1
|
Han Yu P, Yan Zhang Z, Yuan Kang Y, Huang P, Yang C, Naranmandura H. Acute myeloid leukemia with t(8;21) translocation: Molecular pathogenesis, potential therapeutics and future directions. Biochem Pharmacol 2025; 233:116774. [PMID: 39864466 DOI: 10.1016/j.bcp.2025.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive blood cancer. Genetic abnormalities, such as the t(8;21) rearrangement, play a significant role in AML onset. This rearrangement leads to the formation of the RUNX1/RUNX1T1 fusion protein, disrupting gene regulation and genomic stability, ultimately causing full-blown leukemia. Despite a generally favorable prognosis, t(8;21) patients face relapse and chemotherapy resistance, particularly when harboring cooperating mutations. While advances in cellular genetics and molecular biology have improved AML treatment, there are currently no specific targeted therapies against RUNX1/RUNX1T1. Therefore, investigating targeted therapies for this AML subtype holds promise for patients. This review explores the complex landscape of t(8;21) AML, unravels the molecular mechanisms of RUNX1/RUNX1T1-driven leukemogenesis, and discusses recent advancements in target therapies including small molecule drugs and PROTAC. Our goal is to develop more effective and less toxic strategies for managing t(8;21) AML patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Translocation, Genetic/genetics
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 21/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Animals
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Antineoplastic Agents/therapeutic use
- Oncogene Proteins, Fusion/genetics
- Molecular Targeted Therapy/methods
Collapse
Affiliation(s)
- Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Xing T, Hu LJ, Zhao HY, Li CY, Wang ZK, Shen MZ, Lyu ZS, Wang J, Wang Y, Jiang H, Jiang Q, Chang YJ, Zhang XH, Kong Y, Huang XJ. Bone Marrow Endothelial Progenitor Cells remodelling facilitates normal hematopoiesis during Acute Myeloid Leukemia Complete Remission. Nat Commun 2024; 15:10832. [PMID: 39737962 PMCID: PMC11686104 DOI: 10.1038/s41467-024-55051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Although acute myeloid leukemia (AML) affects hematopoietic stem cell (HSC)-supportive microenvironment, it is largely unknown whether leukemia-modified bone marrow (BM) microenvironment can be remodeled to support normal hematopoiesis after complete remission (CR). As a key element of BM microenvironment, endothelial progenitor cells (EPCs) provide a feasible way to investigate BM microenvironment remodeling. Here, we find reduced and dysfunctional BM EPCs in AML patients, characterized by impaired angiogenesis and high ROS levels, could be partially remodeled after CR and improved by N-acetyl-L-cysteine (NAC). Importantly, HSC-supporting ability of BM EPCs is partially recovered, whereas leukemia-supporting ability is decreased in CR patients. Mechanistically, the transcriptome characteristics of leukemia-modified BM EPCs return to near-normal after CR. In a classic AML mouse and chemotherapy model, BM vasculature and normal hematopoiesis are reversed after CR. In summary, we provide further insights into how leukemia-modified BM microenvironment can be remodeled to support normal hematopoiesis after CR, which can be further improved by NAC.
Collapse
Affiliation(s)
- Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Chen-Yuan Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhen-Kun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng-Zhu Shen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
3
|
Yan XY, Kang YY, Zhang ZY, Huang P, Yang C, Naranmandura H. Therapeutic approaches targeting oncogenic proteins in myeloid leukemia: challenges and perspectives. Expert Opin Ther Targets 2024; 28:1131-1148. [PMID: 39679536 DOI: 10.1080/14728222.2024.2443577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
INTRODUCTION Leukemia is typically categorized into myeloid leukemia and lymphoblastic leukemia based on the origins of leukemic cells. Myeloid leukemia is a group of clonal malignancies characterized by the presence of increased immature myeloid cells in both the bone marrow and peripheral blood. Of note, the aberrant expression of specific proteins or the generation of fusion proteins due to chromosomal abnormalities are well established drivers in various forms of myeloid leukemia. Therefore, these oncoproteins represent promising targets for drug development. AREAS COVERED In this review, we comprehensively discussed the pathogenesis of typical leukemia oncoproteins and the current landscape of small molecule drugs targeting these oncogenic proteins. Additionally, we elucidated novel strategies, including proteolysis-targeting chimeras (PROTACs), hyperthermia, and genomic editing, which specifically degrade oncogenic proteins in myeloid malignancies. EXPERT OPINION Although small molecule drugs have significantly improved the prognosis of oncoprotein-driven myeloid leukemia patients, drug resistance due to the mutations in oncoproteins is still a great challenge in the clinic. New approaches such as PROTACs, hyperthermia, and genomic editing are considered promising approaches for the treatment of oncoprotein-driven leukemia, especially for drug-resistant mutants.
Collapse
Affiliation(s)
- Xing Yi Yan
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ze Yan Zhang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Wang ZK, Zhang ZW, Lyu ZS, Xing T, Liang M, Shen MZ, Li CY, Zhang XY, Chen DD, Wang YZ, Hu LJ, Jiang H, Wang Y, Jiang Q, Zhang XH, Kong Y, Huang XJ. Inhibition of TGF-β signaling in bone marrow endothelial cells promotes hematopoietic recovery in acute myeloid leukemia patients. Cancer Lett 2024; 605:217290. [PMID: 39396705 DOI: 10.1016/j.canlet.2024.217290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
Although it is an effective treatment for acute myeloid leukemia (AML), chemotherapy leads to myelosuppression and poor hematopoietic reconstruction. Hematopoiesis is regulated by bone marrow (BM) endothelial cells (ECs), and BM ECs are dysfunctional in acute leukemia patients with poor hematopoietic reconstitution after allogenic hematopoietic stem cell transplantation. Thus, it is crucial to explore the underlying mechanism of EC impairment and establish strategies for targeted therapy. TGF-β signaling was found to be upregulated in ECs from AML patients in complete remission (CR ECs) and led to CR EC damage. Administration of a TGF-β inhibitor rescued the dysfunction of ECs caused by TGF-β1 expression in vitro, especially their hematopoiesis-supporting ability. Moreover, inhibition of TGF-β expression repaired the BM EC damage triggered by chemotherapy in both AML patients in vitro and in an AML-CR murine model, and restored normal hematopoiesis without promoting AML progression. Mechanistically, our data reveal alterations in the transcriptomic pattern of damaged BM ECs, accompanied by the overexpression of downstream molecules TGF-βR1, pSmad2/3, and functional genes related to adhesion, angiogenesis suppression and pro-apoptosis. Collectively, our findings reveal for the first time that the activation of TGF-β signaling leads to BM EC dysfunction and poor hematopoietic reconstitution. Targeting TGF-β represents a potential therapeutic strategy to promote multilineage hematopoiesis, thereby benefiting more cancer patients who suffer from myelosuppression after chemotherapy.
Collapse
Affiliation(s)
- Zhen-Kun Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhi-Wei Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mi Liang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng-Zhu Shen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Chen-Yuan Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xin-Yan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Dan-Dan Chen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ya-Zhe Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Li-Juan Hu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; State Key Laboratory of Natural and Biomimetic Drugs, Beijing, China.
| |
Collapse
|
5
|
Yen JH, Keak PY, Wu CL, Chen HJ, Gao WY, Liou JW, Chen YR, Lin LI, Chen PY. Shikonin, a natural naphthoquinone phytochemical, exerts anti-leukemia effects in human CBF-AML cell lines and zebrafish xenograft models. Biomed Pharmacother 2024; 179:117395. [PMID: 39241566 DOI: 10.1016/j.biopha.2024.117395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Core binding factor acute myeloid leukemia (CBF-AML) stands out as the most common type of adult AML, characterized by specific chromosomal rearrangements involving CBF genes, particularly t(8;21). Shikonin (SHK), a naphthoquinone phytochemical widely employed as a food colorant and traditional Chinese herbal medicine, exhibits antioxidant, anti-inflammatory, and anti-cancer activities. In this study, we aim to investigate the antileukemic effects of SHK and its underlying mechanisms in human CBF-AML cells and zebrafish xenograft models. Our study revealed that SHK reduced the viability of CBF-AML cells. SHK induced cell cycle arrest, promoted cell apoptosis, and induced differentiation in Kasumi-1 cells. Additionally, SHK downregulated the gene expression of AML1-ETO and c-KIT in Kasumi-1 cells. In animal studies, SHK showed no toxic effects in zebrafish and markedly inhibited the growth of leukemia cells in zebrafish xenografts. Transcriptomic analysis showed that differentially expressed genes (DEGs) altered by SHK are linked to key biological processes like DNA repair, replication, cell cycle regulation, apoptosis, and division. Furthermore, KEGG pathways associated with cell growth, such as the cell cycle and p53 signaling pathway, were significantly enriched by DEGs. Analysis of AML-associated genes in response to SHK treatment using DisGeNET and the STRING database indicated that SHK downregulates the expression of cell division regulators regarding AML progression. Finally, we found that SHK combined with cytarabine synergistically reduced the viability of Kasumi-1 cells. In conclusion, our findings provide novel insights into the mechanisms of SHK in suppressing leukemia cell growth, suggesting its potential as a chemotherapeutic agent for human CBF-AML.
Collapse
Affiliation(s)
- Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Pei Ying Keak
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Chia-Ling Wu
- Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan
| | - Hsuan-Jan Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Wan-Yun Gao
- Institute of Medical Sciences, Tzu Chi University, Hualien 970374, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
| | - Yi-Ruei Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan
| | - Liang-In Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei City 10048, Taiwan
| | - Pei-Yi Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970374, Taiwan; Laboratory of Medical Genetics, Genetic Counseling Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970374, Taiwan.
| |
Collapse
|
6
|
Lei YC, Chen XJ, Dai YT, Dai B, Wang JY, Li MH, Liu P, Liu H, Wang KK, Jiang L, Chen B. Combination of eriocalyxin B and homoharringtonine exerts synergistic anti-tumor effects against t(8;21) AML. Acta Pharmacol Sin 2024; 45:633-645. [PMID: 38017299 PMCID: PMC10834584 DOI: 10.1038/s41401-023-01196-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as "secondary hit", making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38- leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.
