1
|
Saini I, Joshi J, Kaur S. Unleashing the role of potential adjuvants in leishmaniasis. Int J Pharm 2025; 669:125077. [PMID: 39675537 DOI: 10.1016/j.ijpharm.2024.125077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Leishmaniasis is amongst one of the most neglected tropical disease, caused by an intracellular protozoan of genus Leishmania. Currently, the most promising strategy to combat leishmaniasis, relies on chemotherapy but the toxicity and increasing resistance of the standard drugs, presses the demand for new alternatives. Immunization is arguably the best strategy for cure because an individual once infected becomes immune to the disease. Yet, there is no efficient vaccine capable of providing enduring immunity against the parasite. Achieving the goal of developing highly efficacious and durable vaccine is limited due to lack of an appropriate adjuvant. Adjuvants are recognized as 'immune potentiators' which redirect or amplify the immune response. A number of adjuvants like alum, MPL-A, CpG ODN, GLA-SE, imiquimod, saponins etc. have been used in combination with various classes of Leishmania antigens. However, only few have reached clinical trials. Thus, the choice of an adjuvant is critically dependent on many factors such as the route of administration, the nature of antigen, formulation, the type of required immune response, their mode of action and the immunization schedule. This review provides an updated status on the types of adjuvants used in leishmaniasis so far and their mechanism of action if known.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
2
|
Vieira GDS, Kimura TDC, Scarini JF, de Lima-Souza RA, Lavareze L, Emerick C, Gonçalves MT, Damas II, Figueiredo-Maciel T, Sales de Sá R, Aquino IG, Gonçalves de Paiva JP, Fernandes PM, Gonçalves MWA, Kowalski LP, Altemani A, Fillmore GC, Mariano FV, Egal ESA. Hematopoietic colony-stimulating factors in head and neck cancers: Recent advances and therapeutic challenges. Cytokine 2024; 173:156417. [PMID: 37944421 DOI: 10.1016/j.cyto.2023.156417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Colony-stimulating factors (CSFs) are key cytokines responsible for the production, maturation, and mobilization of the granulocytic and macrophage lineages from the bone marrow, which have been gaining attention for playing pro- and/or anti-tumorigenic roles in cancer. Head and neck cancers (HNCs) represent a group of heterogeneous neoplasms with high morbidity and mortality worldwide. Treatment for HNCs is still limited even with the advancements in cancer immunotherapy. Novel treatments for patients with recurrent and metastatic HNCs are urgently needed. This article provides an in-depth review of the role of hematopoietic cytokines such as granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), and interleukin-3 (IL-3; also known as multi-CSF) in the HNCs tumor microenvironment. We have reviewed current results from clinical trials using CSFs as adjuvant therapy to treat HNCs patients, and also clinical findings reported to date on the therapeutic application of CSFs toxicities arising from chemoradiotherapy.
Collapse
Affiliation(s)
- Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carolina Emerick
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mayara Trevizol Gonçalves
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ingrid Iara Damas
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Tayná Figueiredo-Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Raisa Sales de Sá
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Iara Gonçalves Aquino
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - João Paulo Gonçalves de Paiva
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Patrícia Maria Fernandes
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil; Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery, School of Medicine, University of São Paulo (USP), São Paulo, Brazil; Department of Head and Neck Surgery and Otolaryngology, AC Camargo Cancer Center, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gary Chris Fillmore
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States.
| |
Collapse
|
3
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
4
|
Eckhardt E, Schinköthe J, Gischke M, Sehl-Ewert J, Corleis B, Dorhoi A, Teifke J, Albrecht D, Geluk A, Gilleron M, Bastian M. Phosphatidylinositolmannoside vaccination induces lipid-specific Th1-responses and partially protects guinea pigs from Mycobacterium tuberculosis challenge. Sci Rep 2023; 13:18613. [PMID: 37903877 PMCID: PMC10616071 DOI: 10.1038/s41598-023-45898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.
Collapse
Affiliation(s)
- Emmelie Eckhardt
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marcel Gischke
- Institute of Microbiology, Greifswald University, Greifswald, Germany
| | - Julia Sehl-Ewert
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Björn Corleis
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Jens Teifke
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Greifswald University, Greifswald, Germany
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine Gilleron
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Max Bastian
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany.
| |
Collapse
|
5
|
Ruf B, Greten TF, Korangy F. Innate lymphoid cells and innate-like T cells in cancer - at the crossroads of innate and adaptive immunity. Nat Rev Cancer 2023; 23:351-371. [PMID: 37081117 DOI: 10.1038/s41568-023-00562-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Immunotherapies targeting conventional T cells have revolutionized systemic treatment for many cancers, yet only a subset of patients benefit from these approaches. A better understanding of the complex immune microenvironment of tumours is needed to design the next generation of immunotherapeutics. Innate lymphoid cells (ILCs) and innate-like T cells (ILTCs) are abundant, tissue-resident lymphocytes that have recently been shown to have critical roles in many types of cancers. ILCs and ILTCs rapidly respond to changes in their surrounding environment and act as the first responders to bridge innate and adaptive immunity. This places ILCs and ILTCs as pivotal orchestrators of the final antitumour immune response. In this Review, we outline hallmarks of ILCs and ILTCs and discuss their emerging role in antitumour immunity, as well as the pathophysiological adaptations leading to their pro-tumorigenic function. We explore the pleiotropic, in parts redundant and sometimes opposing, mechanisms that underlie the delicate interplay between the different subsets of ILCs and ILTCs. Finally, we highlight their role in amplifying and complementing conventional T cell functions and summarize immunotherapeutic strategies for targeting ILCs and ILTCs in cancer.
Collapse
Affiliation(s)
- Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Centre for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Neth BJ, Webb MJ, Parney IF, Sener UT. The Current Status, Challenges, and Future Potential of Therapeutic Vaccination in Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15041134. [PMID: 37111620 PMCID: PMC10141140 DOI: 10.3390/pharmaceutics15041134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor and confers a dismal prognosis. With only two FDA-approved therapeutics showing modest survival gains since 2005, there is a great need for the development of other disease-targeted therapies. Due, in part, to the profound immunosuppressive microenvironment seen in GBMs, there has been a broad interest in immunotherapy. In both GBMs and other cancers, therapeutic vaccines have generally yielded limited efficacy, despite their theoretical basis. However, recent results from the DCVax-L trial provide some promise for vaccine therapy in GBMs. There is also the potential that future combination therapies with vaccines and adjuvant immunomodulating agents may greatly enhance antitumor immune responses. Clinicians must remain open to novel therapeutic strategies, such as vaccinations, and carefully await the results of ongoing and future trials. In this review of GBM management, the promise and challenges of immunotherapy with a focus on therapeutic vaccinations are discussed. Additionally, adjuvant therapies, logistical considerations, and future directions are discussed.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mason J Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur T Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Chen KS, Reinshagen C, Van Schaik TA, Rossignoli F, Borges P, Mendonca NC, Abdi R, Simon B, Reardon DA, Wakimoto H, Shah K. Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity. Sci Transl Med 2023; 15:eabo4778. [PMID: 36599004 PMCID: PMC10068810 DOI: 10.1126/scitranslmed.abo4778] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
The administration of inactivated tumor cells is known to induce a potent antitumor immune response; however, the efficacy of such an approach is limited by its inability to kill tumor cells before inducing the immune responses. Unlike inactivated tumor cells, living tumor cells have the ability to track and target tumors. Here, we developed a bifunctional whole cancer cell-based therapeutic with direct tumor killing and immunostimulatory roles. We repurposed the tumor cells from interferon-β (IFN-β) sensitive to resistant using CRISPR-Cas9 by knocking out the IFN-β-specific receptor and subsequently engineered them to release immunomodulatory agents IFN-β and granulocyte-macrophage colony-stimulating factor. These engineered therapeutic tumor cells (ThTCs) eliminated established glioblastoma tumors in mice by inducing caspase-mediated cancer cell apoptosis, down-regulating cancer-associated fibroblast-expressed platelet-derived growth factor receptor β, and activating antitumor immune cell trafficking and antigen-specific T cell activation signaling. This mechanism-based efficacy of ThTCs translated into a survival benefit and long-term immunity in primary, recurrent, and metastatic cancer models in immunocompetent and humanized mice. The incorporation of a double kill-switch comprising herpes simplex virus-1 thymidine kinase and rapamycin-activated caspase 9 in ThTCs ensured the safety of our approach. Arming naturally neoantigen-rich tumor cells with bifunctional therapeutics represents a promising cell-based immunotherapy for solid tumors and establishes a road map toward clinical translation.
