36
|
Jeon H, Choi E, Hwang J. Identification and characterization of VapBC toxin-antitoxin system in Bosea sp. PAMC 26642 isolated from Arctic lichens. RNA (NEW YORK, N.Y.) 2021; 27:1374-1389. [PMID: 34429367 PMCID: PMC8522696 DOI: 10.1261/rna.078786.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Toxin-antitoxin (TA) systems are genetic modules composed of a toxin interfering with cellular processes and its cognate antitoxin, which counteracts the activity of the toxin. TA modules are widespread in bacterial and archaeal genomes. It has been suggested that TA modules participate in the adaptation of prokaryotes to unfavorable conditions. The Bosea sp. PAMC 26642 used in this study was isolated from the Arctic lichen Stereocaulon sp. There are 12 putative type II TA loci in the genome of Bosea sp. PAMC 26642. Of these, nine functional TA systems have been shown to be toxic in Escherichia coli The toxin inhibits growth, but this inhibition is reversed when the cognate antitoxin genes are coexpressed, indicating that these putative TA loci were bona fide TA modules. Only the BoVapC1 (AXW83_01405) toxin, a homolog of VapC, showed growth inhibition specific to low temperatures, which was recovered by the coexpression of BoVapB1 (AXW83_01400). Microscopic observation and growth monitoring revealed that the BoVapC1 toxin had bacteriostatic effects on the growth of E. coli and induced morphological changes. Quantitative real time polymerase chain reaction and northern blotting analyses showed that the BoVapC1 toxin had a ribonuclease activity on the initiator tRNAfMet, implying that degradation of tRNAfMet might trigger growth arrest in E. coli Furthermore, the BoVapBC1 system was found to contribute to survival against prolonged exposure at 4°C. This is the first study to identify the function of TA systems in cold adaptation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
| | - Eunsil Choi
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
37
|
Complete Genome Sequence of SMBL-WEM22, a Halotolerant Strain of Kosakonia cowanii Isolated from Hong Kong Seawater. Microbiol Resour Announc 2021; 10:e0089121. [PMID: 34647797 PMCID: PMC8515891 DOI: 10.1128/mra.00891-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kosakonia cowanii is a Gram-negative, motile, facultative anaerobic enterobacterium that is found in soil, water, and sewage. K. cowanii SMBL-WEM22 is a halotolerant strain that was isolated from seawater in Hong Kong. The complete genome of SMBL-WEM22 (5,037,617 bp, with a GC content of 55.02%) was determined by hybrid assembly of short- and long-read DNA sequences.
Collapse
|
38
|
Mycobacterium tuberculosis VapC4 toxin engages small ORFs to initiate an integrated oxidative and copper stress response. Proc Natl Acad Sci U S A 2021; 118:2022136118. [PMID: 34362841 DOI: 10.1073/pnas.2022136118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Mycobacterium tuberculosis (Mtb) VapBC4 toxin-antitoxin system is essential for the establishment of Mtb infection. Using a multitier, systems-level approach, we uncovered the sequential molecular events triggered by the VapC4 toxin that activate a circumscribed set of critical stress survival pathways which undoubtedly underlie Mtb virulence. VapC4 exclusively inactivated the sole transfer RNACys (tRNACys) through cleavage at a single site within the anticodon sequence. Depletion of the pool of tRNACys led to ribosome stalling at Cys codons within actively translating messenger RNAs. Genome mapping of these Cys-stalled ribosomes unexpectedly uncovered several unannotated Cys-containing open reading frames (ORFs). Four of these are small ORFs (sORFs) encoding Cys-rich proteins of fewer than 50 amino acids that function as Cys-responsive attenuators that engage ribosome stalling at tracts of Cys codons to control translation of downstream genes. Thus, VapC4 mimics a state of Cys starvation, which then activates Cys attenuation at sORFs to globally redirect metabolism toward the synthesis of free Cys. The resulting newly enriched pool of Cys feeds into the synthesis of mycothiol, the glutathione counterpart in this pathogen that is responsible for maintaining cellular redox homeostasis during oxidative stress, as well as into a circumscribed subset of cellular pathways that enable cells to defend against oxidative and copper stresses characteristically endured by Mtb within macrophages. Our ability to pinpoint activation or down-regulation of pathways that collectively align with Mtb virulence-associated stress responses and the nonreplicating persistent state brings to light a direct and vital role for the VapC4 toxin in mediating these critical pathways.