Collapse
Affiliation(s)
- Yi-Chen Lei
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Jie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ji-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao-Hui Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Han Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kan-Kan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Kreissig S, Windisch R, Wichmann C. Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells. Cells 2023; 13:78. [PMID: 38201282 PMCID: PMC10777941 DOI: 10.3390/cells13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hemato-oncological diseases account for nearly 10% of all malignancies and can be classified into leukemia, lymphoma, myeloproliferative diseases, and myelodysplastic syndromes. The causes and prognosis of these disease entities are highly variable. Most entities are not permanently controllable and ultimately lead to the patient's death. At the molecular level, recurrent mutations including chromosomal translocations initiate the transformation from normal stem-/progenitor cells into malignant blasts finally floating the patient's bone marrow and blood system. In acute myeloid leukemia (AML), the so-called master transcription factors such as RUNX1, KMT2A, and HOX are frequently disrupted by chromosomal translocations, resulting in neomorphic oncogenic fusion genes. Triggering ex vivo expansion of primary human CD34+ stem/progenitor cells represents a distinct characteristic of such chimeric AML transcription factors. Regarding oncogenic mechanisms of AML, most studies focus on murine models. However, due to biological differences between mice and humans, findings are only partly transferable. This review focuses on the genetic manipulation of human CD34+ primary hematopoietic stem/progenitor cells derived from healthy donors to model acute myeloid leukemia cell growth. Analysis of defined single- or multi-hit human cellular AML models will elucidate molecular mechanisms of the development, maintenance, and potential molecular intervention strategies to counteract malignant human AML blast cell growth.
Collapse
Affiliation(s)
| | | | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.K.)
| |
Collapse
|
8
|
Xu D, Yang Y, Yin Z, Tu S, Nie D, Li Y, Huang Z, Sun Q, Huang C, Nie X, Yao Z, Shi P, Zhang Y, Jiang X, Liu Q, Yu G. Risk-directed therapy based on genetics and MRD improves the outcomes of AML1-ETO-positive AML patients, a multi-center prospective cohort study. Blood Cancer J 2023; 13:168. [PMID: 37957175 PMCID: PMC10643486 DOI: 10.1038/s41408-023-00941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Affiliation(s)
- Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danian Nie
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qixin Sun
- Department of Hematology, Guangzhou First People's Hospital, Guangzhou, China
| | - Changfen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaqi Nie
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zurong Yao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Liu X, Sun W, Wang L, Zhou B, Li P. Melatonin promotes differentiation and apoptosis of AML1-ETO-positive cells. Bull Cancer 2023; 110:342-351. [PMID: 36863921 DOI: 10.1016/j.bulcan.2023.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Acute Myeloid Leukemia 1-Eight-Twenty-One (AML1-ETO) is an oncogenic fusion protein that causes acute myeloid leukemia. We examined the effects of melatonin on AML1-ETO by investigating cell differentiation, apoptosis, and degradation in leukemia cell lines. METHOD We evaluated Kasumi-1, U937T, and primary acute myeloid leukemia (AML1-ETO-positive) cell proliferation by Cell Counting Kit-8 assay. Flow cytometry and western blotting were used to evaluate CD11b/CD14 levels (differentiation biomarkers) and the AML1-ETO protein degradation pathway, respectively. CM-Dil-labeled Kasumi-1 cells were also injected into zebrafish embryos to determine the effects of melatonin on vascular proliferation and development and to evaluate the combined effects of melatonin and common chemotherapeutic agents. RESULTS AML1-ETO-positive acute myeloid leukemia cells were more sensitive to melatonin than AML1-ETO-negative cells. Melatonin increased apoptosis and CD11b/CD14 expression in AML1-ETO-positive cells and decreased the nuclear/cytoplasmic ratio, together suggesting that melatonin induced cell differentiation. Mechanistically, melatonin degraded AML1-ETO by activating the caspase-3 pathway and regulating the mRNA levels of AML1-ETO downstream genes. Melatonin reduced the number of neovessels in Kasumi-1-injected zebrafish, suggesting that melatonin inhibits cell proliferation in vivo. Finally, combining drugs with melatonin inhibited cell viability. DISCUSSION Melatonin is a potential compound for the treatment of AML1-ETO-positive acute myeloid leukemia.
Collapse
Affiliation(s)
- Xuling Liu
- The First Affiliated Hospital of Wenzhou Medical University, Department of Pathology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Wenwen Sun
- The First Affiliated Hospital of Wenzhou Medical University, Department of Pathology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Leilei Wang
- The First Affiliated Hospital of Wenzhou Medical University, Department of Anesthesiology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Bin Zhou
- Medical Research Center, The First Affiliated Hospital of Wenzhou Medical University, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China
| | - Peng Li
- The First Affiliated Hospital of Wenzhou Medical University, Department of Pathology, Xuefu Road, Ouhai District, Wenzhou 325000, Zhejiang Province, China.
| |
Collapse
|
10
|
Valent P, Akin C, Sperr WR, Horny HP, Arock M, Metcalfe DD, Galli SJ. New Insights into the Pathogenesis of Mastocytosis: Emerging Concepts in Diagnosis and Therapy. ANNUAL REVIEW OF PATHOLOGY 2023; 18:361-386. [PMID: 36270293 DOI: 10.1146/annurev-pathmechdis-031521-042618] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mastocytosis is a heterogeneous group of neoplasms defined by a numerical increase and accumulation of clonal mast cells (MCs) in various organ systems. The disease may present as cutaneous mastocytosis or systemic mastocytosis (SM). On the basis of histopathological and molecular features, clinical variables, and organ involvement, SM is divided into indolent SM, smoldering SM, SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia. Each variant is defined by unique diagnostic criteria and a unique spectrum of clinical presentations. A key driver of MC expansion and disease evolution is the oncogenic machinery triggered by mutant forms of KIT. The genetic background, additional somatic mutations, and comorbidities also contribute to the course and prognosis. Patients with SM may also suffer from mediator-related symptoms or even an MC activation syndrome. This article provides an update of concepts on the genetics, etiology, and pathology of mastocytosis, with emphasis on diagnostic criteria and new treatment concepts.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
11
|
Akram AM, Hassan M, Chaudhary A, Hayat S, Ali Q, Hussain T, Zafar A, Javed MA. Identification and in silico analysis of noval alteration Arg420Gly in KIT proto oncogene among acute myeloid leukemia patients. Sci Rep 2022; 12:19252. [PMID: 36357474 PMCID: PMC9649709 DOI: 10.1038/s41598-022-23934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
A number of studies have reported frequent incidence of c-kit gene mutations in association with core binding factor acute myeloid leukemia (CBF-AML). These genetic changes have become important prognostic predictors in patients with abnormal karyotype. Aim of this study was the detection of nucleotide alterations in newly diagnosed acute myeloid leukemia patients for three exons of c-kit gene, including cytogenetically normal patients. Thirty-one de novo AML patients were screened for any possible variations in exon 8, 11 and 17 sequences of c-kit proto-oncogene leading to amino acid substitutions or frame shift. Sanger sequencing method was employed followed by sequence analysis. Mutation data was then correlated with clinical and hematological parameters of patients and prognostic significance of genetic changes was assessed as well. The computational tools were then used to further understand the extent of damage caused by these mutations to c-kit protein. Fifteen (48.4%) mutant patients were observed with single, double or multiple mutations in one, two or all three exons studied. The analysis revealed eight new alterations which were not reported previously. Significant variation among mutant and non-mutant group of patients was observed with respect to FAB subtypes (x2 = 12.524, p = 0.029), Spleen size (x2 = 4.288, p = 0.038) and Red blood cell count (x2 = 8.447, p = 0.007). The survival analysis indicates poor overall and event free survival outcomes in mutant individuals. Furthermore, the in silico analysis suggests that changes in nucleotide sequences can possibly damage the protein structure and effect it's function. This study emphasizes the need to consider screening of c-kit gene alterations not only in CBF-AML but in cytogenetically normal AML patients as well. In current investigation the effect of mutation Arg420Gly on structure and function of c-kit protein was investigated, as this was the most observed substitution in present cohort. Various bioinformatics tools and techniques were employed, which determined that Arg420Gly is possibly non-pathogenic mutation.
Collapse
Affiliation(s)
- Afia Muhammad Akram
- grid.440554.40000 0004 0609 0414Department of Zoology, Division of Science and Technology, University of Education, Township Lahore, Pakistan
| | - Mubashir Hassan
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Asma Chaudhary
- grid.440554.40000 0004 0609 0414Department of Zoology, Division of Science and Technology, University of Education, Township Lahore, Pakistan
| | - Sikandar Hayat
- grid.440564.70000 0001 0415 4232Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- grid.11173.350000 0001 0670 519XDepartment of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Taha Hussain
- grid.440554.40000 0004 0609 0414Department of Zoology, Division of Science and Technology, University of Education, Township Lahore, Pakistan
| | - Amjad Zafar
- grid.414714.30000 0004 0371 6979Department of Oncology, Mayo Hospital, Anarkali Bazar, Lahore, Pakistan
| | - Muhammad Arshad Javed
- grid.11173.350000 0001 0670 519XDepartment of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
12
|
Wang MX, Yan L, Chen J, Zhao JM, Zhu J, Yu SH. Reinforced erythroid differentiation inhibits leukemogenic potential of t(8;21) leukemia. FASEB J 2022; 36:e22562. [PMID: 36125067 DOI: 10.1096/fj.202200026rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.
Collapse
Affiliation(s)
- Meng-Xi Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Yan
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Mei Zhao
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China.,Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Dissecting the Genetic and Non-Genetic Heterogeneity of Acute Myeloid Leukemia Using Next-Generation Sequencing and In Vivo Models. Cancers (Basel) 2022; 14:cancers14092182. [PMID: 35565315 PMCID: PMC9103951 DOI: 10.3390/cancers14092182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an extremely aggressive form of blood cancer with high rates of treatment failure. AML arises from the stepwise acquisition of genetic aberrations and is a highly heterogeneous disorder. Recent research has shown that individual AML samples often contain several clones that are defined by a distinct combination of genetic lesions, epigenetic patterns and cell surface marker expression profiles. A better understanding of the clonal dynamics of AML is required to develop novel treatment strategies against this disease. In this review, we discuss the recent developments that have further deepened our understanding of clonal evolution and heterogeneity in AML. Abstract Acute myeloid leukemia (AML) is an extremely aggressive and heterogeneous disorder that results from the transformation of hematopoietic stem cells. Although our understanding of the molecular pathology of AML has greatly improved in the last few decades, the overall and relapse free survival rates among AML patients remain quite poor. This is largely due to evolution of the disease and selection of the fittest, treatment-resistant leukemic clones. There is increasing evidence that most AMLs possess a highly complex clonal architecture and individual leukemias are comprised of genetically, phenotypically and epigenetically distinct clones, which are continually evolving. Advances in sequencing technologies as well as studies using murine AML models have provided further insights into the heterogeneity of leukemias. We will review recent advances in the field of genetic and non-genetic heterogeneity in AML.
