1
|
de Klein B, Eickhoff N, Zwart W. The emerging regulatory interface between DNA repair and steroid hormone receptors in cancer. Trends Mol Med 2025:S1471-4914(25)00006-1. [PMID: 39934021 DOI: 10.1016/j.molmed.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Human cells potentiate highly diverse functions through tight transcriptional regulation and maintenance of genome integrity. While the DNA damage response (DDR) safeguards the genome, ligand-activated transcription factors, such as steroid hormone receptors (SHRs), provide complex transcriptional outputs. Interestingly, an increasing body of evidence reveals a direct biological and functional interplay between DDR factors and SHR cascades in cancer. SHRs can directly affect DDR gene expression, but DDR factors in turn act as transcriptional coregulators, enabling oncogenic SHR-mediated signaling, which has the potential for novel therapeutic interventions. With a focus on breast and prostate cancer, we describe in this review recent developments in, and insights into, the complex interplay between SHR signaling and the DDR, highlighting opportunities for future clinical interventions.
Collapse
Affiliation(s)
- Bim de Klein
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nils Eickhoff
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, 5600, MB, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Morao AK, Chervova A, Zhao Y, Ercan S, Cecere G. DNA supercoiling modulates eukaryotic transcription in a gene-orientation dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631213. [PMID: 39803503 PMCID: PMC11722375 DOI: 10.1101/2025.01.03.631213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Transcription introduces torsional stress in the DNA fiber causing it to transition from a relaxed to a supercoiled state that can propagate across several kilobases and modulate the binding and activity of DNA-associated proteins. As a result, transcription at one locus has the potential to impact nearby transcription events. In this study, we asked how DNA supercoiling affects histone modifications and transcription of neighboring genes in the multicellular eukaryote Caenorhabditis elegans. We acutely depleted the two major topoisomerases and measured nascent transcription by Global Run-on sequencing (GRO-seq), RNA Polymerase II occupancy by ChIP-seq, gene expression by RNA-seq and four transcription-associated histone modifications by Cut & Tag. Depletion of topoisomerases I and II led to genome-wide changes in transcription dynamics, with minor disruptions to the histone modification landscape. Our results showed that C. elegans topoisomerase I is required for transcription elongation and is partially redundant with topoisomerase II. Analysis of transcription changes with respect to neighboring genes suggest that negative supercoiling promotes the transcription of genes with a divergent neighbor and positive supercoiling suppresses transcription of convergent genes. Additionally, topoisomerase depletion caused coordinated changes in the expression of divergent gene pairs, suggesting that negative supercoiling drives their synchronized expression. Conversely, the coordinated expression of convergent genes was disrupted, suggesting that excessive positive supercoiling inhibits transcription. Overall, our data supports a model in which DNA supercoiling generated by transcription at one site propagates along the eukaryotic chromatin fiber, influencing nearby transcription in an orientation-dependent manner.
Collapse
Affiliation(s)
- Ana Karina Morao
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Almira Chervova
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| | - Yuya Zhao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinc Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Germano Cecere
- Mechanisms of Epigenetic Inheritance, Department of Developmental and Stem Cell Biology, Institut Pasteur, UMR 3738, CNRS, Paris 75015, France
| |
Collapse
|
3
|
Fang Y, Bansal K, Mostafavi S, Benoist C, Mathis D. AIRE relies on Z-DNA to flag gene targets for thymic T cell tolerization. Nature 2024; 628:400-407. [PMID: 38480882 PMCID: PMC11091860 DOI: 10.1038/s41586-024-07169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
AIRE is an unconventional transcription factor that enhances the expression of thousands of genes in medullary thymic epithelial cells and promotes clonal deletion or phenotypic diversion of self-reactive T cells1-4. The biological logic of AIRE's target specificity remains largely unclear as, in contrast to many transcription factors, it does not bind to a particular DNA sequence motif. Here we implemented two orthogonal approaches to investigate AIRE's cis-regulatory mechanisms: construction of a convolutional neural network and leveraging natural genetic variation through analysis of F1 hybrid mice5. Both approaches nominated Z-DNA and NFE2-MAF as putative positive influences on AIRE's target choices. Genome-wide mapping studies revealed that Z-DNA-forming and NFE2L2-binding motifs were positively associated with the inherent ability of a gene's promoter to generate DNA double-stranded breaks, and promoters showing strong double-stranded break generation were more likely to enter a poised state with accessible chromatin and already-assembled transcriptional machinery. Consequently, AIRE preferentially targets genes with poised promoters. We propose a model in which Z-DNA anchors the AIRE-mediated transcriptional program by enhancing double-stranded break generation and promoter poising. Beyond resolving a long-standing mechanistic conundrum, these findings suggest routes for manipulating T cell tolerance.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kushagra Bansal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Schmidt A, Zhang H, Schmitt S, Rausch C, Popp O, Chen J, Cmarko D, Butter F, Dittmar G, Lermyte F, Cardoso MC. The Proteomic Composition and Organization of Constitutive Heterochromatin in Mouse Tissues. Cells 2024; 13:139. [PMID: 38247831 PMCID: PMC10814525 DOI: 10.3390/cells13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Pericentric heterochromatin (PCH) forms spatio-temporarily distinct compartments and affects chromosome organization and stability. Albeit some of its components are known, an elucidation of its proteome and how it differs between tissues in vivo is lacking. Here, we find that PCH compartments are dynamically organized in a tissue-specific manner, possibly reflecting compositional differences. As the mouse brain and liver exhibit very different PCH architecture, we isolated native PCH fractions from these tissues, analyzed their protein compositions using quantitative mass spectrometry, and compared them to identify common and tissue-specific PCH proteins. In addition to heterochromatin-enriched proteins, the PCH proteome includes RNA/transcription and membrane-related proteins, which showed lower abundance than PCH-enriched proteins. Thus, we applied a cut-off of PCH-unspecific candidates based on their abundance and validated PCH-enriched proteins. Amongst the hits, MeCP2 was classified into brain PCH-enriched proteins, while linker histone H1 was not. We found that H1 and MeCP2 compete to bind to PCH and regulate PCH organization in opposite ways. Altogether, our workflow of unbiased PCH isolation, quantitative mass spectrometry, and validation-based analysis allowed the identification of proteins that are common and tissue-specifically enriched at PCH. Further investigation of selected hits revealed their opposing role in heterochromatin higher-order architecture in vivo.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Stephanie Schmitt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Cathia Rausch
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| | - Oliver Popp
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Jiaxuan Chen
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Dusan Cmarko
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Gunnar Dittmar
- Proteomics Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany (S.S.)
| |
Collapse
|
5
|
Patel HP, Coppola S, Pomp W, Aiello U, Brouwer I, Libri D, Lenstra TL. DNA supercoiling restricts the transcriptional bursting of neighboring eukaryotic genes. Mol Cell 2023; 83:1573-1587.e8. [PMID: 37207624 DOI: 10.1016/j.molcel.2023.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
DNA supercoiling has emerged as a major contributor to gene regulation in bacteria, but how DNA supercoiling impacts transcription dynamics in eukaryotes is unclear. Here, using single-molecule dual-color nascent transcription imaging in budding yeast, we show that transcriptional bursting of divergent and tandem GAL genes is coupled. Temporal coupling of neighboring genes requires rapid release of DNA supercoils by topoisomerases. When DNA supercoils accumulate, transcription of one gene inhibits transcription at its adjacent genes. Transcription inhibition of the GAL genes results from destabilized binding of the transcription factor Gal4. Moreover, wild-type yeast minimizes supercoiling-mediated inhibition by maintaining sufficient levels of topoisomerases. Overall, we discover fundamental differences in transcriptional control by DNA supercoiling between bacteria and yeast and show that rapid supercoiling release in eukaryotes ensures proper gene expression of neighboring genes.
