1
|
Li L, Li W, Liao J, Fu J, Dai C, Hu Y, Li H. Ultrastructure and Transcriptome Analysis of the Larval Integument in Solitary and Gregarious Phases of Mythimna separata. INSECTS 2025; 16:190. [PMID: 40003822 PMCID: PMC11856551 DOI: 10.3390/insects16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Mythimna separata larvae exhibit both solitary and gregarious phases under low and high population density, respectively; furthermore, differences in morphology, behavior and physiology have been observed in the two phases. The integument plays an essential role in the fitness, general metabolism, communication, and survival of insects; however, differences in the integument ultrastructure and gene expression in the solitary and gregarious phases are largely unknown. In this study, the integument ultrastructure of larvae in the solitary and gregarious phases was compared, and transcriptome analysis was conducted to identify which genes were differentially expressed in the two phases. The results showed that the gregarious larvae had thicker integuments and more polygonal particles on the cuticle surface than solitary larvae. Using the Illumina HiSeq™ sequencing platform, 2774 differentially expressed genes (DEGs) were generated. Among these, many transcripts were identified with roles in the synthesis of fatty acids; structural components of the integument and the insecticide detoxification were differentially expressed in the integument of the two larval phases. qRT-PCR was used to validate expression patterns of the selected transcripts. This study provides a valuable resource for understanding the molecular basis of behavioral and physiological differences in the two phases of M. separata.
Collapse
Affiliation(s)
- Lingling Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
| | - Wenmeng Li
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China;
| | - Jing Liao
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
| | - Junhong Fu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
| | - Changgeng Dai
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
| | - Yang Hu
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
| | - Hongbo Li
- Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (L.L.); (J.L.); (J.F.); (C.D.); (Y.H.)
- Guizhou Branch of State Key Laboratory for Biology of Plant Diseases and Insect Pests, Guiyang 550006, China
- Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Ministry of Agriculture and Rural Affairs, Guiyang 550006, China
| |
Collapse
|
2
|
Jean-François F, Pratibha S, Baptiste R, Jean-Pierre F, Jérôme C, Deepa A, Claude E. Is Drosophila Larval Competition Involved in Incipient Speciation? J Chem Ecol 2025; 51:2. [PMID: 39841299 DOI: 10.1007/s10886-025-01560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/23/2025]
Abstract
Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males. Despite the fact that Z and M flies produce different amounts of cuticular pheromones, their manipulation and that of other sensory signals exchanged during courtship behavior only marginally rescued the behavioral isolation. To further explore the putative mechanisms involved in this phenomenon, we first assessed the fecundity in matings between Z and M flies. Then, we measured the reproduction and survival in adults resulting of co-cultured Z and M larvae. In these two experiments, Z flies rarely emerged. Z and M larvae produced different amounts of food-derived metabolites which were altered in co-culture condition. This maybe related to the different bacteria composition in the gut and body of Z and M flies. However, the mating behavior of co-cultured flies did not change and their cuticular pheromone profile was slightly altered. Thus, the Z/M larval competition could reinforce the barriers induced by gametic and behavioral isolation processes on this incipient speciation phenomenon.
Collapse
Affiliation(s)
- Ferveur Jean-François
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.
| | | | - Regnier Baptiste
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Farine Jean-Pierre
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Cortot Jérôme
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| | - Agashe Deepa
- National Centre for Biological Sciences (NCBS-TIFR), Bengaluru, India
| | - Everaerts Claude
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France
| |
Collapse
|
3
|
Yamamoto A, Huang W, Carbone MA, Anholt RRH, Mackay TFC. The genetic basis of incipient sexual isolation in Drosophila melanogaster. Proc Biol Sci 2024; 291:20240672. [PMID: 39045689 PMCID: PMC11267472 DOI: 10.1098/rspb.2024.0672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024] Open
Abstract
Speciation is a fundamental evolutionary process but the genetic changes accompanying speciation are difficult to determine since true species do not produce viable and fertile offspring. Partially reproductively isolated incipient species are useful for assessing genetic changes that occur prior to speciation. Drosophila melanogaster from Zimbabwe, Africa are partially sexually isolated from other D. melanogaster populations whose males have poor mating success with Zimbabwe females. We used the North American D. melanogaster Genetic Reference Panel (DGRP) to show that there is significant genetic variation in mating success of DGRP males with Zimbabwe females, to map genetic variants and genes associated with variation in mating success and to determine whether mating success to Zimbabwe females is associated with other quantitative traits previously measured in the DGRP. Incipient sexual isolation is highly polygenic and associated with the common African inversion In(3R)K and the amount of the sex pheromone 5,9-heptacosadiene in DGRP females. We functionally validated the effect of eight candidate genes using RNA interference to provide testable hypotheses for future studies investigating the molecular genetic basis of incipient sexual isolation in D. melanogaster.
Collapse
Affiliation(s)
- Akihiko Yamamoto
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Lane, East Lansing, MI, USA
| | - Mary Anna Carbone
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Center for Fungal Research and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Robert R. H. Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, USA
| | - Trudy F. C. Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh NC, Raleigh, NC27695-7614, USA
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, USA
| |
Collapse
|
4
|
Yamamoto A, Huang W, Anholt RR, Mackay TF. The genetic basis of variation in Drosophila melanogaster mating behavior. iScience 2024; 27:109837. [PMID: 38766354 PMCID: PMC11099327 DOI: 10.1016/j.isci.2024.109837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Mating behavior is an essential fitness trait. We used the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP) to gain insights into the evolution of mating success and to evaluate the overlap in genetic architecture of mating behavior between the sexes. We found significant genetic variation for mating success when DGRP males and females from the same line were mated together, and when DGRP males and females were mated to an unrelated strain of the opposite sex. The mating success of DGRP males and females was not correlated when they were paired with the unrelated strain, suggesting independent genetic architecture of mating success in males and females that was confirmed by genome-wide association analyses. However, the mating success between pairs of the same or different DGRP lines was predicted accurately by the respective female and male mating success with the unrelated line.
Collapse
Affiliation(s)
- Akihiko Yamamoto
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Wen Huang
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Robert R.H. Anholt
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| | - Trudy F.C. Mackay
- Program in Genetics, W. M. Keck Center for Behavioral Biology and Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695-7614, USA
| |
Collapse
|
5
|
Ferveur JF, Cortot J, Moussian B, Cobb M, Everaerts C. Replenishment of Drosophila Male Pheromone After Mating. J Chem Ecol 2024; 50:100-109. [PMID: 38270733 DOI: 10.1007/s10886-023-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/31/2023] [Indexed: 01/26/2024]
Abstract
Insect exocrine gland products can be involved in sexual communication, defense, territory labelling, aggregation and alarm. In the vinegar fly Drosophila melanogaster the ejaculatory bulb synthesizes and releases 11-cis-Vaccenyl acetate (cVa). This pheromone, transferred to the female during copulation, affects aggregation, courtship and male-male aggressive behaviors. To determine the ability of male flies to replenish their cVa levels, males of a control laboratory strain and from the desat1 pheromone-defective mutant strain were allowed to mate successively with several females. We measured mating frequency, duration and latency, the amount of cVa transferred to mated females and the residual cVa in tested males. Mating duration remained constant with multiple matings, but we found that the amount of cVa transferred to females declined with multiple matings, indicating that, over short, biologically-relevant periods, replenishment of the pheromone does not keep up with mating frequency, resulting in the transfer of varying quantities of cVa. Adult responses to cVa are affected by early developmental exposure to this pheromone; our revelation of quantitative variation in the amount of cVa transferred to females in the event of multiple matings by a male suggests variable responses to cVa shown by adults produced by such matings. This implies that the natural role of this compound may be richer than suggested by laboratory experiments that study only one mating event and its immediate behavioral or neurobiological consequences.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France.
| | - Jérôme Cortot
- Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Animal Genetics, University of Tübingen, Auf Der Morgenstelle 15, 72076, Tübingen, Germany
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Claude Everaerts
- Centre Des Sciences du Goût Et de L'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000, Dijon, France
| |
Collapse
|
6
|
Kefi M, Konstantinos P, Balabanidou V, Sarafoglou C, Tsakireli D, Douris V, Monastirioti M, Maréchal JD, Feyereisen R, Vontas J. Insights into unique features of Drosophila CYP4G enzymes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104041. [PMID: 38008364 DOI: 10.1016/j.ibmb.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
The cytochrome P450 enzymes of the CYP4G subfamily are some of the most intriguing insect P450s in terms of structure and function. In Drosophila, CYP4G1 is highly expressed in the oenocytes and is the last enzyme in the biosynthesis of cuticular hydrocarbons, while CYP4G15 is expressed in the brain and is of unknown function. Both proteins have a CYP4G-specific and characteristic amino acid sequence insertion corresponding to a loop between the G and H helices whose function is unclear. Here we address these enigmatic structural and functional features of Drosophila CYP4Gs. First, we used reverse genetics to generate D. melanogaster strains in which all or part of the CYP4G-specific loop was removed from CYP4G1. We showed that the full loop was not needed for proper folding of the P450, but it is essential for function, and that just a short stretch of six amino acids is required for the enzyme's ability to make hydrocarbons. Second, we confirmed by immunocytochemistry that CYP4G15 is expressed in the brain and showed that it is specifically associated with the cortex glia cell subtype. We then expressed CYP4G15 ectopically in oenocytes, revealing that it can produce of a blend of hydrocarbons, albeit to quantitatively lower levels resulting in only a partial rescue of CYP4G1 knockdown flies. The CYP4G1 structural variants studied here should facilitate the biochemical characterization of CYP4G enzymes. Our results also raise the question of the putative role of hydrocarbons and their synthesis by cortex glial cells.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Parasyris Konstantinos
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, 70013, Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Dimitra Tsakireli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece
| | - Vassilis Douris
- Department of Biological Applications and Technology, University of Ioannina, 45110, Ioannina, Greece; Biomedical Research Institute (BRI), Foundation for Research and Technology (FORTH), University Campus, 451 10, Ioannina, Greece
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - René Feyereisen
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Belgium.
