1
|
Holt RR, Schmitz HH, Mhawish R, Komarnytsky S, Nguyen T, Caveney PM, Munafo JP. Comfort Foods in the Twenty-First Century: Friend or Foe? Annu Rev Food Sci Technol 2025; 16:433-458. [PMID: 39661555 DOI: 10.1146/annurev-food-111523-122109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The comfort food (CF) concept emerged during the latter half of the twentieth century. Although not well defined, CF can be described as familiar foods that elicit feelings of well-being and play a role in social interactions and psychological health. These foods are often calorically dense and nutrient-poor, and overconsumption of some CF may contribute to negative metabolic health outcomes. This is particularly relevant when considering the global increase in obesity, leading to the development of therapeutics for improved weight control and metabolic health. In this review, we aim to (a) provide a historical perspective of the CF concept, (b) detail some genetic, developmental, and cultural factors that determine food preference, (c) discuss the influence of diet on the gut-brain connection, hormones, nutrient absorption, and microbiome diversity, and (d) provide a perspective detailing possible future directions in which food technology may enable a new generation of CF with enhanced palatability and nutrient profiles while contributing to well-being and environmental sustainability.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Harold H Schmitz
- Graduate School of Management, University of California, Davis, Davis, California, USA
- March Capital US, L.L.C., Davis, California, USA
| | - Reham Mhawish
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Thien Nguyen
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA;
| | - Patrick M Caveney
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA;
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
2
|
Haehner A, Reuner U, Nagai MH, Alkar YS, Matsunami H, Hummel T. Patients with Wilson's Disease Are Insensitive to Sulfur Odors. Mov Disord Clin Pract 2025; 12:118-119. [PMID: 39417526 PMCID: PMC11736884 DOI: 10.1002/mdc3.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
- Antje Haehner
- Department of Otorhinolaryngology, TU DresdenSmell and Taste ClinicDresdenGermany
| | | | - Maira H. Nagai
- Department of Molecular Genetics and MicrobiologyDuke University School of MedicineDurhamNorth CarolinaUSA
- Present address:
Department of MedicineColumbia Center for Human Development, Columbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Yehya Sheikh Alkar
- Department of Otorhinolaryngology, TU DresdenSmell and Taste ClinicDresdenGermany
| | - Hiroaki Matsunami
- Department of Molecular Genetics and MicrobiologyDuke University School of MedicineDurhamNorth CarolinaUSA
- Department of NeurobiologyDuke Institute for Brain Sciences, Duke UniversityDurhamNorth CarolinaUSA
| | - Thomas Hummel
- Department of Otorhinolaryngology, TU DresdenSmell and Taste ClinicDresdenGermany
| |
Collapse
|
3
|
Jauhal AA, Constantine R, Newcomb R. Conservation and selective pressures shaping baleen whale olfactory receptor genes supports their use of olfaction in the marine environment. Mol Ecol 2024; 33:e17497. [PMID: 39161105 DOI: 10.1111/mec.17497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The relative importance of various sensory modalities can shift in response to evolutionary transitions, resulting in changes to underlying gene families encoding their reception systems. The rapid birth-and-death process underlying the evolution of the large olfactory receptor (OR) gene family has accelerated genomic-level change for the sense of smell in particular. The transition from the land to sea in marine mammals is an attractive model for understanding the influence of habitat shifts on sensory systems, with the retained OR repertoire of baleen whales contrasting with its loss in toothed whales. In this study, we examine to what extent the transition from a terrestrial to a marine environment has influenced the evolution of baleen whale OR repertoires. We developed Gene Mining Pipeline (GMPipe) (https://github.com/AprilJauhal/GMPipe), which can accurately identify large numbers of candidate OR genes. GMPipe identified 707 OR sequences from eight baleen whale species. These repertoires exhibited distinct family count distributions compared to terrestrial mammals, including signs of relative expansion in families OR10, OR11 and OR13. While many receptors have been lost or show signs of random drift in baleen whales, others exhibit signs of evolving under purifying or positive selection. Over 85% of OR genes could be sorted into orthologous groups of sequences containing at least four homologous sequences. Many of these groups, particularly from family OR10, presented signs of relative expansion and purifying selective pressure. Overall, our results suggest that the relatively small size of baleen whale OR repertoires result from specialisation to novel olfactory landscapes, as opposed to random drift.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| | | | - Richard Newcomb
- The New Zealand Institute for Plant & Food Research, Auckland, New Zealand
| |
Collapse
|
4
|
Dluhosch D, Kersten LS, Schott-Verdugo S, Hoppen C, Schwarten M, Willbold D, Gohlke H, Groth G. Structure and dimerization properties of the plant-specific copper chaperone CCH. Sci Rep 2024; 14:19099. [PMID: 39154065 PMCID: PMC11330527 DOI: 10.1038/s41598-024-69532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Copper chaperones of the ATX1 family are found in a wide range of organisms where these essential soluble carriers strictly control the transport of monovalent copper across the cytoplasm to various targets in diverse cellular compartments thereby preventing detrimental radical formation catalyzed by the free metal ion. Notably, the ATX1 family in plants contains two distinct forms of the cellular copper carrier. In addition to ATX1 having orthologs in other species, they also contain the copper chaperone CCH. The latter features an extra C-terminal extension whose function is still unknown. The secondary structure of this extension was predicted to be disordered in previous studies, although this has not been experimentally confirmed. Solution NMR studies on purified CCH presented in this study disclose that this region is intrinsically disordered regardless of the chaperone's copper loading state. Further biophysical analyses of the purified metallochaperone provide evidence that the C-terminal extension stabilizes chaperone dimerization in the copper-free and copper-bound states. A variant of CCH lacking the C-terminal extension, termed CCHΔ, shows weaker dimerization but similar copper binding. Computational studies further corroborate the stabilizing role of the C-terminal extension in chaperone dimerization and identify key residues that are vital to maintaining dimer stability.
Collapse
Affiliation(s)
- Dominik Dluhosch
- Institute of Biochemical Plant Physiology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lisa Sophie Kersten
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Stephan Schott-Verdugo
- Institute of Bio- and Geosciences: Bioinformatics (IBG-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Claudia Hoppen
- Institute of Biochemical Plant Physiology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Melanie Schwarten
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Institute of Bio- and Geosciences: Bioinformatics (IBG-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Yin JH, Liu M, Lan C, Chu B, Meng L, Xu N. Catechol oxidase nanozyme based colorimetric sensors array for highly selective distinction among multiple catecholamines. Anal Chim Acta 2023; 1279:341823. [PMID: 37827622 DOI: 10.1016/j.aca.2023.341823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
In order to effectively monitor multiple catecholamine (CA) neurotransmitters with extreme similar structures, a rapid, sensitive and selective detection strategy has become an urgent problem to be solved. In this paper, a novel colorimetric sensors array based on CuNCs protected by various ligands such as tannic acid, ascorbic acid and polymethylacrylic acid (CuNCs@TA, CuNCs@AA and CuNCs@PMAA) was constructed. All of these CuNCs could mimic catechol oxidase to selective catalyze catechol-type analogues (such as CAs) to corresponding quinones along with color changes. Furthermore, experiments and theory calculations demonstrated that Cr6+-modification on the surface of CuNCs facilitated the steady-state kinetics of enzymatic activity. Based on these CuNCs as sensing probes, this sensors array can quickly detect different CAs (such as epinephrine (EP), including dopamine (DA), norepinephrine (NE) and l-dopa) with similar structures. When those analogues were added to the CuNC-based colorimetric array sensors, different absorbance changes were produced at 485 nm. Linear discriminant analysis (LDA) showed that the tri-probe colorimetric array sensors could recognize and distinguish these analogues, and corresponding binary and ternary mixtures could be well categorized. The value of Factor 1 of an array with varied CA concentrations had a good linear correlation, and the detection limit (LOD) was as low as 10-8∼10-9 mol/L. Four CA analogues in real samples were identified by CuNCs-based colorimetric array sensors. This work provides a fast and convenient experimental basis for monitoring the complex structure CAs neurotransmitters.