Collapse
|
39
|
Kumar N, Sharma S, Kaushal PS. Protein synthesis in Mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021; 81:101002. [PMID: 34344520 DOI: 10.1016/j.mam.2021.101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of humankind's deadliest diseases, tuberculosis. Mtb protein synthesis machinery possesses several unique species-specific features, including its ribosome that carries two mycobacterial specific ribosomal proteins, bL37 and bS22, and ribosomal RNA segments. Since the protein synthesis is a vital cellular process that occurs on the ribosome, a detailed knowledge of the structure and function of mycobacterial ribosomes is essential to understand the cell's proteome by translation regulation. Like in many bacterial species such as Bacillus subtilis and Streptomyces coelicolor, two distinct populations of ribosomes have been identified in Mtb. Under low-zinc conditions, Mtb ribosomal proteins S14, S18, L28, and L33 are replaced with their non-zinc binding paralogues. Depending upon the nature of physiological stress, species-specific modulation of translation by stress factors and toxins that interact with the ribosome have been reported. In addition, about one-fourth of messenger RNAs in mycobacteria have been reported to be leaderless, i.e., without 5' UTR regions. However, the mechanism by which they are recruited to the Mtb ribosome is not understood. In this review, we highlight the mycobacteria-specific features of the translation apparatus and propose exploiting these features to improve the efficacy and specificity of existing antibiotics used to treat tuberculosis.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
40
|
Kurata T, Brodiazhenko T, Alves Oliveira SR, Roghanian M, Sakaguchi Y, Turnbull KJ, Bulvas O, Takada H, Tamman H, Ainelo A, Pohl R, Rejman D, Tenson T, Suzuki T, Garcia-Pino A, Atkinson GC, Hauryliuk V. RelA-SpoT Homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis. Mol Cell 2021; 81:3160-3170.e9. [PMID: 34174184 DOI: 10.1016/j.molcel.2021.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/28/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
RelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel. Surprisingly, all these toxins specifically inhibit protein synthesis. To do so, they transfer a pyrophosphate moiety from ATP to the tRNA 3' CCA. The modification inhibits both tRNA aminoacylation and the sensing of cellular amino acid starvation by the ribosome-associated RSH RelA. Conversely, we show that some small alarmone hydrolase (SAH) RSH enzymes can reverse the pyrophosphorylation of tRNA to counter the growth inhibition by toxSAS. Collectively, we establish RSHs as RNA-modifying enzymes.
Collapse
Affiliation(s)
- Tatsuaki Kurata
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden.
| | | | | | - Mohammad Roghanian
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kathryn Jane Turnbull
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden; Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Ondřej Bulvas
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovonam. 2, 166 10 Prague 6, Czech Republic
| | - Hiraku Takada
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Hedvig Tamman
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Andres Ainelo
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovonam. 2, 166 10 Prague 6, Czech Republic
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovonam. 2, 166 10 Prague 6, Czech Republic
| | - Tanel Tenson
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology (CM2), Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus La Plaine, Building BC, Room 1C4203, Boulevard du Triomphe, 1050 Brussels, Belgium; WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | | | - Vasili Hauryliuk
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden; University of Tartu, Institute of Technology, 50411 Tartu, Estonia; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
41
|
Li Z, Stanton BA. Transfer RNA-Derived Fragments, the Underappreciated Regulatory Small RNAs in Microbial Pathogenesis. Front Microbiol 2021; 12:687632. [PMID: 34079534 PMCID: PMC8166272 DOI: 10.3389/fmicb.2021.687632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/26/2021] [Indexed: 01/20/2023] Open
Abstract
In eukaryotic organisms, transfer RNA (tRNA)-derived fragments have diverse biological functions. Considering the conserved sequences of tRNAs, it is not surprising that endogenous tRNA fragments in bacteria also play important regulatory roles. Recent studies have shown that microbes secrete extracellular vesicles (EVs) containing tRNA fragments and that the EVs deliver tRNA fragments to eukaryotic hosts where they regulate gene expression. Here, we review the literature describing microbial tRNA fragment biogenesis and how the fragments secreted in microbial EVs suppress the host immune response, thereby facilitating chronic infection. Also, we discuss knowledge gaps and research challenges for understanding the pathogenic roles of microbial tRNA fragments in regulating the host response to infection.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
42
|
Luo X, Lin J, Yan J, Kuang X, Su H, Lin W, Luo L. Characterization of DinJ-YafQ toxin-antitoxin module in Tetragenococcus halophilus: activity, interplay, and evolution. Appl Microbiol Biotechnol 2021; 105:3659-3672. [PMID: 33877415 DOI: 10.1007/s00253-021-11297-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022]
Abstract