Collapse
|
14
|
Hayashi Y, Harada Y, Harada H. Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. Leukemia 2022; 36:1203-1214. [PMID: 35354921 DOI: 10.1038/s41375-022-01548-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022]
Abstract
RUNX1 is a critical transcription factor for the emergence of definitive hematopoiesis and the precise regulation of adult hematopoiesis. Dysregulation of its regulatory network causes aberrant hematopoiesis. Recurrent genetic alterations in RUNX1, including chromosomal translocations and mutations, have been identified in both inherited and sporadic diseases. Recent genomic studies have revealed a vast mutational landscape surrounding genetic alterations in RUNX1. Accumulating pieces of evidence also indicate the leukemogenic role of wild-type RUNX1 in certain situations. Based on these efforts, part of the molecular mechanisms of disease development as a consequence of dysregulated RUNX1-regulatory networks have become increasingly evident. This review highlights the recent advances in the field of RUNX1 research and discusses the critical roles of RUNX1 in hematopoiesis and the pathobiological function of its alterations in the context of disease, particularly myeloid neoplasms, and clonal hematopoiesis.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuka Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.,Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
15
|
Kurtz KJ, Conneely SE, O'Keefe M, Wohlan K, Rau RE. Murine Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:854973. [PMID: 35756660 PMCID: PMC9214208 DOI: 10.3389/fonc.2022.854973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and genetically heterogeneous hematologic malignancy. Extensive sequencing efforts have mapped the genomic landscape of adult and pediatric AML revealing a number of biologically and prognostically relevant driver lesions. Beyond identifying recurrent genetic aberrations, it is of critical importance to fully delineate the complex mechanisms by which they contribute to the initiation and evolution of disease to ultimately facilitate the development of targeted therapies. Towards these aims, murine models of AML are indispensable research tools. The rapid evolution of genetic engineering techniques over the past 20 years has greatly advanced the use of murine models to mirror specific genetic subtypes of human AML, define cell-intrinsic and extrinsic disease mechanisms, study the interaction between co-occurring genetic lesions, and test novel therapeutic approaches. This review summarizes the mouse model systems that have been developed to recapitulate the most common genomic subtypes of AML. We will discuss the strengths and weaknesses of varying modeling strategies, highlight major discoveries emanating from these model systems, and outline future opportunities to leverage emerging technologies for mechanistic and preclinical investigations.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Shannon E Conneely
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Madeleine O'Keefe
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Rachel E Rau
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
16
|
Mouse Models of Frequently Mutated Genes in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13246192. [PMID: 34944812 PMCID: PMC8699817 DOI: 10.3390/cancers13246192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/19/2023] Open
Abstract
Acute myeloid leukemia is a clinically and biologically heterogeneous blood cancer with variable prognosis and response to conventional therapies. Comprehensive sequencing enabled the discovery of recurrent mutations and chromosomal aberrations in AML. Mouse models are essential to study the biological function of these genes and to identify relevant drug targets. This comprehensive review describes the evidence currently available from mouse models for the leukemogenic function of mutations in seven functional gene groups: cell signaling genes, epigenetic modifier genes, nucleophosmin 1 (NPM1), transcription factors, tumor suppressors, spliceosome genes, and cohesin complex genes. Additionally, we provide a synergy map of frequently cooperating mutations in AML development and correlate prognosis of these mutations with leukemogenicity in mouse models to better understand the co-dependence of mutations in AML.
Collapse
|
17
|
Srinivasan S, Kumar S, Vijayasekharan K, Agrawal AK. Prevalence and Clinical Outcome of FMS-Like Tyrosine Kinase Mutations Among Patients With Core Binding Factor-Acute Myeloid Leukemia: Systematic Review and Meta-Analysis. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 22:e221-e232. [PMID: 34750085 DOI: 10.1016/j.clml.2021.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Core binding factor acute myeloid leukemia (CBF-AML) belongs to favorable risk group in AML. However, approximately 50% of patients with CBF-AML remain incurable and their outcomes are also determined by the various co-occurring mutations. Though, FMS-like tyrosine kinase-3(FLT3) mutation in AML is associated with poor survival, the prevalence and prognostic significance of FLT3 mutations among CBF-AML is unknown. PATIENTS AND METHODS We performed a systematic review and meta-analysis to assess the prevalence of FLT3 mutations (ITD and TKD) among patients with CBF-AML. The pooled prevalence of FLT3 mutations was estimated for patients with CBF-AML, t(8;21) and Inv(16). Pooled odds ratio was calculated to compare the prevalence of various FLT3 mutations within the 2 subsets of CBF-AML. A random effects model was adopted for analysis when heterogenicity existed (Pheterogenicity< 0.05 or I2 > 50%). Otherwise, a fixed effects model was used. RESULTS The pooled prevalence of any FLT3 mutations among patients with CBF-AML was available from 18 studies and was 13% (95% CI: 10%-16%; I2 = 79%). Comparison of prevalence of FLT3 mutations between the 2 subgroups of CBF-AML showed that patients with t(8;21) had a higher prevalence of FLT3-ITD [pooled odds ratio(OR): 2.23 (95% CI:1.41-3.53, P < .01)] and lower prevalence of FLT3-TKD [pooled OR: 0.29 (95% CI:0.19-0.44; P < .01)] compared to patients with Inv(16). Additionally, we have discussed the prognostic significance of FLT3 mutations in CBF-AML patients. CONCLUSION The prevalence of FLT3-TKD mutation was commoner among Inv(16) AML while FLT3-ITD mutation was commoner among t(8;21) AML. Uniform reporting of outcomes is essential to understand the prognostic significance of FLT3 mutations among CBF-AML.
Collapse
Affiliation(s)
- Shyam Srinivasan
- Department of Pediatric Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| | - Shathish Kumar
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | | | - Amit Kumar Agrawal
- Department of Medical Oncology, All India Institute of Medical Sciences, Raipur, India
| |
Collapse
|
18
|
Wu TM, Xue SL, Li Z, Yu JQ, Wang J, Wang BR, Wan CL, Shen XD, Qiu QC, Bao XB, Wu DP. [Prognostic value of KIT and other clonal genetic mutations in core-binding factor acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:646-653. [PMID: 34547870 PMCID: PMC8501271 DOI: 10.3760/cma.j.issn.0253-2727.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 11/15/2022]
Abstract
Objective: To evaluate the prognostic significance of clonal gene mutations using next-generation sequencing in patients with core-binding factor acute myeloid leukemia (CBF-AML) who achieved first complete remission after induction chemotherapy. Methods: The study, which was conducted from July 2011 to August 2017 in First Affiliated Hospital of Soochow University, comprised 195 newly diagnosed patients with CBF-AML, including 190 patients who achieved first complete remission after induction chemotherapy. The cohort included 134 patients with RUNX1-RUNXIT1(+) AML and 56 patients with CBFβ-MYH11(+) AML. The cohort age ranged from 15 to 64 years, with a median follow-up of 43.6 months. Overall survival (OS) and disease-free survival (DFS) were assessed by the log-rank test, and the Cox proportional hazards regression model was used to determine the effects of clinical factors and genetic mutations on prognosis. Results: The most common genetic mutations were in KIT (47.6% ) , followed by NRAS (20.0% ) , FLT3 (18.4% ) , ASXL2 (14.3% ) , KRAS (10.7% ) , and ASXL1 (9.7% ) . The most common mutations involved genes affecting tyrosine kinase signaling (76.4% ) , followed by chromatin modifiers (29.7% ) . Among the patients receiving intensive consolidation therapy, the OS tended to be better in patients with CBFβ-MYH11(+) AML than in those with RUNX1-RUNXIT1 (+) AML (P=0.062) . Gene mutations related to chromatin modification, which were detected only in patients with RUNX1-RUNXIT1(+) AML, did not affect DFS (P=0.557) . The patients with mutations in genes regulating chromatin conformation who received allo-hematopoietic stem cell transplantation (allo-HSCT) achieved the best prognosis. Multivariate analysis identified KIT exon 17 mutations as an independent predictor of inferior DFS in patients with RUNX1-RUNXIT1(+) AML (P<0.001) , and allo-HSCT significantly prolonged DFS in these patients (P=0.010) . Conclusions: KIT exon 17 mutations might indicate poor prognosis in patients with RUNX1-RUNXIT1(+) AML. Allo-HSCT may improve prognosis in these patients, whereas allo-HSCT might also improve prognosis in patients with mutations in genes related to chromatin modifications.
Collapse
Affiliation(s)
- T M Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - S L Xue
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - Z Li
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - J Q Yu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - J Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - B R Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - C L Wan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - X D Shen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - Q C Qiu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - X B Bao
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| |
Collapse
|
19
|
Jin H, Zhu Y, Hong M, Wu Y, Qiu H, Wang R, Jin H, Sun Q, Fu J, Li J, Qian S, Qiao C. Co-occurrence of KIT and NRAS mutations defines an adverse prognostic core-binding factor acute myeloid leukemia. Leuk Lymphoma 2021; 62:2428-2437. [PMID: 34024223 DOI: 10.1080/10428194.2021.1919660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Molecular abnormalities are frequent in core-binding factor (CBF) AMLs, but their prognostic relevance is controversial. Sixty-two patients were retrospectively analyzed and 47 harbored at least one gene mutation with a next-generation-sequencing assay. The most common molecular mutation was KIT mutation (30.6%), followed by NRAS (24.2%) and ASXL1 (14.5%) mutations, which was associated with a higher number of bone marrow blasts (p = .049) and older age (p = .027). The survival analysis showed KIT mutation adversely affected the overall survival (OS) (p = .046). NRAS mutation was associated with inferior OS (p = .016) and RFS (p = .039). Eight patients carried co-mutations of KIT and NRAS and had worse OS (p = .012) and RFS (p = .034). The multivariate analysis showed age ≥60 years and additional chromosomal abnormalities were significant adverse factors for OS. Thus, co-mutations of KIT and NRAS were significantly associated with a poor prognosis and should be taken into account when assessing for prognostic stratification in patients with CBF-AML.