Collapse
Affiliation(s)
- Heta P Patel
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Stefano Coppola
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Wim Pomp
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Umberto Aiello
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Ineke Brouwer
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands
| | - Domenico Libri
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tineke L Lenstra
- Division of Gene Regulation, The Netherlands Cancer Institute, Oncode Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Colonnetta MM, Schedl P, Deshpande G. Germline/soma distinction in Drosophila embryos requires regulators of zygotic genome activation. eLife 2023; 12:78188. [PMID: 36598809 PMCID: PMC9812407 DOI: 10.7554/elife.78188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
In Drosophila melanogaster embryos, somatic versus germline identity is the first cell fate decision. Zygotic genome activation (ZGA) orchestrates regionalized gene expression, imparting specific identity on somatic cells. ZGA begins with a minor wave that commences at nuclear cycle (NC)8 under the guidance of chromatin accessibility factors (Zelda, CLAMP, GAF), followed by the major wave during NC14. By contrast, primordial germ cell (PGC) specification requires maternally deposited and posteriorly anchored germline determinants. This is accomplished by a centrosome coordinated release and sequestration of germ plasm during the precocious cellularization of PGCs in NC10. Here, we report a novel requirement for Zelda and CLAMP during the establishment of the germline/soma distinction. When their activity is compromised, PGC determinants are not properly sequestered, and specification is disrupted. Conversely, the spreading of PGC determinants from the posterior pole adversely influences transcription in the neighboring somatic nuclei. These reciprocal aberrations can be correlated with defects in centrosome duplication/separation that are known to induce inappropriate transmission of the germ plasm. Interestingly, consistent with the ability of bone morphogenetic protein (BMP) signaling to influence specification of embryonic PGCs, reduction in the transcript levels of a BMP family ligand, decapentaplegic (dpp), is exacerbated at the posterior pole.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Girish Deshpande
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
7
|
Forterre P, Gaïa M. [Viruses and the evolution of modern eukaryotic cells]. Med Sci (Paris) 2022; 38:990-998. [PMID: 36692278 DOI: 10.1051/medsci/2022164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It is now well accepted that viruses have played an important role in the evolution of modern eukaryotes. In this review, we suggest that interactions between ancient eukaryoviruses and proto-eukaryotes also played a major role in eukaryogenesis. We discuss phylogenetic analyses that highlight the viral origin of several key proteins in the molecular biology of eukaryotes. We also discuss recent observations that, by analogy, could suggest a viral origin of the cellular nucleus. Finally, we hypothesize that mechanisms of cell differentiation in multicellular organisms might have originated from mechanisms implemented by viruses to transform infected cells into virocells.
Collapse
Affiliation(s)
- Patrick Forterre
- Département de microbiologie, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France - Institut de biologie intégrative de la cellule (I2BC), Département de microbiologie, CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Morgan Gaïa
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ. Evry, Université Paris-Saclay, 91057 Évry, France
| |
Collapse
|
8
|
Morao AK, Kim J, Obaji D, Sun S, Ercan S. Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans. Mol Cell 2022; 82:4202-4217.e5. [PMID: 36302374 PMCID: PMC9837612 DOI: 10.1016/j.molcel.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.
Collapse
Affiliation(s)
- Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| | - Jun Kim
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Daniel Obaji
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Siyu Sun
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
9
|
Guglielmini J, Gaia M, Da Cunha V, Criscuolo A, Krupovic M, Forterre P. Viral origin of eukaryotic type IIA DNA topoisomerases. Virus Evol 2022; 8:veac097. [PMID: 36533149 PMCID: PMC9752973 DOI: 10.1093/ve/veac097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 08/24/2023] Open
Abstract
Type II DNA topoisomerases of the family A (Topo IIAs) are present in all Bacteria (DNA gyrase) and eukaryotes. In eukaryotes, they play a major role in transcription, DNA replication, chromosome segregation, and modulation of chromosome architecture. The origin of eukaryotic Topo IIA remains mysterious since they are very divergent from their bacterial homologs and have no orthologs in Archaea. Interestingly, eukaryotic Topo IIAs have close homologs in viruses of the phylum Nucleocytoviricota, an expansive assemblage of large and giant viruses formerly known as the nucleocytoplasmic large DNA viruses. Topo IIAs are also encoded by some bacterioviruses of the class Caudoviricetes (tailed bacteriophages). To elucidate the origin of the eukaryotic Topo IIA, we performed in-depth phylogenetic analyses on a dataset combining viral and cellular Topo IIA homologs. Topo IIAs encoded by Bacteria and eukaryotes form two monophyletic groups nested within Topo IIA encoded by Caudoviricetes and Nucleocytoviricota, respectively. Importantly, Nucleocytoviricota remained well separated from eukaryotes after removing both Bacteria and Caudoviricetes from the data set, indicating that the separation of Nucleocytoviricota and eukaryotes is probably not due to long-branch attraction artifact. The topologies of our trees suggest that the eukaryotic Topo IIA was probably acquired from an ancestral member of the Nucleocytoviricota of the class Megaviricetes, before the emergence of the last eukaryotic common ancestor (LECA). This result further highlights a key role of these viruses in eukaryogenesis and suggests that early proto-eukaryotes used a Topo IIB instead of a Topo IIA for solving their DNA topological problems.
Collapse
Affiliation(s)
| | - Morgan Gaia
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, 91000 Evry, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
| | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Archaeal Virology Unit, 75015 Paris, France
- Institut Pasteur, Université de Paris, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| |
Collapse
|
10
|
Saayman X, Esashi F. Breaking the paradigm: early insights from mammalian DNA breakomes. FEBS J 2022; 289:2409-2428. [PMID: 33792193 PMCID: PMC9451923 DOI: 10.1111/febs.15849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/04/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
DNA double-strand breaks (DSBs) can result from both exogenous and endogenous sources and are potentially toxic lesions to the human genome. If improperly repaired, DSBs can threaten genome integrity and contribute to premature ageing, neurodegenerative disorders and carcinogenesis. Through decades of work on genome stability, it has become evident that certain regions of the genome are inherently more prone to breakage than others, known as genome instability hotspots. Recent advancements in sequencing-based technologies now enable the profiling of genome-wide distributions of DSBs, also known as breakomes, to systematically map these instability hotspots. Here, we review the application of these technologies and their implications for our current understanding of the genomic regions most likely to drive genome instability. These breakomes ultimately highlight both new and established breakage hotspots including actively transcribed regions, loop boundaries and early-replicating regions of the genome. Further, these breakomes challenge the paradigm that DNA breakage primarily occurs in hard-to-replicate regions. With these advancements, we begin to gain insights into the biological mechanisms both invoking and protecting against genome instability.
Collapse
Affiliation(s)
- Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, UK
| |
Collapse
|
11
|
Das R, Sakaue T, Shivashankar GV, Prost J, Hiraiwa T. How enzymatic activity is involved in chromatin organization. eLife 2022; 11:79901. [PMID: 36472500 PMCID: PMC9810329 DOI: 10.7554/elife.79901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Spatial organization of chromatin plays a critical role in genome regulation. Previously, various types of affinity mediators and enzymes have been attributed to regulate spatial organization of chromatin from a thermodynamics perspective. However, at the mechanistic level, enzymes act in their unique ways and perturb the chromatin. Here, we construct a polymer physics model following the mechanistic scheme of Topoisomerase-II, an enzyme resolving topological constraints of chromatin, and investigate how it affects interphase chromatin organization. Our computer simulations demonstrate Topoisomerase-II's ability to phase separate chromatin into eu- and heterochromatic regions with a characteristic wall-like organization of the euchromatic regions. We realized that the ability of the euchromatic regions to cross each other due to enzymatic activity of Topoisomerase-II induces this phase separation. This realization is based on the physical fact that partial absence of self-avoiding interaction can induce phase separation of a system into its self-avoiding and non-self-avoiding parts, which we reveal using a mean-field argument. Furthermore, motivated from recent experimental observations, we extend our model to a bidisperse setting and show that the characteristic features of the enzymatic activity-driven phase separation survive there. The existence of these robust characteristic features, even under the non-localized action of the enzyme, highlights the critical role of enzymatic activity in chromatin organization.
Collapse
Affiliation(s)
- Rakesh Das
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| | - Takahiro Sakaue
- Department of Physics and Mathematics, Aoyama Gakuin UniversityKanagawaJapan
| | - GV Shivashankar
- ETH ZurichZurichSwitzerland,Paul Scherrer InstituteVilligenSwitzerland
| | - Jacques Prost
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore,Laboratoire Physico Chimie Curie, Institut Curie, Paris Science et Lettres Research UniversityParisFrance
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
12
|
Roberts JA, Varma VR, An Y, Varma S, Candia J, Fantoni G, Tiwari V, Anerillas C, Williamson A, Saito A, Loeffler T, Schilcher I, Moaddel R, Khadeer M, Lovett J, Tanaka T, Pletnikova O, Troncoso JC, Bennett DA, Albert MS, Yu K, Niu M, Haroutunian V, Zhang B, Peng J, Croteau DL, Resnick SM, Gorospe M, Bohr VA, Ferrucci L, Thambisetty M. A brain proteomic signature of incipient Alzheimer's disease in young APOE ε4 carriers identifies novel drug targets. SCIENCE ADVANCES 2021; 7:eabi8178. [PMID: 34757788 PMCID: PMC8580310 DOI: 10.1126/sciadv.abi8178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/14/2021] [Indexed: 05/13/2023]
Abstract
Aptamer-based proteomics revealed differentially abundant proteins in Alzheimer’s disease (AD) brains in the Baltimore Longitudinal Study of Aging and Religious Orders Study (mean age, 89 ± 9 years). A subset of these proteins was also differentially abundant in the brains of young APOE ε4 carriers relative to noncarriers (mean age, 39 ± 6 years). Several of these proteins represent targets of approved and experimental drugs for other indications and were validated using orthogonal methods in independent human brain tissue samples as well as in transgenic AD models. Using cell culture–based phenotypic assays, we showed that drugs targeting the cytokine transducer STAT3 and the Src family tyrosine kinases, YES1 and FYN, rescued molecular phenotypes relevant to AD pathogenesis. Our findings may accelerate the development of effective interventions targeting the earliest molecular triggers of AD.