Tetragenococcus halophilus is a moderately halophilic lactic acid bacterium widely used in high-salt food fermentation because of its coping ability under various stress conditions. Bacterial toxin-antitoxin (TA) modules are widely distributed and play important roles in stress response, but those specific for genus Tetragenococcus have never been explored. Here, a bona fide TA module named DinJ1-YafQ1tha was characterized in T. halophilus. The toxin protein YafQ1tha acts as a ribonuclease, and its overexpression severely inhibits Escherichia coli growth. These toxic effects can be eliminated by introducing DinJ1tha, indicating that YafQ1tha activity is blocked by the formed DinJ1-YafQ1tha complex. In vivo and in vitro assays showed that DinJ1tha alone or DinJ1-YafQ1tha complex can repress the transcription of dinJ1-yafQ1tha operon by binding directly to the promoter sequence. In addition, dinJ1-yafQ1tha is involved in plasmid maintenance and stress response, and its transcriptional level is regulated by various stresses. These findings reveal the possible roles of DinJ1-YafQ1tha system in the stress adaptation processes of T. halophilus during fermentation. A single antitoxin DinJ2tha without a cognate toxin protein was also found. Its sequence shows low similarity to that of DinJ1tha, indicating that this antitoxin may have evolved from a different ancestor. Moreover, DinJ2tha can cross-interact with noncognate toxin YafQ1tha and cross-regulate with dinJ1-yafQ1tha operon. In summary, DinJ-YafQtha characterization may be helpful in investigating the key roles of TA systems in T. halophilus and serves as a foundation for further research. KEY POINTS: • dinJ1-yafQ1tha is the first functional TA module characterized in T. halophilus and upregulated significantly upon osmotic and acidic stress. • DinJ2tha can exhibit physical and transcriptional interplay with DinJ1-YafQ1tha. • dinJ2tha may be acquired from bacteria in distant affiliation and inserted into the T. halophilus genome through horizontal gene transfer.
Collapse
Affiliation(s)
- Xiaotong Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jieting Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Junwei Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaoxian Kuang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Hantao Su
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Weifeng Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Lixin Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
43
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
44
|
Samhita L, K Raval P, Stephenson G, Thutupalli S, Agashe D. The impact of mistranslation on phenotypic variability and fitness. Evolution 2021; 75:1201-1217. [PMID: 33491193 PMCID: PMC8248024 DOI: 10.1111/evo.14179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/25/2020] [Accepted: 12/20/2020] [Indexed: 01/20/2023]
Abstract
Phenotypic variation is widespread in natural populations, and can significantly alter population ecology and evolution. Phenotypic variation often reflects underlying genetic variation, but also manifests via non-heritable mechanisms. For instance, translation errors result in about 10% of cellular proteins carrying altered sequences. Thus, proteome diversification arising from translation errors can potentially generate phenotypic variability, in turn increasing variability in the fate of cells or of populations. However, the link between protein diversity and phenotypic variability remains unverified. We manipulated mistranslation levels in Escherichia coli, and measured phenotypic variability between single cells (individual-level variation), as well as replicate populations (population-level variation). Monitoring growth and survival, we find that mistranslation indeed increases variation across E. coli cells, but does not consistently increase variability in growth parameters across replicate populations. Interestingly, although any deviation from the wild-type (WT) level of mistranslation reduces fitness in an optimal environment, the increased variation is associated with a survival benefit under stress. Hence, we suggest that mistranslation-induced phenotypic variation can impact growth and survival and has the potential to alter evolutionary trajectories.
Collapse
Affiliation(s)
- Laasya Samhita
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Parth K Raval
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Godwin Stephenson
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shashi Thutupalli
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.,International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
45
|
Pillon MC, Gordon J, Frazier MN, Stanley RE. HEPN RNases - an emerging class of functionally distinct RNA processing and degradation enzymes. Crit Rev Biochem Mol Biol 2021; 56:88-108. [PMID: 33349060 PMCID: PMC7856873 DOI: 10.1080/10409238.2020.1856769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
HEPN (Higher Eukaryotes and Prokaryotes Nucleotide-binding) RNases are an emerging class of functionally diverse RNA processing and degradation enzymes. Members are defined by a small α-helical bundle encompassing a short consensus RNase motif. HEPN dimerization is a universal requirement for RNase activation as the conserved RNase motifs are precisely positioned at the dimer interface to form a composite catalytic center. While the core HEPN fold is conserved, the organization surrounding the HEPN dimer can support large structural deviations that contribute to their specialized functions. HEPN RNases are conserved throughout evolution and include bacterial HEPN RNases such as CRISPR-Cas and toxin-antitoxin associated nucleases, as well as eukaryotic HEPN RNases that adopt large multi-component machines. Here we summarize the canonical elements of the growing HEPN RNase family and identify molecular features that influence RNase function and regulation. We explore similarities and differences between members of the HEPN RNase family and describe the current mechanisms for HEPN RNase activation and inhibition.