Collapse
Affiliation(s)
- Huimin Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yu Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hairong Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Qian Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jianxin Fu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Sixuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 2021; 4:229-238. [PMID: 31935293 DOI: 10.1182/bloodadvances.2019000168] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-RUNX1T1, one of the core-binding factor leukemias, is one of the most common subtypes of AML with recurrent genetic abnormalities and is associated with a favorable outcome. The translocation leads to the formation of a pathological RUNX1-RUNX1T1 fusion that leads to the disruption of the normal function of the core-binding factor, namely, its role in hematopoietic differentiation and maturation. The consequences of this alteration include the recruitment of repressors of transcription, thus blocking the expression of genes involved in hematopoiesis, and impaired apoptosis. A number of concurrent and cooperating mutations clearly play a role in modulating the proliferative potential of cells, including mutations in KIT, FLT3, and possibly JAK2. RUNX1-RUNX1T1 also appears to interact with microRNAs during leukemogenesis. Epigenetic factors also play a role, especially with the recruitment of histone deacetylases. A better understanding of the concurrent mutations, activated pathways, and epigenetic modulation of the cellular processes paves the way for exploring a number of approaches to achieve cure. Potential approaches include the development of small molecules targeting the RUNX1-RUNX1T1 protein, the use of tyrosine kinase inhibitors such as dasatinib and FLT3 inhibitors to target mutations that lead to a proliferative advantage of the leukemic cells, and experimentation with epigenetic therapies. In this review, we unravel some of the recently described molecular pathways and explore potential therapeutic strategies.
Collapse
|
21
|
Combination of dasatinib with chemotherapy in previously untreated core binding factor acute myeloid leukemia: CALGB 10801. Blood Adv 2021; 4:696-705. [PMID: 32092139 DOI: 10.1182/bloodadvances.2019000492] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) with either t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22) is referred to as core binding factor (CBF) AML. Although categorized as favorable risk, long-term survival for these patients is only ∼50% to 60%. Mutated (mut) or overexpressed KIT, a gene encoding a receptor tyrosine kinase, has been found almost exclusively in CBF AML and may increase the risk of disease relapse. We tested the safety and clinical activity of dasatinib, a multi-kinase inhibitor, in combination with chemotherapy. Sixty-one adult patients with AML and CBF fusion transcripts (RUNX1/RUNX1T1 or CBFB/MYH11) were enrolled on Cancer and Leukemia Group B (CALGB) 10801. Patients received cytarabine/daunorubicin induction on days 1 to 7 and oral dasatinib 100 mg/d on days 8 to 21. Upon achieving complete remission, patients received consolidation with high-dose cytarabine followed by dasatinib 100 mg/d on days 6 to 26 for 4 courses, followed by dasatinib 100 mg/d for 12 months. Fifteen (25%) patients were older (aged ≥60 years); 67% were CBFB/MYH11-positive, and 19% harbored KITmut. There were no unexpected or dose-limiting toxicities. Fifty-five (90%) patients achieved complete remission. With a median follow-up of 45 months, only 16% have relapsed. The 3-year disease-free survival and overall survival rates were 75% and 77% (79% and 85% for younger patients [aged <60 years], and 60% and 51% for older patients). Patients with KITmut had comparable outcome to those with wild-type KIT (3-year rates: disease-free survival, 67% vs 75%; overall survival, 73% vs 76%), thereby raising the question of whether dasatinib may overcome the negative impact of these genetic lesions. CALGB 10801 was registered at www.clinicaltrials.gov as #NCT01238211.
Collapse
|
22
|
Guo H, Chang YJ, Hong Y, Xu LP, Wang Y, Zhang XH, Wang M, Chen H, Chen YH, Wang FR, Wei-Han, Sun YQ, Yan CH, Tang FF, Mo XD, Liu KY, Huang XJ. Dynamic immune profiling identifies the stronger graft-versus-leukemia (GVL) effects with haploidentical allografts compared to HLA-matched stem cell transplantation. Cell Mol Immunol 2021; 18:1172-1185. [PMID: 33408344 PMCID: PMC8093297 DOI: 10.1038/s41423-020-00597-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Haploidentical stem cell transplantation (haplo-SCT) achieves superior or at least comparable clinical outcomes to HLA-matched sibling donor transplantation (MSDT) in treating hematological malignancies. To define the underlying regulatory dynamics, we analyzed time courses of leukemia burden and immune abundance of haplo-SCT or MSDT from multiple dimension. First, we employed two nonirradiated leukemia mouse models which carried human AML-ETO or MLL-AF9 fusion gene to establish haplo-identical and major histocompatibility (MHC)-matched transplantation models and investigated the immune cell dynamic response during leukemia development in vivo. We found that haplo-matching the MHCs of leukemia cells with recipient mouse T cells prolonged leukemic mice survival and reduced leukemia burden. The stronger graft-versus-leukemia activity in haplo-SCT group mainly induced by decreased apoptosis and increased cytotoxic cytokine secretion including tumor necrosis factor-α, interferon-γ, pore-forming proteins and CD107a secreted by T cells or natural killer cells. Furthermore, we conducted a prospective clinical trial which enrolled 135 patients with t(8;21) acute myeloid leukemia that displayed minimal residual disease before transplantation and underwent either haplo-SCT or MSDT. The results showed that the haplo-SCT slowed the kinetics of the leukemia burden in vivo and reduced the cumulative incidence of relapse compared with MSDT. Ex vivo experiments showed that, 1 year after transplantation, cytotoxic T lymphocytes from the haplo-SCT group had higher cytotoxicity than those from the MSDT group during the same period. Our results unraveled the role of immune cells in superior antileukemia effects of haplo-SCT compared with MSDT.
Collapse
Affiliation(s)
- Huidong Guo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Yan Hong
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Yu Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Ming Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Huan Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Wei-Han
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Fei-Fei Tang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xiao-Dong Mo
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No. 11 South Street of Xizhimen, Xicheng District, 100044, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, 100871, Beijing, China.
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, 2019RU029, Beijing, China.
| |
Collapse
|
23
|
Kellaway S, Chin PS, Barneh F, Bonifer C, Heidenreich O. t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming. Cells 2020; 9:E2681. [PMID: 33322186 PMCID: PMC7763303 DOI: 10.3390/cells9122681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.
Collapse
Affiliation(s)
- Sophie Kellaway
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Paulynn S. Chin
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Farnaz Barneh
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| | - Constanze Bonifer
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Olaf Heidenreich
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| |
Collapse
|
24
|
Fan J, Gao L, Chen J, Hu S. Influence of KIT mutations on prognosis of pediatric patients with core-binding factor acute myeloid leukemia: a systematic review and meta-analysis. Transl Pediatr 2020; 9:726-733. [PMID: 33457293 PMCID: PMC7804481 DOI: 10.21037/tp-20-102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/16/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND KIT mutations are common in children with core-binding factor (CBF) acute myeloid leukemia (AML). The relationship between KIT mutations and their prognostic value has generated intense attention during the past years. Although studies have evaluated the role of KIT mutations, their prognostic implications remain unclear. To clarify this issue, we conducted this meta-analysis. METHODS We electronically searched the PubMed, Embase and Cochrane Library databases. Twelve studies met our selection criteria. These studies involved 1,123 children with CBF-AML including 256 children with KIT mutations. We investigated the effects of KIT mutations on the complete remission (CR), relapse, event-free survival (EFS), disease-free survival (DFS), and overall survival (OS) rates of pediatric CBF-AML patients. RESULTS KIT mutations were not associated with CR [relative risk: 1.01, 95% confidence interval (CI): 0.94-1.09, P=0.761], but were associated with higher relapse risk [hazard ratio (HR): 1.69, 95% CI: 1.32-2.16, P=0.000], lower OS (HR: 3.05, 95% CI: 1.23-7.60, P=0.016), lower DFS (HR: 1.65, 95% CI: 1.07-2.54, P=0.024), and lower EFS (HR: 3.08, 95% CI: 1.02-9.32, P=0.046). CONCLUSIONS Our analysis suggested that KIT mutations had an adverse prognostic effect in pediatric CBF-AML patients. The initial diagnostic workup for these patients should include tests for the detection of KIT mutations, and the treatment may need to be adjusted when these mutations are found to be present.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Li Gao
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neonatology, Children’s Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
25
|
Chin PS, Assi SA, Ptasinska A, Imperato MR, Cockerill PN, Bonifer C. RUNX1/ETO and mutant KIT both contribute to programming the transcriptional and chromatin landscape in t(8;21) acute myeloid leukemia. Exp Hematol 2020; 92:62-74. [PMID: 33152396 DOI: 10.1016/j.exphem.2020.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia development occurs in a stepwise fashion whereby an original driver mutation is followed by additional mutations. The first type of mutations tends to be in genes encoding members of the epigenetic/transcription regulatory machinery (i.e., RUNX1, DNMT3A, TET2), while the secondary mutations often involve genes encoding members of signaling pathways that cause uncontrolled growth of such cells such as the growth factor receptors c-KIT of FLT3. Patients usually present with both types of mutations, but it is currently unclear how both mutational events shape the epigenome in developing AML cells. To this end we generated an in vitro model of t(8;21) AML by expressing its driver oncoprotein RUNX1-ETO with or without a mutated (N822K) KIT protein. Expression of N822K-c-KIT strongly increases the self-renewal capacity of RUNX1-ETO-expressing cells. Global analysis of gene expression changes and alterations in the epigenome revealed that N822K-c-KIT expression profoundly influences the open chromatin landscape and transcription factor binding. However, our experiments also revealed that double mutant cells still differ from their patient-derived counterparts, highlighting the importance of studying patient cells to obtain a true picture of how gene regulatory networks have been reprogrammed during tumorigenesis.
Collapse
Affiliation(s)
- Paulynn Suyin Chin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria Rosaria Imperato
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
26
|
Chin PS, Bonifer C. Modelling t(8;21) acute myeloid leukaemia - What have we learned? MedComm (Beijing) 2020; 1:260-269. [PMID: 34766123 PMCID: PMC8491201 DOI: 10.1002/mco2.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous haematopoietic malignancy caused by recurrent mutations in haematopoietic stem and progenitor cells that affect both the epigenetic regulatory machinery and signalling molecules. The t(8;21) or RUNX1‐RUNX1T1 translocation generates the RUNX1‐ETO chimeric transcription factor which primes haematopoietic stem cells for further oncogenic mutational events that in their sum cause overt disease. Significant progress has been made in generating both in vitro and in vivo model systems to recapitulate t(8;21) AML which are crucial for the understanding of the biology of the disease and the development of effective treatment. This review provides a comprehensive overview of the in vivo and in vitro model systems that were developed to gain insights into the molecular mechanisms of RUNX1‐ETO oncogenic activity and their contribution to the advancement of knowledge in the t(8;21) AML field. Such models include transgenic mice, patient‐derived xenografts, RUNX1‐ETO transduced human progenitor cells, cell lines and human embryonic stem cell model systems, making the t(8;21) as one of the well‐characterized sub‐type of AML at the molecular level.