Collapse
Affiliation(s)
- Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thijs A. Van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Natalia Claire Mendonca
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Brennan Simon
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A. Reardon
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02138, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Varghese B, Lynch L, Vriend LE, Draganov D, Clark JM, Kissick HT, Varghese S, Sanda MG, Dranoff G, Arredouani MS, Balk SP, Exley MA. Invariant NKT cell-augmented GM-CSF-secreting tumor vaccine is effective in advanced prostate cancer model. Cancer Immunol Immunother 2022; 71:2943-2955. [PMID: 35523889 PMCID: PMC10992623 DOI: 10.1007/s00262-022-03210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Invariant natural killer T cells (iNKT cells) express a semi-invariant T cell receptor that recognizes certain glycolipids (including α-galactosylceramide, αGC) bound to CD1d, and can induce potent antitumor responses. Here, we assessed whether αGC could enhance the efficacy of a GM-CSF-producing tumor cell vaccine in the transgenic SV40 T antigen-driven TRAMP prostate cancer model. In healthy mice, we initially found that optimal T cell responses were obtained with αGC-pulsed TRAMP-C2 cells secreting GM-CSF and milk fat globule epidermal growth factor protein-8 (MFG-E8) with an RGD to RGE mutation (GM-CSF/RGE TRAMP-C2), combined with systemic low dose IL-12. In a therapeutic model, transgenic TRAMP mice were then castrated at ~ 20 weeks, followed by treatment with the combination vaccine. Untreated mice succumbed to tumor by ~ 40 weeks, but survival was markedly prolonged by vaccine treatment, with most mice surviving past 80 weeks. Prostates in the treated mice were heavily infiltrated with T cells and iNKT cells, which both secreted IFNγ in response to tumor cells. The vaccine was not effective if the αGC, IL-12, or GM-CSF secretion was eliminated. Finally, immunized mice were fully resistant to challenge with TRAMP-C2 cells. Together these findings support further development of therapeutic vaccines that exploit iNKT cell activation.
Collapse
Affiliation(s)
- Bindu Varghese
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Sana Biotechnology Inc., Boston, MA, USA
| | - Lydia Lynch
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Brigham and Women's Hospital, 75 Francis St., NRB 6, Boston, MA, 02115, USA
| | - Lianne E Vriend
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Dobrin Draganov
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Sanofi Inc., San Diego, CA, USA
| | - Justice M Clark
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Haydn T Kissick
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Emory University, Atlanta, GA, USA
| | - Sharlin Varghese
- Medical Center School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Martin G Sanda
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Emory University, Atlanta, GA, USA
| | - Glenn Dranoff
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Novartis Biomedical Institutes of Research, Cambridge, MA, USA
| | - M Simo Arredouani
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
- Intellia Inc., Cambridge, MA, USA
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Mark A Exley
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
- Brigham and Women's Hospital, 75 Francis St., NRB 6, Boston, MA, 02115, USA.
- Imvax Inc., Philadelphia, PA, USA.
- University of Manchester, Manchester, UK.
- MiNK Therapeutics Inc., New York, NY, USA.
| |
Collapse
|
9
|
Tang D, Zhang D, Heng Y, Zhu XK, Lin HQ, Zhou J, Tao L, Lu LM. Tumor-Infiltrating PD-L1+ Neutrophils Induced by GM-CSF Suppress T Cell Function in Laryngeal Squamous Cell Carcinoma and Predict Unfavorable Prognosis. J Inflamm Res 2022; 15:1079-1097. [PMID: 35210813 PMCID: PMC8859980 DOI: 10.2147/jir.s347777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Chronic inflammation contributes to tumor initiation, progression, and immune escape. Neutrophils are the major component of inflammatory response and participate in the tumorigenesis process. However, compared to other immune cells in the tumor microenvironment of laryngeal squamous cell carcinoma (LSCC), neutrophils, especially the tumor-associated neutrophils (TANs), have not yet been comprehensively explored. The mechanism for regulating the crosstalk between TANs and tumor cells still remains unclear. Materials and Methods The distribution profiles and phenotypic features of neutrophils and other inflammatory immune cell populations from a large LSCC patient cohort were systemically analyzed. Co-culturing of peripheral blood associated neutrophils (PANs) and TANs with PBMCs was performed, and the immunosuppression effect on T-cells was examined. Results LSCC microenvironment is highly inflammatory with remarkable TANs infiltration, which is often associated with unfavorable prognosis and advanced clinical stage. We find that TANs in LSCC display morphologically immature and lower apoptosis, exhibit distinctively immunosuppressive phenotype of high PD-L1, and suppress CD8+ T lymphocytes proliferation and activation. We subsequently discover that PD-L1+TANs induced by LSCC-derived GM-CSF potently impair CD8+ T-cells proliferation and cytokines production function, which are partially blocked by a PD-L1-neutralizing antibody. Clinical data further support GM-CSF as an unfavorable prognostic biomarker and reveal a potential association with inflammatory immune cell infiltration, in particular neutrophils. Conclusion Tumor-infiltrating PD-L1+ neutrophils induced by LSCC-derived GM-CSF suppress T cell proliferation and activation in the inflammatory microenvironment of LSCC and predict unfavorable prognosis. These TANs cripple antitumor T cell immunity and promote tumor progression. Our findings provide a basis for targeting PD-L1+TANs or GM-CSF as a new immunotherapeutic strategy for LSCC.
Collapse
Affiliation(s)
- Di Tang
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Duo Zhang
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yu Heng
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiao-Ke Zhu
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Han-Qing Lin
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jian Zhou
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Lei Tao
- Department of Otorhinolaryngology and ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, People’s Republic of China
- Lei Tao, ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People’s Republic of China, Tel +86-13916944810, Email
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Correspondence: Li-Ming Lu, Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, People’s Republic of China, Tel +86-13916235624, Fax +86-021-63846383, Email
| |
Collapse
|
10
|
Guégan JP, Pollet J, Ginestier C, Charafe-Jauffret E, Peter ME, Legembre P. CD95/Fas suppresses NF-κB activation through recruitment of KPC2 in a CD95L/FasL-independent mechanism. iScience 2021; 24:103538. [PMID: 34917906 PMCID: PMC8666665 DOI: 10.1016/j.isci.2021.103538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.