Collapse
Affiliation(s)
- Monica C. Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Jacob Gordon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Meredith N. Frazier
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E. Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| |
Collapse
|
46
|
M. Iyer L, Anantharaman V, Krishnan A, Burroughs AM, Aravind L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021; 13:v13010063. [PMID: 33466489 PMCID: PMC7824862 DOI: 10.3390/v13010063] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023] Open
Abstract
Jumbo phages have attracted much attention by virtue of their extraordinary genome size and unusual aspects of biology. By performing a comparative genomics analysis of 224 jumbo phages, we suggest an objective inclusion criterion based on genome size distributions and present a synthetic overview of their manifold adaptations across major biological systems. By means of clustering and principal component analysis of the phyletic patterns of conserved genes, all known jumbo phages can be classified into three higher-order groups, which include both myoviral and siphoviral morphologies indicating multiple independent origins from smaller predecessors. Our study uncovers several under-appreciated or unreported aspects of the DNA replication, recombination, transcription and virion maturation systems. Leveraging sensitive sequence analysis methods, we identify novel protein-modifying enzymes that might help hijack the host-machinery. Focusing on host–virus conflicts, we detect strategies used to counter different wings of the bacterial immune system, such as cyclic nucleotide- and NAD+-dependent effector-activation, and prevention of superinfection during pseudolysogeny. We reconstruct the RNA-repair systems of jumbo phages that counter the consequences of RNA-targeting host effectors. These findings also suggest that several jumbo phage proteins provide a snapshot of the systems found in ancient replicons preceding the last universal ancestor of cellular life.
Collapse
Affiliation(s)
- Lakshminarayan M. Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - Arunkumar Krishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha 760010, India;
| | - A. Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (L.M.I.); (V.A.); (A.M.B.)
- Correspondence:
| |
Collapse
|
47
|
Shetty S, Varshney U. Regulation of translation by one-carbon metabolism in bacteria and eukaryotic organelles. J Biol Chem 2021; 296:100088. [PMID: 33199376 PMCID: PMC7949028 DOI: 10.1074/jbc.rev120.011985] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Protein synthesis is an energetically costly cellular activity. It is therefore important that the process of mRNA translation remains in excellent synchrony with cellular metabolism and its energy reserves. Unregulated translation could lead to the production of incomplete, mistranslated, or misfolded proteins, squandering the energy needed for cellular sustenance and causing cytotoxicity. One-carbon metabolism (OCM), an integral part of cellular intermediary metabolism, produces a number of one-carbon unit intermediates (formyl, methylene, methenyl, methyl). These OCM intermediates are required for the production of amino acids such as methionine and other biomolecules such as purines, thymidylate, and redox regulators. In this review, we discuss how OCM impacts the translation apparatus (composed of ribosome, tRNA, mRNA, and translation factors) and regulates crucial steps in protein synthesis. More specifically, we address how the OCM metabolites regulate the fidelity and rate of translation initiation in bacteria and eukaryotic organelles such as mitochondria. Modulation of the fidelity of translation initiation by OCM opens new avenues to understand alternative translation mechanisms involved in stress tolerance and drug resistance.
Collapse
Affiliation(s)
- Sunil Shetty
- Biozentrum, University of Basel, Basel, Switzerland
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Jawaharlal Nehru Centre for Advanced Scientific Studies, Jakkur, Bangalore, India.
| |
Collapse
|
48
|
Abstract
Bacterial endoribonuclease toxins belong to a protein family that inhibits bacterial growth by degrading mRNA or rRNA sequences. The toxin genes are organized in pairs with its cognate antitoxins in the chromosome and thus the activities of the toxins are antagonized by antitoxin proteins or RNAs during active translation. In response to a variety of cellular stresses, the endoribonuclease toxins appear to be released from antitoxin molecules via proteolytic cleavage of antitoxin proteins or preferential degradation of antitoxin RNAs and cleave a diverse range of mRNA or rRNA sequences in a sequence-specific or codon-specific manner, resulting in various biological phenomena such as antibiotic tolerance and persister cell formation. Given that substrate specificity of each endoribonuclease toxin is determined by its structure and the composition of active site residues, we summarize the biology, structure, and substrate specificity of the updated bacterial endoribonuclease toxins.