Collapse
Affiliation(s)
- Jian-Hang Yin
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Mengxuan Liu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Chengwu Lan
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Baiquan Chu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Lei Meng
- College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Na Xu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China.
| |
Collapse
|
6
|
Azhar BJ, Abbas S, Aman S, Yamburenko MV, Chen W, Müller L, Uzun B, Jewell DA, Dong J, Shakeel SN, Groth G, Binder BM, Grigoryan G, Schaller GE. Basis for high-affinity ethylene binding by the ethylene receptor ETR1 of Arabidopsis. Proc Natl Acad Sci U S A 2023; 120:e2215195120. [PMID: 37253004 PMCID: PMC10266040 DOI: 10.1073/pnas.2215195120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/14/2023] [Indexed: 06/01/2023] Open
Abstract
The gaseous hormone ethylene is perceived in plants by membrane-bound receptors, the best studied of these being ETR1 from Arabidopsis. Ethylene receptors can mediate a response to ethylene concentrations at less than one part per billion; however, the mechanistic basis for such high-affinity ligand binding has remained elusive. Here we identify an Asp residue within the ETR1 transmembrane domain that plays a critical role in ethylene binding. Site-directed mutation of the Asp to Asn results in a functional receptor that has a reduced affinity for ethylene, but still mediates ethylene responses in planta. The Asp residue is highly conserved among ethylene receptor-like proteins in plants and bacteria, but Asn variants exist, pointing to the physiological relevance of modulating ethylene-binding kinetics. Our results also support a bifunctional role for the Asp residue in forming a polar bridge to a conserved Lys residue in the receptor to mediate changes in signaling output. We propose a new structural model for the mechanism of ethylene binding and signal transduction, one with similarities to that found in a mammalian olfactory receptor.
Collapse
Affiliation(s)
- Beenish J. Azhar
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Safdar Abbas
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Sitwat Aman
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | | | - Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Lena Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Buket Uzun
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - David A. Jewell
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - Jian Dong
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| | - Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Biochemistry, Quaid-i-azam University, Islamabad45320, Pakistan
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf,40225Düsseldorf, Germany
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN37996
| | - Gevorg Grigoryan
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
- Department of Computer Science, Dartmouth College, Hanover, NH03755
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH03755
| |
Collapse
|
7
|
Fukutani Y, Abe M, Saito H, Eguchi R, Tazawa T, de March CA, Yohda M, Matsunami H. Antagonistic interactions between odorants alter human odor perception. Curr Biol 2023; 33:2235-2245.e4. [PMID: 37220745 PMCID: PMC10394640 DOI: 10.1016/j.cub.2023.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/19/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The olfactory system uses hundreds of odorant receptors (ORs), the largest group of the G-protein-coupled receptor (GPCR) superfamily, to detect a vast array of odorants. Each OR is activated by specific odorous ligands, and like other GPCRs, antagonism can block activation of ORs. Recent studies suggest that odorant antagonisms in mixtures influence olfactory neuron activities, but it is unclear how this affects perception of odor mixtures. In this study, we identified a set of human ORs activated by methanethiol and hydrogen sulfide, two potent volatile sulfur malodors, through large-scale heterologous expression. Screening odorants that block OR activation in heterologous cells identified a set of antagonists, including β-ionone. Sensory evaluation in humans revealed that β-ionone reduced the odor intensity and unpleasantness of methanethiol. Additionally, suppression was not observed when methanethiol and β-ionone were introduced simultaneously to different nostrils. Our study supports the hypothesis that odor sensation is altered through antagonistic interactions at the OR level.
Collapse
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Masashi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Haruka Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryo Eguchi
- Research Section, R & D Division, S.T. Corporation, Shinjuku, Tokyo 161-0033, Japan
| | - Toshiaki Tazawa
- Research Section, R & D Division, S.T. Corporation, Shinjuku, Tokyo 161-0033, Japan
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Institute of Chemistry of the Natural Substances, Université Paris Saclay, CNRS UPR2301, Gif-sur-Yvette 91190, France
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Hiroaki Matsunami
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
8
|
Shirai T, Takase D, Yokoyama J, Nakanishi K, Uehara C, Saito N, Kato-Namba A, Yoshikawa K. Functions of human olfactory mucus and age-dependent changes. Sci Rep 2023; 13:971. [PMID: 36653421 PMCID: PMC9846672 DOI: 10.1038/s41598-023-27937-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Odorants are detected by olfactory sensory neurons, which are covered by olfactory mucus. Despite the existence of studies on olfactory mucus, its constituents, functions, and interindividual variability remain poorly understood. Here, we describe a human study that combined the collection of olfactory mucus and olfactory psychophysical tests. Our analyses revealed that olfactory mucus contains high concentrations of solutes, such as total proteins, inorganic elements, and molecules for xenobiotic metabolism. The high concentrations result in a capacity to capture or metabolize a specific repertoire of odorants. We provide evidence that odorant metabolism modifies our sense of smell. Finally, the amount of olfactory mucus decreases in an age-dependent manner. A follow-up experiment recapitulated the importance of the amount of mucus in the sensitive detection of odorants by their receptors. These findings provide a comprehensive picture of the molecular processes in olfactory mucus and propose a potential cause of olfactory decline.
Collapse
Affiliation(s)
- Tomohiro Shirai
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Dan Takase
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Junkichi Yokoyama
- Department of Otolaryngology-Head and Neck Surgery, Edogawa Hospital, 2-24-18 Higashikoiwa, Edogawa, Tokyo, Japan.,Department of Otolaryngology-Head and Neck Surgery, Nadogaya Hospital, 2-1-1 Shinkashiwa, Kashiwa, Chiba, Japan
| | - Kuniyuki Nakanishi
- Analytical Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, Japan
| | - Chisaki Uehara
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Naoko Saito
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Aya Kato-Namba
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan
| | - Keiichi Yoshikawa
- Sensory Science Research, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga, Tochigi, Japan.
| |
Collapse
|
9
|
Yuan X, Wang Y, Ali MA, Qin Z, Guo Z, Zhang Y, Zhang M, Zhou G, Yang J, Chen L, Shen L, Zhu L, Zeng C. Odorant Receptor OR2C1 Is an Essential Modulator of Boar Sperm Capacitation by Binding with Heparin. Int J Mol Sci 2023; 24:ijms24021664. [PMID: 36675176 PMCID: PMC9861704 DOI: 10.3390/ijms24021664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Heparin, a class of glycosaminoglycans (GAGs), is widely used to induce sperm capacitation and fertilization. How heparin induces sperm capacitation remains unclear. Olfactory receptors (ORs) which are G protein-coupled receptors, have been proposed to be involved in sperm capacitation. However, the interaction between ORs and odor molecules and the molecular mechanism of ORs mediating sperm capacitation are still unclear. The present study aimed to explore the underlying interaction and mechanism between heparin and ORs in carrying out the boar sperm capacitation. The results showed that olfactory receptor 2C1 (OR2C1) is a compulsory unit which regulates the sperm capacitation by recognizing and binding with heparin, as determined by Dual-Glo Luciferase Assay and molecular docking. In addition, molecular dynamics (MD) simulation indicated that OR2C1 binds with heparin via a hydrophobic cavity comprises of Arg3, Ala6, Thr7, Asn171, Arg172, Arg173, and Pro287. Furthermore, we demonstrated that knocking down OR2C1 significantly inhibits sperm capacitation. In conclusion, we highlighted a novel olfactory receptor, OR2C1, in boar sperm and disclosed the potential binding of heparin to Pro287, a conserved residue in the transmembrane helices region 7 (TMH7). Our findings will benefit the further understanding of ORs involved in sperm capacitation and fertilization.