Collapse
Affiliation(s)
| | - Justine Pollet
- Technological core facility BISCEm, Université de Limoges, US042 Inserm, UMS 2015 CNRS, Centre hospitalo-universitaire de Limoges, Limoges, France
| | - Christophe Ginestier
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Molecular Oncology "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, Université Limoges, UMR CNRS 7276, INSERM 1262, Limoges, France
| |
Collapse
|
11
|
Mao C, Ding Y, Xu N. A Double-Edged Sword Role of Cytokines in Prostate Cancer Immunotherapy. Front Oncol 2021; 11:688489. [PMID: 34868907 PMCID: PMC8635015 DOI: 10.3389/fonc.2021.688489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) is one of the most common malignancies among men and is the second leading cause of cancer death. PC immunotherapy has taken relatively successful steps in recent years, and these treatments are still being developed and tested. Evidence suggests that immunotherapy using cytokines as essential mediators in the immune system may help treat cancer. It has been shown that cytokines play an important role in anti-tumor defense. On the other hand, other cytokines can also favor the tumor and suppress anti-tumor responses. Moreover, the dose of cytokine in cancer cytokine-based immunotherapy, as well as the side effects of high doses, can also affect the outcomes of treatment. Cytokines can also be determinative in the outcome of other immunotherapy methods used in PC. In this review, the role of cytokines in the pathogenesis of cancer and their impacts on the main types of immunotherapies in the treatment of PC are discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Lin YJ, Wei KC, Chen PY, Lim M, Hwang TL. Roles of Neutrophils in Glioma and Brain Metastases. Front Immunol 2021; 12:701383. [PMID: 34484197 PMCID: PMC8411705 DOI: 10.3389/fimmu.2021.701383] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils, which are the most abundant circulating leukocytes in humans, are the first line of defense against bacterial and fungal infections. Recent studies have reported the role and importance of neutrophils in cancers. Glioma and brain metastases are the most common malignant tumors of the brain. The tumor microenvironment (TME) in the brain is complex and unique owing to the brain-blood barrier or brain-tumor barrier, which may prevent drug penetration and decrease the efficacy of immunotherapy. However, there are limited studies on the correlation between brain cancer and neutrophils. This review discusses the origin and functions of neutrophils. Additionally, the current knowledge on the correlation between neutrophil-to-lymphocyte ratio and prognosis of glioma and brain metastases has been summarized. Furthermore, the implications of tumor-associated neutrophil (TAN) phenotypes and the functions of TANs have been discussed. Finally, the potential effects of various treatments on TANs and the ability of neutrophils to function as a nanocarrier of drugs to the brain TME have been summarized. However, further studies are needed to elucidate the complex interactions between neutrophils, other immune cells, and brain tumor cells.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Medical Foundation, New Taipei, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
13
|
Liu EG, Yin X, Swaminathan A, Eisenbarth SC. Antigen-Presenting Cells in Food Tolerance and Allergy. Front Immunol 2021; 11:616020. [PMID: 33488627 PMCID: PMC7821622 DOI: 10.3389/fimmu.2020.616020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Food allergy now affects 6%-8% of children in the Western world; despite this, we understand little about why certain people become sensitized to food allergens. The dominant form of food allergy is mediated by food-specific immunoglobulin E (IgE) antibodies, which can cause a variety of symptoms, including life-threatening anaphylaxis. A central step in this immune response to food antigens that differentiates tolerance from allergy is the initial priming of T cells by antigen-presenting cells (APCs), primarily different types of dendritic cells (DCs). DCs, along with monocyte and macrophage populations, dictate oral tolerance versus allergy by shaping the T cell and subsequent B cell antibody response. A growing body of literature has shed light on the conditions under which antigen presentation occurs and how different types of T cell responses are induced by different APCs. We will review APC subsets in the gut and discuss mechanisms of APC-induced oral tolerance versus allergy to food identified using mouse models and patient samples.
Collapse
Affiliation(s)
- Elise G. Liu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States
| | - Xiangyun Yin
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Anush Swaminathan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Stephanie C. Eisenbarth
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
14
|
Huyghe N, Baldin P, Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: what is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf) 2020; 8:11-24. [PMID: 32104582 PMCID: PMC7034232 DOI: 10.1093/gastro/goz061] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Following initial success in melanoma and lung tumours, immune checkpoint inhibitors (ICIs) are now well recognized as a major immunotherapy treatment modality for multiple types of solid cancers. In colorectal cancer (CRC), the small subset that is mismatch-repair-deficient and microsatellite-instability-high (dMMR/MSI-H) derive benefit from immunotherapy; however, the vast majority of patients with proficient MMR (pMMR) or with microsatellite stable (MSS) CRC do not. Immunoscore and the consensus molecular subtype classifications are promising biomarkers in predicting therapeutic efficacy in selected CRC. In pMRR/MSS CRC, biomarkers are also needed to understand the molecular mechanisms governing immune reactivity and to predict their relationship to treatment. The continuous development of such biomarkers would offer new perspectives and more personalized treatments by targeting oncological options, including ICIs, which modify the tumour-immune microenvironment. In this review, we focus on CRC and discuss the current status of ICIs, the role of biomarkers to predict response to immunotherapy, and the approaches being explored to render pMMR/MSS CRC more immunogenic through the use of combined therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
| | - Paméla Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
- Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| |
Collapse
|
15
|
Beseme S, Fast L, Bengston W, Turner M, Radin D, McMichael J. Effects Induced In Vivo by Exposure to Magnetic Signals Derived From a Healing Technique. Dose Response 2020; 18:1559325820907741. [PMID: 32284695 PMCID: PMC7119239 DOI: 10.1177/1559325820907741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/08/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022] Open
Abstract
Energy healing is a therapy said to manipulate and balance the flow of "energies" in the body. One such technique, the Bengston Healing Method (BHM), has shown some success in healing malignant tumors in animals and humans, but the mechanism of action and factors influencing therapeutic success of this method are poorly understood. In this study, we tested in vivo the antitumor potential of magnetic signals recorded during BHM healing. Balb/c mice engrafted with 4T1 breast cancer cells were exposed to this recording for 4 h/d on a weekly or daily basis for 28 days; control mice were not exposed at all. Tumors showed a trend to grow slower in the treatment versus control group during the fourth week of treatment. Elevated leukocyte counts, associated with an increase in blood levels of granulocyte-macrophage colony stimulating factor and interleukin-6, were observed in tumor-bearing mice exposed to the BHM recording but not in healthy animals exposed to the recording. This suggests that exposure to a recording of BHM may induce a biological response in tumor-bearing mice, but limited effects on tumor growth when observed within the predefined end point of 28 days. Studies involving longer end points are recommended to observe the progression of tumor growth.
Collapse
Affiliation(s)
- Sarah Beseme
- Beech Tree Labs, Inc, Providence, RI, USA
- The Institute for Therapeutic Discovery, Delanson, NY, USA
| | - Loren Fast
- Division of Hematology/Oncology, Rhode Island Hospital, RI, USA
| | | | - Michael Turner
- Institute of Electrical and Electronic Engineer, MDT Consulting, Huntsville, AI, USA
| | - Dean Radin
- Institute of Noetic Sciences, Petaluma, CA, USA
| | - John McMichael
- Beech Tree Labs, Inc, Providence, RI, USA
- The Institute for Therapeutic Discovery, Delanson, NY, USA
| |
Collapse
|
16
|
Jinushi M, Baghdadi M. Role of Innate Immunity in Cancers and Antitumor Response. CANCER IMMUNOLOGY 2020:11-28. [DOI: 10.1007/978-3-030-30845-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
17
|
Lemdani K, Seguin J, Lesieur C, Al Sabbagh C, Doan BT, Richard C, Capron C, Malafosse R, Boudy V, Mignet N. Mucoadhesive thermosensitive hydrogel for the intra-tumoral delivery of immunomodulatory agents, in vivo evidence of adhesion by means of non-invasive imaging techniques. Int J Pharm 2019; 567:118421. [DOI: 10.1016/j.ijpharm.2019.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
|
18
|
|
19
|
Oxaliplatin Treatment Alters Systemic Immune Responses. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4650695. [PMID: 30906773 PMCID: PMC6398049 DOI: 10.1155/2019/4650695] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/22/2018] [Indexed: 12/14/2022]
Abstract
Purpose Oxaliplatin is a platinum-based chemotherapeutic agent demonstrating significant antitumor efficacy. Unlike conventional anticancer agents which are immunosuppressive, oxaliplatin has the capacity to stimulate immunological effects in response to the presentation of damage associated molecular patterns (DAMPs) elicited upon cell death. However, the effects of oxaliplatin treatment on systemic immune responses remain largely unknown. Aims of this study were to investigate the effects of oxaliplatin treatment on the proportions of (1) splenic T cells, B cells, macrophages, pro-/anti-inflammatory cytokines, gene expression of splenic cytokines, chemokines, and mediators; (2) double-positive and single-positive CD4+ and CD8+ T thymocytes; (3) bone-marrow hematopoietic stem and progenitor cells. Methods Male BALB/c mice received intraperitoneal injections of oxaliplatin (3mg/kg/d) or sterile water tri-weekly for 2 weeks. Leukocyte populations within the spleen, thymus, and bone-marrow were assessed using flow cytometry. RT-PCR was performed to characterise changes in splenic inflammation-associated genes. Results Oxaliplatin treatment reduced spleen size and cellularity (CD45+ cells), increased the proportion of CD4+, CD8+, and Treg cells, and elevated TNF-α expression. Oxaliplatin was selectively cytotoxic to B cells but had no effect on splenic macrophages. Oxaliplatin treatment altered the gene expression of several cytokines, chemokines, and cell mediators. Oxaliplatin did not deplete double-positive thymocytes but increased the single-positive CD8+ subset. There was also an increase in activated (CD69+) CD8+ T cells. Bone-marrow hematopoietic progenitor pool was demonstrably normal following oxaliplatin treatment when compared to the vehicle-treated cohort. Conclusion Oxaliplatin does not cause systemic immunosuppression and, instead, has the capacity to induce beneficial antitumor immune responses.