Collapse
Affiliation(s)
- Jackson A. Roberts
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032
| | - Vijay R. Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | - Julián Candia
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Giovanna Fantoni
- Clinical Research Core, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vinod Tiwari
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Andrew Williamson
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Atsushi Saito
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tina Loeffler
- QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | | | - Ruin Moaddel
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammed Khadeer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jacqueline Lovett
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Toshiko Tanaka
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Marilyn S. Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mingming Niu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences and Department of Pharmacological Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Deborah L. Croteau
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A. Bohr
- Section on DNA Repair, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Colonnetta MM, Abrahante JE, Schedl P, Gohl DM, Deshpande G. CLAMP regulates zygotic genome activation in Drosophila embryos. Genetics 2021; 219:iyab107. [PMID: 34849887 PMCID: PMC8633140 DOI: 10.1093/genetics/iyab107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Embryonic patterning is critically dependent on zygotic genome activation (ZGA). In Drosophila melanogaster embryos, the pioneer factor Zelda directs ZGA, possibly in conjunction with other factors. Here, we have explored the novel involvement of Chromatin-Linked Adapter for MSL Proteins (CLAMP) during ZGA. CLAMP binds thousands of sites genome-wide throughout early embryogenesis. Interestingly, CLAMP relocates to target promoter sequences across the genome when ZGA is initiated. Although there is a considerable overlap between CLAMP and Zelda binding sites, the proteins display distinct temporal dynamics. To assess whether CLAMP occupancy affects gene expression, we analyzed transcriptomes of embryos zygotically compromised for either clamp or zelda and found that transcript levels of many zygotically activated genes are similarly affected. Importantly, compromising either clamp or zelda disrupted the expression of critical segmentation and sex determination genes bound by CLAMP (and Zelda). Furthermore, clamp knockdown embryos recapitulate other phenotypes observed in Zelda-depleted embryos, including nuclear division defects, centrosome aberrations, and a disorganized actomyosin network. Based on these data, we propose that CLAMP acts in concert with Zelda to regulate early zygotic transcription.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, Minneapolis, MN 55455, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - Daryl M Gohl
- University of Minnesota Genomics Center, Minneapolis, MN 55455, USA
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
14
|
Herrero-Ruiz A, Martínez-García PM, Terrón-Bautista J, Millán-Zambrano G, Lieberman JA, Jimeno-González S, Cortés-Ledesma F. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing. Cell Rep 2021; 35:108977. [PMID: 33852840 PMCID: PMC8052185 DOI: 10.1016/j.celrep.2021.108977] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.
Collapse
Affiliation(s)
- Andrés Herrero-Ruiz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - José Terrón-Bautista
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | - Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain
| | | | - Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Departamento de Genética, Universidad de Sevilla, Sevilla 41080, Spain.
| | - Felipe Cortés-Ledesma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla 41092, Spain; Topology and DNA Breaks Group, Spanish National Cancer Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
15
|
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA. Diversity and Functions of Type II Topoisomerases. Acta Naturae 2021; 13:59-75. [PMID: 33959387 PMCID: PMC8084294 DOI: 10.32607/actanaturae.11058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
The DNA double helix provides a simple and elegant way to store and copy genetic information. However, the processes requiring the DNA helix strands separation, such as transcription and replication, induce a topological side-effect - supercoiling of the molecule. Topoisomerases comprise a specific group of enzymes that disentangle the topological challenges associated with DNA supercoiling. They relax DNA supercoils and resolve catenanes and knots. Here, we review the catalytic cycles, evolution, diversity, and functional roles of type II topoisomerases in organisms from all domains of life, as well as viruses and other mobile genetic elements.
Collapse
Affiliation(s)
- D. A. Sutormin
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - A. K. Galivondzhyan
- Lomonosov Moscow State University, Moscow, 119991 Russia
- Institute of Molecular Genetics RAS, Moscow, 123182 Russia
| | - A. V. Polkhovskiy
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - S. O. Kamalyan
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| | - K. V. Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
- Centre for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
- Waksman Institute for Microbiology, Piscataway, New Jersey, 08854 USA
| | - S. A. Dubiley
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205 Russia
| |
Collapse
|
16
|
Le TT, Gao X, Park SH, Lee J, Inman JT, Lee JH, Killian JL, Badman RP, Berger JM, Wang MD. Synergistic Coordination of Chromatin Torsional Mechanics and Topoisomerase Activity. Cell 2020; 179:619-631.e15. [PMID: 31626768 PMCID: PMC6899335 DOI: 10.1016/j.cell.2019.09.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/16/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
Abstract
DNA replication in eukaryotes generates DNA supercoiling, which may intertwine (braid) daughter chromatin fibers to form precatenanes, posing topological challenges during chromosome segregation. The mechanisms that limit precatenane formation remain unclear. By making direct torque measurements, we demonstrate that the intrinsic mechanical properties of chromatin play a fundamental role in dictating precatenane formation and regulating chromatin topology. Whereas a single chromatin fiber is torsionally soft, a braided fiber is torsionally stiff, indicating that supercoiling on chromatin substrates is preferentially directed in front of the fork during replication. We further show that topoisomerase II relaxation displays a strong preference for a single chromatin fiber over a braided fiber. These results suggest a synergistic coordination-the mechanical properties of chromatin inherently suppress precatenane formation during replication elongation by driving DNA supercoiling ahead of the fork, where supercoiling is more efficiently removed by topoisomerase II. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Seong Ha Park
- Biophysics Program, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jessica L Killian
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Ryan P Badman
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Heldrich J, Sun X, Vale-Silva LA, Markowitz TE, Hochwagen A. Topoisomerases Modulate the Timing of Meiotic DNA Breakage and Chromosome Morphogenesis in Saccharomyces cerevisiae. Genetics 2020; 215:59-73. [PMID: 32152049 PMCID: PMC7198267 DOI: 10.1534/genetics.120.303060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
During meiotic prophase, concurrent transcription, recombination, and chromosome synapsis place substantial topological strain on chromosomal DNA, but the role of topoisomerases in this context remains poorly defined. Here, we analyzed the roles of topoisomerases I and II (Top1 and Top2) during meiotic prophase in Saccharomyces cerevisiae We show that both topoisomerases accumulate primarily in promoter-containing intergenic regions of actively transcribing genes, including many meiotic double-strand break (DSB) hotspots. Despite the comparable binding patterns, top1 and top2 mutations have different effects on meiotic recombination. TOP1 disruption delays DSB induction and shortens the window of DSB accumulation by an unknown mechanism. By contrast, temperature-sensitive top2-1 mutants exhibit a marked delay in meiotic chromosome remodeling and elevated DSB signals on synapsed chromosomes. The problems in chromosome remodeling were linked to altered Top2 binding patterns rather than a loss of Top2 catalytic activity, and stemmed from a defect in recruiting the chromosome remodeler Pch2/TRIP13 to synapsed chromosomes. No chromosomal defects were observed in the absence of TOP1 Our results imply independent roles for Top1 and Top2 in modulating meiotic chromosome structure and recombination.