Collapse
Affiliation(s)
- Xiang Yuan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yihan Wang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Malik Ahsan Ali
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Punjab, Pakistan
| | - Ziyue Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihua Guo
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ming Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiandong Yang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Changjun Zeng
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-28-8629-1010
| |
Collapse
|
10
|
Ben Khemis I, Noureddine O, Aouaini F, Salamah M. Aljaloud A, Nasr S, Ben Lamine A. Indirect characterizations of mOR-EG: Modeling analysis of five concentration-olfactory response curves via an advanced monolayer adsorption model. Int J Biol Macromol 2022; 222:1277-1286. [DOI: 10.1016/j.ijbiomac.2022.09.251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
11
|
Cong X, Ren W, Pacalon J, Xu R, Xu L, Li X, de March CA, Matsunami H, Yu H, Yu Y, Golebiowski J. Large-Scale G Protein-Coupled Olfactory Receptor-Ligand Pairing. ACS CENTRAL SCIENCE 2022; 8:379-387. [PMID: 35350604 PMCID: PMC8949627 DOI: 10.1021/acscentsci.1c01495] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) conserve common structural folds and activation mechanisms, yet their ligand spectra and functions are highly diverse. This work investigated how the amino-acid sequences of olfactory receptors (ORs)-the largest GPCR family-encode diversified responses to various ligands. We established a proteochemometric (PCM) model based on OR sequence similarities and ligand physicochemical features to predict OR responses to odorants using supervised machine learning. The PCM model was constructed with the aid of site-directed mutagenesis, in vitro functional assays, and molecular simulations. We found that the ligand selectivity of the ORs is mostly encoded in the residues up to 8 Å around the orthosteric pocket. Subsequent predictions using Random Forest (RF) showed a hit rate of up to 58%, as assessed by in vitro functional assays of 111 ORs and 7 odorants of distinct scaffolds. Sixty-four new OR-odorant pairs were discovered, and 25 ORs were deorphanized here. The best model demonstrated a 56% deorphanization rate. The PCM-RF approach will accelerate OR-odorant mapping and OR deorphanization.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
- E-mail:
| | - Wenwen Ren
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
| | - Jody Pacalon
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
| | - Rui Xu
- School
of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Lun Xu
- Ear,
Nose & Throat Institute, Department of Otolaryngology, Eye, Ear,
Nose & Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
| | - Xuewen Li
- School
of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Claire A. de March
- Department
of Molecular Genetics and Microbiology, and Department of Neurobiology,
and Duke Institute for Brain Sciences, Duke
University Medical Center, Research Drive, Durham, North Carolina 27710, United States
| | - Hiroaki Matsunami
- Department
of Molecular Genetics and Microbiology, and Department of Neurobiology,
and Duke Institute for Brain Sciences, Duke
University Medical Center, Research Drive, Durham, North Carolina 27710, United States
| | - Hongmeng Yu
- Ear,
Nose & Throat Institute, Department of Otolaryngology, Eye, Ear,
Nose & Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- Clinical
and Research Center for Olfactory Disorders, Eye, Ear, Nose &
Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- Research
Units of New Technologies of Endoscopic Surgery in Skull Base Tumor,
Chinese Academy of Medical Sciences, Beijing 100730, People’s
Republic of China
| | - Yiqun Yu
- Ear,
Nose & Throat Institute, Department of Otolaryngology, Eye, Ear,
Nose & Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- Clinical
and Research Center for Olfactory Disorders, Eye, Ear, Nose &
Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- E-mail:
| | - Jérôme Golebiowski
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
- Department
of Brain and Cognitive Sciences, Daegu Gyeongbuk
Institute of Science and Technology, Daegu 711-873, South Korea
- E-mail:
| |
Collapse
|
12
|
Shah JS, Buckmeier BG, Griffith W, Olafson PU, Perez de Leon AA, Renthal R. Odorant-binding protein from the stable fly (Stomoxys calcitrans) has a high-histidine N-terminal extension that binds transition metals. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103707. [PMID: 34979251 DOI: 10.1016/j.ibmb.2021.103707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/19/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The role of odorant- and pheromone-binding proteins (OBPs) in olfactory function is not fully understood. We found an OBP sequence from the stable fly, Stomoxys calcitrans, ScalOBP60, that has a 25 amino acid N-terminal extension with a high content of histidine and acidic amino acids, suggesting a possible metal binding activity. A search of public databases revealed a large number of other fly OBPs with histidine-rich N-terminal extensions, as well as beetle, wasp and ant OBPs with histidine-rich C-terminal extensions. We recombinantly expressed ScalOBP60, as well as a truncated sequence which lacks the histidine-rich N-terminal region, tScalOBP60. Using fluorescence quenching and electrospray quadrupole time-of-flight mass spectrometry (ESI-QTOF), we detected two different types of metal-binding sites. Divalent copper, nickel and zinc bind to the N-terminal histidine-rich region, and divalent copper binds to an internal sequence position. Comparison of the ESI-QTOF spectra of ScalOBP60 and tScalOBP60 showed that the histidine-rich sequence is structurally disordered, but it becomes more ordered in the presence of divalent metal. When copper is bound to the internal site, binding of a hydrophobic ligand to ScalOBP60 is inhibited. The internal and N-terminal metal sites interact allosterically, possibly through a conformational equilibrium, suggesting a mechanism for metal regulation of ligand binding to ScalOBP60. Based on our studies of ScalOBP60, we propose several possible olfactory and non-olfactory functions for this OBP.
Collapse
Affiliation(s)
- Jaee Shailesh Shah
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | | | - Wendell Griffith
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Pia Untalan Olafson
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Lab, Kerrville, TX, 78028, USA
| | | | - Robert Renthal
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA; Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
13
|
Xu H, Yao S, Chen Y, Zhang C, Zhang S, Yuan H, Chen Z, Bai Y, Yang T, Guo Z, He W. Tracking Labile Copper Fluctuation In Vivo/ Ex Vivo: Design and Application of a Ratiometric Near-Infrared Fluorophore Derived from 4-Aminostyrene-Conjugated Boron Dipyrromethene. Inorg Chem 2021; 60:18567-18574. [PMID: 34826221 DOI: 10.1021/acs.inorgchem.1c01779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specimen differences, tissue-dependent background fluorescence and scattering, and deviated specimen position and sensor concentration make optical imaging for labile copper fluctuation in animals questionable, and a signal comparison between specimens is infeasible. We proposed ratiometric optical imaging as an alternative to overcome these disadvantages, and a near-infrared (NIR) ratiometric sensor, BDPS1, was devised therefore by conjugating boron dipyrromethene (BODIPY) with 4-aminostyrene and modifying the 4-amino group as a Cu+ chelator. BDPS1 possessed an excitation ratiometric copper-sensing ability to show the ratio of NIR emission (710 nm) upon excitation at 600 nm to that at 660 nm, Fex600/Fex660, increasing from 2.8 to 10.7. This sensor displayed still the opposite copper response of its internal charge transfer (ICT; 670 nm) and local (581 nm) emission bands. Ratiometric imaging with this sensor disclosed a higher labile copper region near the nucleus apparatus, and HEK-293T cells were more sensitive to copper incubation than MCF-7 cells. Dual excitation ratiometric imaging with this sensor realized tracking of labile copper fluctuation in mice, and the whole-body imaging found that tail intravenous injection of CUTX-101, a therapeutical agent for Menkes disease, led to a distinct labile copper increase in the upper belly. The ex vivo imaging of the resected viscera of mice revealed that CUTX-101 injection enhanced the labile copper level in the liver, intestine, lung, and gall bladder in sequence, yet the kidney, heart, and spleen showed almost no response. This study indicated that modifying BODIPY as an extended ICT fluorophore, with its electron-donating group being derived as a metal chelator, is an effective design rationale of NIR ratiometric sensors for copper tracking in vivo/ex vivo.
Collapse
Affiliation(s)
| | | | | | - Changli Zhang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
15
|
Ben Khemis I, Ben Lamine A. Adsorption of 2-phenylethanethiol on two broadly tuned human olfactory receptors OR1A1 and OR2W1: Interpretation of the effect of copper ions via statistical physics monolayer adsorption model. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Pirkwieser P, Behrens M, Somoza V. Metallic Sensation-Just an Off-Flavor or a Biologically Relevant Sensing Pathway? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1775-1780. [PMID: 33373224 DOI: 10.1021/acs.jafc.0c06463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metallic off-flavors are a frequent theme in discussions of food product quality, with publications dating back over 90 years. The causes of this unpleasant perception are diverse, ranging from unfavorable concentrations of micronutrients, the use of artificial sweeteners, processing, packaging, and storage, to side effects of pharmaceutical or chemotherapeutic agents. However, the mechanisms behind metallic sensing and its contributions to taste, smell, and trigeminal nerve sensations are still poorly understood. Although even defining oral/nasal metallic sensation has proven difficult, thought should also be given to possible biological activities of food constituents eliciting a metallic sensation though activation of ectopically expressed chemoreceptors. This perspective seeks to summarize and connect research conducted on different food-borne stimuli of metallic sensation, their sensory evaluations up to more recent contributions addressing the mechanistic approaches to identify chemosensory-active food constituents, and their biological effects mediated by ectopically expressed chemosensory receptors. With this perspective, we hope to spark interest in fully characterizing the mostly unwanted metal off-flavor, thereby laying grounds for increased product quality on one hand and providing novel insights into chemosensory-associated biological functions of metallic sensation on the other hand, which might help to understand and combat these sensations experienced in various diseases and therapies, e.g., platinum-based chemotherapy.
Collapse
Affiliation(s)
- Philip Pirkwieser
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
- Nutritional Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
17
|
Abstract
How does one tell the difference between one molecule or mixture of molecules from another? Chemical sensing seeks to probe physical or chemical properties of molecular or ionic species (i.e., analytes) and transform that information into a useful and distinguishable output. The olfactory system of animals is the prototype of chemical sensing. Even for human beings (who are generally more visual than olfactory creatures), the sense of smell is one of our most basic capabilities, and we can discriminate among many thousands, and possibly even billions, of different odors. The chemical specificity of the olfactory system does not come from specific receptors for specific analytes (i.e., the traditional lock-and-key model of enzyme-substrate interactions), but rather olfaction uses pattern recognition of the combined responses of several hundred olfactory receptors.In analogy to olfaction, colorimetric sensor arrays provide high dimensional data from the color changes of chemically responsive colorants as they are exposed to analytes. These colorants include pH responsive dyes, Lewis acid/base indicators, redox dyes, vapochromics, and surface-modified silver nanoparticles. The color difference maps so created provide chemical sensing with high sensitivity (often down to ppb levels), impressive discrimination among very similar analytes, and exquisite fingerprinting of extremely similar mixtures over a wide range of analyte types, both in the gas and liquid phases. Such colorimetric arrays probe a wide range of the chemical reactivity of analytes, rather than the limited dimensionality of physical properties (e.g., mass) or physisorption (e.g., traditional electronic noses). Our sensor arrays are disposable and simple to produce by either inkjet or robotic dip-pen printing onto the surface of porous polymer membranes or even paper.Design of both sensor arrays and optical readers for their analysis has advanced to a fully self-contained pocket-sized instrument, the optoelectronic nose. Quantitative analysis requires appropriate chemometric methods for pattern recognition of data with inherently high dimensionality, e.g., hierarchical cluster analysis and support vector machines. A wide range of applications for the colorimetric sensor arrays has been developed, including personal dosimetry of toxic industrial chemicals, detection of explosives or fire accelerants, monitoring pollutants for artwork and cultural heritage preservation, quality control of foods and beverages, rapid identification of bacteria and fungi, and detection of disease biomarkers in breath or urine. The development of portable, high-accuracy instrumentation using standard imaging devices with the capability of onboard, real-time analysis has had substantial progress and increasingly meets the expectations for real-world use.