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira Street 100, 70013, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Greece.
| |
Collapse
|
7
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
8
|
Wu MS, Liao TW, Wu CY, Hsieh TH, Kuo PC, Li YC, Cheng KC, Chiang HC. Aversive conditioning information transmission in Drosophila. Cell Rep 2023; 42:113207. [PMID: 37782557 DOI: 10.1016/j.celrep.2023.113207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Animals rapidly acquire surrounding information to perform the appropriate behavior. Although social learning is more efficient and accessible than self-learning for animals, the detailed regulatory mechanism of social learning remains unknown, mainly because of the complicated information transfer between animals, especially for aversive conditioning information transmission. The current study revealed that, during social learning, the neural circuit in observer flies used to process acquired aversive conditioning information from demonstrator flies differs from the circuit used for self-learned classic aversive conditioning. This aversive information transfer is species dependent. Solitary flies cannot learn this information through social learning, suggesting that this ability is not an innate behavior. Neurons used to process and execute avoidance behavior to escape from electrically shocked flies are all in the same brain region, indicating that the fly brain has a common center for integrating external stimuli with internal states to generate flight behavior.
Collapse
Affiliation(s)
- Meng-Shiun Wu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Ting-Wei Liao
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chun-Yuan Wu
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Tzu-Han Hsieh
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yue-Chiun Li
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chung Cheng
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan.
| |
Collapse
|
9
|
Sun J, Liu WK, Ellsworth C, Sun Q, Pan Y, Huang YC, Deng WM. Integrating lipid metabolism, pheromone production and perception by Fruitless and Hepatocyte Nuclear Factor 4. SCIENCE ADVANCES 2023; 9:eadf6254. [PMID: 37390217 PMCID: PMC10313179 DOI: 10.1126/sciadv.adf6254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/30/2023] [Indexed: 07/02/2023]
Abstract
Sexual attraction and perception are crucial for mating and reproductive success. In Drosophila melanogaster, the male-specific isoform of Fruitless (Fru), FruM, is a known master neuro-regulator of innate courtship behavior to control the perception of sex pheromones in sensory neurons. Here, we show that the non-sex-specific Fru isoform (FruCOM) is necessary for pheromone biosynthesis in hepatocyte-like oenocytes for sexual attraction. Loss of FruCOM in oenocytes resulted in adults with reduced levels of cuticular hydrocarbons (CHCs), including sex pheromones, and show altered sexual attraction and reduced cuticular hydrophobicity. We further identify Hepatocyte nuclear factor 4 (Hnf4) as a key target of FruCOM in directing fatty acid conversion to hydrocarbons. Fru or Hnf4 depletion in oenocytes disrupts lipid homeostasis, resulting in a sex-dimorphic CHC profile that differs from doublesex- and transformer-dependent CHC dimorphism. Thus, Fru couples pheromone perception and production in separate organs to regulate chemosensory communications and ensure efficient mating behavior.
Collapse
Affiliation(s)
- Jie Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wen-Kan Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Sun
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Anderson CB, Ospina O, Beerli P, Lemmon AR, Banker SE, Hassinger AB, Dye M, Kortyna ML, Lemmon EM. The population genetics of speciation by cascade reinforcement. Ecol Evol 2023; 13:e9773. [PMID: 36789346 PMCID: PMC9905665 DOI: 10.1002/ece3.9773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Species interactions drive diverse evolutionary outcomes. Speciation by cascade reinforcement represents one example of how species interactions can contribute to the proliferation of species. This process occurs when the divergence of mating traits in response to selection against interspecific hybridization incidentally leads to reproductive isolation among populations of the same species. Here, we investigated the population genetic outcomes of cascade reinforcement in North American chorus frogs (Hylidae: Pseudacris). Specifically, we estimated the frequency of hybridization among three taxa, assessed genetic structure within the focal species, P. feriarum, and ascertained the directionality of gene flow within P. feriarum across replicated contact zones via coalescent modeling. Through field observations and preliminary experimental crosses, we assessed whether hybridization is possible under natural and laboratory conditions. We found that hybridization occurs among P. feriarum and two conspecifics at a low rate in multiple contact zones, and that gene flow within the former species is unidirectional from allopatry into sympatry with these other species in three of four contact zones studied. We found evidence of substantial genetic structuring within P. feriarum including a divergent western allopatric cluster, a behaviorally-distinct sympatric South Carolina cluster, and several genetically-overlapping clusters from the remainder of the distribution. Furthermore, we found sub-structuring between reinforced and nonreinforced populations in the two most intensely-sampled contact zones. Our literature review indicated that P. feriarum hybridizes with at least five heterospecifics at the periphery of its range providing a mechanism for further intraspecific diversification. This work strengthens the evidence for cascade reinforcement in this clade, revealing the geographic and genetic landscape upon which this process can contribute to the proliferation of species.
Collapse
Affiliation(s)
- Carlie B Anderson
- Department of Biological Science Florida State University Tallahassee Florida USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics Moffitt Cancer Center Tampa Florida USA
| | - Peter Beerli
- Department of Scientific Computing Florida State University Tallahassee Florida USA
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida USA
| | - Sarah E Banker
- Department of Biological Science Florida State University Tallahassee Florida USA
- Pfizer Clinical Pharmacogenomics Group Groton Connecticut USA
| | - Alyssa Bigelow Hassinger
- Department of Biological Science Florida State University Tallahassee Florida USA
- Varigen Biosciences Middleton Wisconsin USA
| | - Mysia Dye
- Department of Biological Science Florida State University Tallahassee Florida USA
| | - Michelle L Kortyna
- Department of Biological Science Florida State University Tallahassee Florida USA
| | | |
Collapse
|
11
|
Delbare SYN, Venkatraman S, Scuderi K, Wells MT, Wolfner MF, Basu S, Clark AG. Time series transcriptome analysis implicates the circadian clock in the Drosophila melanogaster female's response to sex peptide. Proc Natl Acad Sci U S A 2023; 120:e2214883120. [PMID: 36706221 PMCID: PMC9945991 DOI: 10.1073/pnas.2214883120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Sex peptide (SP), a seminal fluid protein of Drosophila melanogaster males, has been described as driving a virgin-to-mated switch in females, through eliciting an array of responses including increased egg laying, activity, and food intake and a decreased remating rate. While it is known that SP achieves this, at least in part, by altering neuronal signaling in females, the genetic architecture and temporal dynamics of the female's response to SP remain elusive. We used a high-resolution time series RNA-sequencing dataset of female heads at 10 time points within the first 24 h after mating to learn about the genetic architecture, at the gene and exon levels, of the female's response to SP. We find that SP is not essential to trigger early aspects of a virgin-to-mated transcriptional switch, which includes changes in a metabolic gene regulatory network. However, SP is needed to maintain and diversify metabolic changes and to trigger changes in a neuronal gene regulatory network. We further find that SP alters rhythmic gene expression in females and suggests that SP's disruption of the female's circadian rhythm might be key to its widespread effects.
Collapse
Affiliation(s)
- Sofie Y. N. Delbare
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Sara Venkatraman
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Kate Scuderi
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Martin T. Wells
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Mariana F. Wolfner
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| | - Sumanta Basu
- Department of Statistics & Data Science, Cornell University, Ithaca, NY14853
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
12
|
Vernier CL, Leitner N, Zelle KM, Foltz M, Dutton S, Liang X, Halloran S, Millar JG, Ben-Shahar Y. A pleiotropic chemoreceptor facilitates the production and perception of mating pheromones. iScience 2022; 26:105882. [PMID: 36691619 PMCID: PMC9860498 DOI: 10.1016/j.isci.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Optimal mating decisions depend on the robust coupling of signal production and perception because independent changes in either could carry a fitness cost. However, since the perception and production of mating signals are often mediated by different tissues and cell types, the mechanisms that drive and maintain their coupling remain unknown for most animal species. Here, we show that in Drosophila, behavioral responses to, and the production of, a putative inhibitory mating pheromone are co-regulated by Gr8a, a member of the Gustatory receptor gene family. Specifically, through behavioral and pheromonal data, we found that Gr8a independently regulates the behavioral responses of males and females to a putative inhibitory pheromone, as well as its production in the fat body and oenocytes of males. Overall, these findings provide a relatively simple molecular explanation for how pleiotropic receptors maintain robust mating signaling systems at the population and species levels.