Collapse
Affiliation(s)
- Paulynn Suyin Chin
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences University of Birmingham Birmingham UK
| |
Collapse
|
27
|
Meng J, Ge Y, Xing H, Wei H, Xu S, Liu J, Yan D, Wen T, Wang M, Fang X, Ma L, Yang Y, Wang C, Wang J, Xu H. Synthetic CXCR4 Antagonistic Peptide Assembling with Nanoscaled Micelles Combat Acute Myeloid Leukemia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001890. [PMID: 32608185 DOI: 10.1002/smll.202001890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Acute myeloid leukemia (AML) is the most common adult acute leukemia with very low survival rate due to drug resistance and high relapse rate. The C-X-C chemokine receptor 4 (CXCR4) is highly expressed by AML cells, actively mediating chemoresistance and reoccurrence. Herein, a chemically synthesized CXCR4 antagonistic peptide E5 is fabricated to micelle formulation (M-E5) and applied to refractory AML mice, and its therapeutic effects and pharmacokinetics are investigated. Results show that M-E5 can effectively block the surface CXCR4 in leukemic cells separated from bone marrow (BM) and spleen, and inhibit the C-X-C chemokine ligand 12-mediated migration. Subcutaneous administration of M-E5 significantly inhibits the engraftment of leukemic cells in spleen and BM, and mobilizes residue leukemic cells into peripheral blood, reducing organs' burden and significantly prolonging the survival of AML mice. M-E5 can also increase the efficacy of combining regime of homoharringtonine and doxorubicin. Ribonucleic acid sequencing demonstrates that the therapeutic effect is contributed by inhibiting proliferation and enhancing apoptosis and differentiation, all related to the CXCR4 signaling blockade. M-E5 reaches the concentration peak at 2 h after administration with a half-life of 14.5 h in blood. In conclusion, M-E5 is a novel promising therapeutic candidate for refractory AML treatment.
Collapse
Affiliation(s)
- Jie Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yangyang Ge
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Hui Wei
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shilin Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Jian Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Doudou Yan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Tao Wen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaocui Fang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lilusi Ma
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Wang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
28
|
Beghini A. Core Binding Factor Leukemia: Chromatin Remodeling Moves Towards Oncogenic Transcription. Cancers (Basel) 2019; 11:E1973. [PMID: 31817911 PMCID: PMC6966602 DOI: 10.3390/cancers11121973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in adults, is a heterogeneous malignant clonal disorder arising from multipotent hematopoietic progenitor cells characterized by genetic and concerted epigenetic aberrations. Core binding factor-Leukemia (CBFL) is characterized by the recurrent reciprocal translocations t(8;21)(q22;q22) or inv(16)(p13;q22) that, expressing the distinctive RUNX1-RUNX1T1 (also known as Acute myeloid leukemia1-eight twenty-one, AML1-ETO or RUNX1/ETO) or CBFB-MYH11 (also known as CBFβ-ΣMMHX) translocation product respectively, disrupt the essential hematopoietic function of the CBF. In the past decade, remarkable progress has been achieved in understanding the structure, three-dimensional (3D) chromosomal topology, and disease-inducing genetic and epigenetic abnormalities of the fusion proteins that arise from disruption of the CBF subunit alpha and beta genes. Although CBFLs have a relatively good prognosis compared to other leukemia subtypes, 40-50% of patients still relapse, requiring intensive chemotherapy and allogenic hematopoietic cell transplantation (alloHCT). To provide a rationale for the CBFL-associated altered hematopoietic development, in this review, we summarize the current understanding on the various molecular mechanisms, including dysregulation of Wnt/β-catenin signaling as an early event that triggers the translocations, playing a pivotal role in the pathophysiology of CBFL. Translation of these findings into the clinical setting is just beginning by improvement in risk stratification, MRD assessment, and development of targeted therapies.
Collapse
|
29
|
Yu G, Yin C, Wu F, Jiang L, Zheng Z, Xu D, Zhou J, Jiang X, Liu Q, Meng F. Gene mutation profile and risk stratification in AML1‑ETO‑positive acute myeloid leukemia based on next‑generation sequencing. Oncol Rep 2019; 42:2333-2344. [PMID: 31638252 PMCID: PMC6826310 DOI: 10.3892/or.2019.7375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
Gene mutations play an important role in the development and progression of AML1-ETO-positive acute myeloid leukemia (AE-AML). Nevertheless, the gene mutation profile in this subtype of leukemia remains unclear. In addition, the clinical and prognostic effects of different mutant genes may be underestimated. In the present study, gene sequencing was conducted at diagnosis and relapse with next-generation sequencing (NGS) in 64 patients with newly diagnosed AE-AML, and 44/64 (68.8%) patients were found to present with a median of 2 (1–10) recurrent mutations at diagnosis and 6/11 (54.5%) cases were found to present with genetic alterations at relapse. c-KIT mutation was the most common in this cohort, with an incidence of 27/64 (42.2%) at diagnosis, followed by ASXL1 (n=10, 15.6%), MET (n=8, 12.5%), MLH1 (n=6, 9.4%), TET2 (n=5, 7.8%), and FBXW7, TP53 and DNMT3A (n=5, 7.8%). Survival analysis showed that c-KIT (exon 8, 17) but not exon 10 adversely affected survival. In addition, ASXL1 and TP53 were poor impact factors for recurrence-free survival (RFS) (P<0.05), and ASXL1, MET, FBXW7 and TP53 had a negative impact on overall survival (OS) (P<0.05). Multivariate analysis showed that c-KIT (exon 8, 17) [RFS: hazard ratio (HR) 3.36, 95% confidence interval (CI) 1.54–7.34, P=0.002; OS: HR 2.84, 95% CI 1.20–6.71, P=0.018] and ASXL1 mutations (RFS: HR 3.13, 95% CI 1.34–7.32, P=0.009; OS: HR 3.94, 95% CI 1.62–9.61, P=0.003) were independent adverse factors for survival. Further, co-mutation of these two genes showed even worse effect on disease outcome. Collectively, additional gene mutations play critical role in AE-AML. C-KIT and ASXL1 mutations are the two most common mutations in this subtype of leukemia. C-KIT (exon 8, 17) but not exon 10, and also the ASXL1 mutation poorly affect the disease outcome of this disease.
Collapse
Affiliation(s)
- Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fuqun Wu
- Hematopathy Diagnosis and Therapy Center, Kanghua Hospital, Dongguan, Guangdong 523000, P.R. China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhongxin Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dan Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiaheng Zhou
- Department of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fanyi Meng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
30
|
Oncogenic KIT mutations induce STAT3-dependent autophagy to support cell proliferation in acute myeloid leukemia. Oncogenesis 2019; 8:39. [PMID: 31311917 PMCID: PMC6635375 DOI: 10.1038/s41389-019-0148-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 04/10/2019] [Accepted: 05/31/2019] [Indexed: 12/14/2022] Open
Abstract
Autophagy is associated with both survival and cell death in myeloid malignancies. Therefore, deciphering its role in different genetically defined subtypes of acute myeloid leukemia (AML) is critical. Activating mutations of the KIT receptor tyrosine kinase are frequently detected in core-binding factor AML and are associated with a greater risk of relapse. Herein, we report that basal autophagy was significantly increased by the KITD816V mutation in AML cells and contributed to support their cell proliferation and survival. Invalidation of the key autophagy protein Atg12 strongly reduced tumor burden and improved survival of immunocompromised NSG mice engrafted with KITD816V TF-1 cells. Downstream of KITD816V, STAT3, but not AKT or ERK pathways, was identified as a major regulator of autophagy. Accordingly, STAT3 pharmacological inhibition or downregulation inhibited autophagy and reduced tumor growth both in vitro and in vivo. Taken together, our results support the notion that targeting autophagy or STAT3 opens up an exploratory pathway for finding new therapeutic opportunities for patients with CBF-AML or others malignancies with KITD816V mutations.
Collapse
|
31
|
Weisberg E, Meng C, Case AE, Sattler M, Tiv HL, Gokhale PC, Buhrlage SJ, Liu X, Yang J, Wang J, Gray N, Stone RM, Adamia S, Dubreuil P, Letard S, Griffin JD. Comparison of effects of midostaurin, crenolanib, quizartinib, gilteritinib, sorafenib and BLU-285 on oncogenic mutants of KIT, CBL and FLT3 in haematological malignancies. Br J Haematol 2019; 187:488-501. [PMID: 31309543 DOI: 10.1111/bjh.16092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/27/2022]
Abstract
Mutations in two type-3 receptor tyrosine kinases (RTKs), KIT and FLT3, are common in both acute myeloid leukaemia (AML) and systemic mastocytosis (SM) and lead to hyperactivation of key signalling pathways. A large number of tyrosine kinase inhibitors (TKIs) have been developed that target either FLT3 or KIT and significant clinical benefit has been demonstrated in multiple clinical trials. Given the structural similarity of FLT3 and KIT, it is not surprising that some of these TKIs inhibit both of these receptors. This is typified by midostaurin, which has been approved by the US Food and Drug Administration for mutant FLT3-positive AML and for KIT D816V-positive SM. Here, we compare the in vitro activities of the clinically available FLT3 and KIT inhibitors with those of midostaurin against a panel of cells expressing a variety of oncogenic FLT3 or KIT receptors, including wild-type (wt) FLT3, FLT3-internal tandem duplication (ITD), FLT3 D835Y, the resistance mutant FLT3-ITD+ F691L, KIT D816V, and KIT N822K. We also examined the effects of these inhibitors in vitro and in vivo on cells expressing mutations in c-CBL found in AML that result in hypersensitization of RTKs, such as FLT3 and KIT. The results show a wide spectrum of activity of these various mutations to these clinically available TKIs.
Collapse
Affiliation(s)
- Ellen Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Abigail E Case
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hong L Tiv
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaoxi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Sophia Adamia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patrice Dubreuil
- CRCM, [Signalling, Haematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
| | - Sebastien Letard
- CRCM, [Signalling, Haematopoiesis and Mechanism of Oncogenesis, Equipe Labellisée Ligue Contre le Cancer], Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Zhang W, Lu Y, Zhen T, Chen X, Zhang M, Liu P, Weng X, Chen B, Wang Y. Homoharringtonine synergy with oridonin in treatment of t(8; 21) acute myeloid leukemia. Front Med 2019; 13:388-397. [PMID: 30206768 DOI: 10.1007/s11684-018-0624-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Collaboration of c-KIT mutations with AML1-ETO (AE) has been demonstrated to induce t(8; 21) acute myeloid leukemia (AML). Targeted therapies designed to eliminate AE and c-KIT oncoproteins may facilitate effective treatment of t(8; 21) AML. Homoharringtonine (HHT) features activity against tumor cells harboring c-KIT mutations, whereas oridonin can induce t(8; 21) AML cell apoptosis and AE cleavage. Therefore, studies should explore the efficacy of combination therapy with oridonin and HHT in t(8; 21) AML. In this study, we investigated the synergistic effects and mechanism of oridonin combined with HHT in t(8; 21) AML cell line and mouse model. The two drugs synergistically inhibited cell viability and induced significant mitochondrial membrane potential loss and apoptosis. Oridonin and HHT induced significant downregulation of c-KIT and its downstream signaling pathways and promoted AE cleavage. HHT increased intracellular oridonin concentration by modulating the expressions of MRP1 and MDR1, thus enhancing the effects of oridonin. The combination of oridonin and HHT prolonged t(8; 21) leukemia mouse survival. In conclusion, oridonin and HHTexert synergistic effects against t(8; 21) leukemia in vivo and in vitro, thereby indicating that their combination may be an effective therapy for t(8; 21) leukemia.