Collapse
Affiliation(s)
- Zheng Li
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P.R. China
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
18
|
Krull F, Hirschfeld M, Wemheuer WE, Brenig B. Frameshift Variant in Novel Adenosine-A1-Receptor Homolog Associated With Bovine Spastic Syndrome/Late-Onset Bovine Spastic Paresis in Holstein Sires. Front Genet 2020; 11:591794. [PMID: 33329738 PMCID: PMC7734149 DOI: 10.3389/fgene.2020.591794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 11/13/2022] Open
Abstract
Since their first description almost 100 years ago, bovine spastic paresis (BSP) and bovine spastic syndrome (BSS) are assumed to be inherited neuronal-progressive diseases in cattle. Affected animals are characterized by (frequent) spasms primarily located in the hind limbs, accompanied by severe pain symptoms and reduced vigor, thus initiating premature slaughter or euthanasia. Due to the late onset of BSP and BSS and the massively decreased lifespan of modern cattle, the importance of these diseases is underestimated. In the present study, BSP/BSS-affected German Holstein breeding sires from artificial insemination centers were collected and pedigree analysis, genome-wide association studies, whole genome resequencing, protein-protein interaction network analysis, and protein-homology modeling were performed to elucidate the genetic background. The analysis of 46 affected and 213 control cattle revealed four significantly associated positions on chromosome 15 (BTA15), i.e., AC_000172.1:g.83465449A>G (-log10P = 19.17), AC_000172.1:g.81871849C>T (-log10P = 8.31), AC_000172.1:g.81872621A>T (-log10P = 6.81), and AC_000172.1:g.81872661G>C (-log10P = 6.42). Two additional loci were significantly associated located on BTA8 and BTA19, i.e., AC_000165.1:g.71177788T>C and AC_000176.1:g.30140977T>G, respectively. Whole genome resequencing of five affected individuals and six unaffected relatives (two fathers, two mothers, a half sibling, and a full sibling) belonging to three different not directly related families was performed. After filtering, a homozygous loss of function variant was identified in the affected cattle, causing a frameshift in the so far unknown gene locus LOC100848076 encoding an adenosine-A1-receptor homolog. An allele frequency of the variant of 0.74 was determined in 3,093 samples of the 1000 Bull Genomes Project.
Collapse
Affiliation(s)
- Frederik Krull
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Marc Hirschfeld
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Wilhelm Ewald Wemheuer
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Bertram Brenig
- Department of Animal Sciences, Faculty of Agricultural Sciences, Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Abstract
In mammals, odor information detected by olfactory sensory neurons is converted to a topographic map of activated glomeruli in the olfactory bulb. Mitral cells and tufted cells transmit signals sequentially to the olfactory cortex for behavioral outputs. To elicit innate behavioral responses, odor signals are directly transmitted by distinct subsets of mitral cells from particular functional domains in the olfactory bulb to specific amygdala nuclei. As for the learned decisions, input signals are conveyed by tufted cells as well as by mitral cells to the olfactory cortex. Behavioral scene cells link the odor information to the valence cells in the amygdala to elicit memory-based behavioral responses. Olfactory decision and perception take place in relation to the respiratory cycle. How is the sensory quality imposed on the olfactory inputs for behavioral outputs? How are the two types of odor signals, innate and learned, processed during respiration? Here, we review recent progress on the study of neural circuits involved in decision making in the mouse olfactory system.
Collapse
Affiliation(s)
- Kensaku Mori
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan;
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1197, Japan;
| |
Collapse
|
20
|
McClintock TS, Khan N, Alimova Y, Aulisio M, Han DY, Breheny P. Encoding the Odor of Cigarette Smoke. J Neurosci 2020; 40:7043-7053. [PMID: 32801155 PMCID: PMC7480249 DOI: 10.1523/jneurosci.1144-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022] Open
Abstract
The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.
Collapse
Affiliation(s)
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Yelena Alimova
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - Madeline Aulisio
- College of Public Health, University of Kentucky, Lexington, Kentucky 40536
| | - Dong Y Han
- Department of Neurology, University of Kentucky, Lexington, Kentucky 40536
| | - Patrick Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
21
|
Abstract
The encoding of odors is believed to begin as a combinatorial code consisting of distinct patterns of responses from odorant receptors (ORs), trace-amine associated receptors (TAARs), or both. To determine how specific response patterns arise requires detecting patterns in vivo and understanding how the components of an odor, which are nearly always mixtures of odorants, give rise to parts of the pattern. Cigarette smoke, a common and clinically relevant odor consisting of >400 odorants, evokes responses from 144 ORs and 3 TAARs in freely behaving male and female mice, the first example of in vivo responses of both ORs and TAARs to an odor. As expected, a simplified artificial mimic of cigarette smoke odor tested at low concentration to identify highly sensitive receptors evokes responses from four ORs, all also responsive to cigarette smoke. Human subjects of either sex identify 1-pentanethiol as the odorant most critical for perception of the artificial mimic; and in mice the OR response patterns to these two odors are significantly similar. Fifty-eight ORs respond to the headspace above 25% 1-pentanethiol, including 9 ORs responsive to cigarette smoke. The response patterns to both cigarette smoke and 1-pentanethiol have strongly responsive ORs spread widely across OR sequence diversity, consistent with most other combinatorial codes previously measured in vivo The encoding of cigarette smoke is accomplished by a broad receptor response pattern, and 1-pentanethiol is responsible for a small subset of the responsive ORs in this combinatorial code.SIGNIFICANCE STATEMENT Complex odors are usually perceived as distinct odor objects. Cigarette smoke is the first complex odor whose in vivo receptor response pattern has been measured. It is also the first pattern shown to include responses from both odorant receptors and trace-amine associated receptors, confirming that the encoding of complex odors can be enriched by signals coming through both families of receptors. Measures of human perception and mouse receptor physiology agree that 1-pentanethiol is a critical component of a simplified odorant mixture designed to mimic cigarette smoke odor. Its receptor response pattern helps to link those of the artificial mimic and real cigarette smoke, consistent with expectations about perceptual similarity arising from shared elements in receptor response patterns.
Collapse
|
22
|
Haag F, Ahmed L, Reiss K, Block E, Batista VS, Krautwurst D. Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3. Cell Mol Life Sci 2020; 77:2157-2179. [PMID: 31435697 PMCID: PMC7256108 DOI: 10.1007/s00018-019-03279-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
| |
Collapse
|
23
|
Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism. Proc Natl Acad Sci U S A 2019; 116:18285-18294. [PMID: 31451653 DOI: 10.1073/pnas.1904610116] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.
Collapse
|
24
|
Saraiva LR, Riveros-McKay F, Mezzavilla M, Abou-Moussa EH, Arayata CJ, Makhlouf M, Trimmer C, Ibarra-Soria X, Khan M, Van Gerven L, Jorissen M, Gibbs M, O’Flynn C, McGrane S, Mombaerts P, Marioni JC, Mainland JD, Logan DW. A transcriptomic atlas of mammalian olfactory mucosae reveals an evolutionary influence on food odor detection in humans. SCIENCE ADVANCES 2019; 5:eaax0396. [PMID: 31392275 PMCID: PMC6669018 DOI: 10.1126/sciadv.aax0396] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/24/2019] [Indexed: 05/07/2023]
Abstract
The mammalian olfactory system displays species-specific adaptations to different ecological niches. To investigate the evolutionary dynamics of olfactory sensory neuron (OSN) subtypes across mammalian evolution, we applied RNA sequencing of whole olfactory mucosa samples from mouse, rat, dog, marmoset, macaque, and human. We find that OSN subtypes, representative of all known mouse chemosensory receptor gene families, are present in all analyzed species. Further, we show that OSN subtypes expressing canonical olfactory receptors are distributed across a large dynamic range and that homologous subtypes can be either highly abundant across all species or species/order specific. Highly abundant mouse and human OSN subtypes detect odorants with similar sensory profiles and sense ecologically relevant odorants, such as mouse semiochemicals or human key food odorants. Together, our results allow for a better understanding of the evolution of mammalian olfaction in mammals and provide insights into the possible functions of highly abundant OSN subtypes.