Collapse
Affiliation(s)
- Cassondra L. Vernier
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Nicole Leitner
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Kathleen M. Zelle
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Merrin Foltz
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Sophia Dutton
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA
| | - Xitong Liang
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Sean Halloran
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jocelyn G. Millar
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, MO 63130, USA,Corresponding author
| |
Collapse
|
13
|
Bashir NH, Chen H, Munir S, Wang W, Chen H, Sima YK, An J. Unraveling the Role of Lac Insects in Providing Natural Industrial Products. INSECTS 2022; 13:1117. [PMID: 36555027 PMCID: PMC9784800 DOI: 10.3390/insects13121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
In the current era, products made from organic materials enjoy a privileged position because of their inherent safety. The eco-friendly properties of natural lac resins have increased their demand in many industries. It is secreted by sucking insects (Hemiptera, Kerriidae) and comprises three major components, viz., resin, dye, and wax. Lac insects are generally bivoltine in nature and are distributed in tropical and sub-tropical regions with complex multi-trophic habitats. Because of their sedentary habits, lac insects are more vulnerable to predators, parasitoids, squirrels, and rats, leading to a more than 50% reduction in production yield. To increase lac production, advanced-level molecular research is required to figure out the mechanism behind lac synthesis and secretion to improve lac yield and quality. The present review highlights metamorphosis, sexual dimorphism, multi-trophic habitat, host plants, and natural enemies of lac insects, lac composition, and applications, emphasizing the role of microbes, potential lac genes, and lac synthesis mechanisms in enhancing lac quality and production. The information provided here might be useful for lac researchers and for stakeholders aiming to make their products more eco-friendly.
Collapse
Affiliation(s)
- Nawaz Haider Bashir
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Huanhuan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Weiwei Wang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Hang Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
| | - Yong-Kang Sima
- Yunnan Academy of Forestry and Grassland Science, Kunming 650201, China
| | - Jiandong An
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Wu X, Wang S, Zhao X, Wen J, Li Y, Zhao Z, Du J. Analysis of sleep in individual Drosophila melanogaster reveals a self-regulatory role for cuticular hydrocarbons pheromones. INSECT SCIENCE 2022; 29:1737-1746. [PMID: 35199930 DOI: 10.1111/1744-7917.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
It is well established that pheromones are used by insects to transmit information between individuals. However, research has revealed that individual insects can be both the sender and the receiver of some pheromonal signals. It is therefore interesting to consider whether the pheromonal state of an individual insect can exert an effect on itself. In this study, we monitored the sleep activity of single flies exhibiting a mutation that leads to pheromonal deficiency and found that cuticular hydrocarbons (CHs) exerted self-regulatory effects on the amount of sleep experienced by these flies. To identify the physiological significance of this mechanism, we compared the amounts of sleep in individual young flies and individual old flies (flies are known to sleep less as they get older) and compared this data with young and old flies exhibiting mutations that lead to CH reception defects. The differences in the amount of sleep experienced by young and old mutant flies were significantly lower than those of the control flies. Our data show that hydrocarbon signals produced by the cuticle in Drosophila can be self-perceived and regulate the amount of sleep acquired in a maturation-dependent manner.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Su Wang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jing Wen
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yahong Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Liu S, Zhou J, Kong L, Cai Y, Liu H, Xie Z, Xiao X, James AA, Chen XG. Clock genes regulate mating activity rhythms in the vector mosquitoes, Aedes albopictus and Culex quinquefasciatus. PLoS Negl Trop Dis 2022; 16:e0010965. [PMID: 36455055 DOI: 10.1371/journal.pntd.0010965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiquan Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Aging-Related Variation of Cuticular Hydrocarbons in Wild Type and Variant Drosophila melanogaster. J Chem Ecol 2022; 48:152-164. [PMID: 35022940 DOI: 10.1007/s10886-021-01344-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
The cuticle of all insects is covered with hydrocarbons which have multiple functions. Cuticular hydrocarbons (CHCs) basically serve to protect insects against environmental harm and reduce dehydration. In many species, some CHCs also act as pheromones. CHCs have been intensively studied in Drosophila species and more especially in D. melanogaster. In this species, flies produce about 40 CHCs forming a complex sex- and species-specific bouquet. The quantitative and qualitative pattern of the CHC bouquet was characterized during the first days of adult life but remains unexplored in aging flies. Here, we characterized CHCs during the whole-or a large period of-adult life in males and females of several wild type and transgenic lines. Both types of lines included standard and variant CHC profiles. Some of the genotypes tested here showed very dramatic and unexpected aging-related variation based on their early days' profile. This study provides a concrete dataset to better understand the mechanisms underlying the establishment and maintenance of CHCs on the fly cuticle. It could be useful to determine physiological parameters, including age and response to climate variation, in insects collected in the wild.
Collapse
|
17
|
Ahmed S, Roy MC, Al Baki MA, Jung JK, Lee D, Kim Y. CRISPR/Cas9 mutagenesis against sex pheromone biosynthesis leads to loss of female attractiveness in Spodoptera exigua, an insect pestt. PLoS One 2021; 16:e0259322. [PMID: 34788305 PMCID: PMC8598075 DOI: 10.1371/journal.pone.0259322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Virgin female moths are known to release sex pheromones to attract conspecific males. Accurate sex pheromones are required for their chemical communication. Sex pheromones of Spodoptera exigua, a lepidopteran insect, contain unsaturated fatty acid derivatives having a double bond at the 12th carbon position. A desaturase of S. exigua (SexiDES5) was proposed to have dual functions by forming double bonds at the 11th and 12th carbons to synthesize Z9,E12-tetradecedienoic acid, which could be acetylated to be a main sex pheromone component Z9,E12-tetradecenoic acetate (Z9E12-14:Ac). A deletion of SexiDES5 using CRISPR/Cas9 was generated and inbred to obtain homozygotes. Mutant females could not produce Z9E12-14:Ac along with Z9-14:Ac and Z11-14:Ac. Subsequently, pheromone extract of mutant females did not induce a sensory signal in male antennae. They failed to induce male mating behavior including hair pencil erection and orientation. In the field, these mutant females did not attract any males while control females attracted males. These results indicate that SexiDES5 can catalyze the desaturation at the 11th and 12th positions to produce sex pheromone components in S. exigua. This study also suggests an application of the genome editing technology to insect pest control by generating non-attractive female moths.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, Korea
| | | | | | - Jin Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Korea
| | - Daeweon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
18
|
Zhang YH, Zhao L, Fu SH, Wang ZS, Zhang JX. Male pheromones and their reception by females are co-adapted to affect mating success in two subspecies of brown rats. Curr Zool 2021; 67:371-382. [PMID: 34671704 PMCID: PMC8521721 DOI: 10.1093/cz/zoaa066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/12/2020] [Indexed: 12/03/2022] Open
Abstract
Pheromonal communication plays a key role in the sociosexual behavior of rodents. The coadaptation between pheromones and chemosensory systems has been well illustrated in insects but poorly investigated in rodents and other mammals. We aimed to investigate whether coadaptation between male pheromones and female reception might have occurred in brown rats Rattus norvegicus. We recently reported that major urinary protein (MUP) pheromones are associated with male mating success in a brown rat subspecies, R. n. humiliatus (Rnh). Here, we discovered that MUPs were less polymorphic and occurred at much lower concentrations in males of a parapatric subspecies, R. n. caraco (Rnc), than in Rnh males, and found no association between pheromones and paternity success. Moreover, the observation of Rnc males that experienced chronic dyadic encounters and established dominance–submission relationships revealed that the dominant males achieved greater mating success than the subordinate males, but their MUP levels did not differ by social status. These findings suggest that male mating success in Rnc rats is related to social rank rather than to pheromone levels and that low concentration of MUPs might not be a reliable signal for mate choice in Rnc rats, which is different from the findings obtained in Rnh rats. In addition, compared with Rnh females, Rnc females exhibited reduced expression of pheromone receptor genes, and a lower number of vomeronasal receptor neurons were activated by MUP pheromones, which imply that the female chemosensory reception of pheromones might be structurally and functionally coadapted with male pheromone signals in brown rats.
Collapse
Affiliation(s)
- Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Hui Fu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, Hebei University, Hebei Province, Baoding 071002, China
| | - Zhen-Shan Wang
- College of Life Science, Hebei University, Hebei Province, Baoding 071002, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
McCulloch GA, Guhlin J, Dutoit L, Harrop TWR, Dearden PK, Waters JM. Genomic signatures of parallel alpine adaptation in recently evolved flightless insects. Mol Ecol 2021; 30:6677-6686. [PMID: 34592029 DOI: 10.1111/mec.16204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/01/2022]
Abstract
Natural selection along elevational gradients has potential to drive predictable adaptations across distinct lineages, but the extent of such repeated evolution remains poorly studied for many widespread alpine taxa. We present parallel genomic analyses of two recently evolved flightless alpine insect lineages to test for molecular signatures of repeated alpine adaptation. Specifically, we compare low-elevation vs. alpine stonefly ecotypes from parallel stream populations in which flightless upland ecotypes have been independently derived. We map 67,922 polymorphic genetic markers, generated across 176 Zelandoperla fenestrata specimens from two independent alpine stream populations in New Zealand's Rock and Pillar Range, to a newly developed plecopteran reference genome. Genome-wide scans revealed 31 regions with outlier single nucleotide polymorphisms (SNPs) differentiating lowland vs. alpine ecotypes in Lug Creek, and 37 regions with outliers differentiating ecotypes in Six Mile Creek. Of these regions, 13% (8/60) yielded outlier SNPs across both within-stream ecotype comparisons, implying comparable genomic shifts contribute to this repeated alpine adaptation. Candidate genes closely linked to repeated outlier regions include several with documented roles in insect wing-development (e.g., dishevelled), suggesting that they may contribute to repeated alpine wing reduction. Additional candidate genes have been shown to influence insect fecundity (e.g., ovo) and lifespan (e.g., Mrp4), implying that they might contribute to life history differentiation between upland and lowland ecotypes. Additional outlier genes have potential roles in the evolution of reproductive isolation among ecotypes (hedgehog and Desaturase 1). These results demonstrate how replicated outlier tests across independent lineages can potentially contribute to the discovery of genes underpinning repeated adaptation.