Collapse
Affiliation(s)
- Jonna Heldrich
- Department of Biology, New York University, New York 10003
| | - Xiaoji Sun
- Department of Biology, New York University, New York 10003
| | | | | | | |
Collapse
|
18
|
The Functional Consequences of Eukaryotic Topoisomerase 1 Interaction with G-Quadruplex DNA. Genes (Basel) 2020; 11:genes11020193. [PMID: 32059547 PMCID: PMC7073998 DOI: 10.3390/genes11020193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/22/2022] Open
Abstract
Topoisomerase I in eukaryotic cells is an important regulator of DNA topology. Its catalytic function is to remove positive or negative superhelical tension by binding to duplex DNA, creating a reversible single-strand break, and finally religating the broken strand. Proper maintenance of DNA topological homeostasis, in turn, is critically important in the regulation of replication, transcription, DNA repair, and other processes of DNA metabolism. One of the cellular processes regulated by the DNA topology and thus by Topoisomerase I is the formation of non-canonical DNA structures. Non-canonical or non-B DNA structures, including the four-stranded G-quadruplex or G4 DNA, are potentially pathological in that they interfere with replication or transcription, forming hotspots of genome instability. In this review, we first describe the role of Topoisomerase I in reducing the formation of non-canonical nucleic acid structures in the genome. We further discuss the interesting recent discovery that Top1 and Top1 mutants bind to G4 DNA structures in vivo and in vitro and speculate on the possible consequences of these interactions.
Collapse
|
19
|
Valdés A, Coronel L, Martínez-García B, Segura J, Dyson S, Díaz-Ingelmo O, Micheletti C, Roca J. Transcriptional supercoiling boosts topoisomerase II-mediated knotting of intracellular DNA. Nucleic Acids Res 2020; 47:6946-6955. [PMID: 31165864 PMCID: PMC6649788 DOI: 10.1093/nar/gkz491] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/04/2022] Open
Abstract
Recent studies have revealed that the DNA cross-inversion mechanism of topoisomerase II (topo II) not only removes DNA supercoils and DNA replication intertwines, but also produces small amounts of DNA knots within the clusters of nucleosomes that conform to eukaryotic chromatin. Here, we examine how transcriptional supercoiling of intracellular DNA affects the occurrence of these knots. We show that although (−) supercoiling does not change the basal DNA knotting probability, (+) supercoiling of DNA generated in front of the transcribing complexes increases DNA knot formation over 25-fold. The increase of topo II-mediated DNA knotting occurs both upon accumulation of (+) supercoiling in topoisomerase-deficient cells and during normal transcriptional supercoiling of DNA in TOP1 TOP2 cells. We also show that the high knotting probability (Pkn ≥ 0.5) of (+) supercoiled DNA reflects a 5-fold volume compaction of the nucleosomal fibers in vivo. Our findings indicate that topo II-mediated DNA knotting could be inherent to transcriptional supercoiling of DNA and other chromatin condensation processes and establish, therefore, a new crucial role of topoisomerase II in resetting the knotting–unknotting homeostasis of DNA during chromatin dynamics.
Collapse
Affiliation(s)
- Antonio Valdés
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Lucia Coronel
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Belén Martínez-García
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Joana Segura
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Sílvia Dyson
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Ofelia Díaz-Ingelmo
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| | - Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Joaquim Roca
- Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona 08028, Spain
| |
Collapse
|
20
|
Achar YJ, Adhil M, Choudhary R, Gilbert N, Foiani M. Negative supercoil at gene boundaries modulates gene topology. Nature 2020; 577:701-705. [PMID: 31969709 DOI: 10.1038/s41586-020-1934-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/25/2019] [Indexed: 11/08/2022]
Abstract
Transcription challenges the integrity of replicating chromosomes by generating topological stress and conflicts with forks1,2. The DNA topoisomerases Top1 and Top2 and the HMGB family protein Hmo1 assist DNA replication and transcription3-6. Here we describe the topological architecture of genes in Saccharomyces cerevisiae during the G1 and S phases of the cell cycle. We found under-wound DNA at gene boundaries and over-wound DNA within coding regions. This arrangement does not depend on Pol II or S phase. Top2 and Hmo1 preserve negative supercoil at gene boundaries, while Top1 acts at coding regions. Transcription generates RNA-DNA hybrids within coding regions, independently of fork orientation. During S phase, Hmo1 protects under-wound DNA from Top2, while Top2 confines Pol II and Top1 at coding units, counteracting transcription leakage and aberrant hybrids at gene boundaries. Negative supercoil at gene boundaries prevents supercoil diffusion and nucleosome repositioning at coding regions. DNA looping occurs at Top2 clusters. We propose that Hmo1 locks gene boundaries in a cruciform conformation and, with Top2, modulates the architecture of genes that retain the memory of the topological arrangements even when transcription is repressed.
Collapse
MESH Headings
- Chromatin Assembly and Disassembly
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/genetics
- DNA Topoisomerases, Type II/metabolism
- DNA, Cruciform/chemistry
- DNA, Cruciform/genetics
- DNA, Cruciform/metabolism
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- G1 Phase
- Gene Expression Regulation, Fungal
- Genes, Fungal
- High Mobility Group Proteins/metabolism
- Mutation
- Nucleic Acid Hybridization
- Nucleosomes/chemistry
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Open Reading Frames/genetics
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- S Phase
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
| | - Mohamood Adhil
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Ramveer Choudhary
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Marco Foiani
- IFOM (Fondazione Istituto FIRC di Oncologia Molecolare), Milan, Italy.
- Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
21
|
Apostolou Z, Chatzinikolaou G, Stratigi K, Garinis GA. Nucleotide Excision Repair and Transcription-Associated Genome Instability. Bioessays 2019; 41:e1800201. [PMID: 30919497 DOI: 10.1002/bies.201800201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Transcription is a potential threat to genome integrity, and transcription-associated DNA damage must be repaired for proper messenger RNA (mRNA) synthesis and for cells to transmit their genome intact into progeny. For a wide range of structurally diverse DNA lesions, cells employ the highly conserved nucleotide excision repair (NER) pathway to restore their genome back to its native form. Recent evidence suggests that NER factors function, in addition to the canonical DNA repair mechanism, in processes that facilitate mRNA synthesis or shape the 3D chromatin architecture. Here, these findings are critically discussed and a working model that explains the puzzling clinical heterogeneity of NER syndromes highlighting the relevance of physiological, transcription-associated DNA damage to mammalian development and disease is proposed.
Collapse
Affiliation(s)
- Zivkos Apostolou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Heraklion 70013, Crete, Greece.,Department of Biology, University of Crete, Vassilika Vouton, Heraklion GR71409, Crete, Greece
| |
Collapse
|
22
|
Roles of Topoisomerases in Heterochromatin, Aging, and Diseases. Genes (Basel) 2019; 10:genes10110884. [PMID: 31683993 PMCID: PMC6896002 DOI: 10.3390/genes10110884] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/11/2022] Open
Abstract
Heterochromatin is a transcriptionally repressive chromatin architecture that has a low abundance of genes but an enrichment of transposons. Defects in heterochromatin can cause the de-repression of genes and transposons, leading to deleterious physiological changes such as aging, cancer, and neurological disorders. While the roles of topoisomerases in many DNA-based processes have been investigated and reviewed, their roles in heterochromatin formation and function are only beginning to be understood. In this review, we discuss recent findings on how topoisomerases can promote heterochromatin organization and impact the transcription of genes and transposons. We will focus on two topoisomerases: Top2α, which catenates and decatenates double-stranded DNA, and Top3β, which can change the topology of not only DNA, but also RNA. Both enzymes are required for normal heterochromatin formation and function, as the inactivation of either protein by genetic mutations or chemical inhibitors can result in defective heterochromatin formation and the de-silencing of transposons. These defects may contribute to the shortened lifespan and neurological disorders observed in individuals carrying mutations of Top3β. We propose that topological stress may be generated in both DNA and RNA during heterochromatin formation and function, which depend on multiple topoisomerases to resolve.
Collapse
|
23
|
Gittens WH, Johnson DJ, Allison RM, Cooper TJ, Thomas H, Neale MJ. A nucleotide resolution map of Top2-linked DNA breaks in the yeast and human genome. Nat Commun 2019; 10:4846. [PMID: 31649282 PMCID: PMC6813358 DOI: 10.1038/s41467-019-12802-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
DNA topoisomerases are required to resolve DNA topological stress. Despite this essential role, abortive topoisomerase activity generates aberrant protein-linked DNA breaks, jeopardising genome stability. Here, to understand the genomic distribution and mechanisms underpinning topoisomerase-induced DNA breaks, we map Top2 DNA cleavage with strand-specific nucleotide resolution across the S. cerevisiae and human genomes-and use the meiotic Spo11 protein to validate the broad applicability of this method to explore the role of diverse topoisomerase family members. Our data characterises Mre11-dependent repair in yeast and defines two strikingly different fractions of Top2 activity in humans: tightly localised CTCF-proximal, and broadly distributed transcription-proximal, the latter correlated with gene length and expression. Moreover, single nucleotide accuracy reveals the influence primary DNA sequence has upon Top2 cleavage-distinguishing sites likely to form canonical DNA double-strand breaks (DSBs) from those predisposed to form strand-biased DNA single-strand breaks (SSBs) induced by etoposide (VP16) in vivo.