Collapse
Affiliation(s)
- Luis R. Saraiva
- Sidra Medicine, PO Box 26999, Doha, Qatar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton,, Cambridge CB10 1SD, UK
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | - Casey Trimmer
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Ximena Ibarra-Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - Laura Van Gerven
- Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Mark Jorissen
- Department of ENT-HNS, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Matthew Gibbs
- Waltham Centre for Pet Nutrition, Leicestershire LE14 4RT, UK
| | - Ciaran O’Flynn
- Waltham Centre for Pet Nutrition, Leicestershire LE14 4RT, UK
| | - Scott McGrane
- Waltham Centre for Pet Nutrition, Leicestershire LE14 4RT, UK
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Max von-Laue-Strasse 4, 60438 Frankfurt, Germany
| | - John C. Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton,, Cambridge CB10 1SD, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Joel D. Mainland
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Darren W. Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
- Waltham Centre for Pet Nutrition, Leicestershire LE14 4RT, UK
| |
Collapse
|
25
|
Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019; 11:E1364. [PMID: 31213024 PMCID: PMC6627586 DOI: 10.3390/nu11061364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
In humans, copper is an important micronutrient because it is a cofactor of ubiquitous and brain-specific cuproenzymes, as well as a secondary messenger. Failure of the mechanisms supporting copper balance leads to the development of neurodegenerative, oncological, and other severe disorders, whose treatment requires a detailed understanding of copper metabolism. In the body, bioavailable copper exists in two stable oxidation states, Cu(I) and Cu(II), both of which are highly toxic. The toxicity of copper ions is usually overcome by coordinating them with a wide range of ligands. These include the active cuproenzyme centers, copper-binding protein motifs to ensure the safe delivery of copper to its physiological location, and participants in the Cu(I) ↔ Cu(II) redox cycle, in which cellular copper is stored. The use of modern experimental approaches has allowed the overall picture of copper turnover in the cells and the organism to be clarified. However, many aspects of this process remain poorly understood. Some of them can be found out using abiogenic silver ions (Ag(I)), which are isoelectronic to Cu(I). This review covers the physicochemical principles of the ability of Ag(I) to substitute for copper ions in transport proteins and cuproenzyme active sites, the effectiveness of using Ag(I) to study copper routes in the cells and the body, and the limitations associated with Ag(I) remaining stable in only one oxidation state. The use of Ag(I) to restrict copper transport to tumors and the consequences of large-scale use of silver nanoparticles for human health are also discussed.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, St.-Petersburg 197376, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Massimo Broggini
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Laboratory of molecular pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via La Masa, 19, Milan 20156, Italy.
| | - Elena V Polishchuk
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| |
Collapse
|
26
|
Wester P, Johnson SD, Pauw A. Scent chemistry is key in the evolutionary transition between insect and mammal pollination in African pineapple lilies. THE NEW PHYTOLOGIST 2019; 222:1624-1637. [PMID: 30613998 DOI: 10.1111/nph.15671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Volatile emissions may play a key role in structuring pollination systems of plants with morphologically unspecialised flowers. Here we test for pollination by small mammals in Eucomis regia and investigate whether its floral scent differs markedly from fly- and wasp-pollinated congeners and attracts mammals. We measured floral traits of E. regia and made comparisons with insect-pollinated congeners. We observed floral visitors and examined fur and faeces of live-trapped mammals for pollen. We determined the contributions of different floral visitors to seed set with selective exclusion and established the breeding system with controlled pollination experiments. Using bioassays, we examined whether mammals are attracted by the floral scent and are effective agents of pollen transfer. Eucomis regia differs from closely related insect-pollinated species mainly in floral scent, with morphology, colour and nectar properties being similar. We found that mice and elephant-shrews pollinate E. regia, which is self-incompatible and reliant on vertebrates for seed production. Mammals are strongly attracted to the overall floral scent, which contains unusual sulphur compounds, including methional (which imparts the distinctive potato-like scent and which was shown to be attractive to small mammals). The results highlight the important role of scent chemistry in shifts between insect and mammal pollination systems.
Collapse
Affiliation(s)
- Petra Wester
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
- Institute of Sensory Ecology, Heinrich-Heine-University, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Steven D Johnson
- School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
| |
Collapse
|
27
|
Zhang R, Pan Y, Ahmed L, Block E, Zhang Y, Batista VS, Zhuang H. A Multispecific Investigation of the Metal Effect in Mammalian Odorant Receptors for Sulfur-Containing Compounds. Chem Senses 2019; 43:357-366. [PMID: 29659735 DOI: 10.1093/chemse/bjy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Metal-coordinating compounds are generally known to have strong smells, a phenomenon that can be attributed to the fact that odorant receptors for intense-smelling compounds, such as those containing sulfur, may be metalloproteins. We previously identified a mouse odorant receptor (OR), Olfr1509, that requires copper ions for sensitive detection of a series of metal-coordinating odorants, including (methylthio)methanethiol (MTMT), a strong-smelling component of male mouse urine that attracts female mice. By combining mutagenesis and quantum mechanics/molecular mechanics (QM/MM) modeling, we identified candidate binding sites in Olfr1509 that may bind to the copper-MTMT complex. However, whether there are other receptors utilizing metal ions for ligand-binding and other sites important for receptor activation is still unknown. In this study, we describe a second mouse OR for MTMT with a copper effect, namely Olfr1019. In an attempt to investigate the functional changes of metal-coordinating ORs in multiple species and to decipher additional sites involved in the metal effect, we cloned various mammalian orthologs of the 2 mouse MTMT receptors, and a third mouse MTMT receptor, Olfr15, that does not have a copper effect. We found that the function of all 3 MTMT receptors varies greatly among species and that the response to MTMT always co-occurred with the copper effect. Furthermore, using ancestral reconstruction and QM/MM modeling combined with receptor functional assay, we found that the amino acid residue R260 in Olfr1509 and the respective R261 site in Olfr1019 may be important for receptor activation.
Collapse
Affiliation(s)
- Ruina Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, NY, USA
| | - Yuetian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
| | | | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiaotong University School of Medicine, Huangpu District, Shanghai, P. R. China
- Institute of Health Sciences, Shanghai Jiaotong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, Xuhui District, Shanghai, P. R. China
| |
Collapse
|
28
|
de March CA, Fukutani Y, Vihani A, Kida H, Matsunami H. Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase. J Vis Exp 2019. [PMID: 31081824 DOI: 10.3791/59446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Olfactory perception begins with the interaction of odorants with odorant receptors (OR) expressed by olfactory sensory neurons (OSN). Odor recognition follows a combinatorial coding scheme, where one OR can be activated by a set of odorants and one odorant can activate a combination of ORs. Through such combinatorial coding, organisms can detect and discriminate between a myriad of volatile odor molecules. Thus, an odor at a given concentration can be described by an activation pattern of ORs, which is specific to each odor. In that sense, cracking the mechanisms that the brain uses to perceive odor requires the understanding odorant-OR interactions. This is why the olfaction community is committed to "de-orphanize" these receptors. Conventional in vitro systems used to identify odorant-OR interactions have utilized incubating cell media with odorant, which is distinct from the natural detection of odors via vapor odorants dissolution into nasal mucosa before interacting with ORs. Here, we describe a new method that allows for real-time monitoring of OR activation via vapor-phase odorants. Our method relies on measuring cAMP release by luminescence using the Glosensor assay. It bridges current gaps between in vivo and in vitro approaches and provides a basis for a biomimetic volatile chemical sensor.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center;
| | - Yosuke Fukutani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Aashutosh Vihani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center
| | - Hitoshi Kida
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Mechanical Systems, Engineering, Tokyo University of Agriculture and Technology
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology; Duke Institute for Brain Sciences, Duke University;
| |
Collapse
|
29
|
Affiliation(s)
- Eric Block
- University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
30
|
Mahjoubi K, Mehnen B, Linguerri R, Hochlaf M, Mouhib H. Copper–Chalcogen Bonds in Olfaction: Accurate ab Initio Characterization of CuSH and CuOH. J Phys Chem A 2019; 123:1177-1185. [DOI: 10.1021/acs.jpca.8b10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Mahjoubi
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - B. Mehnen
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - R. Linguerri