Collapse
Affiliation(s)
| | - Joseph Guhlin
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Peter K Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
20
|
Pantha P, Chalivendra S, Oh DH, Elderd BD, Dassanayake M. A Tale of Two Transcriptomic Responses in Agricultural Pests via Host Defenses and Viral Replication. Int J Mol Sci 2021; 22:3568. [PMID: 33808210 PMCID: PMC8037200 DOI: 10.3390/ijms22073568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/02/2023] Open
Abstract
Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) is a baculovirus that causes systemic infections in many arthropod pests. The specific molecular processes underlying the biocidal activity of AcMNPV on its insect hosts are largely unknown. We describe the transcriptional responses in two major pests, Spodoptera frugiperda (fall armyworm) and Trichoplusia ni (cabbage looper), to determine the host-pathogen responses during systemic infection, concurrently with the viral response to the host. We assembled species-specific transcriptomes of the hemolymph to identify host transcriptional responses during systemic infection and assessed the viral transcript abundance in infected hemolymph from both species. We found transcriptional suppression of chitin metabolism and tracheal development in infected hosts. Synergistic transcriptional support was observed to suggest suppression of immune responses and induction of oxidative stress indicating disease progression in the host. The entire AcMNPV core genome was expressed in the infected host hemolymph with a proportional high abundance detected for viral transcripts associated with replication, structure, and movement. Interestingly, several of the host genes that were targeted by AcMNPV as revealed by our study are also targets of chemical insecticides currently used commercially to control arthropod pests. Our results reveal an extensive overlap between biological processes represented by transcriptional responses in both hosts, as well as convergence on highly abundant viral genes expressed in the two hosts, providing an overview of the host-pathogen transcriptomic landscape during systemic infection.
Collapse
Affiliation(s)
| | | | | | - Bret D. Elderd
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (P.P.); (S.C.); (D.-H.O.)
| |
Collapse
|
21
|
Wang Y, Ferveur JF, Moussian B. Eco-genetics of desiccation resistance in Drosophila. Biol Rev Camb Philos Soc 2021; 96:1421-1440. [PMID: 33754475 DOI: 10.1111/brv.12709] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/18/2022]
Abstract
Climate change globally perturbs water circulation thereby influencing ecosystems including cultivated land. Both harmful and beneficial species of insects are likely to be vulnerable to such changes in climate. As small animals with a disadvantageous surface area to body mass ratio, they face a risk of desiccation. A number of behavioural, physiological and genetic strategies are deployed to solve these problems during adaptation in various Drosophila species. Over 100 desiccation-related genes have been identified in laboratory and wild populations of the cosmopolitan fruit fly Drosophila melanogaster and its sister species in large-scale and single-gene approaches. These genes are involved in water sensing and homeostasis, and barrier formation and function via the production and composition of surface lipids and via pigmentation. Interestingly, the genetic strategy implemented in a given population appears to be unpredictable. In part, this may be due to different experimental approaches in different studies. The observed variability may also reflect a rich standing genetic variation in Drosophila allowing a quasi-random choice of response strategies through soft-sweep events, although further studies are needed to unravel any underlying principles. These findings underline that D. melanogaster is a robust species well adapted to resist climate change-related desiccation. The rich data obtained in Drosophila research provide a framework to address and understand desiccation resistance in other insects. Through the application of powerful genetic tools in the model organism D. melanogaster, the functions of desiccation-related genes revealed by correlative studies can be tested and the underlying molecular mechanisms of desiccation tolerance understood. The combination of the wealth of available data and its genetic accessibility makes Drosophila an ideal bioindicator. Accumulation of data on desiccation resistance in Drosophila may allow us to create a world map of genetic evolution in response to climate change in an insect genome. Ultimately these efforts may provide guidelines for dealing with the effects of climate-related perturbations on insect population dynamics in the future.
Collapse
Affiliation(s)
- Yiwen Wang
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, Université de Bourgogne, 6, Bd Gabriel, Dijon, 21000, France
| | - Bernard Moussian
- Interfaculty Institute of Cell Biology, Section Animal Genetics, University of Tübingen, Auf der Morgenstelle 15, Tübingen, 72076, Germany.,Institute of Biology Valrose, Université Côte d'Azur, CNRS, Inserm, Parc Valrose, Nice CEDEX 2, 06108, France
| |
Collapse
|
22
|
Wang G, Vega-Rodríguez J, Diabate A, Liu J, Cui C, Nignan C, Dong L, Li F, Ouedrago CO, Bandaogo AM, Sawadogo PS, Maiga H, Alves e Silva TL, Pascini TV, Wang S, Jacobs-Lorena M. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 2021; 371:411-415. [PMID: 33479155 PMCID: PMC9854397 DOI: 10.1126/science.abd4359] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/18/2020] [Indexed: 01/24/2023]
Abstract
Anopheles mating is initiated by the swarming of males at dusk followed by females flying into the swarm. Here, we show that mosquito swarming and mating are coordinately guided by clock genes, light, and temperature. Transcriptome analysis shows up-regulation of the clock genes period (per) and timeless (tim) in the head of field-caught swarming Anopheles coluzzii males. Knockdown of per and tim expression affects Anopheles gambiae s.s. and Anopheles stephensi male mating in the laboratory, and it reduces male An. coluzzii swarming and mating under semifield conditions. Light and temperature affect mosquito mating, possibly by modulating per and/or tim expression. Moreover, the desaturase gene desat1 is up-regulated and rhythmically expressed in the heads of swarming males and regulates the production of cuticular hydrocarbons, including heptacosane, which stimulates mating activity.
Collapse
Affiliation(s)
- Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health and Malaria Research Institute, Baltimore, MD, USA
| | - Abdoulaye Diabate
- Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Jingnan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chunlai Cui
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Charles Nignan
- Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | - Hamidou Maiga
- Institut de Recherche en Science de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso
| | - Thiago Luiz Alves e Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tales Vicari Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.,Corresponding author. (S.W.); (M.J.-L.)
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health and Malaria Research Institute, Baltimore, MD, USA.,Corresponding author. (S.W.); (M.J.-L.)
| |
Collapse
|
23
|
Byers KJRP, Darragh K, Fernanda Garza S, Abondano Almeida D, Warren IA, Rastas PMA, Merrill RM, Schulz S, McMillan WO, Jiggins CD. Clustering of loci controlling species differences in male chemical bouquets of sympatric Heliconius butterflies. Ecol Evol 2021; 11:89-107. [PMID: 33437416 PMCID: PMC7790645 DOI: 10.1002/ece3.6947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022] Open
Abstract
The degree to which loci promoting reproductive isolation cluster in the genome-that is, the genetic architecture of reproductive isolation-can influence the tempo and mode of speciation. Tight linkage between these loci can facilitate speciation in the face of gene flow. Pheromones play a role in reproductive isolation in many Lepidoptera species, and the role of endogenously produced compounds as secondary metabolites decreases the likelihood of pleiotropy associated with many barrier loci. Heliconius butterflies use male sex pheromones to both court females (aphrodisiac wing pheromones) and ward off male courtship (male-transferred antiaphrodisiac genital pheromones), and it is likely that these compounds play a role in reproductive isolation between Heliconius species. Using a set of backcross hybrids between H. melpomene and H. cydno, we investigated the genetic architecture of putative male pheromone compound production. We found a set of 40 significant quantitative trait loci (QTL) representing 33 potential pheromone compounds. QTL clustered significantly on two chromosomes, chromosome 8 for genital compounds and chromosome 20 for wing compounds, and chromosome 20 was enriched for potential pheromone biosynthesis genes. There was minimal overlap between pheromone QTL and known QTL for mate choice and color pattern. Nonetheless, we did detect linkage between a QTL for wing androconial area and optix, a color pattern locus known to play a role in reproductive isolation in these species. This tight clustering of putative pheromone loci might contribute to coincident reproductive isolating barriers, facilitating speciation despite ongoing gene flow.
Collapse
Affiliation(s)
- Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| | - Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Evolution and EcologyUniversity of California DavisDavisCAUSA
| | - Sylvia Fernanda Garza
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Diana Abondano Almeida
- Smithsonian Tropical Research InstitutePanamaPanama
- Present address:
Institute for Ecology, Evolution and DiversityGoethe UniversitätFrankfurtGermany
| | - Ian A. Warren
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanamaPanama
- Division of Evolutionary BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Stefan Schulz
- Institute of Organic ChemistryDepartment of Life SciencesTechnische Universität BraunschweigBraunschweigGermany
| | | | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanamaPanama
| |
Collapse
|
24
|
Sato K, Yamamoto D. Contact-Chemosensory Evolution Underlying Reproductive Isolation in Drosophila Species. Front Behav Neurosci 2020; 14:597428. [PMID: 33343311 PMCID: PMC7746553 DOI: 10.3389/fnbeh.2020.597428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
The main theme of the review is how changes in pheromone biochemistry and the sensory circuits underlying pheromone detection contribute to mate choice and reproductive isolation. The review focuses primarily on gustatory and non-volatile signals in Drosophila. Premating isolation is prevalent among closely related species. In Drosophila, preference for conspecifics against other species in mate choice underlies premating isolation, and such preference relies on contact chemosensory communications between a female and male along with other biological factors. For example, although D. simulans and D. melanogaster are sibling species that yield hybrids, their premating isolation is maintained primarily by the contrasting effects of 7,11-heptacosadiene (7,11-HD), a predominant female pheromone in D. melanogaster, on males of the two species: it attracts D. melanogaster males and repels D. simulans males. The contrasting preference for 7,11-HD in males of these two species is mainly ascribed to opposite effects of 7,11-HD on neural activities in the courtship decision-making neurons in the male brain: 7,11-HD provokes both excitatory and inhibitory inputs in these neurons and differences in the balance between the two counteracting inputs result in the contrasting preference for 7,11-HD, i.e., attraction in D. melanogaster and repulsion in D. simulans. Introduction of two double bonds is a key step in 7,11-HD biosynthesis and is mediated by the desaturase desatF, which is active in D. melanogaster females but transcriptionally inactivated in D. simulans females. Thus, 7,11-HD biosynthesis diversified in females and 7,11-HD perception diversified in males, yet it remains elusive how concordance of the changes in the two sexes was attained in evolution.