Collapse
Affiliation(s)
- Weina Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Lu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Zhen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinjie Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ping Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiangqin Weng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bing Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
33
|
Chapellier M, Peña-Martínez P, Ramakrishnan R, Eriksson M, Talkhoncheh MS, Orsmark-Pietras C, Lilljebjörn H, Högberg C, Hagström-Andersson A, Fioretos T, Larsson J, Järås M. Arrayed molecular barcoding identifies TNFSF13 as a positive regulator of acute myeloid leukemia-initiating cells. Haematologica 2019; 104:2006-2016. [PMID: 30819903 PMCID: PMC6886409 DOI: 10.3324/haematol.2018.192062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of cytokines in the bone marrow (BM) microenvironment promotes acute myeloid leukemia (AML) cell growth. Due to the complexity and low throughput of in vivo stem-cell based assays, studying the role of cytokines in the BM niche in a screening setting is challenging. Here, we developed an ex vivo cytokine screen using 11 arrayed molecular barcodes, allowing for a competitive in vivo readout of leukemia-initiating capacity. With this approach, we assessed the effect of 114 murine cytokines on MLL-AF9 AML mouse cells and identified the tumor necrosis factor ligand superfamily member 13 (TNFSF13) as a positive regulator of leukemia-initiating cells. By using Tnfsf13−/− recipient mice, we confirmed that TNFSF13 supports leukemia initiation also under physiological conditions. TNFSF13 was secreted by normal myeloid cells but not by leukemia mouse cells, suggesting that mature myeloid BM cells support leukemia cells by secreting TNFSF13. TNFSF13 supported leukemia cell proliferation in an NF-κB-dependent manner by binding TNFRSF17 and suppressed apoptosis. Moreover, TNFSF13 supported the growth and survival of several human myeloid leukemia cell lines, demonstrating that our findings translate to human disease. Taken together, using arrayed molecular barcoding, we identified a previously unrecognized role of TNFSF13 as a positive regulator of AML-initiating cells. The arrayed barcoded screening methodology is not limited to cytokines and leukemia, but can be extended to other types of ex vivo screens, where a multiplexed in vivo read-out of stem cell functionality is needed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | |
Collapse
|
34
|
Chen G, Liu A, Xu Y, Gao L, Jiang M, Li Y, Lv N, Zhou L, Wang L, Yu L, Li Y. The RUNX1-ETO fusion protein trans-activates c-KIT expression by recruiting histone acetyltransferase P300 on its promoter. FEBS J 2019; 286:901-912. [PMID: 30637949 DOI: 10.1111/febs.14751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/21/2023]
Abstract
The oncoprotein RUNX1-ETO is the fusion product of t(8;21)(q22;q22) and constitutes one of the most common genetic alterations in acute myeloid leukemia (AML). Abnormal c-KIT overexpression is considered an independent negative prognostic factor for relapse and survival in t(8;21) AML patients. However, the molecular mechanism of high c-KIT expression in t(8;21) AML remains unknown. In this study, we detected RUNX1-ETO and c-KIT gene expression in AML-M2 patients and verified the overexpression of c-KIT in t(8;21) AML patients. We also found that c-KIT overexpression was a poor prognostic indicator in RUNX1-ETO positive AML patients, but not in RUNX1-ETO negative AML patients. We used the dual-luciferase and ChIP assays to demonstrate that the RUNX1-ETO protein epigenetically trans-activates c-KIT by binding to the c-KIT promoter and recruiting the histone acetyltransferase P300 to the c-KIT promoter, elucidating the mechanism of the abnormally increased c-KIT expression in t(8;21) AML patients. Moreover, pharmacological studies revealed that C646, a P300 inhibitor, could inhibit proliferation, induce apoptosis and arrest the cell cycle more effectively in RUNX1-ETO positive cells than in negative ones. The levels of c-KIT and RUNX1-ETO proteins were also decreased with C646 treatment in RUNX1-ETO positive cells. These findings suggested that P300 could be a therapeutic target and that C646 could be used as a potential treatment for RUNX1-ETO positive AML patients. Interestingly, using the dual-luciferase assay, we also found that the binding capacity of RUNX1-ETO9a, a truncated RUNX1-ETO isoform, to the c-KIT promoter was stronger than that of RUNX1-ETO, suggesting RUNX1-ETO9a as another valuable therapeutic target in t(8;21) AML.
Collapse
Affiliation(s)
- Guofeng Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Anqi Liu
- Department of Intensive Care Unit, Beijing Electric Power Hospital, National Electric Net Ltd., Beijing, China
| | - Yihan Xu
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Gao
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| | - Mengmeng Jiang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Yan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya, China
| | - Na Lv
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, No. 202 Hospital of PLA, Shenyang, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Li Yu
- School of Medicine, Nankai University, Tianjin, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, China
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, China.,Institute of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
Homoharringtonine deregulates MYC transcriptional expression by directly binding NF-κB repressing factor. Proc Natl Acad Sci U S A 2019; 116:2220-2225. [PMID: 30659143 DOI: 10.1073/pnas.1818539116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homoharringtonine (HHT), a known protein synthesis inhibitor, has an anti-myeloid leukemia effect and potentiates the therapeutic efficacy of anthracycline/cytarabine induction regimens for acute myelogenous leukemia (AML) with favorable and intermediate prognoses, especially in the t(8;21) subtype. Here we provide evidence showing that HHT inhibits the activity of leukemia-initiating cells (Lin-/Sca-1-/c-kit+; LICs) in a t(8;21) murine leukemia model and exerts a down-regulating effect on MYC pathway genes in human t(8;21) leukemia cells (Kasumi-1). We discovered that NF-κB repressing factor (NKRF) is bound directly by HHT via the second double-strand RNA-binding motif (DSRM2) domain, which is the nuclear localization signal of NKRF. A series of deletion and mutagenesis experiments mapped HHT direct binding sites to K479 and C480 amino acids in the DSRM2 domain. HHT treatment shifts NKRF from the nucleus (including nucleoli) to the cytoplasm by occupying the DSRM2 domain, strengthens the p65-NKRF interaction, and interferes with p65-p50 complex formation, thereby attenuating the transactivation activity of p65 on the MYC gene. Moreover, HHT significantly decreases the expression of KIT, a frequently mutated and/or highly expressed gene in t(8;21) AML, in concert with MYC down-regulation. Our work thus identifies a mechanism of action of HHT that is different from, but acts in concert with, the known mode of action of this compound. These results justify further clinical testing of HHT in AML.
Collapse
|
36
|
Lonetti A, Pession A, Masetti R. Targeted Therapies for Pediatric AML: Gaps and Perspective. Front Pediatr 2019; 7:463. [PMID: 31803695 PMCID: PMC6873958 DOI: 10.3389/fped.2019.00463] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by numerous cytogenetic and molecular aberrations that accounts for ~25% of childhood leukemia diagnoses. The outcome of children with AML has increased remarkably over the past 30 years, with current survival rates up to 70%, mainly due to intensification of standard chemotherapy and improvements in risk classification, supportive care, and minimal residual disease monitoring. However, childhood AML prognosis remains unfavorable and relapse rates are still around 30%. Therefore, novel therapeutic approaches are needed to increase the cure rate. In AML, the presence of gene mutations and rearrangements prompted the identification of effective targeted molecular strategies, including kinase inhibitors, cell pathway inhibitors, and epigenetic modulators. This review will discuss several new drugs that recently received US Food and Drug Administration approval for AML treatment and promising strategies to treat childhood AML, including FLT3 inhibitors, epigenetic modulators, and Hedgehog pathway inhibitors.
Collapse
Affiliation(s)
- Annalisa Lonetti
- "Giorgio Prodi" Interdepartmental Cancer Research Centre, University of Bologna, Bologna, Italy
| | - Andrea Pession
- "Giorgio Prodi" Interdepartmental Cancer Research Centre, University of Bologna, Bologna, Italy.,Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Methylation-associated silencing of BASP1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia. Exp Mol Med 2018; 50:1-8. [PMID: 29674693 PMCID: PMC5938046 DOI: 10.1038/s12276-018-0067-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/06/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022] Open
Abstract
The AML1-ETO fusion protein (A/E), which results from the t(8;21) translocation, is considered to be a leukemia-initiating event. Identifying the mechanisms underlying the oncogenic activity of A/E remains a major challenge. In this study, we identified a specific down-regulation of brain acid-soluble protein 1 (BASP1) in t(8;21) acute myeloid leukemia (AML). A/E recognized AML1-binding sites and recruited DNA methyltransferase 3a (DNMT3a) to the BASP1 promoter sequence, which triggered DNA methylation-mediated silencing of BASP1. Ectopic expression of BASP1 inhibited proliferation and the colony-forming ability of A/E-positive AML cell lines and led to apoptosis and cell cycle arrest. The DNMT inhibitor decitabine up-regulated the expression of BASP1 in A/E-positive AML cell lines. In conclusion, our data suggest that BASP1 silencing via promoter methylation may be involved in A/E-mediated leukemogenesis and that BASP1 targeting may be an actionable therapeutic strategy in t(8;21) AML. A chromosomal rearrangement commonly observed in certain leukemias selectively inactivates a gene that otherwise thwarts cancerous growth. Between 7 and 12% of acute myeloid leukemia cases exhibit a dramatic alteration in chromosomal structure that results in the production of an abnormal fusion protein. Researchers led by Li Yu at the General Hospital of Shenzen University in China have learned that this protein promotes disease progression by switching off an important tumor suppressor. Yu and colleagues showed that it binds a genomic sequence that regulates the gene encoding a second protein called BASP1, dramatically reducing its production. This gene silencing facilitates tumor growth. Chemicals that reactivated BASP1 production slowed proliferation and initiated ‘self-destruct’ mechanisms in leukemia cells. These findings suggest that BASP1-oriented therapies could offer a fruitful avenue of treatment for some patients.