Collapse
|
20
|
Godfrey DI, Le Nours J, Andrews DM, Uldrich AP, Rossjohn J. Unconventional T Cell Targets for Cancer Immunotherapy. Immunity 2018; 48:453-473. [PMID: 29562195 DOI: 10.1016/j.immuni.2018.03.009] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 02/07/2023]
Abstract
Most studies on the immunotherapeutic potential of T cells have focused on CD8 and CD4 T cells that recognize peptide antigens (Ag) presented by polymorphic major histocompatibility complex (MHC) class I and MHC class II molecules, respectively. However, unconventional T cells, which interact with MHC class Ib and MHC-I like molecules, are also implicated in tumor immunity, although their role therein is unclear. These include unconventional T cells targeting MHC class Ib molecules such as HLA-E and its murine ortholog Qa-1b, natural killer T (NKT) cells, mucosal associated invariant T (MAIT) cells, and γδ T cells. Here, we review the current understanding of the roles of these unconventional T cells in tumor immunity and discuss why further studies into the immunotherapeutic potential of these cells is warranted.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Jérôme Le Nours
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
21
|
Cortesi F, Delfanti G, Casorati G, Dellabona P. The Pathophysiological Relevance of the iNKT Cell/Mononuclear Phagocyte Crosstalk in Tissues. Front Immunol 2018; 9:2375. [PMID: 30369933 PMCID: PMC6194905 DOI: 10.3389/fimmu.2018.02375] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
CD1d-restricted Natural Killer T (NKT) cells are regarded as sentinels of tissue integrity by sensing local cell stress and damage. This occurs via recognition of CD1d-restricted lipid antigens, generated by stress-related metabolic changes, and stimulation by inflammatory cytokines, such as IL-12 and IL-18. Increasing evidence suggest that this occurs mainly upon NKT cell interaction with CD1d-expressing cells of the Mononuclear Phagocytic System, i.e., monocytes, macrophages and DCs, which patrol parenchymatous organs and mucosae to maintain tissue homeostasis and immune surveillance. In this review, we discuss critical examples of this crosstalk, presenting the known underlying mechanisms and their effects on both cell types and the environment, and suggest that the interaction with CD1d-expressing mononuclear phagocytes in tissues is the fundamental job of NKT cells.
Collapse
Affiliation(s)
- Filippo Cortesi
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Università Vita-Salute San Raffaele, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Marrero I, Maricic I, Feldstein AE, Loomba R, Schnabl B, Rivera-Nieves J, Eckmann L, Kumar V. Complex Network of NKT Cell Subsets Controls Immune Homeostasis in Liver and Gut. Front Immunol 2018; 9:2082. [PMID: 30254647 PMCID: PMC6141878 DOI: 10.3389/fimmu.2018.02082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/22/2018] [Indexed: 12/23/2022] Open
Abstract
The liver-gut immune axis is enriched in several innate immune cells, including innate-like unconventional and adaptive T cells that are thought to be involved in the maintenance of tolerance to gut-derived antigens and, at the same time, enable effective immunity against microbes. Two subsets of lipid-reactive CD1d-restricted natural killer T (NKT) cells, invariant NKT (iNKT) and type II NKT cells present in both mice and humans. NKT cells play an important role in regulation of inflammation in the liver and gut due to their innate-like properties of rapid secretion of a myriad of pro-inflammatory and anti-inflammatory cytokines and their ability to influence other innate cells as well as adaptive T and B cells. Notably, a bi-directional interactive network between NKT cells and gut commensal microbiota plays a crucial role in this process. Here, we briefly review recent studies related to the cross-regulation of both NKT cell subsets and how their interactions with other immune cells and parenchymal cells, including hepatocytes and enterocytes, control inflammatory diseases in the liver, such as alcoholic and non-alcoholic steatohepatitis, as well as inflammation in the gut. Overwhelming experimental data suggest that while iNKT cells are pathogenic, type II NKT cells are protective in the liver. Since CD1d-dependent pathways are highly conserved from mice to humans, a detailed cellular and molecular understanding of these immune regulatory pathways will have major implications for the development of novel therapeutics against inflammatory diseases of liver and gut.
Collapse
Affiliation(s)
- Idania Marrero
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Igor Maricic
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bernd Schnabl
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jesus Rivera-Nieves
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Lars Eckmann
- Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Vipin Kumar
- Laboratory of Immune Regulation, University of California, San Diego, La Jolla, CA, United States.,Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
23
|
Hensel JA, Khattar V, Ashton R, Lee C, Siegal GP, Ponnazhagan S. Location of tumor affects local and distant immune cell type and number. Immun Inflamm Dis 2017; 5:85-94. [PMID: 28250928 PMCID: PMC5322166 DOI: 10.1002/iid3.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid-derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. METHODS In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. RESULTS The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4+ and CD8+ T-cell numbers, which was also observed in their spleens. CONCLUSIONS These data indicate that alterations in tumor-reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci.
Collapse
Affiliation(s)
- Jonathan A. Hensel
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vinayak Khattar
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Reading Ashton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Carnellia Lee
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Gene P. Siegal
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | |
Collapse
|
24
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
25
|
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016; 48:e242. [PMID: 27364892 PMCID: PMC4973317 DOI: 10.1038/emm.2016.64] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
26
|
Recent insights into cutaneous immunization: How to vaccinate via the skin. Vaccine 2015; 33:4663-74. [PMID: 26006087 DOI: 10.1016/j.vaccine.2015.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 04/21/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
Technologies and strategies for cutaneous vaccination have been evolving significantly during the past decades. Today, there is evidence for increased efficacy of cutaneously delivered vaccines allowing for dose reduction and providing a minimally invasive alternative to traditional vaccination. Considerable progress has been made within the field of well-established cutaneous vaccination strategies: Jet and powder injection technologies, microneedles, microporation technologies, electroporation, sonoporation, and also transdermal and transfollicular vaccine delivery. Due to recent advances, the use of cutaneous vaccination can be expanded from prophylactic vaccination for infectious diseases into therapeutic vaccination for both infectious and non-infectious chronic conditions. This review will provide an insight into immunological processes occurring in the skin and introduce the key innovations of cutaneous vaccination technologies.
Collapse
|
27
|
Jinushi M, Baghdadi M. Role of Innate Immunity in Cancers and Antitumor Response. CANCER IMMUNOLOGY 2015:29-46. [DOI: 10.1007/978-3-662-44006-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Maricic I, Halder R, Bischof F, Kumar V. Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2014; 193:1035-46. [PMID: 24973441 DOI: 10.4049/jimmunol.1302898] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CD1d-restricted NKT cells can be divided into two groups: type I NKT cells use a semi-invariant TCR, whereas type II express a relatively diverse set of TCRs. A major subset of type II NKT cells recognizes myelin-derived sulfatides and is selectively enriched in the CNS tissue during experimental autoimmune encephalomyelitis (EAE). We have shown that activation of sulfatide-reactive type II NKT cells by sulfatide prevents induction of EAE. In this article, we have addressed the mechanism of regulation, as well as whether a single immunodominant form of synthetic sulfatide can treat ongoing chronic and relapsing EAE in SJL/J mice. We have shown that the activation of sulfatide-reactive type II NKT cells leads to a significant reduction in the frequency and effector function of myelin proteolipid proteins 139-151/I-A(s)-tetramer(+) cells in lymphoid and CNS tissues. In addition, type I NKT cells and dendritic cells (DCs) in the periphery, as well as CNS-resident microglia, are inactivated after sulfatide administration, and mice deficient in type I NKT cells are not protected from disease. Moreover, tolerized DCs from sulfatide-treated animals can adoptively transfer protection into naive mice. Treatment of SJL/J mice with a synthetic cis-tetracosenoyl sulfatide, but not α-galactosylceramide, reverses ongoing chronic and relapsing EAE. Our data highlight a novel immune-regulatory pathway involving NKT subset interactions leading to inactivation of type I NKT cells, DCs, and microglial cells in suppression of autoimmunity. Because CD1 molecules are nonpolymorphic, the sulfatide-mediated immune-regulatory pathway can be targeted for development of non-HLA-dependent therapeutic approaches to T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Igor Maricic
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Ramesh Halder
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| | - Felix Bischof
- Department of Neurology, University of Tubingen, Tubingen D-72076, Germany
| | - Vipin Kumar
- Laboratory of Autoimmunity, Torrey Pines Institute for Molecular Studies, San Diego, CA 92121; and
| |
Collapse
|
29
|
Molecular profiling predicts the existence of two functionally distinct classes of ovarian cancer stroma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:846387. [PMID: 23762861 PMCID: PMC3665167 DOI: 10.1155/2013/846387] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/12/2023]
Abstract
Although stromal cell signaling has been shown to play a significant role in the progression of many cancers, relatively little is known about its importance in modulating ovarian cancer development. The purpose of this study was to investigate the process of stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues. RNA microarray profiling of 45 tissue samples was carried out using the Affymetrix (U133 Plus 2.0) gene expression platform. Laser capture microdissection (LCM) was employed to isolate cancer cells from the tumors of ovarian cancer patients (Cepi) and matched sets of surrounding cancer stroma (CS). For controls, ovarian surface epithelial cells (OSE) were isolated from the normal (noncancerous) ovaries and normal stroma (NS). Hierarchical clustering of the microarray data resulted in clear separations between the OSE, Cepi, NS, and CS samples. Expression patterns of genes encoding signaling molecules and compatible receptors in the CS and Cepi samples indicate the existence of two subgroups of cancer stroma (CS) with different propensities to support tumor growth. Our results indicate that functionally significant variability exists among ovarian cancer patients in the ability of the microenvironment to modulate cancer development.