Collapse
Affiliation(s)
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
25
|
Ward HKE, Moehring AJ. Genes underlying species differences in cuticular hydrocarbon production between Drosophila melanogaster and D. simulans. Genome 2020; 64:87-95. [PMID: 33211537 DOI: 10.1139/gen-2019-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface chemical compounds are key components of survival and reproduction in many species. Cuticular hydrocarbons (CHCs) are chemical compounds produced by all insects that are used for both desiccation resistance and chemical communication, including communication related to mating. In the species pair of Drosophila melanogaster and D. simulans, female CHCs stimulate conspecific males to mate and repel heterospecific males. While CHCs are a critical contributor to both reproductive success within a species and isolation between species, few genes underlying species variation in CHC profiles are known. Here, we use genetic mapping of the 3rd chromosome to test a suite of candidate genes for interspecies variation in CHCs. Candidate gene CG5946 was found to be involved in species differences in the production of 7,11-heptacosadiene and 7-tricosene between D. melanogaster and D. simulans. This is therefore a new candidate locus contributing to species-specific variation in the CHC profile. In the process of mapping genes for CHCs, we also identified 29 candidate genes for the reduced survival or inviability of interspecies hybrids.
Collapse
Affiliation(s)
- Heather K E Ward
- Western University, London, ON N6A 5B7, Canada.,Western University, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Western University, London, ON N6A 5B7, Canada.,Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
26
|
Vernier CL, Chin IM, Adu-Oppong B, Krupp JJ, Levine J, Dantas G, Ben-Shahar Y. The gut microbiome defines social group membership in honey bee colonies. SCIENCE ADVANCES 2020; 6:eabd3431. [PMID: 33055169 PMCID: PMC7556842 DOI: 10.1126/sciadv.abd3431] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/25/2020] [Indexed: 05/11/2023]
Abstract
In the honey bee, genetically related colony members innately develop colony-specific cuticular hydrocarbon profiles, which serve as pheromonal nestmate recognition cues. Yet, despite high intracolony relatedness, the innate development of colony-specific chemical signatures by individual colony members is largely determined by the colony environment, rather than solely relying on genetic variants shared by nestmates. Therefore, it is puzzling how a nongenic factor could drive the innate development of a quantitative trait that is shared by members of the same colony. Here, we provide one solution to this conundrum by showing that nestmate recognition cues in honey bees are defined, at least in part, by shared characteristics of the gut microbiome across individual colony members. These results illustrate the importance of host-microbiome interactions as a source of variation in animal behavioral traits.
Collapse
Affiliation(s)
- Cassondra L Vernier
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Iris M Chin
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Boahemaa Adu-Oppong
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua J Krupp
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Joel Levine
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Gautam Dantas
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
The Desaturase Gene Nlug-desatA2 Regulates the Performance of the Brown Planthopper Nilaparvata lugens and Its Relationship with Rice. Int J Mol Sci 2020; 21:ijms21114143. [PMID: 32532001 PMCID: PMC7312190 DOI: 10.3390/ijms21114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022] Open
Abstract
Insect desaturases are known to play an important role in chemical communication between individuals. However, their roles in insect growth, development and fecundity, and in regulating interactions of insects with plants, remain largely unknown. In this study, we explored the functions of Nlug-desatA2, a desaturase gene of the brown planthopper (BPH), Nilaparvata lugens (Stål). The RNA interference-based knockdown of Nlug-desatA2 decreased the ratio of monounsaturated fatty acids to saturated fatty acids, and the level of fatty acids and triglycerides in BPH. Nlug-desatA2-knockdown also reduced the food intake, body mass and fecundity of female BPH adults, and led to abdomen atrophy and ovarian agenesis. Nlug-desatA2-knockdown suppressed the transcription of TOR (target of rapamycin), Lpp (Lipophorin) and AKHR (adipokinetic hormone receptor) in female adults. Moreover, the corrected survival rate of BPH with Nlug-desatA2-knockdown fed an artificial diet was higher than the survival rate of those fed on rice plants. Higher levels of salicylic acid in rice infested by Nlug-desatA2-knockdown female BPH adults than in rice infested by control BPH may be the reason. These findings demonstrate that Nlug-desatA2 has an essential role in lipid metabolism and is involved in the food intake, survival, development and fecundity of BPH. In addition, this gene is likely involved in regulating the responses of rice to BPH infestation.
Collapse
|
28
|
Sibly RM, Pagel M, Curnow RN, Edwards J. How phenotypic matching based on neutral mating cues enables speciation in locally adapted populations. Ecol Evol 2019; 9:13506-13514. [PMID: 31871661 PMCID: PMC6912886 DOI: 10.1002/ece3.5806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 11/07/2022] Open
Abstract
Maynard Smith's (American Naturalist, 1966, 100, 637) suggestion that in some cases a prerequisite for speciation is the existence of local ecological adaptations has not received much attention to date. Here, we test the hypothesis using a model like that of Maynard Smith but differing in the way animals disperse between niches. In previous studies, males disperse randomly between niches but females stay put in their natal niche. As a first step toward generalizing the model, we here analyze the case that equal proportions of the two sexes disperse between niches before breeding. Supporting Maynard Smith's (1966) hypothesis, we find that once local adaptations are established, a neutral mating cue at an independent locus can rapidly enable speciation in populations with a suitable mechanism for phenotype matching. We find that stable ecological polymorphisms are relatively insensitive to the strength of selection, but depend crucially on the extent of dispersal between niches, with a threshold of ~5% if population sizes in two niches are equal. At higher levels of dispersal, ecological differentiation is lost. These results contrast with those of earlier studies and shed light on why parapatric speciation is limited by the extent of gene flow. Our testable model provides a candidate explanation for the rapid speciation rates, diversity of appearance and occurrence of "species flocks" observed among some African cichlids and neotropical birds and may also have implications for the occurrence of punctuational change on phylogenies.
Collapse
Affiliation(s)
| | - Mark Pagel
- School of Biological SciencesUniversity of ReadingReadingUK
| | - Robert N. Curnow
- Department of Mathematics and StatisticsUniversity of ReadingReadingUK
| | | |
Collapse
|
29
|
Finet C, Slavik K, Pu J, Carroll SB, Chung H. Birth-and-Death Evolution of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Diversification of Cuticular Hydrocarbon Synthesis in Drosophila. Genome Biol Evol 2019; 11:1541-1551. [PMID: 31076758 PMCID: PMC6546124 DOI: 10.1093/gbe/evz094] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
The birth-and-death evolutionary model proposes that some members of a multigene family are phylogenetically stable and persist as a single copy over time, whereas other members are phylogenetically unstable and undergo frequent duplication and loss. Functional studies suggest that stable genes are likely to encode essential functions, whereas rapidly evolving genes reflect phenotypic differences in traits that diverge rapidly among species. One such class of rapidly diverging traits are insect cuticular hydrocarbons (CHCs), which play dual roles in chemical communications as short-range recognition pheromones as well as protecting the insect from desiccation. Insect CHCs diverge rapidly between related species leading to ecological adaptation and/or reproductive isolation. Because the CHC and essential fatty acid biosynthetic pathways share common genes, we hypothesized that genes involved in the synthesis of CHCs would be evolutionary unstable, whereas those involved in fatty acid-associated essential functions would be evolutionary stable. To test this hypothesis, we investigated the evolutionary history of the fatty acyl-CoA reductases (FARs) gene family that encodes enzymes in CHC synthesis. We compiled a unique data set of 200 FAR proteins across 12 Drosophila species. We uncovered a broad diversity in FAR content which is generated by gene duplications, subsequent gene losses, and alternative splicing. We also show that FARs expressed in oenocytes and presumably involved in CHC synthesis are more unstable than FARs from other tissues. Taken together, our study provides empirical evidence that a comparative approach investigating the birth-and-death evolution of gene families can identify candidate genes involved in rapidly diverging traits between species.