Collapse
|
38
|
Adding dasatinib to intensive treatment in core-binding factor acute myeloid leukemia-results of the AMLSG 11-08 trial. Leukemia 2018; 32:1621-1630. [PMID: 29720733 DOI: 10.1038/s41375-018-0129-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 11/12/2022]
Abstract
In this phase Ib/IIa study (ClinicalTrials.gov Identifier: NCT00850382) of the German-Austrian AML Study Group (AMLSG) the multikinase inhibitor dasatinib was added to intensive induction and consolidation chemotherapy and administered as single agent for 1-year maintenance in first-line treatment of adult patients with core-binding factor (CBF) acute myeloid leukemia (AML). The primary combined end point in this study was safety and feasibility, and included the rates of early (ED) and hypoplastic (HD) deaths, pleural/pericardial effusion 3°/4° and liver toxicity 3°/4°, and the rate of refractory disease. Secondary end points were cumulative incidence of relapse (CIR) and death in complete remission (CID), and overall survival (OS). Eighty-nine pts [median age 49.5 years, range: 19-73 years; t(8;21), n = 37; inv (16), n = 52] were included. No unexpected excess in toxicity was observed. The rates of ED/HD and CR/CRi were 4.5% (4/89) and 94% (84/89), respectively. The 4-year estimated CIR, CID, and OS were 33.1% [95%-CI (confidence interval), 22.7-43.4%], 6.0% (95% CI, 0.9-11.2%), and 74.7% (95% CI, 66.1-84.5%), respectively. On the basis of the acceptable toxicity profile and favorable outcome in the AMLSG 11-08 trial, a confirmatory randomized phase III trial with dasatinib in adults with CBF-AML is ongoing (ClinicalTrials.gov Identifier: NCT02013648).
Collapse
|
39
|
Gentner E, Vegi NM, Mulaw MA, Mandal T, Bamezai S, Claus R, Tasdogan A, Quintanilla-Martinez L, Grunenberg A, Döhner K, Döhner H, Bullinger L, Haferlach T, Buske C, Rawat VPS, Feuring-Buske M. VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice. Oncotarget 2018; 7:86889-86901. [PMID: 27888632 PMCID: PMC5349961 DOI: 10.18632/oncotarget.13563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/09/2016] [Indexed: 12/02/2022] Open
Abstract
Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.
Collapse
Affiliation(s)
- Eva Gentner
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Naidu M Vegi
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Medhanie A Mulaw
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Tamoghna Mandal
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Shiva Bamezai
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Rainer Claus
- Department of Internal Medicine I, University Hospital Freiburg, 79106 Freiburg, Germany
| | | | | | - Alexander Grunenberg
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | | | - Christian Buske
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | - Vijay P S Rawat
- Institute of Experimental Cancer Research, CCC and University Hospital of Ulm, 89081 Ulm, Germany
| | | |
Collapse
|
40
|
Lu L, Wen Y, Yao Y, Chen F, Wang G, Wu F, Wu J, Narayanan P, Redell M, Mo Q, Song Y. Glucocorticoids Inhibit Oncogenic RUNX1-ETO in Acute Myeloid Leukemia with Chromosome Translocation t(8;21). Am J Cancer Res 2018; 8:2189-2201. [PMID: 29721072 PMCID: PMC5928880 DOI: 10.7150/thno.22800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Acute myeloid leukemia (AML) is a major blood cancer with poor prognosis. New therapies are needed to target oncogene-driven leukemia stem cells, which account for relapse and resistance. Chromosome translocation t(8;21), which produces RUNX1-ETO (R-E) fusion oncoprotein, is found in ~13% AML. R-E dominance negatively inhibits global gene expression regulated by RUNX1, a master transcription factor for hematopoiesis, causing increased self-renewal and blocked cell differentiation of hematopoietic progenitor cells, and eventually leukemia initiation. Methods: Connectivity-Map followed by biological activity testing were used to identify candidate compounds that can inhibit R-E-mediated gene transcription. Molecular mechanistic studies were also performed. Results: Glucocorticoid drugs, such as betamethasone and dexamethasone, were found to exhibit potent and selective in vitro and in vivo activities against R-E leukemia, as well as strong synergy when combined with chemotherapeutics. Microarray analysis showed that treatment with glucocorticoids significantly inhibited R-E's activity and reactivated that of RUNX1. Such gene expression changes caused differentiation and apoptosis of R-E leukemia cells. Our studies also show a possible molecular mechanism for the targeted therapy. Upon treatment with a glucocorticoid drug, more glucocorticoid receptor (GR) was translocated into the nucleus and bound to DNA, including promoters of RUNX1 target genes. GR was found to associate with RUNX1, but not R-E. This interaction increased binding of RUNX1 to DNA and reduced that of R-E, shifting to a RUNX1 dominance. Conclusion: Glucocorticoid drugs represent a targeted therapy for AML with chromosome translocation t(8:21). Given their high activity, favorable human pharmacokinetics as well as synergy with chemotherapeutics, glucocorticoids could be clinically useful to treat R-E AML.
Collapse
|
41
|
Kampa-Schittenhelm KM, Vogel W, Bonzheim I, Fend F, Horger M, Kanz L, Soekler M, Schittenhelm MM. Dasatinib overrides the differentiation blockage in a patient with mutant- KIT D816V positive CBFβ-MYH11 leukemia. Oncotarget 2018; 9:11876-11882. [PMID: 29545943 PMCID: PMC5837740 DOI: 10.18632/oncotarget.24376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
Activating KIT D816V mutations are frequently found in CBF AML, which predicts for an unfavorable outcome. Dasatinib is a potent inhibitor of wildtype and mutant-KIT isoforms - including D816V. We now provide proof of antileukemic efficacy in a patient with relapsing mutant-KIT D816V CBF AML. Importantly, this effect is mediated via overriding the differentiation blockage of the leukemia clone. In addition, we show that dasatinib is capable to induce pulmonary differentiation syndrome - and therefore needs close monitoring of patients under therapy.
Collapse
Affiliation(s)
- Kerstin M. Kampa-Schittenhelm
- Department of Oncology, Hematology, Rheumatology, Clinical Immunology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Wichard Vogel
- Department of Oncology, Hematology, Rheumatology, Clinical Immunology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Reference Center for Hematopathology, University Hospital Tübingen, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, Reference Center for Hematopathology, University Hospital Tübingen, Tübingen, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Lothar Kanz
- Department of Oncology, Hematology, Rheumatology, Clinical Immunology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Soekler
- Department of Oncology, Hematology, Rheumatology, Clinical Immunology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Marcus M. Schittenhelm
- Department of Oncology, Hematology, Rheumatology, Clinical Immunology and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Lin S, Wei J, Wunderlich M, Chou FS, Mulloy JC. Immortalization of human AE pre-leukemia cells by hTERT allows leukemic transformation. Oncotarget 2018; 7:55939-55950. [PMID: 27509060 PMCID: PMC5302887 DOI: 10.18632/oncotarget.11093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023] Open
Abstract
Human CD34+ hematopoietic stem and progenitor cells (HSPC) expressing fusion protein AML1-ETO (AE), generated by the t(8;21)(q22;q22) rearrangement, manifest enhanced self-renewal and dysregulated differentiation without leukemic transformation, representing a pre-leukemia stage. Enabling replicative immortalization via telomerase reactivation is a crucial step in cancer development. However, AE expression alone is not sufficient to maintain high telomerase activity to immortalize human HSPC cells, which may hamper transformation. Here, we investigated the cooperativity of telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, and AE in disease progression. Enforced expression of hTERT immortalized human AE pre-leukemia cells in a telomere-lengthening independent manner, and improved the pre-leukemia stem cell function by enhancing cell proliferation and survival. AE-hTERT cells retained cytokine dependency and multi-lineage differentiation potential similar to parental AE clones. Over the short-term, AE-hTERT cells did not show features of stepwise transformation, with no leukemogenecity evident upon initial injection into immunodeficient mice. Strikingly, after extended culture, we observed full transformation of one AE-hTERT clone, which recapitulated the disease evolution process in patients and emphasizes the importance of acquiring cooperating mutations in t(8;21) AML leukemogenesis. In summary, achieving unlimited proliferative potential via hTERT activation, and thereby allowing for acquisition of additional mutations, is a critical link for transition from pre-leukemia to overt disease in human cells. AE-hTERT cells represent a tractable model to study cooperating genetic lesions important for t(8;21) AML disease progression.
Collapse
Affiliation(s)
- Shan Lin
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Junping Wei
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Mark Wunderlich
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - Fu-Sheng Chou
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| | - James C Mulloy
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Research Center, Cincinnati, OH, USA
| |
Collapse
|
43
|
Tian Y, Wang G, Hu Q, Xiao X, Chen S. AML1/ETO trans-activates c-KIT expression through the long range interaction between promoter and intronic enhancer. J Cell Biochem 2018; 119:3706-3715. [PMID: 29236325 DOI: 10.1002/jcb.26587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
Abstract
The AML1/ETO onco-fusion protein is crucial for the genesis of t(8;21) acute myeloid leukemia (AML) and is well documented as a transcriptional repressor through dominant-negative effect. However, little is known about the transactivation mechanism of AML1/ETO. Through large cohort of patient's expression level data analysis and a series of experimental validation, we report here that AML1/ETO transactivates c-KIT expression through directly binding to and mediating the long-range interaction between the promoter and intronic enhancer regions of c-KIT. Gene expression analyses verify that c-KIT expression is significantly high in t(8;21) AML. Further ChIP-seq analysis and motif scanning identify two regulatory regions located in the promoter and intronic enhancer region of c-KIT, respectively. Both regions are enriched by co-factors of AML1/ETO, such as AML1, CEBPe, c-Jun, and c-Fos. Further luciferase reporter assays show that AML1/ETO trans-activates c-KIT promoter activity through directly recognizing the AML1 motif and the co-existence of co-factors. The induction of c-KIT promoter activity is reinforced with the existence of intronic enhancer region. Furthermore, ChIP-3C-qPCR assays verify that AML1/ETO mediates the formation of DNA-looping between the c-KIT promoter and intronic enhancer region through the long-range interaction. Collectively, our data uncover a novel transcriptional activity mechanism of AML1/ETO and enrich our knowledge of the onco-fusion protein mediated transcription regulation.