Collapse
Affiliation(s)
- Yoontak Han
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| | - Eun-Jin Lee
- Department of Life Sciences, Korea University, Seoul 02481, Korea
| |
Collapse
|
49
|
Abstract
The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. The worldwide increase in the frequency of multidrug-resistant and extensively drug-resistant cases of tuberculosis is mainly due to therapeutic noncompliance associated with a lengthy treatment regimen. Depending on the drug susceptibility profile, the treatment duration can extend from 6 months to 2 years. This protracted regimen is attributed to a supposedly nonreplicating and metabolically inert subset of the Mycobacterium tuberculosis population, called “persisters.” The mechanism underlying stochastic generation and enrichment of persisters is not fully known. We have previously reported that the utilization of host cholesterol is essential for mycobacterial persistence. In this study, we have demonstrated that cholesterol-induced activation of a RNase toxin (VapC12) inhibits translation by targeting proT tRNA in M. tuberculosis. This results in cholesterol-specific growth modulation that increases the frequency of generation of the persisters in a heterogeneous M. tuberculosis population. Also, a null mutant strain of this toxin (ΔvapC12) demonstrated an enhanced growth phenotype in a guinea pig model of M. tuberculosis infection, depicting its role in disease persistence. Thus, we have identified a novel strategy through which cholesterol-specific activation of a toxin-antitoxin module in M. tuberculosis enhances persister formation during infection. The current findings provide an opportunity to target persisters, a new paradigm facilitating tuberculosis drug development. IMPORTANCE The current TB treatment regimen involves a combination of drugs administered for an extended duration that could last for 6 months to 2 years. This could lead to noncompliance and the emergence of newer drug resistance strains. It is widely perceived that the major culprits are the so-called nonreplicating and metabolically inactive “persister” bacteria. The importance of cholesterol utilization during the persistence stage of M. tuberculosis infection and its potential role in the generation of persisters is very intriguing. We explored the mechanism involved in the cholesterol-mediated generation of persisters in mycobacteria. In this study, we have identified a toxin-antitoxin (TA) system essential for the generation of persisters during M. tuberculosis infection. This study verified that M. tuberculosis strain devoid of the VapBC12 TA system failed to persist and showed a hypervirulent phenotype in a guinea pig infection model. Our studies indicate that the M. tuberculosis VapBC12 TA system acts as a molecular switch regulating persister generation during infection. VapBC12 TA system as a drug target offers opportunities to develop shorter and more effective treatment regimens against tuberculosis.
Collapse
|
50
|
An RNA Repair Operon Regulated by Damaged tRNAs. Cell Rep 2020; 33:108527. [PMID: 33357439 PMCID: PMC7790460 DOI: 10.1016/j.celrep.2020.108527] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Many bacteria contain an RNA repair operon, encoding the RtcB RNA ligase and the RtcA RNA cyclase, that is regulated by the RtcR transcriptional activator. Although RtcR contains a divergent version of the CARF (CRISPR-associated Rossman fold) oligonucleotide-binding regulatory domain, both the specific signal that regulates operon expression and the substrates of the encoded enzymes are unknown. We report that tRNA fragments activate operon expression. Using a genetic screen in Salmonella enterica serovar Typhimurium, we find that the operon is expressed in the presence of mutations that cause tRNA fragments to accumulate. RtcA, which converts RNA phosphate ends to 2′, 3′-cyclic phosphate, is also required. Operon expression and tRNA fragment accumulation also occur upon DNA damage. The CARF domain binds 5′ tRNA fragments ending in cyclic phosphate, and RtcR oligomerizes upon binding these ligands, a prerequisite for operon activation. Our studies reveal a signaling pathway involving broken tRNAs and implicate the operon in tRNA repair. Hughes et al. demonstrate that a bacterial RNA repair operon, containing the RtcB RNA ligase and the RtcA RNA cyclase, is regulated by binding of 5′ tRNA halves ending in 2′, 3′-cyclic phosphate to the RtcR transcriptional activator. These studies show how tRNA fragments can regulate bacterial gene expression.
Collapse
|