Collapse
Affiliation(s)
- Cédric Finet
- Université de Lyon, Institut de Génomique Fonctionnelle de Lyon, CNRS UMR 5242, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, France
| | - Kailey Slavik
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison.,PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Jian Pu
- Department of Entomology, Michigan State University
| | - Sean B Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison.,Department of Biology, University of Maryland, College Park, MD
| | - Henry Chung
- Department of Entomology, Michigan State University.,Ecology, Evolutionary Biology and Behavior, Michigan State University
| |
Collapse
|
30
|
Moehring AJ, Boughman JW. Veiled preferences and cryptic female choice could underlie the origin of novel sexual traits. Biol Lett 2019; 15:20180878. [PMID: 30958124 DOI: 10.1098/rsbl.2018.0878] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Males in many species have elaborated sexual traits that females strongly prefer, and these traits often conspicuously differ among species. How novel preferences and traits originate, however, is a challenging evolutionary problem because the initial appearance of only the female preference or only the male trait should reduce the ability to find a suitable mate, which could reduce fitness for individuals possessing those novel alleles. Here, we present a hypothesis for how novel preferences, as well as the novel male traits that females prefer, can originate, be favoured and spread in polyandrous species. Novel preference mutations can arise as 'veiled preferences' that are not expressed when the corresponding male trait is not present in the population, allowing preferences to be hidden from selection, and thus persist. In those cases when a male trait is present, veiled preferences provide a selective advantage, and females disproportionately produce offspring from preferred males through either mate choice or cryptic female choice. This tips the fitness advantage for novel males, allowing both preference and trait to spread, and limiting selection against them in the absence of the corresponding trait or preference.
Collapse
Affiliation(s)
- Amanda J Moehring
- 1 Department of Biology, Western University , London, ON , Canada N6A 5B7
| | - Janette W Boughman
- 2 Ecology, Evolutionary Biology and Behavior Program, Michigan State University , East Lansing, MI 48824 , USA
| |
Collapse
|
31
|
Flying Drosophila show sex-specific attraction to fly-labelled food. Sci Rep 2019; 9:14947. [PMID: 31628403 PMCID: PMC6802089 DOI: 10.1038/s41598-019-51351-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/26/2019] [Indexed: 11/08/2022] Open
Abstract
Animals searching for food and sexual partners often use odourant mixtures combining food-derived molecules and pheromones. For orientation, the vinegar fly Drosophila melanogaster uses three types of chemical cues: (i) the male volatile pheromone 11-cis-vaccenyl acetate (cVA), (ii) sex-specific cuticular hydrocarbons (CHs; and CH-derived compounds), and (iii) food-derived molecules resulting from microbiota activity. To evaluate the effects of these chemicals on odour-tracking behaviour, we tested Drosophila individuals in a wind tunnel. Upwind flight and food preference were measured in individual control males and females presented with a choice of two food sources labelled by fly lines producing varying amounts of CHs and/or cVA. The flies originated from different species or strains, or their microbiota was manipulated. We found that (i) fly-labelled food could attract—but never repel—flies; (ii) the landing frequency on fly-labelled food was positively correlated with an increased flight duration; (iii) male—but not female or non-sex-specific—CHs tended to increase the landing frequency on fly-labelled food; (iv) cVA increased female—but not male—preference for cVA-rich food; and (v) microbiota-derived compounds only affected male upwind flight latency. Therefore, sex pheromones interact with food volatile chemicals to induce sex-specific flight responses in Drosophila.
Collapse
|
32
|
Wu F, Ma C, Han B, Meng L, Hu H, Fang Y, Feng M, Zhang X, Rueppell O, Li J. Behavioural, physiological and molecular changes in alloparental caregivers may be responsible for selection response for female reproductive investment in honey bees. Mol Ecol 2019; 28:4212-4227. [DOI: 10.1111/mec.15207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Olav Rueppell
- Department of Biology University of North Carolina at Greensboro Greensboro NC USA
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| |
Collapse
|
33
|
Experimental Introgression To Evaluate the Impact of Sex Specific Traits on Drosophila melanogaster Incipient Speciation. G3-GENES GENOMES GENETICS 2019; 9:2561-2572. [PMID: 31167833 PMCID: PMC6686937 DOI: 10.1534/g3.119.400385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sex specific traits are involved in speciation but it is difficult to determine whether their variation initiates or reinforces sexual isolation. In some insects, speciation depends of the rapid change of expression in desaturase genes coding for sex pheromones. Two closely related desaturase genes are involved in Drosophila melanogaster pheromonal communication: desat1 affects both the production and the reception of sex pheromones while desat2 is involved in their production in flies of Zimbabwe populations. There is a strong asymmetric sexual isolation between Zimbabwe populations and all other "Cosmopolitan" populations: Zimbabwe females rarely copulate with Cosmopolitan males whereas Zimbabwe males readily copulate with all females. All populations express desat1 but only Zimbabwe strains show high desat2 expression. To evaluate the impact of sex pheromones, female receptivity and desat expression on the incipient speciation process between Zimbabwe and Cosmopolitan populations, we introgressed the Zimbabwe genome into a Cosmopolitan genome labeled with the white mutation, using a multi-generation procedure. The association between these sex-specific traits was determined during the procedure. The production of pheromones was largely dissociated between the sexes. The copulation frequency (but not latency) was highly correlated with the female-but not with the male-principal pheromones. We finally obtained two stable white lines showing Zimbabwe-like sex pheromones, copulation discrimination and desat expression. Our study indicates that the variation of sex pheromones and mating discrimination depend of distinct-yet overlapping-sets of genes in each sex suggesting that their cumulated effects participate to reinforce the speciation process.
Collapse
|
34
|
Kefi M, Balabanidou V, Douris V, Lycett G, Feyereisen R, Vontas J. Two functionally distinct CYP4G genes of Anopheles gambiae contribute to cuticular hydrocarbon biosynthesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:52-59. [PMID: 31051237 DOI: 10.1016/j.ibmb.2019.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Cuticular hydrocarbon (CHC) biosynthesis is a major pathway of insect physiology. In Drosophila melanogaster the cytochrome P450 CYP4G1 catalyses the insect-specific oxidative decarbonylation step, while in the malaria vector Anopheles gambiae, two CYP4G paralogues, CYP4G16 and CYP4G17 are present. Analysis of the subcellular localization of CYP4G17 and CYP4G16 in larval and pupal stages revealed that CYP4G16 preserves its PM localization across developmental stages analyzed; however CYPG17 is differentially localized in two distinct types of pupal oenocytes, presumably oenocytes of larval and adult developmental specificity. Western blot analysis showed the presence of two CYP4G17 forms, potentially associated with each oenocyte type. Both An. gambiae CYP4Gs were expressed in D. melanogaster flies in a Cyp4g1 silenced background in order to functionally characterize them in vivo. CYP4G16, CYP4G17 or their combination rescued the lethal phenotype of Cyp4g1-knock down flies, demonstrating that CYP4G17 is also a functional decarbonylase, albeit of somewhat lower efficiency than CYP4G16 in Drosophila. Flies expressing mosquito CYP4G16 and/or CYP4G17 produced similar CHC profiles to 'wild-type' flies expressing the endogenous CYP4G1, but they also produce very long-chain dimethyl-branched CHCs not detectable in wild type flies, suggesting that the specificity of the CYP4G enzymes contributes to determine the complexity of the CHC blend. In conclusion, both An. gambiae CYP4G enzymes contribute to the unique Anopheles CHC profile, which has been associated to defense, adult desiccation tolerance, insecticide penetration rate and chemical communication.
Collapse
Affiliation(s)
- Mary Kefi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Department of Biology, University of Crete, VassilikaVouton, 71409, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Vassilis Douris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | - René Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, 1017, Denmark
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100, Heraklion, Greece; Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
35
|
Fujisawa T, Sasabe M, Nagata N, Takami Y, Sota T. Genetic basis of species-specific genitalia reveals role in species diversification. SCIENCE ADVANCES 2019; 5:eaav9939. [PMID: 31249868 PMCID: PMC6594765 DOI: 10.1126/sciadv.aav9939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The diversity of genital morphology among closely related animals with internal fertilization is well known, but the genetic backgrounds are unclear. Here, we show that, in Carabus (Ohomopterus) beetles showing correlated evolution of male and female genital parts, only a few major quantitative trait loci (QTLs) determine differences in genital dimensions between sister species, and sequence divergence is pronounced in the genomic regions containing genital QTLs. The major QTLs for male and female genital dimensions reside in different locations within the same linkage group, implying that coevolution between the sexes is only loosely constrained and can respond to sexually antagonistic selection. The same genomic regions containing the major QTLs show elevated divergence between three pairs of parapatric species with marked differences in genital parts. Our study demonstrates that species diversification can follow coevolution of genitalia between the sexes, even without tight linkage of loci affecting male and female genital dimensions.
Collapse
Affiliation(s)
- Tomochika Fujisawa
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Masataka Sasabe
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Nobuaki Nagata
- Division of Collections Conservation, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Yasuoki Takami
- Graduate School of Human Development and Environment, Kobe University, Kobe 657-8501, Japan
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
36
|
Nagao K, Murakami A, Umeda M. Structure and Function of Δ9-Fatty Acid Desaturase. Chem Pharm Bull (Tokyo) 2019; 67:327-332. [DOI: 10.1248/cpb.c18-01001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
37
|
The Desaturase Gene Family is Crucially Required for Fatty Acid Metabolism and Survival of the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2019; 20:ijms20061369. [PMID: 30893760 PMCID: PMC6472150 DOI: 10.3390/ijms20061369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022] Open
Abstract
Desaturases are essentially required for unsaturated fatty acid (UFA) biosynthesis. We identified 10 genes encoding putative desaturases in the transcriptome database of the brown planthopper (BPH), Nilaparvata lugens. These include eight First Desaturase family genes, one cytochrome b5 fused desaturase gene (Nlug-Cytb5r) and one Sphingolipid Desaturase gene (Nlug-ifc). Transcript level profiling revealed significant variation in the expression patterns of these genes across tissues and developmental stages, which occur in a gene-specific manner. Interestingly, their expression was also modulated by the insect food source: the mRNA levels of Nlug-desatC and Nlug-Cytb5r were down-regulated, but the expression level of Nlug-desatA1-b and Nlug-desatA1-c were elevated in the BPH fed on the resistant rice variety Babawee as compared to the non-resistant variety Taichun Native 1 (TN1). Silencing Nlug-desatA1-b, Nlug-desatA1-c, or Nlug-Ifc reduced fatty acid composition and abundance in female BPH 1-d-old-adults compared to controls. Whereas, single knockdown of all ten desaturase genes significantly increased mortality of BPH nymphs compared with controls. Of the ten desaturase genes, knockdown of Nlug-desatA1-b and Nlug-desatA2 caused the highest mortality in BPH (91% and 97%, respectively). Our findings offer a base for expression and functional characterization of newly identified desaturase genes in BPH, and may contribute to RNA interference-based pest management strategies.