Collapse
Affiliation(s)
- Ying Tian
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Genjie Wang
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Qingzhu Hu
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Xichun Xiao
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| | - Shuxia Chen
- Department of hematology, The First People's Hospital of Shangqiu, Shangqiu, Henan, China
| |
Collapse
|
44
|
Lin S, Mulloy JC, Goyama S. RUNX1-ETO Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:151-173. [PMID: 28299657 DOI: 10.1007/978-981-10-3233-2_11] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AML1-ETO leukemia is the most common cytogenetic subtype of acute myeloid leukemia, defined by the presence of t(8;21). Remarkable progress has been achieved in understanding the molecular pathogenesis of AML1-ETO leukemia. Proteomic surveies have shown that AML-ETO forms a stable complex with several transcription factors, including E proteins. Genome-wide transcriptome and ChIP-seq analyses have revealed the genes directly regulated by AML1-ETO, such as CEBPA. Several lines of evidence suggest that AML1-ETO suppresses endogenous DNA repair in cells to promote mutagenesis, which facilitates acquisition of cooperating secondary events. Furthermore, it has become increasingly apparent that a delicate balance of AML1-ETO and native AML1 is important to sustain the malignant cell phenotype. Translation of these findings into the clinical setting is just beginning.
Collapse
Affiliation(s)
- Shan Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susumu Goyama
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
45
|
D816V mutation in the KIT gene activation loop has greater cell-proliferative and anti-apoptotic ability than N822K mutation in core-binding factor acute myeloid leukemia. Exp Hematol 2017; 52:56-64.e4. [PMID: 28506695 DOI: 10.1016/j.exphem.2017.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
In core-binding factor acute myeloid leukemia (CBF-AML), there have been conflicting reports regarding the status as an unfavorable prognostic factor of mutation in the KIT gene, the significance of which remains unclear. We previously reported that prognoses differ between the KIT D816V and N822K mutations. In the present study, we compared in vitro the cell-proliferative and anti-apoptotic ability of D816V and N822K. We transduced these KIT mutations into the interleukin-3-dependent cell line TF-1 (TF-1 KITD816V, TF-1 KITN822K). When these KIT mutations were transduced into TF-1 cells, the cells acquired a proliferative ability independent of growth factor, which was significantly higher in TF-1 KITD816V than in TF-1 KITN822K (p = 0.022). When Ara-C was added in the absence of growth factor, Annexin V assay revealed that TF-1 KITD816V was associated with a significantly lower proportion of apoptotic cells than TF-1 KITN822K (p < 0.001). Regarding signal transduction pathways, both KIT D816V and KIT N822K underwent autophosphorylation in the absence of growth factor. This was followed in KIT D816V by downstream activation of the SRC family kinase pathway in addition to the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, and in KIT N822K by downstream activation of the mitogen-activated protein kinase (MAPK) pathway in addition to the JAK/STAT pathway. These findings establish that D816V and N822K mutations are situated closely on the KIT receptor activation loop, but D816V has greater cell-proliferative and anti-apoptotic ability than N822K.
Collapse
|
46
|
Hirsch P, Tang R, Abermil N, Flandrin P, Moatti H, Favale F, Suner L, Lorre F, Marzac C, Fava F, Mamez AC, Lapusan S, Isnard F, Mohty M, Legrand O, Douay L, Bilhou-Nabera C, Delhommeau F. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica 2017; 102:1227-1237. [PMID: 28302711 PMCID: PMC5566032 DOI: 10.3324/haematol.2016.159681] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
The genetic landscape of adult acute myeloid leukemias (AML) has been recently unraveled. However, due to their genetic heterogeneity, only a handful of markers are currently used for the evaluation of minimal residual disease (MRD). Recent studies using multi-target strategies indicate that detection of residual mutations in less than 5% of cells in complete remission is associated with a better survival. Here, in a series of 69 AMLs with known clonal architecture, we design a clone-specific strategy based on fluorescent in situ hybridization and high-sensitivity next generation sequencing to detect chromosomal aberrations and mutations, respectively, in follow-up samples. The combination of these techniques allows tracking chromosomal and genomic lesions down to 0.5–0.4% of the cell population in remission samples. By testing all lesions in follow-up samples from 65 of 69 evaluable patients, we find that initiating events often persist and appear to be, on their own, inappropriate markers to predict short-term relapse. In contrast, the persistence of two or more lesions in more than 0.4% of the cells from remission samples is strongly associated with lower leukemia-free and overall survivals in univariate and multivariate analyses. Although larger prospective studies are needed to extend these results, our data show that a personalized, clone-specific, MRD follow up strategy is feasible in the vast majority of AML cases.
Collapse
Affiliation(s)
- Pierre Hirsch
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Ruoping Tang
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Nassera Abermil
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| | - Pascale Flandrin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,Université de Saint Etienne, Laboratoire d'Hématologie, CHU de Saint-Etienne, Paris, France
| | - Hannah Moatti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris
| | - Fabrizia Favale
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| | - Ludovic Suner
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| | - Florence Lorre
- AP-HP, Hôpital Saint-Antoine, Laboratoire Commun de Biologie et Génétique Moléculaires, Paris, France
| | - Christophe Marzac
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| | - Fanny Fava
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Anne-Claire Mamez
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Simona Lapusan
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Françoise Isnard
- AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Mohamad Mohty
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Ollivier Legrand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et de Thérapie Cellulaire, Paris
| | - Luc Douay
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| | - Chrystele Bilhou-Nabera
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris.,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| | - François Delhommeau
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, APHP Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine (CRSA), Paris .,Sorbonne Universités, UPMC Univ Paris 06, GRC n°7, Groupe de Recherche Clinique sur les Myéloproliférations Aiguës et Chroniques MYPAC, Paris.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Biologique, Paris
| |
Collapse
|
47
|
Hu Y, He GL, Zhao XY, Zhao XS, Wang Y, Xu LP, Zhang XH, Yu XZ, Liu KY, Chang YJ, Huang XJ. Regulatory B cells promote graft-versus-host disease prevention and maintain graft-versus-leukemia activity following allogeneic bone marrow transplantation. Oncoimmunology 2017; 6:e1284721. [PMID: 28405514 DOI: 10.1080/2162402x.2017.1284721] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 01/15/2023] Open
Abstract
Regulatory B cells (Bregs) are involved in the pathogenesis of graft-versus-host disease (GVHD). However, whether Bregs can alleviate acute GVHD without compromising graft-versus-leukemia (GVL) effects remains unclear. Here, we evaluated the role of Bregs in acute GVHD and GVL activity in both a mouse model and a clinical cohort study. In the acute GVHD mouse model, co-transplantation of Bregs prevents onset through inhibiting Th1 and Th17 differentiation and expanding regulatory T cells. In the GVL mouse model, Bregs contributed to the suppression of acute GVHD but had no adverse effect on GVL activity. In the clinical cohort study, a higher dose of Bregs in allografts was associated with a lower cumulative incidence of acute GVHD but not with increased risk of relapse. Our data demonstrate that Bregs can prevent acute GVHD and maintain GVL effects and suggest that Bregs have potential as a novel strategy for acute GVHD alleviation.
Collapse
Affiliation(s)
- Yue Hu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Gan-Lin He
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Department of Hematology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Yu Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Su Zhao
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Lan-Ping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Hui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xue-Zhong Yu
- Departments of Microbiology and Immunology and Medicine, Medical University of South Carolina , Charleston, SC, USA
| | - Kai-Yan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Ying-Jun Chang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology , Xicheng District, Beijing, China
| | - Xiao-Jun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital & Peking University Institute of Hematology, Xicheng District, Beijing, China; Peking-Tsinghua Center for Life Sciences, Beijing, China; Collabrative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|
48
|
Honokiol induces proteasomal degradation of AML1-ETO oncoprotein via increasing ubiquitin conjugase UbcH8 expression in leukemia. Biochem Pharmacol 2016; 128:12-25. [PMID: 28043811 DOI: 10.1016/j.bcp.2016.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023]
Abstract
AML1-ETO is the most common oncoprotein leading to acute myeloid leukemia (AML), in which 5-year survival rate is only about 30%. However, currently there are no specific therapies for AML patients with AML1-ETO. Here, we report that AML1-ETO protein is rapidly degraded by Honokiol (HNK), a natural phenolic compound isolated from the plant Magnolia officinalis. HNK induced the degradation of AML1-ETO in a concentration- and time-dependent manner in leukemic cell lines and primary AML blasts with t(8;21) translocation. Mechanistically, HNK obviously increased the expression of UbcH8, an E2-conjugase for the degradation of AML1-ETO, through triggering accumulation of acetylated histones in the promoter region of UbcH8. Knockdown of UbcH8 by small hairpin RNAs (shRNAs) prevented HNK-induced degradation of AML-ETO, suggesting that UbcH8 plays a critical role in the degradation of AML1-ETO. HNK inhibited cell proliferation and induced apoptotic death without activation of caspase-3, which was reported to cleave and degrade AML1-ETO protein. Thus, HNK-induced degradation of AML1-ETO is independent of activation of caspase-3. Finally, HNK reduced the angiogenesis and migration in Kasumi-1-injected zebrafish, decreased xenograft tumor size in a xenograft leukemia mouse model, and prolonged the survival time in mouse C1498 AML model. Collectively, HNK might be a potential treatment for t(8;21) leukemia by targeting AML1-ETO oncoprotein.
Collapse
|
49
|
Chen WL, Wang YY, Zhao A, Xia L, Xie G, Su M, Zhao L, Liu J, Qu C, Wei R, Rajani C, Ni Y, Cheng Z, Chen Z, Chen SJ, Jia W. Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential. Cancer Cell 2016; 30:779-791. [PMID: 27746145 PMCID: PMC5496656 DOI: 10.1016/j.ccell.2016.09.006] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/08/2016] [Accepted: 09/13/2016] [Indexed: 12/28/2022]
Abstract
Rapidly proliferating leukemic progenitor cells consume substantial glucose, which may lead to glucose insufficiency in bone marrow. We show that acute myeloid leukemia (AML) cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which compensates for glucose deficiency. Notably, AML patients with upregulated transcription of the GLUT5-encoding gene SLC2A5 or increased fructose utilization have poor outcomes. Pharmacological blockage of fructose uptake ameliorates leukemic phenotypes and potentiates the cytotoxicity of the antileukemic agent, Ara-C. In conclusion, this study highlights enhanced fructose utilization as a metabolic feature of AML and a potential therapeutic target.
Collapse
Affiliation(s)
- Wen-Lian Chen
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Xia
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoxiang Xie
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Mingming Su
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Linjing Zhao
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Jiajian Liu
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chun Qu
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Runmin Wei
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yan Ni
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Zhen Cheng
- Molecular Imaging Program at Stanford, Department of Radiology and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Zhu Chen
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Department of Hematology, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wei Jia
- Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| |
Collapse
|
50
|
Kinase-associated gene mutation pattern and clinical relevance in 205 patients with core binding factor leukemias. Blood Cancer J 2016; 6:e494. [PMID: 27834939 PMCID: PMC5148054 DOI: 10.1038/bcj.2016.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|