Collapse
Affiliation(s)
- William H Gittens
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| | - Dominic J Johnson
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Rachal M Allison
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Tim J Cooper
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Holly Thomas
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, University of Sussex, Brighton, BN1 9RQ, UK.
| |
Collapse
|
24
|
Atkin ND, Raimer HM, Wang YH. Broken by the Cut: A Journey into the Role of Topoisomerase II in DNA Fragility. Genes (Basel) 2019; 10:E791. [PMID: 31614754 PMCID: PMC6826763 DOI: 10.3390/genes10100791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
DNA topoisomerase II (TOP2) plays a critical role in many processes such as replication and transcription, where it resolves DNA structures and relieves torsional stress. Recent evidence demonstrated the association of TOP2 with topologically associated domains (TAD) boundaries and CCCTC-binding factor (CTCF) binding sites. At these sites, TOP2 promotes interactions between enhancers and gene promoters, and relieves torsional stress that accumulates at these physical barriers. Interestingly, in executing its enzymatic function, TOP2 contributes to DNA fragility through re-ligation failure, which results in persistent DNA breaks when unrepaired or illegitimately repaired. Here, we discuss the biological processes for which TOP2 is required and the steps at which it can introduce DNA breaks. We describe the repair processes that follow removal of TOP2 adducts and the resultant broken DNA ends, and present how these processes can contribute to disease-associated mutations. Furthermore, we examine the involvement of TOP2-induced breaks in the formation of oncogenic translocations of leukemia and papillary thyroid cancer, as well as the role of TOP2 and proteins which repair TOP2 adducts in other diseases. The participation of TOP2 in generating persistent DNA breaks and leading to diseases such as cancer, could have an impact on disease treatment and prevention.
Collapse
Affiliation(s)
- Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Heather M Raimer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
25
|
Talbert PB, Meers MP, Henikoff S. Old cogs, new tricks: the evolution of gene expression in a chromatin context. Nat Rev Genet 2019; 20:283-297. [PMID: 30886348 DOI: 10.1038/s41576-019-0105-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sophisticated gene-regulatory mechanisms probably evolved in prokaryotes billions of years before the emergence of modern eukaryotes, which inherited the same basic enzymatic machineries. However, the epigenomic landscapes of eukaryotes are dominated by nucleosomes, which have acquired roles in genome packaging, mitotic condensation and silencing parasitic genomic elements. Although the molecular mechanisms by which nucleosomes are displaced and modified have been described, just how transcription factors, histone variants and modifications and chromatin regulators act on nucleosomes to regulate transcription is the subject of considerable ongoing study. We explore the extent to which these transcriptional regulatory components function in the context of the evolutionarily ancient role of chromatin as a barrier to processes acting on DNA and how chromatin proteins have diversified to carry out evolutionarily recent functions that accompanied the emergence of differentiation and development in multicellular eukaryotes.
Collapse
Affiliation(s)
- Paul B Talbert
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michael P Meers
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Steven Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| |
Collapse
|
26
|
Hegedüs É, Kókai E, Nánási P, Imre L, Halász L, Jossé R, Antunovics Z, Webb MR, El Hage A, Pommier Y, Székvölgyi L, Dombrádi V, Szabó G. Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae. Nucleic Acids Res 2019; 46:10649-10668. [PMID: 30445637 PMCID: PMC6237785 DOI: 10.1093/nar/gky743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
Molecular combing and gel electrophoretic studies revealed endogenous nicks with free 3'OH ends at ∼100 kb intervals in the genomic DNA (gDNA) of unperturbed and G1-synchronized Saccharomyces cerevisiae cells. Analysis of the distribution of endogenous nicks by Nick ChIP-chip indicated that these breaks accumulated at active RNA polymerase II (RNAP II) promoters, reminiscent of the promoter-proximal transient DNA breaks of higher eukaryotes. Similar periodicity of endogenous nicks was found within the ribosomal rDNA cluster, involving every ∼10th of the tandemly repeated 9.1 kb units of identical sequence. Nicks were mapped by Southern blotting to a few narrow regions within the affected units. Three of them were overlapping the RNAP II promoters, while the ARS-containing IGS2 region was spared of nicks. By using a highly sensitive reverse-Southwestern blot method to map free DNA ends with 3'OH, nicks were shown to be distinct from other known rDNA breaks and linked to the regulation of rDNA silencing. Nicks in rDNA and the rest of the genome were typically found at the ends of combed DNA molecules, occasionally together with R-loops, comprising a major pool of vulnerable sites that are connected with transcriptional regulation.
Collapse
Affiliation(s)
- Éva Hegedüs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Nánási
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Imre
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Halász
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Rozenn Jossé
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (CCR-NCI), NIH, Bethesda, MD, USA
| | - Zsuzsa Antunovics
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | | | - Aziz El Hage
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute (CCR-NCI), NIH, Bethesda, MD, USA
| | - Lóránt Székvölgyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Dombrádi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
27
|
Korthout T, Poramba-Liyanage DW, van Kruijsbergen I, Verzijlbergen KF, van Gemert FPA, van Welsem T, van Leeuwen F. Decoding the chromatin proteome of a single genomic locus by DNA sequencing. PLoS Biol 2018; 16:e2005542. [PMID: 30005073 PMCID: PMC6059479 DOI: 10.1371/journal.pbio.2005542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/25/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription, replication, and repair involve interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location and under changing cellular conditions is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-chromatin immunoprecipitation-Barcode-Sequencing (TAG-ChIP-Barcode-Seq) technology in budding yeast. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry (MS) but instead takes advantage of DNA sequencing. Analysis of the proteome of a transcribed locus proximal to an origin of replication revealed more than 400 interacting proteins. Moreover, replication stress induced changes in local chromatin proteome composition prior to local origin firing, affecting replication proteins as well as transcription proteins. Finally, we show that native genomic loci can be decoded by efficient construction of barcode libraries assisted by clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). Thus, Epi-Decoder is an effective strategy to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus by DNA sequencing.
Collapse
Affiliation(s)
- Tessy Korthout
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Ila van Kruijsbergen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
28
|
Zhang BL, Guo TW, Gao LL, Ji GQ, Gu XH, Shao YQ, Yao RQ, Gao DS. Egr-1 and RNA POL II facilitate glioma cell GDNF transcription induced by histone hyperacetylation in promoter II. Oncotarget 2018; 8:45105-45116. [PMID: 28187447 PMCID: PMC5542170 DOI: 10.18632/oncotarget.15126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/25/2017] [Indexed: 11/25/2022] Open
Abstract
The specific mechanisms for epigenetic regulation of gene transcription remain to be elucidated. We previously demonstrated that hyperacetylation of histone H3K9 in promoter II of glioma cells promotes high transcription of the glial cell line-derived neurotrophic factor (GDNF) gene. This hyperacetylation significantly enhanced Egr-1 binding and increased the recruitment of RNA polymerase II (RNA POL II) to that region (P < 0.05). Egr-1 expression was abnormally increased in C6 glioma cells. Further overexpression of Egr-1 significantly increased Egr-1 binding to GDNF promoter II, while increasing RNA POL II recruitment, thus increasing GDNF transcription (P < 0.01). When the acetylation of H3K9 in the Egr-1 binding site was significantly reduced by the histone acetyltransferase (HAT) inhibitor curcumin, binding of Egr-1 to GDNF promoter II, RNA POL II recruitment, and GDNF mRNA expression were significantly downregulated (P < 0.01). Moreover, curcumin attenuated the effects of Egr-1 overexpression on Egr-1 binding, RNA POL II recruitment, and GDNF transcription (P < 0.01). Egr-1 and RNA POL II co-existed in the nucleus of C6 glioma cells, with overlapping regions, but they were not bound to each other. In conclusion, highly expressed Egr-1 may be involved in the recruitment of RNA POL II in GDNF promoter II in a non-binding manner, and thereby involved in regulating GDNF transcription in high-grade glioma cells. This regulation is dependent on histone hyperacetylation in GDNF promoter II.
Collapse
Affiliation(s)
- Bao-Le Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting-Wen Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Le-Le Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guang-Quan Ji
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Xiao-He Gu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yu-Qi Shao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rui-Qin Yao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dian-Shuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
29
|
Structure and Chromosomal Organization of Yeast Genes Regulated by Topoisomerase II. Int J Mol Sci 2018; 19:ijms19010134. [PMID: 29301361 PMCID: PMC5796083 DOI: 10.3390/ijms19010134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/24/2017] [Accepted: 12/28/2017] [Indexed: 01/06/2023] Open
Abstract
Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that regulate the topology of DNA during normal genome transactions, such as DNA transcription and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2 ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are regulated by topo II depending on their promoter architecture. These short term responses also uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA topology management. Finally, we examine the effects of deactivated topo II on the elongation of RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer therapies interfere with topo II activity.