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - M. Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - H. Mouhib
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
31
|
Block E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13346-13366. [PMID: 30453735 DOI: 10.1021/acs.jafc.8b04471] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants. In this review, selected recent examples will be presented of "deorphaned" mammalian receptors, where the OR ligands (odorants) as well as key aspects of receptor-odorant interactions were identified using odorant-mediated receptor activation data together with site-directed mutagenesis and molecular modeling. Based on cumulative evidence from OR deorphaning and olfactory receptor neuron activation studies, a receptor-ligand docking model rather than an alternative bond vibration model is suggested to best explain the molecular basis of the exquisitely sensitive odor discrimination in mammals.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry , University at Albany, SUNY , Albany , New York 12222 , United States
| |
Collapse
|
32
|
Ishii KK, Touhara K. Neural circuits regulating sexual behaviors via the olfactory system in mice. Neurosci Res 2018; 140:59-76. [PMID: 30389572 DOI: 10.1016/j.neures.2018.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
Abstract
Reproduction is essential for any animal species. Reproductive behaviors, or sexual behaviors, are largely shaped by external sensory cues exchanged during sexual interaction. In many animals, including rodents, olfactory cues play a critical role in regulating sexual behavior. What exactly these olfactory cues are and how they impact animal behavior have been a central question in the field. Over the past few decades, many studies have dedicated to identifying an active compound that elicits sexual behavior from crude olfactory components. The identified substance has served as a tool to dissect the sensory processing mechanisms in the olfactory systems. In addition, recent advances in genetic engineering, and optics and microscopic techniques have greatly expanded our knowledge of the neural mechanisms underlying the control of sexual behavior in mice. This review summarizes our current knowledge about how sexual behaviors are controlled by olfactory cues.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
33
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Jia S, Ramos-Torres KM, Kolemen S, Ackerman CM, Chang CJ. Tuning the Color Palette of Fluorescent Copper Sensors through Systematic Heteroatom Substitution at Rhodol Cores. ACS Chem Biol 2018; 13:1844-1852. [PMID: 29112372 PMCID: PMC6370296 DOI: 10.1021/acschembio.7b00748] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Copper is an essential nutrient for sustaining life, and emerging data have expanded the roles of this metal in biology from its canonical functions as a static enzyme cofactor to dynamic functions as a transition metal signal. At the same time, loosely bound, labile copper pools can trigger oxidative stress and damaging events that are detrimental if misregulated. The signal/stress dichotomy of copper motivates the development of new chemical tools to study its spatial and temporal distributions in native biological contexts such as living cells. Here, we report a family of fluorescent copper sensors built upon carbon-, silicon-, and phosphorus-substituted rhodol dyes that enable systematic tuning of excitation/emission colors from orange to near-infrared. These probes can detect changes in labile copper levels in living cells upon copper supplementation and/or depletion. We demonstrate the ability of the carbon-rhodol based congener, Copper Carbo Fluor 1 (CCF1), to identify elevations in labile copper pools in the Atp7a-/- fibroblast cell model of the genetic copper disorder Menkes disease. Moreover, we showcase the utility of the red-emitting phosphorus-rhodol based dye Copper Phosphorus Fluor 1 (CPF1) in dual-color, dual-analyte imaging experiments with the green-emitting calcium indicator Calcium Green-1 to enable simultaneous detection of fluctuations in copper and calcium pools in living cells. The results provide a starting point for advancing tools to study the contributions of copper to health and disease and for exploiting the rapidly growing palette of heteroatom-substituted xanthene dyes to rationally tune the optical properties of fluorescent indicators for other biologically important analytes.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Karla M. Ramos-Torres
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Safacan Kolemen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Chemistry, Koc University, Rumelifeneri Yolu, 34450, Sariyer, Istanbul, Turkey
| | - Cheri M. Ackerman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Lari E, Bogart SJ, Pyle GG. Fish can smell trace metals at environmentally relevant concentrations in freshwater. CHEMOSPHERE 2018; 203:104-108. [PMID: 29614402 DOI: 10.1016/j.chemosphere.2018.03.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The objective of the present study was to investigate the ability of the olfactory system of rainbow trout (Oncorhynchus mykiss) to detect three trace metals, cadmium (Cd), copper (Cu), and nickel (Ni), using electro-olfactography (EOG). The olfactory response to all three metals was measured at either 10-6 M or at a concentration established by Alberta Environment and Parks (AEP) as the criterion for the protection of aquatic life. Results of the present study demonstrated that the olfactory system of rainbow trout can detect all three metals (i.e. Cd, Cu, and Ni) in water at environmentally relevant concentrations. These results provide physiological evidence for a role of the olfactory system in fish behavioural responses (as shown in previous studies) when they encounter metal contaminated waters.
Collapse
Affiliation(s)
- Ebrahim Lari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Sarah J Bogart
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Greg G Pyle
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
36
|
Pshenichnyuk SA, Rakhmeyev RG, Asfandiarov NL, Komolov AS, Modelli A, Jones D. Can the Electron-Accepting Properties of Odorants Be Involved in Their Recognition by the Olfactory System? J Phys Chem Lett 2018; 9:2320-2325. [PMID: 29665679 DOI: 10.1021/acs.jpclett.8b00704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The present study examines the possible importance of the electron-accepting properties of odorant molecules and, in particular, the formation and decay of temporary negative ions via low-energy electron attachment as a possible contribution toward understanding odorant recognition by olfactory receptors (ORs). Fragments formed by dissociative electron attachment (DEA) of mustard oil odorants represented by a series of isothiocyanates are studied experimentally using DEA spectroscopy and DFT calculations. Relative intensities for the most abundant fragment species, S- and SCN-, are found to be characteristic of structurally similar odorants under investigation. This novel approach for the investigation of odorants may contribute to understanding the initial stages of the olfactory process and may provide a means to distinguish between odorants and their interactions with the olfactory receptor system.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre , Russian Academy of Sciences , Prospeκt Oktyabrya 151 , 450075 Ufa , Russia
| | - Rustam G Rakhmeyev
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre , Russian Academy of Sciences , Prospeκt Oktyabrya 151 , 450075 Ufa , Russia
| | - Nail L Asfandiarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre , Russian Academy of Sciences , Prospeκt Oktyabrya 151 , 450075 Ufa , Russia
| | - Alexei S Komolov
- St. Petersburg State University , Universitetskaya nab. 7/9 , 199034 St. Petersburg , Russia
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
- Centro Interdipartimentale di Ricerca in Scienze Ambientali , via S. Alberto 163 , 48123 Ravenna , Italy
| | - Derek Jones
- ISOF, Istituto per la Sintesi Organica e la Fotoreattività, C.N.R. , via Gobetti 101 , 40129 Bologna , Italy
| |
Collapse
|
37
|
Schoenauer S, Schieberle P. Structure-Odor Correlations in Homologous Series of Mercapto Furans and Mercapto Thiophenes Synthesized by Changing the Structural Motifs of the Key Coffee Odorant Furan-2-ylmethanethiol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4189-4199. [PMID: 29627982 DOI: 10.1021/acs.jafc.8b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Furan-2-ylmethanethiol (2-furfurylthiol; 2-FFT, 1) is long-known as a key odorant in roast and ground coffee and was also previously identified in a wide range of thermally treated foods such as meat, bread, and roasted sesame seeds. Its unique coffee-like odor quality elicited at very low concentrations, and the fact that only a very few compounds showing a similar structure have previously been described in foods make 1 a suitable candidate for structure-odor activity studies. To gain insight into the structural features needed to evoke a coffee-like odor at low concentrations, 46 heterocyclic mercaptans and thio ethers were synthesized, 32 of them for the first time, and their odor qualities and odor thresholds were determined. A movement of the mercapto group to the 3-position kept the coffee-like aroma but led to an increase in odor threshold. A separation of the thiol group from the furan ring by an elongation of the carbon side chain caused a loss of the coffee-like odor and also led to an increase in odor thresholds, especially for ω-(furan-2-yl)alkane-1-thiols with six or seven carbon atoms in the side chain. A displacement of the furan ring by a thiophene ring had no significant influence on the odor properties of most of the compounds studied, but the newly synthesized longer-chain 1-(furan-2-yl)- and 1-(thiophene-2-yl)alkane-1-thiols elicited interesting passion fruit-like scents. In total, only 4 out of the 46 compounds also showed a coffee-like odor quality like 1, but none showed a lower odor threshold. Besides the odor attributes, also retention indices, mass spectra, and NMR data of the synthesized compounds were elaborated, which are helpful in possible future identification of these compounds in trace levels in foods or other materials.