Collapse
|
30
|
Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 2013; 138:105-15. [PMID: 23216602 DOI: 10.1111/imm.12036] [Citation(s) in RCA: 630] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) and regulatory T (Treg) cells are major components of the immune suppressive tumour microenvironment (TME). Both cell types expand systematically in preclinical tumour models and promote T-cell dysfunction that in turn favours tumour progression. Clinical reports show a positive correlation between elevated levels of both suppressors and tumour burden. Recent studies further revealed that MDSCs can modulate the de novo development and induction of Treg cells. The overlapping target cell population of Treg cells and MDSCs is indicative for the importance and flexibility of immune suppression under pathological conditions. It also suggests the existence of common pathways that can be used for clinical interventions aiming to manipulate the TME. Elimination or reprogramming of the immune suppressive TME is one of the major current challenges in immunotherapy of cancer. Interestingly, recent findings suggest that natural killer T (NKT) cells can acquire the ability to convert immunosuppressive MDSCs into immunity-promoting antigen-presenting cells. Here we will review the cross-talk between MDSCs and other immune cells, focusing on Treg cells and NKT cells. We will consider its impact on basic and applied cancer research and discuss how targeting MDSCs may pave the way for future immunocombination therapies.
Collapse
Affiliation(s)
- Dennis Lindau
- Department of Tumour Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | |
Collapse
|
31
|
Zhan Y, Vega-Ramos J, Carrington EM, Villadangos JA, Lew AM, Xu Y. The inflammatory cytokine, GM-CSF, alters the developmental outcome of murine dendritic cells. Eur J Immunol 2012; 42:2889-900. [PMID: 22806691 DOI: 10.1002/eji.201242477] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/07/2012] [Accepted: 07/12/2012] [Indexed: 11/11/2022]
Abstract
Fms-like tyrosine kinase 3 ligand (Flt3L) is a major cytokine that drives development of dendritic cells (DCs) under steady state, whereas GM-CSF becomes a prominent influence on differentiation during inflammation. The influence GM-CSF exerts on Flt3L-induced DC development has not been thoroughly examined. Here, we report that GM-CSF alters Flt3L-induced DC development. When BM cells were cultured with both Flt3L and GM-CSF, few CD8⁺ equivalent DCs or plasmacytoid DCs developed compared to cultures supplemented with Flt3L alone. The disappearance of these two cell subsets in GM-CSF + Flt3L culture was not a result of simple inhibition of their development, but a diversion of the original differentiation trajectory to form a new cell population. As a consequence, both DC progeny and their functions were altered. The effect of GM-CSF on DC subset development was confirmed in vivo. First, the CD8⁺ DC numbers were increased under GM-CSF deficiency (when either GM-CSF or its receptor was ablated). Second, this population was decreased under GM-CSF hyperexpression (by transgenesis or by Listeria infection). Our finding that GM-CSF dominantly changes the regulation of DC development in vitro and in vivo has important implications for inflammatory diseases or GM-CSF therapy.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Cabanillas F, Cotto M, Liboy I, Rivera E, Pavia OA, Bruno M. Front-line immunochemotherapy for aggressive non-Hodgkin lymphoma using dose-dense rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone plus granulocyte-macrophage colony stimulating factor and pegfilgrastim as support. Leuk Lymphoma 2012; 53:1929-33. [PMID: 22448918 DOI: 10.3109/10428194.2012.679264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) has been associated with multiple immune effects, which could enhance the outcome of chemotherapy. For this reason we decided to explore the combination of rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone (R-CHOP) given every 14 days with pegfilgrastim (Neulasta) and GM-CSF (Leukine). A total of 59 HIV-negative patients with aggressive-histology non-Hodgkin lymphoma were accrued. The median age was 56 years (range 25-87). Lactate dehydrogenase (LDH) was high in 36 patients (61%); performance status was 0-1 in 48 patients; International Prognostic Index (IPI) was 0-1 in 30 and 2-3 in 24 patients; and disease was stage I-II in 46% and III-IV in 56% of patients. Diffuse large B-cell lymphoma was the most common lymphoma type. Response rates were: complete remission (CR) in 51 (86%), partial remission (PR) in five (8%) and failure in three patients (5%). At a median follow-up of 26 months, the overall survival (OS) at 3 years was 76% and the 3-year failure-free survival (FFS) was 73%. No patient relapsed beyond 18 months. Patients with IPI ≥ 3 had a 3-year progression-free survival (PFS) of 54% versus 82% in those with IPI < 3 (p = 0.038). Patients aged < 60 years had a FFS of 77% while those aged ≥ 60 years had a FFS of 69% (p = 0.29). Both the CR rate and the quality of CRs were satisfactory, with only 5/51 (10%) of complete responders having lost their remissions to date. Of interest is that age ≥ 60, an important adverse prognostic factor, appeared to have lost some of its importance, since the difference between those aged < 60 and ≥ 60 years was minimal in our study. The results with R-CHOP-GM-CSF every 14 days are encouraging, and merit a prospective comparative clinical trial against R-CHOP-14 in order to elucidate the contribution of GM-CSF.
Collapse
|
33
|
Chen H, Gao N, Fan D, Wu J, Zhu J, Li J, Wang J, Chen Y, An J. Suppressive effects on the immune response and protective immunity to a JEV DNA vaccine by co-administration of a GM-CSF-expressing plasmid in mice. PLoS One 2012; 7:e34602. [PMID: 22493704 PMCID: PMC3321030 DOI: 10.1371/journal.pone.0034602] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/02/2012] [Indexed: 01/07/2023] Open
Abstract
As a potential cytokine adjuvant of DNA vaccines, granulocyte-macrophage colony–stimulating factor (GM-CSF) has received considerable attention due to its essential role in the recruitment of antigen-presenting cells, differentiation and maturation of dendritic cells. However, in our recent study of a Japanese encephalitis virus (JEV) DNA vaccine, co-inoculation of a GM-CSF plasmid dramatically suppressed the specific IgG response and resulted in decreased protection against JEV challenge. It is known that GM-CSF has been used in clinic to treat neutropenia for repopulating myeloid cells, and as an adjuvant in vaccine studies; it has shown various effects on the immune response. Therefore, in this study, we characterized the suppressive effects on the immune response to a JEV DNA vaccine by the co-administration of the GM-CSF-expressing plasmid and clarified the underlying mechanisms of the suppression in mice. Our results demonstrated that co-immunization with GM-CSF caused a substantial dampening of the vaccine-induced antibody responses. The suppressive effect was dose- and timing-dependent and likely related to the immunogenicity of the antigen. The suppression was associated with the induction of immature dendritic cells and the expansion of regulatory T cells but not myeloid-derived suppressor cells. Collectively, our findings not only provide valuable information for the application of GM-CSF in clinic and using as a vaccine adjuvant but also offer further insight into the understanding of the complex roles of GM-CSF.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/adverse effects
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Cell Proliferation/drug effects
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Encephalitis Virus, Japanese/drug effects
- Encephalitis Virus, Japanese/immunology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/prevention & control
- Encephalitis, Japanese/virology
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage
- Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Immunity, Humoral/drug effects
- Immunity, Humoral/immunology
- Mice
- Mice, Inbred BALB C
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
34
|
Kerzerho J, Yu ED, Barra CM, Alari-Pahissa E, Alari-Pahisa E, Girardi E, Harrak Y, Lauzurica P, Llebaria A, Zajonc DM, Akbari O, Castaño AR. Structural and functional characterization of a novel nonglycosidic type I NKT agonist with immunomodulatory properties. THE JOURNAL OF IMMUNOLOGY 2012; 188:2254-65. [PMID: 22301545 DOI: 10.4049/jimmunol.1103049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of type I NKT (iNKT) cells by CD1d-presented agonists is a potent immunotherapeutic tool. α-Galactosylceramide (α-GalCer) is the prototypic agonist, but its excessive potency with simultaneous production of both pro- and anti-inflammatory cytokines hampers its potential therapeutic use. In search for novel agonists, we have analyzed the structure and function of HS44, a synthetic aminocyclitolic ceramide analog designed to avoid unrestrained iNKT cell activation. HS44 is a weaker agonist compared with α-GalCer in vitro, although in vivo it induces robust IFN-γ production, and highly reduced but still functional Th2 response. The characteristic cytokine storm produced upon α-GalCer activation was not induced. Consequently, HS44 induced a very efficient iNKT cell-dependent antitumoral response in B16 animal model. In addition, intranasal administration showed the capacity to induce lung inflammation and airway hyperreactivity, a cardinal asthma feature. Thus, HS44 is able to elicit functional Th1 or Th2 responses. Structural studies show that HS44 binds to CD1d with the same conformation as α-GalCer. The TCR binds to HS44 similarly as α-GalCer, but forms less contacts, thus explaining its weaker TCR affinity and, consequently, its weaker recognition by iNKT cells. The ability of this compound to activate an efficient, but not massive, tailored functional immune response makes it an attractive reagent for immune manipulation.