Collapse
|
30
|
Guha M, Saare M, Maslovskaja J, Kisand K, Liiv I, Haljasorg U, Tasa T, Metspalu A, Milani L, Peterson P. DNA breaks and chromatin structural changes enhance the transcription of autoimmune regulator target genes. J Biol Chem 2017; 292:6542-6554. [PMID: 28242760 PMCID: PMC5399106 DOI: 10.1074/jbc.m116.764704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/30/2017] [Indexed: 12/22/2022] Open
Abstract
The autoimmune regulator (AIRE) protein is the key factor in thymic negative selection of autoreactive T cells by promoting the ectopic expression of tissue-specific genes in the thymic medullary epithelium. Mutations in AIRE cause a monogenic autoimmune disease called autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. AIRE has been shown to promote DNA breaks via its interaction with topoisomerase 2 (TOP2). In this study, we investigated topoisomerase-induced DNA breaks and chromatin structural alterations in conjunction with AIRE-dependent gene expression. Using RNA sequencing, we found that inhibition of TOP2 religation activity by etoposide in AIRE-expressing cells had a synergistic effect on genes with low expression levels. AIRE-mediated transcription was not only enhanced by TOP2 inhibition but also by the TOP1 inhibitor camptothecin. The transcriptional activation was associated with structural rearrangements in chromatin, notably the accumulation of γH2AX and the exchange of histone H1 with HMGB1 at AIRE target gene promoters. In addition, we found the transcriptional up-regulation to co-occur with the chromatin structural changes within the genomic cluster of carcinoembryonic antigen-like cellular adhesion molecule genes. Overall, our results suggest that the presence of AIRE can trigger molecular events leading to an altered chromatin landscape and the enhanced transcription of low-expressed genes.
Collapse
Affiliation(s)
- Mithu Guha
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine
| | - Mario Saare
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine
| | - Julia Maslovskaja
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine
| | - Kai Kisand
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine
| | - Ingrid Liiv
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine
| | - Uku Haljasorg
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine
| | | | - Andres Metspalu
- Estonian Genome Center, and
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 50411, Estonia
| | | | - Pärt Peterson
- From the Molecular Pathology, Institute of Biomedical and Translational Medicine,
| |
Collapse
|
31
|
Yu X, Davenport JW, Urtishak KA, Carillo ML, Gosai SJ, Kolaris CP, Byl JAW, Rappaport EF, Osheroff N, Gregory BD, Felix CA. Genome-wide TOP2A DNA cleavage is biased toward translocated and highly transcribed loci. Genome Res 2017; 27:1238-1249. [PMID: 28385713 PMCID: PMC5495075 DOI: 10.1101/gr.211615.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 04/05/2017] [Indexed: 01/22/2023]
Abstract
Type II topoisomerases orchestrate proper DNA topology, and they are the targets of anti-cancer drugs that cause treatment-related leukemias with balanced translocations. Here, we develop a high-throughput sequencing technology to define TOP2 cleavage sites at single-base precision, and use the technology to characterize TOP2A cleavage genome-wide in the human K562 leukemia cell line. We find that TOP2A cleavage has functionally conserved local sequence preferences, occurs in cleavage cluster regions (CCRs), and is enriched in introns and lincRNA loci. TOP2A CCRs are biased toward the distal regions of gene bodies, and TOP2 poisons cause a proximal shift in their distribution. We find high TOP2A cleavage levels in genes involved in translocations in TOP2 poison–related leukemia. In addition, we find that a large proportion of genes involved in oncogenic translocations overall contain TOP2A CCRs. The TOP2A cleavage of coding and lincRNA genes is independently associated with both length and transcript abundance. Comparisons to ENCODE data reveal distinct TOP2A CCR clusters that overlap with marks of transcription, open chromatin, and enhancers. Our findings implicate TOP2A cleavage as a broad DNA damage mechanism in oncogenic translocations as well as a functional role of TOP2A cleavage in regulating transcription elongation and gene activation.
Collapse
Affiliation(s)
- Xiang Yu
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James W Davenport
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Karen A Urtishak
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Marie L Carillo
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sager J Gosai
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christos P Kolaris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Jo Ann W Byl
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Eric F Rappaport
- NAPCore, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Neil Osheroff
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.,Department of Medicine (Hematology/Oncology), Vanderbilt University, Nashville, Tennessee 37232, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, USA
| | - Brian D Gregory
- Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Carolyn A Felix
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
32
|
Form and function of topologically associating genomic domains in budding yeast. Proc Natl Acad Sci U S A 2017; 114:E3061-E3070. [PMID: 28348222 DOI: 10.1073/pnas.1612256114] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The genome of metazoan cells is organized into topologically associating domains (TADs) that have similar histone modifications, transcription level, and DNA replication timing. Although similar structures appear to be conserved in fission yeast, computational modeling and analysis of high-throughput chromosome conformation capture (Hi-C) data have been used to argue that the small, highly constrained budding yeast chromosomes could not have these structures. In contrast, herein we analyze Hi-C data for budding yeast and identify 200-kb scale TADs, whose boundaries are enriched for transcriptional activity. Furthermore, these boundaries separate regions of similarly timed replication origins connecting the long-known effect of genomic context on replication timing to genome architecture. To investigate the molecular basis of TAD formation, we performed Hi-C experiments on cells depleted for the Forkhead transcription factors, Fkh1 and Fkh2, previously associated with replication timing. Forkhead factors do not regulate TAD formation, but do promote longer-range genomic interactions and control interactions between origins near the centromere. Thus, our work defines spatial organization within the budding yeast nucleus, demonstrates the conserved role of genome architecture in regulating DNA replication, and identifies a molecular mechanism specifically regulating interactions between pericentric origins.
Collapse
|
33
|
Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17:703-721. [DOI: 10.1038/nrm.2016.111] [Citation(s) in RCA: 540] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Uusküla-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, Reimand J, Hadjur S, Gingras AC, Wilson MD. Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 2016; 17:182. [PMID: 27582050 PMCID: PMC5006368 DOI: 10.1186/s13059-016-1043-8] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 08/10/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Type II DNA topoisomerases (TOP2) regulate DNA topology by generating transient double stranded breaks during replication and transcription. Topoisomerase II beta (TOP2B) facilitates rapid gene expression and functions at the later stages of development and differentiation. To gain new insight into the genome biology of TOP2B, we used proteomics (BioID), chromatin immunoprecipitation, and high-throughput chromosome conformation capture (Hi-C) to identify novel proximal TOP2B protein interactions and characterize the genomic landscape of TOP2B binding at base pair resolution. RESULTS Our human TOP2B proximal protein interaction network included members of the cohesin complex and nucleolar proteins associated with rDNA biology. TOP2B associates with DNase I hypersensitivity sites, allele-specific transcription factor (TF) binding, and evolutionarily conserved TF binding sites on the mouse genome. Approximately half of all CTCF/cohesion-bound regions coincided with TOP2B binding. Base pair resolution ChIP-exo mapping of TOP2B, CTCF, and cohesin sites revealed a striking structural ordering of these proteins along the genome relative to the CTCF motif. These ordered TOP2B-CTCF-cohesin sites flank the boundaries of topologically associating domains (TADs) with TOP2B positioned externally and cohesin internally to the domain loop. CONCLUSIONS TOP2B is positioned to solve topological problems at diverse cis-regulatory elements and its occupancy is a highly ordered and prevalent feature of CTCF/cohesin binding sites that flank TADs.