Collapse
|
38
|
Houot B, Cazalé-Debat L, Fraichard S, Everaerts C, Saxena N, Sane SP, Ferveur JF. Gene Regulation and Species-Specific Evolution of Free Flight Odor Tracking in Drosophila. Mol Biol Evol 2019; 35:3-15. [PMID: 28961885 DOI: 10.1093/molbev/msx241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The flying ability of insects has coevolved with the development of organs necessary to take-off from the ground, generate, and modulate lift during flight in complex environments. Flight orientation to the appropriate food source and mating partner depends on the perception and integration of multiple chemical signals. We used a wind tunnel-based assay to investigate the natural and molecular evolution of free flight odor tracking in Drosophila. First, the comparison of female and male flies of several populations and species revealed substantial sex-, inter-, and intra-specific variations for distinct flight features. In these flies, we compared the molecular structure of desat1, a fast-evolving gene involved in multiple aspects of Drosophila pheromonal communication. We manipulated desat1 regulation and found that both neural and nonneural tissues affect distinct flight features. Together, our data suggest that desat1 is one of the genes involved in the evolution of free-flight odor tracking behaviors in Drosophila.
Collapse
Affiliation(s)
- Benjamin Houot
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Fraichard
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| | - Nitesh Saxena
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Sanjay P Sane
- Insect Flight Laboratory, National Center for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
39
|
Groot AT, van Wijk M, Villacis-Perez E, Kuperus P, Schöfl G, van Veldhuizen D, Heckel DG. Within-population variability in a moth sex pheromone blend, part 2: selection towards fixation. ROYAL SOCIETY OPEN SCIENCE 2019; 6:182050. [PMID: 31032049 PMCID: PMC6458377 DOI: 10.1098/rsos.182050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
To understand how variation in sexual communication systems evolves, the genetic architecture underlying sexual signals and responses needs to be identified. Especially in animals where mating signals are important for mate recognition, and signals and responses are governed by independently assorting genes, it is difficult to envision how signals and preferences can (co)evolve. Moths are a prime example of such animals. In the noctuid moth Heliothis virescens, we found within-population variation in the female pheromone. In previous selection experiments followed by quantitative trait locus (QTL) analysis and expression analysis of candidate desaturase genes, we developed a model involving a trans-acting repressor of the delta-11-desaturase. In our current study with new selection lines, we fixed the most extreme phenotype and found a single underlying mutation: a premature stop codon in the first coding exon of delta-11-desaturase, which we could trace back to its origin in the laboratory. Interestingly, we found no pleiotropic effects of this knock-out mutation on the male physiological or behavioural response, or on growth or fertility. This finding is in contrast to Drosophila melanogaster, where a single desaturase gene affects both female pheromone production and male behavioural response, but similar to other Lepidoptera where these traits are under independent genetic control. To our knowledge, this is the first time that a single point mutation has been identified that underlies the phenotypic variation in the pheromone signal of a moth.
Collapse
Affiliation(s)
- Astrid T. Groot
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Michiel van Wijk
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Ernesto Villacis-Perez
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Peter Kuperus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Gerhard Schöfl
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| | - Dennis van Veldhuizen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David G. Heckel
- Department Entomology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745 Jena, Germany
| |
Collapse
|
40
|
Nojima T, Chauvel I, Houot B, Bousquet F, Farine JP, Everaerts C, Yamamoto D, Ferveur JF. The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster. J Neurogenet 2019; 33:96-115. [PMID: 30724684 DOI: 10.1080/01677063.2018.1559843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Desaturase1 (desat1) is one of the few genes known to be involved in the two complementary aspects of sensory communication - signal emission and signal reception - in Drosophila melanogaster. In particular, desat1 is necessary for the biosynthesis of major cuticular pheromones in both males and females. It is also involved in the male ability to discriminate sex pheromones. Each of these two sensory communication aspects depends on distinct desat1 putative regulatory regions. Here, we used (i) mutant alleles resulting from the insertion/excision of a transposable genomic element inserted in a desat1 regulatory region, and (ii) transgenics made with desat1 regulatory regions used to target desat1 RNAi. These genetic variants were used to study several reproduction-related phenotypes. In particular, we compared the fecundity of various mutant and transgenic desat1 females with regard to the developmental fate of their progeny. We also compared the mating performance in pairs of flies with altered desat1 expression in various desat1-expressing tissues together with their inability to disengage at the end of copulation. Moreover, we investigated the developmental origin of altered sex pheromone discrimination in male flies. We attempted to map some of the tissues involved in these reproduction-related phenotypes. Given that desat1 is expressed in many brain neurons and in non-neuronal tissues required for varied aspects of reproduction, our data suggest that the regulation of this gene has evolved to allow the optimal reproduction and a successful adaptation to varied environments in this cosmopolitan species.
Collapse
Affiliation(s)
- Tetsuya Nojima
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,c Centre for Neural Circuits and Behaviour , University of Oxford , Oxford , United Kingdom
| | - Isabelle Chauvel
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Benjamin Houot
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France.,d Division of Chemical Ecology, Department of Plant Protection Biology , Swedish University of Agricultural Sciences , Alnarp , Sweden
| | - François Bousquet
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Jean-Pierre Farine
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Claude Everaerts
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| | - Daisuke Yamamoto
- b Graduate School of Life Sciences , Tohoku University , Sendai , Japan.,e Neuro-Network Evolution Project, Advanced ICT Research Institute , National Institute of Information and Communications Technology , Nishi-Ku , Japan Kobe
| | - Jean-François Ferveur
- a Centre des Sciences du Goût et de l'Alimentation , Université de Bourgogne Franche-Comté , Dijon , France
| |
Collapse
|
41
|
Storelli G, Nam HJ, Simcox J, Villanueva CJ, Thummel CS. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Dev Cell 2018; 48:200-214.e6. [PMID: 30554999 DOI: 10.1016/j.devcel.2018.11.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Animals must adjust their metabolism as they progress through development in order to meet the needs of each stage in the life cycle. Here, we show that the dHNF4 nuclear receptor acts at the onset of Drosophila adulthood to direct an essential switch in lipid metabolism. Lipid stores are consumed shortly after metamorphosis but contribute little to energy metabolism. Rather, dHNF4 directs their conversion to very long chain fatty acids and hydrocarbons, which waterproof the animal to preserve fluid homeostasis. Similarly, HNF4α is required in mouse hepatocytes for the expression of fatty acid elongases that contribute to a waterproof epidermis, suggesting that this pathway is conserved through evolution. This developmental switch in Drosophila lipid metabolism promotes lifespan and desiccation resistance in adults and suppresses hallmarks of diabetes, including elevated glucose levels and intolerance to dietary sugars. These studies establish dHNF4 as a regulator of the adult metabolic state.
Collapse
Affiliation(s)
- Gilles Storelli
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Judith Simcox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
42
|
Altered pheromone biosynthesis is associated with sex-specific changes in life span and behavior in Drosophila melanogaster. Mech Ageing Dev 2018; 176:1-8. [DOI: 10.1016/j.mad.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
|
43
|
Pardy JA, Rundle HD, Bernards MA, Moehring AJ. The genetic basis of female pheromone differences between Drosophila melanogaster and D. simulans. Heredity (Edinb) 2018; 122:93-109. [PMID: 29777168 DOI: 10.1038/s41437-018-0080-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
Chemical signals are one means by which many insect species communicate. Differences in the combination of surface chemicals called cuticular hydrocarbons (CHCs) can influence mating behavior and affect reproductive isolation between species. Genes influencing three CHC compounds have been identified in Drosophila melanogaster. However, the genetic basis of other CHC compounds, whether these genes affect species differences in CHCs, and the genes' resulting effect on interspecies mating, remains unknown. We used fine-scale deficiency mapping of the third chromosome to identify 43 genomic regions that influence production of CHCs in both D. melanogaster and Drosophila simulans females. We identified an additional 23 small genomic regions that affect interspecies divergence in CHCs between females of these two species, one of which spans two genes known to influence the production of multiple CHCs within D. melanogaster. By testing these genes individually, we determined that desat1 also affects interspecific divergence in one CHC compound, while desat2 has no effect on interspecific divergence. Thus, some but not all genes affecting intraspecific amounts of CHCs also affect interspecific divergence, but not all genes or all CHCs. Lastly, we find no evidence of a relationship between the CHC profile and female attractiveness or receptivity towards D. melanogaster males.