Collapse
Affiliation(s)
- Jerome Kerzerho
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Exley MA, Lynch L, Varghese B, Nowak M, Alatrakchi N, Balk SP. Developing understanding of the roles of CD1d-restricted T cell subsets in cancer: reversing tumor-induced defects. Clin Immunol 2011; 140:184-95. [PMID: 21646050 PMCID: PMC3143311 DOI: 10.1016/j.clim.2011.04.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022]
Abstract
Invariant natural killer T-cells ('iNKT') are the best-known CD1d-restricted T-cells, with recently-defined roles in controlling adaptive immunity. CD1d-restricted T-cells can rapidly produce large amounts of Th1 and/or Th2//Treg/Th17-type cytokines, thereby regulating immunity. iNKT can stimulate potent anti-tumor immune responses via production of Th1 cytokines, direct cytotoxicity, and activation of effectors. However, Th2//Treg-type iNKT can inhibit anti-tumor activity. Furthermore, iNKT are decreased and/or reversibly functionally impaired in many advanced cancers. In some cases, CD1d-restricted T-cell cancer defects can be traced to CD1d(+) tumor interactions, since hematopoietic, prostate, and some other tumors can express CD1d. Ligand and IL-12 can reverse iNKT defects and therapeutic opportunities exist in correcting such defects alone and in combination. Early stage clinical trials have shown potential for reconstitution of iNKT IFN-gamma responses and evidence of activity in a subset of patients, with rational new approaches to capitalize on this progress ongoing, as will be discussed here.
Collapse
Affiliation(s)
- Mark A Exley
- Department of Medicine, Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|
36
|
MacKenzie AE, Lappin JE, Taylor DL, Nicklin SA, Milligan G. GPR35 as a Novel Therapeutic Target. Front Endocrinol (Lausanne) 2011; 2:68. [PMID: 22654822 PMCID: PMC3356001 DOI: 10.3389/fendo.2011.00068] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/16/2011] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain the best studied class of cell surface receptors and the most tractable family of proteins for novel small molecule drug discovery. Despite this, a considerable number of GPCRs remain poorly characterized and in a significant number of cases, endogenous ligand(s) that activate them remain undefined or are of questionable physiological relevance. GPR35 was initially discovered over a decade ago but has remained an "orphan" receptor. Recent publications have highlighted novel ligands, both endogenously produced and synthetic, which demonstrate significant potency at this receptor. Furthermore, evidence is accumulating which highlights potential roles for GPR35 in disease and therefore, efforts to characterize GPR35 more fully and develop it as a novel therapeutic target in conditions that range from diabetes and hypertension to asthma are increasing. Recently identified ligands have shown marked species selective properties, indicating major challenges for future drug development. As we begin to understand these issues, the continuing efforts to identify novel agonist and antagonist ligands for GPR35 will help to decipher its true physiological relevance; translating multiple assay systems in vitro, to animal disease systems in vivo and finally to man.
Collapse
Affiliation(s)
- A. E. MacKenzie
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - J. E. Lappin
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - D. L. Taylor
- Centre for Therapeutics Discovery, MRC TechnologyLondon, UK
| | - S. A. Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - G. Milligan
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- *Correspondence: G. Milligan, Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, UK. e-mail:
| |
Collapse
|
37
|
Abstract
Detailed pathologic analysis has delineated a close association between intratumoral CD 8(+) cytotoxic T cells and favorable clinical outcomes in diverse cancers. Conversely, the presence at tumor sites of negative immune regulatory elements, such as FoxP 3(+) T cells (Tregs) and PD-1/PD-L1 co-stimulatory molecules, is closely associated with inferior patient survival. Together, these results indicate the importance of the balance between cytotoxic and regulatory pathways in the tumor microenvironment as a critical determinant of prognosis. This immune index also provides a framework for devising therapeutic strategies to enlarge the population of antitumor cytotoxic T cells and attenuate immune regulation. Among these approaches, vaccination with irradiated, autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF) followed by antibody blockade of cytotoxic T-lymphocyte associated antigen-4 (CTLA-4) provides clinical benefits for some advanced-course melanoma patients. The extent of tumor necrosis in post-treatment biopsies is linearly related to the natural logarithm of the ratio of CD 8(+) T cells to FoxP 3(+) Tregs. These findings show a concordance between the immune signature of tumor protection in endogenous and therapy-induced responses, strongly supporting Martin Mihm's original insights.
Collapse
Affiliation(s)
- F Stephen Hodi
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
38
|
Clive KS, Tyler JA, Clifton GT, Holmes JP, Mittendorf EA, Ponniah S, Peoples GE. Use of GM-CSF as an adjuvant with cancer vaccines: beneficial or detrimental? Expert Rev Vaccines 2010; 9:519-25. [PMID: 20450326 DOI: 10.1586/erv.10.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been utilized in the clinical management of multiple disease processes. Most recently, GM-CSF has been incorporated into the treatment of malignancies as a sole therapy, as well as a vaccine adjuvant. While the benefits of GM-CSF in this arena have been promising, recent reports have suggested the potential for GM-CSF to induce immune suppression and, thus, negatively impact outcomes in the management of cancer patients. The purpose of this review is to critically evaluate these reports, while considering the most recent clinical data on immunotherapies. We aim to demonstrate the utility of this adjuvant, elucidate those instances in which GM-CSF may induce immune suppression and identify potential explanations for these recent findings.
Collapse
|
39
|
Faries MB, Hsueh EC, Ye X, Hoban M, Morton DL. Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clin Cancer Res 2009; 15:7029-35. [PMID: 19903777 PMCID: PMC2920049 DOI: 10.1158/1078-0432.ccr-09-1540] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The availability of a variety of immune response modifiers creates an opportunity for improved efficacy of immunotherapy, but it also leads to uncertainty in how to combine agents and how to assess those combinations. We sought to assess the effect of the addition of granulocyte/macrophage colony-stimulating factor (GM-CSF) to vaccination with a melanoma vaccine. EXPERIMENTAL DESIGN Ninety-seven patients with resected melanoma (stage II-IV) were enrolled, stratified by stage, and randomized to receive a cellular melanoma vaccine with or without GM-CSF. The primary endpoint was delayed-type hypersensitivity (DTH) response to melanoma cells. Antibody responses, peripheral leukocyte counts, and survival were also examined. RESULTS The GM-CSF arm showed enhanced antibody responses with an increase in IgM titer against the TA90 antigen and increased TA90 immune complexes. This arm also had diminished antimelanoma cell delayed-type hypersensitivity response. Peripheral blood leukocyte profiles showed increases in eosinophils and basophils with decreased monocytes in the GM-CSF arm. These immune changes were accompanied by an increase in early melanoma deaths and a trend toward worse survival with GM-CSF. CONCLUSION These data suggest that GM-CSF is not helpful as an immune adjuvant in this dose and schedule and raise concern that it may be harmful. Based on the discordant findings of an immune endpoint and clinical outcome, the use of such surrogate endpoints in selecting treatments for further evaluation must be done with a great deal of caution.