Collapse
Affiliation(s)
- Sebastian Schoenauer
- Lehrstuhl für Lebensmittelchemie , Technische Universität München , Lise-Meitner-Straße 34 , D-85354 Freising , Germany
| | - Peter Schieberle
- Lehrstuhl für Lebensmittelchemie , Technische Universität München , Lise-Meitner-Straße 34 , D-85354 Freising , Germany
| |
Collapse
|
38
|
Molecular mechanism of activation of human musk receptors OR5AN1 and OR1A1 by ( R)-muscone and diverse other musk-smelling compounds. Proc Natl Acad Sci U S A 2018; 115:E3950-E3958. [PMID: 29632183 DOI: 10.1073/pnas.1713026115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral (R)-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds. OR5AN1 responds at nanomolar concentrations to musk ketone and robustly to macrocyclic sulfoxides and fluorine-substituted macrocyclic ketones; OR1A1 responds only to nitromusks. Structural models of OR5AN1 and OR1A1 based on quantum mechanics/molecular mechanics (QM/MM) hybrid methods were validated through direct comparisons with activation profiles from site-directed mutagenesis experiments and analysis of binding energies for 35 musk-related odorants. The experimentally found chiral selectivity of OR5AN1 to (R)- over (S)-muscone was also computationally confirmed for muscone and fluorinated (R)-muscone analogs. Structural models show that OR5AN1, highly responsive to nitromusks over macrocyclic musks, stabilizes odorants by hydrogen bonding to Tyr260 of transmembrane α-helix 6 and hydrophobic interactions with surrounding aromatic residues Phe105, Phe194, and Phe207. The binding of OR1A1 to nitromusks is stabilized by hydrogen bonding to Tyr258 along with hydrophobic interactions with surrounding aromatic residues Tyr251 and Phe206. Hydrophobic/nonpolar and hydrogen bonding interactions contribute, respectively, 77% and 13% to the odorant binding affinities, as shown by an atom-based quantitative structure-activity relationship model.
Collapse
|
39
|
Callegaro G, Forcella M, Melchioretto P, Frattini A, Gribaldo L, Fusi P, Fabbri M, Urani C. Toxicogenomics applied to in vitro Cell Transformation Assay reveals mechanisms of early response to cadmium. Toxicol In Vitro 2018; 48:232-243. [DOI: 10.1016/j.tiv.2018.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/01/2023]
|
40
|
Szabo C. A timeline of hydrogen sulfide (H 2S) research: From environmental toxin to biological mediator. Biochem Pharmacol 2018; 149:5-19. [PMID: 28947277 PMCID: PMC5862769 DOI: 10.1016/j.bcp.2017.09.010] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
The history of H2S - as an environmental toxin - dates back to 1700, to the observations of the Italian physician Bernardino Ramazzini, whose book "De Morbis Artificum Diatriba" described the painful eye irritation and inflammation of "sewer gas" in sewer workers. The gas has subsequently been identified as hydrogen sulfide (H2S), and opened three centuries of research into the biological roles of H2S. The current article highlights the key discoveries in the field of H2S research, including (a) the toxicological studies, which characterized H2S as an environmental toxin, and identified some of its modes of action, including the inhibition of mitochondrial respiration; (b) work in the field of bacteriology, which, starting in the early 1900s, identified H2S as a bacterial product - with subsequently defined roles in the regulation of periodontal disease (oral bacterial flora), intestinal epithelial cell function (enteral bacterial flora) as well as in the regulation of bacterial resistance to antibiotics; and (c), work in diverse fields of mammalian biology, which, starting in the 1940s, identified H2S as an endogenous mammalian enzymatic product, the functions of which - among others, in the cardiovascular and nervous system - have become subjects of intensive investigation for the last decade. The current review not only enumerates the key discoveries related to H2S made over the last three centuries, but also compiles the most frequently cited papers in the field which have been published over the last decade and highlights some of the current 'hot topics' in the field of H2S biology.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
41
|
MacDonald TC, Sylvain NJ, James AK, Pickering IJ, Krone PH, George GN. Effects of inorganic mercury on the olfactory pits of zebrafish larvae. Metallomics 2017; 8:514-7. [PMID: 27108745 DOI: 10.1039/c6mt00031b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mercury compounds are highly toxic; due to the rising levels of mercury pollution, both human and environmental exposure to mercury are increasing. Occupational exposure to inhaled mercury can be high, causing adverse effects not only in the lungs, but in the olfactory system as well. Olfaction plays a critical role in the survival of fish and other vertebrates, and impaired olfaction can substantially impact human quality of life. We present a study of the effects of mercury exposure in the olfactory pits of zebrafish larvae using a combination of X-ray fluorescence imaging and immunohistochemistry. We show that mercury accumulates in the sensory cells of the olfactory pits and also that it may also damage primary neurons, such as those that innervate olfactory pits.
Collapse
Affiliation(s)
- Tracy C MacDonald
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada. and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole J Sylvain
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ashley K James
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada. and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Ingrid J Pickering
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada. and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada and Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Patrick H Krone
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada and Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Graham N George
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada. and Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada and Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
42
|
Abstract
Transition metals have been recognized and studied primarily in the context of their essential roles as structural and metabolic cofactors for biomolecules that compose living systems. More recently, an emerging paradigm of transition-metal signaling, where dynamic changes in transitional metal pools can modulate protein function, cell fate, and organism health and disease, has broadened our view of the potential contributions of these essential nutrients in biology. Using copper as a canonical example of transition-metal signaling, we highlight key experiments where direct measurement and/or visualization of dynamic copper pools, in combination with biochemical, physiological, and behavioral studies, have deciphered sources, targets, and physiological effects of copper signals.
Collapse
Affiliation(s)
| | - Christopher J Chang
- Departments of Chemistry, Berkeley, California 94720-1460; Molecular and Cell Biology, Berkeley, California 94720-1460; Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720-1460; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.
| |
Collapse
|
43
|
Zhang Y, Pan Y, Matsunami H, Zhuang H. Live-cell Measurement of Odorant Receptor Activation Using a Real-time cAMP Assay. J Vis Exp 2017. [PMID: 28994818 DOI: 10.3791/55831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The enormous sizes of the mammalian odorant receptor (OR) families present difficulties to find their cognate ligands among numerous volatile chemicals. To efficiently and accurately deorphanize ORs, we combine the use of a heterologous cell line to express mammalian ORs and a genetically modified biosensor plasmid to measure cAMP production downstream of OR activation in real time. This assay can be used to screen odorants against ORs and vice versa. Positive odorant-receptor interactions from the screens can be subsequently confirmed by testing against various odor concentrations, generating concentration-response curves. Here we used this method to perform a high-throughput screening of an odorous compound against a human OR library expressed in Hana3A cells and confirmed that the positively-responding receptor is the cognate receptor for the compound of interest. We found this high-throughput detection method to be efficient and reliable in assessing OR activation and our data provide an example of its potential use in OR functional studies.
Collapse
Affiliation(s)
- Yuetian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine; Institute of Health Science, Chinese Academy of Science/Shanghai Jiao Tong University School of Medicine;
| |
Collapse
|
44
|
Wolf S, Gelis L, Dörrich S, Hatt H, Kraft P. Evidence for a shape-based recognition of odorants in vivo in the human nose from an analysis of the molecular mechanism of lily-of-the-valley odorants detection in the Lilial and Bourgeonal family using the C/Si/Ge/Sn switch strategy. PLoS One 2017; 12:e0182147. [PMID: 28763484 PMCID: PMC5538716 DOI: 10.1371/journal.pone.0182147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
We performed an analysis of possible mechanisms of ligand recognition in the human nose. The analysis is based on in vivo odor threshold determination and in vitro Ca2+ imaging assays with a C/Si/Ge/Sn switch strategy applied to the compounds Lilial and Bourgeonal, to differentiate between different molecular mechanisms of odorant detection. Our results suggest that odorant detection under threshold conditions is mainly based on the molecular shape, i.e. the van der Waals surface, and electrostatics of the odorants. Furthermore, we show that a single olfactory receptor type is responsible for odor detection of Bourgeonal at the threshold level in humans in vivo. Carrying out a QM analysis of vibrational energies contained in the odorants, there is no evidence for a vibration-based recognition.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Steffen Dörrich
- Institute of Inorganic Chemistry, University of Würzburg, Würzburg, Germany
| | - Hanns Hatt
- Department of Cellphysiology, Ruhr-University Bochum, Bochum, Germany
| | - Philip Kraft
- Fragrance Research, Givaudan Schweiz AG, Dübendorf, Switzerland
| |
Collapse
|
45
|
Inokuchi K, Imamura F, Takeuchi H, Kim R, Okuno H, Nishizumi H, Bito H, Kikusui T, Sakano H. Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses. Nat Commun 2017; 8:15977. [PMID: 28731029 PMCID: PMC5525001 DOI: 10.1038/ncomms15977] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 05/16/2017] [Indexed: 01/22/2023] Open
Abstract
Odour information induces various innate responses that are critical to the survival of the individual and for the species. An axon guidance molecule, Neuropilin 2 (Nrp2), is known to mediate targeting of olfactory sensory neurons (primary neurons), to the posteroventral main olfactory bulb (PV MOB) in mice. Here we report that Nrp2-positive (Nrp2+) mitral cells (MCs, second-order neurons) play crucial roles in transmitting attractive social signals from the PV MOB to the anterior part of medial amygdala (MeA). Semaphorin 3F, a repulsive ligand to Nrp2, regulates both migration of Nrp2+ MCs to the PV MOB and their axonal projection to the anterior MeA. In the MC-specific Nrp2 knockout mice, circuit formation of Nrp2+ MCs and odour-induced attractive social responses are impaired. In utero, electroporation demonstrates that activation of the Nrp2 gene in MCs is sufficient to instruct their circuit formation from the PV MOB to the anterior MeA.