Collapse
Affiliation(s)
- Jessica A Pardy
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Howard D Rundle
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mark A Bernards
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
44
|
Grillet M, Ferveur JF, Everaerts C. Behavioural elements and sensory cues involved in sexual isolation between Drosophila melanogaster strains. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172060. [PMID: 29892393 PMCID: PMC5990781 DOI: 10.1098/rsos.172060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Sensory cues exchanged during courtship are crucial for mate choice: if they show intraspecific divergence, this may cause or reinforce sexual isolation between strains, ultimately leading to speciation. There is a strong asymmetric sexual isolation between Drosophila melanogaster females from Zimbabwe (Z) and males from all other populations (M). While M and Z flies of both sexes show different cuticular pheromones, this variation is only partly responsible for the intraspecific isolation effect. Male acoustic signals are also partly involved in sexual isolation. We examined strain-specific courtship behaviour sequences to determine which body parts and sensory appendages may be involved in sexual isolation. Using two strains representative of the Z- and M-types, we manipulated sensory cues and the social context; we then measured the consequence of these manipulations on courtship and copulation. Our data suggest that Z females mated best with males whose sensory characteristics matched those of Z males in both quantity and quality. M females were less choosy and much less influenced by the sensory and social contexts. Differences in emission and reception of sensory signals seen between Z and M flies may lead to the concerted evolution of multiple sensory channel, thereby shaping a population-specific mate recognition system.
Collapse
Affiliation(s)
| | | | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, 21000 Dijon, France
| |
Collapse
|
45
|
McQueen EW, Morehouse NI. Rapid Divergence of Wing Volatile Profiles Between Subspecies of the Butterfly Pieris rapae (Lepidoptera: Pieridae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4953129. [PMID: 29718495 PMCID: PMC5865527 DOI: 10.1093/jisesa/iey026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 06/08/2023]
Abstract
Complex signaling traits such as pheromone profiles can play an important role in the early stages of reproductive isolation between populations. These signals can diverge along multiple trait axes, and signal receivers are often sensitive to subtle differences in signal properties. In the Lepidoptera, prior research has highlighted that natural selection can drive rapid chemical signal divergence, for instance via mate recognition to maintain species boundaries. Much less is known about the occurrence of such changes for predominantly sexually selected chemical signals, such as those released by many male lepidopterans. We evaluated the divergence in male and female wing volatile profiles between two recently isolated subspecies of the pierid butterfly Pieris rapae Linnaeus (Lepidoptera: Pieridae): P. rapae rapae and P. rapae crucivora. In laboratory settings, these subspecies exhibit strong premating isolation, with females rejecting males of the opposite subspecies despite the fact that males direct equivalent courtship effort toward females of either subspecies. Using gas chromatography-mass spectrometry, we analyzed the volatile chemical profiles of individual males and females of each subspecies. We find that males of each subspecies differ in their wing volatile profiles, including quantitative differences in a male sex pheromone, ferrulactone. In contrast, female wing volatiles profiles have diverged significantly less. These sex-specific patterns suggest that male chemical profiles may play a role in the observed premating isolation between these two subspecies, providing support for future investigations of sexually selected chemical traits in population divergence.
Collapse
Affiliation(s)
- Eden W McQueen
- Department of Biological Sciences, University of Pittsburgh, Langley Hall, Pittsburgh, PA
| | - Nathan I Morehouse
- Department of Biological Sciences, University of Pittsburgh, Langley Hall, Pittsburgh, PA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
46
|
Ferveur JF, Cortot J, Rihani K, Cobb M, Everaerts C. Desiccation resistance: effect of cuticular hydrocarbons and water content in Drosophila melanogaster adults. PeerJ 2018; 6:e4318. [PMID: 29456884 PMCID: PMC5813593 DOI: 10.7717/peerj.4318] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
Background The insect cuticle covers the whole body and all appendages and has bi-directionnal selective permeability: it protects against environmental stress and pathogen infection and also helps to reduce water loss. The adult cuticle is often associated with a superficial layer of fatty acid-derived molecules such as waxes and long chain hydrocarbons that prevent rapid dehydration. The waterproofing properties of cuticular hydrocarbons (CHs) depend on their chain length and desaturation number. Drosophila CH biosynthesis involves an enzymatic pathway including several elongase and desaturase enzymes. Methods The link between desiccation resistance and CH profile remains unclear, so we tested (1) experimentally selected desiccation-resistant lines, (2) transgenic flies with altered desaturase expression and (3) natural and laboratory-induced CH variants. We also explored the possible relationship between desiccation resistance, relative water content and fecundity in females. Results We found that increased desiccation resistance is linked with the increased proportion of desaturated CHs, but not with their total amount. Experimentally-induced desiccation resistance and CH variation both remained stable after many generations without selection. Conversely, flies with a higher water content and a lower proportion of desaturated CHs showed reduced desiccation resistance. This was also the case in flies with defective desaturase expression in the fat body. Discussion We conclude that rapidly acquired desiccation resistance, depending on both CH profile and water content, can remain stable without selection in a humid environment. These three phenotypes, which might be expected to show a simple relationship, turn out to have complex physiological and genetic links.
Collapse
Affiliation(s)
- Jean-Francois Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Karen Rihani
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
47
|
Kopp M, Servedio MR, Mendelson TC, Safran RJ, Rodríguez RL, Hauber ME, Scordato EC, Symes LB, Balakrishnan CN, Zonana DM, van Doorn GS. Mechanisms of Assortative Mating in Speciation with Gene Flow: Connecting Theory and Empirical Research. Am Nat 2018; 191:1-20. [DOI: 10.1086/694889] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Cotto O, Servedio MR. The Roles of Sexual and Viability Selection in the Evolution of Incomplete Reproductive Isolation: From Allopatry to Sympatry. Am Nat 2017; 190:680-693. [DOI: 10.1086/693855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Steiner C, Bozzolan F, Montagné N, Maïbèche M, Chertemps T. Neofunctionalization of "Juvenile Hormone Esterase Duplication" in Drosophila as an odorant-degrading enzyme towards food odorants. Sci Rep 2017; 7:12629. [PMID: 28974761 PMCID: PMC5626784 DOI: 10.1038/s41598-017-13015-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/08/2022] Open
Abstract
Odorant degrading enzymes (ODEs) are thought to be responsible, at least in part, for olfactory signal termination in the chemosensory system by rapid degradation of odorants in the vicinity of the receptors. A carboxylesterase, specifically expressed in Drosophila antennae, called "juvenile hormone esterase duplication (JHEdup)" has been previously reported to hydrolyse different fruit esters in vitro. Here we functionally characterize JHEdup in vivo. We show that the jhedup gene is highly expressed in large basiconic sensilla that have been reported to detect several food esters. An electrophysiological analysis demonstrates that ab1A olfactory neurons of jhedup mutant flies exhibit an increased response to certain food acetates. Furthermore, mutant flies show a higher sensitivity towards the same odorants in behavioural assays. A phylogenetic analysis reveals that jhedup arose as a duplication of the juvenile hormone esterase gene during the evolution of Diptera, most likely in the ancestor of Schizophora, and has been conserved in all the 12 sequenced Drosophila species. Jhedup exhibits also an olfactory-predominant expression pattern in other Drosophila species. Our results support the implication of JHEdup in the degradation of food odorants in D. melanogaster and propose a neofunctionalization of this enzyme as a bona fide ODE in Drosophilids.
Collapse
Affiliation(s)
- Claudia Steiner
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Françoise Bozzolan
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Nicolas Montagné
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - Martine Maïbèche
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France.
| | - Thomas Chertemps
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, INRA, CNRS, IRD, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| |
Collapse
|
50
|
Murakami A, Nagao K, Juni N, Hara Y, Umeda M. An N-terminal di-proline motif is essential for fatty acid-dependent degradation of Δ9-desaturase in Drosophila. J Biol Chem 2017; 292:19976-19986. [PMID: 28972163 DOI: 10.1074/jbc.m117.801936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
The Δ9-fatty acid desaturase introduces a double bond at the Δ9 position of the acyl moiety of acyl-CoA and regulates the cellular levels of unsaturated fatty acids. However, it is unclear how Δ9-desaturase expression is regulated in response to changes in the levels of fatty acid desaturation. In this study, we found that the degradation of DESAT1, the sole Δ9-desaturase in the Drosophila cell line S2, was significantly enhanced when the amounts of unsaturated acyl chains of membrane phospholipids were increased by supplementation with unsaturated fatty acids, such as oleic and linoleic acids. In contrast, inhibition of DESAT1 activity remarkably suppressed its degradation. Of note, removal of the DESAT1 N-terminal domain abolished the responsiveness of DESAT1 degradation to the level of fatty acid unsaturation. Further truncation and amino acid replacement analyses revealed that two sequential prolines, the second and third residues of DESAT1, were responsible for the unsaturated fatty acid-dependent degradation. Although degradation of mouse stearoyl-CoA desaturase 1 (SCD1) was unaffected by changes in fatty acid unsaturation, introduction of the N-terminal sequential proline residues into SCD1 conferred responsiveness to unsaturated fatty acid-dependent degradation. Furthermore, we also found that the Ca2+-dependent cysteine protease calpain is involved in the sequential proline-dependent degradation of DESAT1. In light of these findings, we designated the sequential prolines at the second and third positions of DESAT1 as a "di-proline motif," which plays a crucial role in the regulation of Δ9-desaturase expression in response to changes in the level of cellular unsaturated fatty acids.
Collapse
Affiliation(s)
- Akira Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510.
| |
Collapse
|