Collapse
Affiliation(s)
- Liis Uusküla-Reimand
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Huayun Hou
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | | | - Matteo Vietri Rudan
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Minggao Liang
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Present address: International Laboratory for Research in Human Genomics, Universidad Nacional Autónoma de México, Juriquilla, Querétaro Mexico
| | - Hisham Mohammed
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: The Babraham Institute, Cambridge, UK
| | - Dominic Schmidt
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: Syncona Partners LLP, London, UK
| | - Petra Schwalie
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
- Present address: Laboratory of Systems Biology and Genetics, Lausanne, Switzerland
| | - Edwin J. Young
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
| | - Jüri Reimand
- Ontario Institute for Cancer Research, Toronto, ON Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Suzana Hadjur
- Research Department of Cancer Biology, Cancer Institute, University College London, London, UK
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Michael D. Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
35
|
Hodges C, Kirkland JG, Crabtree GR. The Many Roles of BAF (mSWI/SNF) and PBAF Complexes in Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026930. [PMID: 27413115 DOI: 10.1101/cshperspect.a026930] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During the last decade, a host of epigenetic mechanisms were found to contribute to cancer and other human diseases. Several genomic studies have revealed that ∼20% of malignancies have alterations of the subunits of polymorphic BRG-/BRM-associated factor (BAF) and Polybromo-associated BAF (PBAF) complexes, making them among the most frequently mutated complexes in cancer. Recurrent mutations arise in genes encoding several BAF/PBAF subunits, including ARID1A, ARID2, PBRM1, SMARCA4, and SMARCB1 These subunits share some degree of conservation with subunits from related adenosine triphosphate (ATP)-dependent chromatin remodeling complexes in model organisms, in which a large body of work provides insight into their roles in cancer. Here, we review the roles of BAF- and PBAF-like complexes in these organisms, and relate these findings to recent discoveries in cancer epigenomics. We review several roles of BAF and PBAF complexes in cancer, including transcriptional regulation, DNA repair, and regulation of chromatin architecture and topology. More recent results highlight the need for new techniques to study these complexes.
Collapse
Affiliation(s)
- Courtney Hodges
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Jacob G Kirkland
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| | - Gerald R Crabtree
- Departments of Pathology, Developmental Biology, and Genetics, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
36
|
Affiliation(s)
- Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, Sevilla 41092, Spain; ,
| |
Collapse
|
37
|
Ribeyre C, Zellweger R, Chauvin M, Bec N, Larroque C, Lopes M, Constantinou A. Nascent DNA Proteomics Reveals a Chromatin Remodeler Required for Topoisomerase I Loading at Replication Forks. Cell Rep 2016; 15:300-9. [PMID: 27050524 DOI: 10.1016/j.celrep.2016.03.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 02/18/2016] [Accepted: 03/06/2016] [Indexed: 11/28/2022] Open
Abstract
During transcription and DNA replication, the DNA template is overwound ahead of RNA and DNA polymerases and relaxed by DNA topoisomerases. Inhibitors of topoisomerases are potent anti-cancer agents. Camptothecin traps topoisomerase I on DNA and exerts preferential cytotoxicity toward cancer cells by way of its interference with the progression of replication forks. Starting with an unbiased proteomic analysis, we find that the chromatin remodeling complex BAZ1B-SMARCA5 accumulates near replication forks in camptothecin-exposed cells. We report that BAZ1B associates with topoisomerase I and facilitates its access to replication forks. Single-molecule analyses of replication structures show that BAZ1B contributes to replication interference by camptothecin. A lack of BAZ1B confers increased cellular tolerance of camptothecin. These findings reveal BAZ1B as a key facilitator of topoisomerase I function during DNA replication that affects the response of cancer cells to topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Cyril Ribeyre
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS) UPR 1142, University of Montpellier, 34396 Montpellier, France.
| | - Ralph Zellweger
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Maeva Chauvin
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS) UPR 1142, University of Montpellier, 34396 Montpellier, France
| | - Nicole Bec
- Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, University of Montpellier, 34298 Montpellier, France
| | - Christian Larroque
- Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, University of Montpellier, 34298 Montpellier, France
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Angelos Constantinou
- Institute of Human Genetics, Centre National de la Recherche Scientifique (CNRS) UPR 1142, University of Montpellier, 34396 Montpellier, France.
| |
Collapse
|
38
|
The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 2016; 36:85-96. [PMID: 26827284 DOI: 10.1016/j.sbi.2016.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
All cells must copy and express genes in accord with internal and external cues. The proper timing and response of such events relies on the active control of higher-order genomic organization. Cells use ATP-dependent molecular machines to alter the local and global topology of DNA so as to promote and counteract the persistent effects of transcription and replication. X-ray crystallography and electron microscopy, coupled with biochemical and single molecule methods are continuing to provide a wealth of mechanistic information on how DNA remodeling factors are employed to dynamically shape and organize the genome.
Collapse
|
39
|
Bunch H, Lawney BP, Lin YF, Asaithamby A, Murshid A, Wang YE, Chen BPC, Calderwood SK. Transcriptional elongation requires DNA break-induced signalling. Nat Commun 2015; 6:10191. [PMID: 26671524 PMCID: PMC4703865 DOI: 10.1038/ncomms10191] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/13/2015] [Indexed: 01/20/2023] Open
Abstract
We have previously shown that RNA polymerase II (Pol II) pause release and transcriptional elongation involve phosphorylation of the factor TRIM28 by the DNA damage response (DDR) kinases ATM and DNA-PK. Here we report a significant role for DNA breaks and DDR signalling in the mechanisms of transcriptional elongation in stimulus-inducible genes in humans. Our data show the enrichment of TRIM28 and γH2AX on serum-induced genes and the important function of DNA-PK for Pol II pause release and transcriptional activation-coupled DDR signalling on these genes. γH2AX accumulation decreases when P-TEFb is inhibited, confirming that DDR signalling results from transcriptional elongation. In addition, transcriptional elongation-coupled DDR signalling involves topoisomerase II because inhibiting this enzyme interferes with Pol II pause release and γH2AX accumulation. Our findings propose that DDR signalling is required for effective Pol II pause release and transcriptional elongation through a novel mechanism involving TRIM28, DNA-PK and topoisomerase II. RNA polymerase II (Pol II) pause release and transcriptional elongation involve phosphorylation of TRIM28 by the DNA damage response (DDR) kinases. Here, Bunch et al. show that DDR signalling is coupled with and required for transcriptional elongation in stimulus-inducible genes and involves topoisomerase II.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Brian P Lawney
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02130, USA
| | - Yu-Fen Lin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Aroumougame Asaithamby
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yaoyu E Wang
- Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02130, USA
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
40
|
DNA Topoisomerases Are Required for Preinitiation Complex Assembly during GAL Gene Activation. PLoS One 2015; 10:e0132739. [PMID: 26173127 PMCID: PMC4501763 DOI: 10.1371/journal.pone.0132739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
To investigate the importance of topoisomerases for transcription of the galactose induced genes, we have studied the expression of GAL1, GAL2, GAL7 and GAL10 in Saccharomyces cerevisiae cells deficient for topoisomerases I and II. We find that topoisomerases are required for transcriptional activation of the GAL genes, but are dispensable for ongoing transcription, eliminating a role of the enzymes in transcriptional elongation. Furthermore, we demonstrate that promoter chromatin remodeling of the GAL genes is unaffected in the topoisomerase deficient strain. However, the cells fail to successfully recruit RNA polymerase II due to an inability of the TATA-binding protein (TBP) to bind to the TATA box in these promoters. We therefore argue that topoisomerases are required for accurate assembly of the preinitiation complex at the promoters of the GAL genes.
Collapse
|
41
|
Travers A, Muskhelishvili G. DNA structure and function. FEBS J 2015; 282:2279-95. [PMID: 25903461 DOI: 10.1111/febs.13307] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/26/2015] [Accepted: 04/21/2015] [Indexed: 12/11/2022]
Abstract
The proposal of a double-helical structure for DNA over 60 years ago provided an eminently satisfying explanation for the heritability of genetic information. But why is DNA, and not RNA, now the dominant biological information store? We argue that, in addition to its coding function, the ability of DNA, unlike RNA, to adopt a B-DNA structure confers advantages both for information accessibility and for packaging. The information encoded by DNA is both digital - the precise base specifying, for example, amino acid sequences - and analogue. The latter determines the sequence-dependent physicochemical properties of DNA, for example, its stiffness and susceptibility to strand separation. Most importantly, DNA chirality enables the formation of supercoiling under torsional stress. We review recent evidence suggesting that DNA supercoiling, particularly that generated by DNA translocases, is a major driver of gene regulation and patterns of chromosomal gene organization, and in its guise as a promoter of DNA packaging enables DNA to act as an energy store to facilitate the passage of translocating enzymes such as RNA polymerase.