Collapse
Affiliation(s)
- Kasumi Inokuchi
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | - Haruki Takeuchi
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Ryang Kim
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Okuno
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hirofumi Nishizumi
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Science, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
46
|
Yu T, Su X, Pan Y, Zhuang H. Receptor-transporting protein (RTP) family members play divergent roles in the functional expression of odorant receptors. PLoS One 2017; 12:e0179067. [PMID: 28586385 PMCID: PMC5460901 DOI: 10.1371/journal.pone.0179067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/23/2017] [Indexed: 12/15/2022] Open
Abstract
Receptor transporting protein (RTP) family members, RTP1S and RTP2, are accessory proteins to mammalian odorant receptors (ORs). They are expressed in the olfactory sensory neurons and facilitate OR trafficking to the cell-surface membrane and ligand-induced responses in heterologous cells. We previously identified different domains in RTP1S that are important for different stages of OR trafficking, odorant-mediated responses, and interaction with ORs. However, the exact roles of RTP2 and the significance of the requirement of the seemingly redundant co-expression of the two RTP proteins in vivo have received less attention in the past. Here we attempted to dissect the functional differences between RTP1S and RTP2 using a HEK293T cell-based OR heterologous expression system. When a set of 24 ORs were tested against 28 cognate ligands, unlike RTP1S, which always showed a robust ability to support odorant-mediated responses, RTP2 had little or no effect on OR responses and exhibited a suppressive effect over that of RTP1S for a subset of the ORs tested. RTP1S and RTP2 showed no significant difference in OR ligand selectivity and co-transfection with RTP2 increased the detection threshold for some ORs. A protein-protein interaction analysis showed positive interactions among OR, RTP1S, and RTP2, corroborating the functional linkages among the three molecules. Finally, further cell-surface and permeabilized immunocytochemical studies revealed that OR and the co-expressed RTP1S proteins were retained in the Golgi when co-transfected with RTP2, indicating that RTP1S and RTP2 could play different roles in the OR trafficking process. By examining the functional differentiations between the two RTP family members, we provided a molecular level explanation to the suppressive effect exerted by RTP2, shedding light on the divergent mechanisms underlying the RTP proteins in regulating the functional expression of ORs.
Collapse
Affiliation(s)
- Teng Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xubo Su
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanyi Zhuang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine/Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
47
|
Experimental evaluation of the generalized vibrational theory of G protein-coupled receptor activation. Proc Natl Acad Sci U S A 2017; 114:5595-5600. [PMID: 28500275 DOI: 10.1073/pnas.1618422114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, an alternative theory concerning the method by which olfactory proteins are activated has garnered attention. This theory proposes that the activation of olfactory G protein-coupled receptors occurs by an inelastic electron tunneling mechanism that is mediated through the presence of an agonist with an appropriate vibrational state to accept the inelastic portion of the tunneling electron's energy. In a recent series of papers, some suggestive theoretical evidence has been offered that this theory may be applied to nonolfactory G protein-coupled receptors (GPCRs), including those associated with the central nervous system (CNS). [Chee HK, June OS (2013) Genomics Inform 11(4):282-288; Chee HK, et al. (2015) FEBS Lett 589(4):548-552; Oh SJ (2012) Genomics Inform 10(2):128-132]. Herein, we test the viability of this idea, both by receptor affinity and receptor activation measured by calcium flux. This test was performed using a pair of well-characterized agonists for members of the 5-HT2 class of serotonin receptors, 2,5-dimethoxy-4-iodoamphetamine (DOI) and N,N-dimethyllysergamide (DAM-57), and their respective deuterated isotopologues. No evidence was found that selective deuteration affected either the binding affinity or the activation by the selected ligands for the examined members of the 5-HT2 receptor class.
Collapse
|
48
|
Block E, Batista VS, Matsunami H, Zhuang H, Ahmed L. The role of metals in mammalian olfaction of low molecular weight organosulfur compounds. Nat Prod Rep 2017; 34:529-557. [PMID: 28471462 PMCID: PMC5542778 DOI: 10.1039/c7np00016b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Covering: up to the end of 2017While suggestions concerning the possible role of metals in olfaction and taste date back 50 years, only recently has it been possible to confirm these proposals with experiments involving individual olfactory receptors (ORs). A detailed discussion of recent experimental results demonstrating the key role of metals in enhancing the response of human and other vertebrate ORs to specific odorants is presented against the backdrop of our knowledge of how the sense of smell functions both at the molecular and whole animal levels. This review emphasizes the role of metals in the detection of low molecular weight thiols, sulfides, and other organosulfur compounds, including those found in strong-smelling animal excretions and plant volatiles, and those used in gas odorization. Alternative theories of olfaction are described, with evidence favoring the modified "shape" theory. The use of quantum mechanical/molecular modeling (QM/MM), site-directed mutagenesis and saturation-transfer-difference (STD) NMR is discussed, providing support for biological studies of mouse and human receptors, MOR244-3 and OR OR2T11, respectively. Copper is bound at the active site of MOR244-3 by cysteine and histidine, while cysteine, histidine and methionine are involved with OR2T11. The binding pockets of these two receptors are found in different locations in the three-dimensional seven transmembrane models. Another recently deorphaned human olfactory receptor, OR2M3, highly selective for a thiol from onions, and a broadly-tuned thiol receptor, OR1A1, are also discussed. Other topics covered include the effects of nanoparticles and heavy metal toxicants on vertebrate and fish ORs, intranasal zinc products and the loss of smell (anosmia).
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, USA.
| | | | | | | | | |
Collapse
|
49
|
Paoli M, Münch D, Haase A, Skoulakis E, Turin L, Galizia CG. Minute Impurities Contribute Significantly to Olfactory Receptor Ligand Studies: Tales from Testing the Vibration Theory. eNeuro 2017; 4:ENEURO.0070-17.2017. [PMID: 28670618 PMCID: PMC5490255 DOI: 10.1523/eneuro.0070-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/27/2022] Open
Abstract
Several studies have attempted to test the vibrational hypothesis of odorant receptor activation in behavioral and physiological studies using deuterated compounds as odorants. The results have been mixed. Here, we attempted to test how deuterated compounds activate odorant receptors using calcium imaging of the fruit fly antennal lobe. We found specific activation of one area of the antennal lobe corresponding to inputs from a specific receptor. However, upon more detailed analysis, we discovered that an impurity of 0.0006% ethyl acetate in a chemical sample of benzaldehyde-d5 was entirely responsible for a sizable odorant-evoked response in Drosophila melanogaster olfactory receptor cells expressing dOr42b. Without gas chromatographic purification within the experimental setup, this impurity would have created a difference in the responses of deuterated and nondeuterated benzaldehyde, suggesting that dOr42b be a vibration sensitive receptor, which we show here not to be the case. Our results point to a broad problem in the literature on use of non-GC-pure compounds to test receptor selectivity, and we suggest how the limitations can be overcome in future studies.
Collapse
Affiliation(s)
- M. Paoli
- Neurobiology, University of Konstanz, Konstanz, 78457, Germany
- Department of Physics and Center for Mind/Brain Sciences, University of Trento, Povo, TN 38123, Italy
| | - D. Münch
- Neurobiology, University of Konstanz, Konstanz, 78457, Germany
| | - A. Haase
- Department of Physics and Center for Mind/Brain Sciences, University of Trento, Povo, TN 38123, Italy
| | - E. Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, Vari 16672, Greece
| | - L. Turin
- Division of Neuroscience, Biomedical Sciences Research Centre Alexander Fleming, Vari 16672, Greece
| | - C. G. Galizia
- Neurobiology, University of Konstanz, Konstanz, 78457, Germany
| |
Collapse
|
50
|
Park BB, Lee N, Kim Y, Jae Y, Choi S, Kang N, Hong YR, Ok K, Cho J, Jeon YH, Lee EH, Byun Y, Koo J. Analogues of Dehydroacetic Acid as Selective and Potent Agonists of an Ectopic Odorant Receptor through a Combination of Hydrophilic and Hydrophobic Interactions. ChemMedChem 2017; 12:477-482. [DOI: 10.1002/cmdc.201600612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | - NaHye Lee
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| | - YunHye Kim
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - YoonGyu Jae
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| | - Seunghyun Choi
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | | | | | - Kiwon Ok
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Jeonghee Cho
- Department of NanoBio Medical Science; Dankook University; Cheonan 31116 South Korea
| | - Young Ho Jeon
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Eun Hee Lee
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Youngjoo Byun
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| |
Collapse
|