Collapse
Affiliation(s)
- Mark B Faries
- Sonya Valley Ghidossi Vaccine Laboratory of the Roy E. Coats Research Laboratories of the John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, CA 90404, USA.
| | | | | | | | | |
Collapse
|
40
|
Abstract
Recent understanding of the molecular events crucial in overcoming immunosuppressive tumor microenvironments and generating effective antitumor immunity provides us with the wreath opportunity to manipulate genes that have a key role in antitumor immune responses. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-12 (IL-12) are two indispensable cytokines for activating dendritic cells and boosting the strong immune responses against cancer. In this review, we describe the antitumor mechanisms and clinical application of gene-modified tumor cells and dendritic cells to secrete GM-CSF or IL-12, respectively, in various preclinical and clinical settings. The principles operative in these vaccination strategies may prove applicable to other immunotherapy strategies, especially in combination with other therapeutic modalities, such as chemotherapy and targeted therapy.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Department of Surgery and Bioengineering Advanced Clinical Research Center, Institute of Medical Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
41
|
Dou J, Hong X, Zhao F, Wang J, Chen J, Chen G. Investigation of GM-CSF Immune Accessory Effects in Tumor-Bearing Mice by Direct Gene Immunization. Immunol Invest 2009; 35:227-37. [PMID: 16698679 DOI: 10.1080/08820130600634550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
To assess GM-CSF immune accessory effects in tumor-bearing mice, an animal tumor model was established by inoculating SP2/0 myeloma cells s.c. into the flank of Balb/c mice and 14 days later, injecting either 400 mug recombinant pcDNA3.1/mGM-CSF or a blank plasmid s.c. or i.m. into the tumor four times. The tumor weight, the activities of CTL and NK, the serum levels of IFN-gamma, IL-2 and lymphocytes infiltrating in tumor tissue were analysed 8 weeks later with MTT, ELISA and pathological section methods. The results showed that the tumor lump was reduced in mice injected s.c. (0.880 +/- 0.405 g) or i.m. (0.378 +/- 0.411 g) with pcDNA3.1/mGM-CSF compared with control mice injected s.c. (1.548 +/- 0.221g, P < 0.01)or i.m. (1.554 +/- 0.249g, P < 0.001) with a blank vector. Lymphocyte infiltration in tumor tissues was very apparent in mice injected i.m. with pcDNA3.1/mGM-CSF. In contrast, there was no lymphocyte infiltration in tumor tissues of control mice. In addition, the serum concentrations of IFN-gamma, IL-2 and the activities of CTL and NK cells were significantly increased in mice injected with pcDNA3.1/mGM-CSF compared with a control mice (P < 0.01). In conclusion, direct gene immunization of recombinant pcDNA3.1/mGM-CSF is a feasible strategy for tumor therapy.
Collapse
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology, Southeast University School of Basic Medical Science, Nanjing, China.
| | | | | | | | | | | |
Collapse
|
42
|
Mendoza M, Khanna C. Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol 2009; 41:1452-62. [PMID: 19401145 PMCID: PMC7251640 DOI: 10.1016/j.biocel.2009.01.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 12/12/2022]
Abstract
Metastasis remains the overwhelming cause of death for cancer patients. During metastasis, cancer cells will leave the primary tumor, intravasate into the bloodstream, arrest at a distant organ, and eventually develop into gross lesions at the secondary sites. This intricate process is influenced by innumerable factors and complex cellular interactions described in 1889 by Stephen Paget as the seed and soil hypothesis. In this review, we revisit this seed and soil hypothesis with an emerging understanding of the cancer cell (i.e. seed) and its microenvironment (i.e. soil). We will provide background to suggest that a critical outcome of the seed-soil interaction is resistance of the stresses that would otherwise impede metastasis.
Collapse
Affiliation(s)
- Martin Mendoza
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National institutes of Health, 37 Convent Drive, Room 2144, Bethesda, MD, 20892, United States
| | - Chand Khanna
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National institutes of Health, 37 Convent Drive, Room 2144, Bethesda, MD, 20892, United States
| |
Collapse
|
43
|
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent adjuvant in cancer vaccination; however, the specific role of endogenous GM-CSF remains unknown. We performed cell-based vaccination in 2 tumor models. First, we vaccinated C57BL/6 mice lacking either GM-CSF, IL-5, or beta-common chain (betac), a receptor subunit essential for GM-CSF and IL-5 signaling, with melanoma cells engineered to produce GM-CSF. Tumor vaccination was effective in both GM-CSF(-/-) and IL-5(-/-) mice, showing that protective immunization is independent of both endogenous cytokines. However, all betac(-/-) animals developed tumor. Loss of tumor immunity in betac(-/-) mice does not reflect global impairment in cell-mediated immunity, as contact hypersensitivity reaction to haptens is unaltered. The importance of tumor cell-derived GM-CSF was highlighted by recruitment of dendritic cells at the vaccination site in wild-type, GM-CSF(-/-), and IL-5(-/-) but not in betac(-/-) mice. In the second model, vaccination with unmodified RENCA cells showed similar results with efficient immunization in BALB/c wild-type and GM-CSF(-/-), whereas all betac(-/-) animals died. Altogether, our results strongly suggest that although endogenous GM-CSF and IL-5 are not required to induce tumor immunity, signaling through betac receptor is critically needed for efficient cancer vaccination in both genetically modified GM-CSF-secreting tumor cells and a spontaneously immunogenic models.
Collapse
|
44
|
Jinushi M, Hodi FS, Dranoff G. Enhancing the clinical activity of granulocyte-macrophage colony-stimulating factor-secreting tumor cell vaccines. Immunol Rev 2009; 222:287-98. [PMID: 18364009 DOI: 10.1111/j.1600-065x.2008.00618.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A comparative analysis of vaccination with irradiated, murine tumor cells engineered to express a large number of immunostimulatory molecules established the superior ability of granulocyte-macrophage colony-stimulating factor (GM-CSF) to evoke potent, specific, and long-lasting anti-tumor immunity. Early stage clinical testing of this vaccination strategy in patients with diverse solid and hematologic malignancies revealed the consistent induction of a coordinated humoral and cellular reaction that effectuated substantial tumor destruction. Nonetheless, most subjects eventually succumbed to progressive disease, implying that additional immune defects remained to be addressed. More detailed investigations of the mechanisms underlying protective immunity in murine systems together with the characterization of the anti-tumor reactions of patients who achieved durable clinical benefits in response to immunotherapy uncovered several pathways that restrain the efficacy of GM-CSF-secreting tumor cell vaccines. These include milk fat globule epidermal growth factor protein-8 expansion of forkhead box protein 3+ regulatory T cells, cytotoxic T-lymphocyte antigen-4-mediated negative costimulation, and soluble major histocompatibility complex class I chain-related protein A suppression of NKG2D-dependent innate and adaptive anti-tumor cytotoxicity. Together, these results define key regulatory circuits that attenuate immune-mediated tumor destruction and suggest novel combinatorial therapies that might enhance the clinical activity of GM-CSF-secreting tumor cell vaccines.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Department of Medical Oncology and Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | |
Collapse
|
45
|
Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction. Blood 2008; 113:1681-8. [PMID: 19008459 DOI: 10.1182/blood-2007-09-114157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The identification of cancer antigens that contribute to transformation and are linked with immune-mediated tumor destruction is an important goal for immunotherapy. Toward this end, we screened a murine renal cell carcinoma cDNA expression library with sera from mice vaccinated with irradiated tumor cells engineered to secrete granulocyte macrophage colony-stimulating factor (GM-CSF). Multiple nonmutated, overexpressed proteins that function in tumor cell migration, protein/nucleic acid homeostasis, metabolism, and stress responses were detected. Among these, the most frequently recognized clone was protein disulfide isomerase (PDI). High titer antibodies to human PDI were similarly induced in an acute myeloid leukemia patient who achieved a complete response after vaccination with irradiated, autologous GM-CSF-secreting tumor cells in the setting of nonmyeloablative allogeneic bone marrow transplantation. Moreover, ERp5, a closely related disulfide isomerase involved in major histocompatibility complex (MHC) class I chain-related protein A (MICA) shedding, also evoked potent humoral reactions in diverse solid and hematologic malignancy patients who responded to GM-CSF-secreting tumor cell vaccines or antibody blockade of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). Together, these findings reveal the unexpected immunogenicity of PDIs and raise the possibility that these gene products might serve as targets for therapeutic monoclonal antibodies.