Collapse
Affiliation(s)
- Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Department of Biochemistry, University of Cambridge, UK
| | | |
Collapse
|
42
|
Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. SCIENCE ADVANCES 2015; 1:e1500447. [PMID: 26601204 PMCID: PMC4640607 DOI: 10.1126/sciadv.1500447] [Citation(s) in RCA: 616] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 04/26/2015] [Indexed: 05/25/2023]
Abstract
Over the past 4 years, nearly 100 exome sequencing studies have revealed the high frequency of mutations in the genes encoding the subunits of ATP-dependent chromatin remodelers in human cancer. Most of these mutations are within the genes encoding subunits of the BAF (Brg/Brahma-associated factors) or mSWI/SNF complex, which is one of two dozen predicted ATP-dependent chromatin remodeling complexes in mammals. Considering BAF complexes as a single entity, the 15 subunits encoded by 29 genes are mutated in >20% of human cancer, across a broad range of tumor types. These observations demonstrate that there is little redundancy in the oncogenic function of BAF complexes with the other remodeling complexes, underscoring their unique roles. Several important conclusions emerge from these genomic data: specific subunits appear to be mutated in specific cancers, highlighting tissue-specific protective roles; mutations can function as tumor suppressors or oncogenes; mutations can be homozygous or, more commonly, heterozygous, implying their dosage-sensitive roles in an unknown yet fundamental process used to suppress the genesis of cancer. These new human genetic findings paired with biochemical studies are challenging old ideas on how chromatin remodeling complexes function, generating new hypotheses with respect to their normal and oncogenic mechanisms and highlighting potential avenues for therapeutic intervention in human cancer.
Collapse
Affiliation(s)
- Cigall Kadoch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gerald R. Crabtree
- Howard Hughes Medical Institute, Departments of Pathology and Developmental Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Pang B, de Jong J, Qiao X, Wessels LFA, Neefjes J. Chemical profiling of the genome with anti-cancer drugs defines target specificities. Nat Chem Biol 2015; 11:472-80. [PMID: 25961671 DOI: 10.1038/nchembio.1811] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/08/2015] [Indexed: 01/05/2023]
Abstract
Many anticancer drugs induce DNA breaks to eliminate tumor cells. The anthracycline topoisomerase II inhibitors additionally cause histone eviction. Here, we performed genome-wide high-resolution mapping of chemotherapeutic effects of various topoisomerase I and II (TopoI and II) inhibitors and integrated this mapping with established maps of genomic or epigenomic features to show their activities in different genomic regions. The TopoI inhibitor topotecan and the TopoII inhibitor etoposide are similar in inducing DNA damage at transcriptionally active genomic regions. The anthracycline daunorubicin induces DNA breaks and evicts histones from active chromatin, thus quenching local DNA damage responses. Another anthracycline, aclarubicin, has a different genomic specificity and evicts histones from H3K27me3-marked heterochromatin, with consequences for diffuse large B-cell lymphoma cells with elevated levels of H3K27me3. Modifying anthracycline structures may yield compounds with selectivity for different genomic regions and activity for different tumor types.
Collapse
Affiliation(s)
- Baoxu Pang
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johann de Jong
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Xiaohang Qiao
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jacques Neefjes
- 1] Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. [2] Institute for Chemical Immunology, the Netherlands
| |
Collapse
|
44
|
Yang F, Kemp CJ, Henikoff S. Anthracyclines induce double-strand DNA breaks at active gene promoters. Mutat Res 2015; 773:9-15. [PMID: 25705119 DOI: 10.1016/j.mrfmmm.2015.01.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Doxorubicin is a widely used chemotherapeutic drug that intercalates between DNA base-pairs and poisons Topoisomerase II, although the mechanistic basis for cell killing remains speculative. Doxorubicin and related anthracycline compounds have been shown to increase nucleosome turnover and/or eviction around promoters, which suggests that the resulting enhanced exposure of DNA might underlie cell killing. Previously, we showed that low doses of anthracyclines increase nucleosome turnover around active gene promoters, which suggests that loss of nucleosomes might contribute to cancer cell killing. Here we apply a genome-wide method to precisely map DNA double-strand breaks (DSBs) in cancer cells. We find that spontaneous DSBs occur preferentially around promoters of active genes, and that both anthracyclines and etoposide, a Topoisomerase II poison, increase DSBs around promoters, although CpG islands are conspicuously protected from DSBs. We propose that torsion-based enhancement of nucleosome turnover by anthracyclines exposes promoter DNA, ultimately causing DSBs around promoters.
Collapse
|
45
|
Baranello L, Kouzine F, Levens D. DNA topoisomerases beyond the standard role. Transcription 2015; 4:232-7. [PMID: 24135702 DOI: 10.4161/trns.26598] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chromatin is dynamically changing its structure to accommodate and control DNA-dependent processes inside of eukaryotic cells. These changes are necessarily linked to changes of DNA topology, which might itself serve as a regulatory signal to be detected by proteins. Thus, DNA Topoisomerases may contribute to the regulation of many events occurring during the transcription cycle. In this review we will focus on DNA Topoisomerase functions in transcription, with particular emphasis on the multiplicity of tasks beyond their widely appreciated role in solving topological problems associated with transcription elongation.
Collapse
|
46
|
A comprehensive review on bioactive fused heterocycles as purine-utilizing enzymes inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1295-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 2014; 42:12469-82. [PMID: 25300489 PMCID: PMC4227775 DOI: 10.1093/nar/gku927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - María J Cabello-Lobato
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
48
|
Fernández X, Díaz-Ingelmo O, Martínez-García B, Roca J. Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. EMBO J 2014; 33:1492-501. [PMID: 24859967 DOI: 10.15252/embj.201488091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic topoisomerases I (topo I) and II (topo II) relax the positive (+) and negative (-) DNA torsional stress (TS) generated ahead and behind the transcription machinery. It is unknown how this DNA relaxation activity is regulated and whether (+) and (-)TS are reduced at similar rates. Here, we used yeast circular minichromosomes to conduct the first comparative analysis of topo I and topo II activities in relaxing chromatin under (+) and (-)TS. We observed that, while topo I relaxed (+) and (-)TS with similar efficiency, topo II was more proficient and relaxed (+)TS more quickly than (-)TS. Accordingly, we found that the relaxation rate of (+)TS by endogenous topoisomerases largely surpassed that of (-)TS. We propose a model of how distinct conformations of chromatin under (+) and (-)TS may produce this unbalanced relaxation of DNA. We postulate that, while quick relaxation of (+)TS may facilitate the progression of RNA and DNA polymerases, slow relaxation of (-)TS may serve to favor DNA unwinding and other structural transitions at specific regions often required for genomic transactions.
Collapse
Affiliation(s)
- Xavier Fernández
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Ofelia Díaz-Ingelmo
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Belén Martínez-García
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joaquim Roca
- Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
49
|
Thakurela S, Garding A, Jung J, Schübeler D, Burger L, Tiwari VK. Gene regulation and priming by topoisomerase IIα in embryonic stem cells. Nat Commun 2014; 4:2478. [PMID: 24072229 DOI: 10.1038/ncomms3478] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/21/2013] [Indexed: 11/09/2022] Open
Abstract
Topoisomerases resolve torsional stress, while their function in gene regulation, especially during cellular differentiation, remains unknown. Here we find that the expression of topo II isoforms, topoisomerase IIα and topoisomerase IIβ, is the characteristic of dividing and postmitotic tissues, respectively. In embryonic stem cells, topoisomerase IIα preferentially occupies active gene promoters. Topoisomerase IIα inhibition compromises genomic integrity, which results in epigenetic changes, altered kinetics of RNA Pol II at target promoters and misregulated gene expression. Common targets of topoisomerase IIα and topoisomerase IIβ are housekeeping genes, while unique targets are involved in proliferation/pluripotency and neurogenesis, respectively. Topoisomerase IIα targets exhibiting bivalent chromatin resolve upon differentiation, concomitant with their activation and occupancy by topoisomerase IIβ, features further observed for long genes. These long silent genes display accessible chromatin in embryonic stem cells that relies on topoisomerase IIα activity. These findings suggest that topoisomerase IIα not only contributes to stem-cell transcriptome regulation but also primes developmental genes for subsequent activation upon differentiation.
Collapse
|
50
|
Luchnik AN. DNA conformational transitions induced by supercoiling control transcription in chromatin. GENE REGULATION AND SYSTEMS BIOLOGY 2014; 8:89-96. [PMID: 24653646 PMCID: PMC3956857 DOI: 10.4137/grsb.s13756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/05/2022]
Abstract
Regulation of transcription in eukaryotes is considered in the light of recent findings demonstrating the presence of negative and positive superhelical tension in chromatin. This tension induces conformational transitions in DNA duplex. Particularly, the transition into A-form renders DNA accessible and waylaying for initiation of transcription producing RNA molecules long known to belong to the A-conformation. Competition between conformational transitions in various DNA sequences for the energy of elastic spring opens a possibility for understanding of fine tuning of transcription at a distance.
Collapse
|