Collapse
|
46
|
Abstract
On the basis of experimental models and some human data, we can assume that tumor outgrowth results from the balance between immunosurveillance (the extrinsic tumor suppressor mechanisms) and immunosubversion dictated by transformed cells and/or the corrupted surrounding microenvironment. Cancer immunosurveillance relies mainly upon conventional lymphocytes exerting either lytic or secretory functions, whereas immunosubversion results from the activity of regulatory T or suppressor myeloid cells and soluble mediators. Although specific tools to target or ablate dendritic cells (DCs) became only recently available, accumulating evidence points to the critical role of the specialized DC system in dictating most of the conventional and regulatory functions of tumor-specific T lymphocytes. Although DC can be harnessed to silence tumor development, tumors in turn can exploit DC to evade immunity. Indeed, DCs harbor defects in their differentiation and stimulatory functions in cancer-bearing hosts and can actively promote T-cell tolerance to self-tumor antigens. In this review, we will focus on the dual role of DC during tumor progression and discuss pharmacoimmunological strategies to harness DC against cancer.
Collapse
|
47
|
Tulley JM, Palmer JL, Gamelli RL, Faunce DE. Prevention of injury-induced suppression of T-cell immunity by the CD1d/NKT cell-specific ligand alpha-galactosylceramide. Shock 2008; 29:269-77. [PMID: 17693934 DOI: 10.1097/shk.0b013e31811ff60c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Infection, sepsis, and multiple organ failure continue to be significant factors leading to morbidity and mortality after severe injury. Studies by our laboratory and others have identified injury-induced defects in both innate and adaptive components of host defense. We previously reported that CD1d-restricted natural killer T (NKT) cells actively suppress effector T-cell immunity after burn injury via production of excess IL-4 and failure to produce IFN-gamma. alpha-Galactosylceramide (alpha-GalCer) is a synthetic NKT cell-specific ligand presented exclusively to invariant NKT cells and is known to improve immunity against tumors and infection by promoting IFN-gamma production. Here, we confirmed the role of Valpha14-Jalpha281 invariant NKT cells in mouse model of burn injury-induced suppression of T-cell immunity and further asked whether alpha-GalCer can improve immunity after injury via similar mechanisms. We observed that systemic treatment with alpha-GalCer prevented the injury-induced suppression of Ag-specific T-cell responsiveness both in vitro and in vivo and restored the ability of splenic lymphocytes to produce both IL-2 and IFN-gamma. Moreover, burn injury was associated with diminished expression of major histocompatibility complex II and CD40 on antigen presenting cells that were both restored by alpha-GalCer treatment to levels seen in sham-treated mice. Collectively, these data suggest that, via manipulation of the NKT cell population, we may be able to maintain T-cell function and improve host defense after burn injury.
Collapse
Affiliation(s)
- Julia M Tulley
- Department of Surgery, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Mechanisms of protection against autoimmune diseases by transplantation of autologous hematopoietic progenitors remain poorly defined. We recently demonstrated that, unlike medullary hematopoietic stem cells (HSCs), mobilized hematopoietic progenitors (HPCs) stimulate peripheral Foxp3(+) regulatory T cell (Treg)-expansion through cell-contact activation of Notch signaling and through as yet undetermined soluble factor(s), distinct from TGF-beta1. Herein we identified one such soluble factor as granulocyte macrophage-colony stimulating factor (GM-CSF), which is produced at higher levels by HPCs than HSCs and whose neutralization significantly reduces the growth-promoting effect of HPCs on Treg. Treg express a functional GM-CSF receptor alpha-chain CD116 and proliferate in response to this cytokine independently from IL2. GM-CSF-expanded Treg-like HPC-expanded Treg-display enhanced suppressive capacity relative to control Treg. Hence, mobilized progenitors stimulate Treg expansion both by cell-contact dependent mechanisms and by their production of GM-CSF.
Collapse
|
49
|
Ueda R, Low KL, Zhu X, Fujita M, Sasaki K, Whiteside TL, Butterfield LH, Okada H. Spontaneous immune responses against glioma-associated antigens in a long term survivor with malignant glioma. J Transl Med 2007; 5:68. [PMID: 18093336 PMCID: PMC2244605 DOI: 10.1186/1479-5876-5-68] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Accepted: 12/19/2007] [Indexed: 12/31/2022] Open
Abstract
Background In patients with high grade glioma, little is known regarding existence of naturally occurring adaptive T cell reactivity against glioma-associated antigens (GAAs). In this report, we characterized GAA-specific CD8+ T cells and innate immune cells in a patient who has survived with anaplastic astrocytoma (AA) for over 12 years without recurrence. Methods Peripheral blood mononuclear cells (PBMCs) derived from the long term survivor with AA were evaluated for the frequency, cytotoxic T lymphocyte (CTL) activity and differentiation status of CD8+ cells recognizing GAA-derived epitopes as well as relative numbers of other immune cell subsets. This patient's AA tissue was evaluated for expression of two GAAs EphA2 and interleukin-13 receptor α2 subunit (IL-13Rα2) by immunohistochemistry. Results The patient's tumor expressed both EphA2 and IL-13Rα2, and in vitro stimulated PBMC demonstrated superior EphA2883–891 and IL-13Rα2345–353-specific CTL reactivity compared to PBMC samples from two other patients with progressing malignant glioma. Unstimulated EphA2883–891-reactive CD8+ T cells contained high numbers of CD45RA-/CCR7- late effector and CD45RA-/CCR7+ central memory cells. Among other leukocyte subsets, elevated numbers of NK-T cells were found. Conclusion To our knowledge, the current study is one of the first demonstrating the presence of antigen-experienced, GAA-reactive CD8+ T cells in a patient who has survived with AA for over 12 years without recurrence. Further studies are warranted to determine whether the status of GAA-reactive CD8+ T cells dictates survival of patients and/or response to therapeutic vaccines.
Collapse
Affiliation(s)
- Ryo Ueda
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamamura T, Sakuishi K, Illés Z, Miyake S. Understanding the behavior of invariant NKT cells in autoimmune diseases. J Neuroimmunol 2007; 191:8-15. [PMID: 17905445 DOI: 10.1016/j.jneuroim.2007.09.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 09/07/2007] [Indexed: 10/22/2022]
Abstract
Invariant NKT (iNKT) cells are a unique subset of lymphocytes that recognize glycolipid antigens presented by a monomorphic glycoprotein CD1d. Numerous works have shown that iNKT cells may serve as regulatory cells in autoimmune diseases including multiple sclerosis (MS). However, recent studies have revealed that the presence of iNKT cells accelerates some inflammatory conditions, implying that their protective role against autoimmunity is not predetermined. Here we review recent information concerning the mechanism of how iNKT cells intervene or promote autoimmune inflammation. Although iNKT cells are thought to be specific for a limited set of glycolipids, they may cross-react to self and non-self ligands. Regarding the response to non-self, it is now known that iNKT cells produce enormous amounts of proinflammatory cytokines during the course of infectious diseases, which is triggered by TCR ligation by microbial lipids, cytokines produced from APCs or both. Whereas the strongly activated iNKT cells play a beneficial role in combating environmental pathogens, they could play a deleterious role in autoimmunity by producing disease-promoting cytokines. However, iNKT cells in the steady state would retain an ability to produce anti-inflammatory cytokines, which is needed for terminating the ongoing inflammation. Though an initial trigger for their regulatory responses remains elusive, our recent work indicates that iNKT cells may start regulating inflammation after sensing the presence of IL-2 in addition to recognizing a ubiquitous endogenous ligand. Understanding of how iNKT cells regulate autoimmunity should lead to a more sophisticated strategy for controlling autoimmune diseases.
Collapse
Affiliation(s)
- Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | |
Collapse
|