1
|
Qin Z, Yuan B, Qu G, Sun Z. Rational enzyme design by reducing the number of hotspots and library size. Chem Commun (Camb) 2024; 60:10451-10463. [PMID: 39210728 DOI: 10.1039/d4cc01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Biocatalysts that are eco-friendly, sustainable, and highly specific have great potential for applications in the production of fine chemicals, food, detergents, biofuels, pharmaceuticals, and more. However, due to factors such as low activity, narrow substrate scope, poor thermostability, or incorrect selectivity, most natural enzymes cannot be directly used for large-scale production of the desired products. To overcome these obstacles, protein engineering methods have been developed over decades and have become powerful and versatile tools for adapting enzymes with improved catalytic properties or new functions. The vastness of the protein sequence space makes screening a bottleneck in obtaining advantageous mutated enzymes in traditional directed evolution. In the realm of mathematics, there are two major constraints in the protein sequence space: (1) the number of residue substitutions (M); and (2) the number of codons encoding amino acids as building blocks (N). This feature review highlights protein engineering strategies to reduce screening efforts from two dimensions by reducing the numbers M and N, and also discusses representative seminal studies of rationally engineered natural enzymes to deliver new catalytic functions.
Collapse
Affiliation(s)
- Zongmin Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin 300308, China
| |
Collapse
|
2
|
Hollmann F, Sanchis J, Reetz MT. Learning from Protein Engineering by Deconvolution of Multi-Mutational Variants. Angew Chem Int Ed Engl 2024; 63:e202404880. [PMID: 38884594 DOI: 10.1002/anie.202404880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
This review analyzes a development in biochemistry, enzymology and biotechnology that originally came as a surprise. Following the establishment of directed evolution of stereoselective enzymes in organic chemistry, the concept of partial or complete deconvolution of selective multi-mutational variants was introduced. Early deconvolution experiments of stereoselective variants led to the finding that mutations can interact cooperatively or antagonistically with one another, not just additively. During the past decade, this phenomenon was shown to be general. In some studies, molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) computations were performed in order to shed light on the origin of non-additivity at all stages of an evolutionary upward climb. Data of complete deconvolution can be used to construct unique multi-dimensional rugged fitness pathway landscapes, which provide mechanistic insights different from traditional fitness landscapes. Along a related line, biochemists have long tested the result of introducing two point mutations in an enzyme for mechanistic reasons, followed by a comparison of the respective double mutant in so-called double mutant cycles, which originally showed only additive effects, but more recently also uncovered cooperative and antagonistic non-additive effects. We conclude with suggestions for future work, and call for a unified overall picture of non-additivity and epistasis.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Manfred T Reetz
- Max-Plank-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45481, Mülheim, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
3
|
Li Y, Li R, Ge J, Nie S, Chen R, Yan X, Qiao J. Comprehensive Engineering Strategies for Heterologous Production of Zealexin A1 in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19071-19080. [PMID: 39140182 DOI: 10.1021/acs.jafc.4c02595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Zealexin A1 is a nonvolatile sesquiterpene phytoalexin, which not only exhibits extensive antifungal and insecticidal activities but also has the ability to enhance the drought resistance of plants, and thus has potential applications in agricultural and food fields. In this study, the biosynthetic pathway of zealexin A1 was constructed in Saccharomyces cerevisiae for the first time, and the highest production of zealexin A1 reported to date was achieved. First, through screening of sesquiterpene synthases from various plants, BdMAS11 had a stronger (S)-β-macrocarpene synthesis ability was obtained, and the heterologous synthesis of zealexin A1 was achieved by coexpressing BdMAS11 with cytochrome P450 oxygenase ZmCYP71Z18. Subsequently, after the site-directed mutagenesis of BdMAS11, fusion expression of farnesyl diphosphate synthase ERG20 and BdMAS11, and tailored truncation of BdMAS11 and ZmCYP71Z18, the strain coexpressing the manipulated BdMAS11 and original ZmCYP71Z18 produced 119.31 mg/L of zealexin A1 in shake-flask fermentation. Finally, the production of zealexin A1 reached 1.17 g/L through fed-batch fermentation in a 5 L bioreactor, which was 261.7-fold that of the original strain. This study lays the foundation for the industrial production of zealexin A1 and other terpenoids.
Collapse
Affiliation(s)
- Yukun Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Ran Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jianjun Ge
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Shengxin Nie
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Xiaoguang Yan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Zhejiang Institute of Tianjin University (Shaoxing), Shaoxing 312300, China
| |
Collapse
|
4
|
Zhao C, Liu F, Zhou M, Geng Q, Yu HL. Enzymatic synthesis of pharmacologically relevant chiral sulfoxides by improved CbBVMO variants. Chem Commun (Camb) 2023; 59:14571-14574. [PMID: 37987314 DOI: 10.1039/d3cc05463b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are able to catalyse the asymmetric oxidation of sulfides. This property has made them attractive catalysts for the synthesis of chiral sulfoxide drugs. Here, we have designed and synthesised an exhaustive combinatorial mutant library of the previously identified lansoprazole sulfide monooxygenase CbBVMOV1. From this synthetic combinatorial mutant library, the best mutant, CbBVMOV3, was selected with a specific activity of approximately 1 U mg-1 for lansoprazole sulfoxides. We then optimised the reaction conditions of a two-phase system, achieving the enzymatic asymmetric synthesis of (R)-lansoprazole in a space-time yield of 213 g L-1 d-1 and an enantiomeric excess of >99% (R) with no detectable by-products. In addition, CbBVMOV3 showed higher activity towards other prazole sulfides. These results indicate the potential application of CbBVMO in the chiral sulfoxide drug industry.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Min Zhou
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing and School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
5
|
Khiari O, Bouzemi N, Sánchez-Montero JM, Alcántara AR. Easy and Versatile Technique for the Preparation of Stable and Active Lipase-Based CLEA-like Copolymers by Using Two Homofunctional Cross-Linking Agents: Application to the Preparation of Enantiopure Ibuprofen. Int J Mol Sci 2023; 24:13664. [PMID: 37686470 PMCID: PMC10487927 DOI: 10.3390/ijms241713664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
An easy and versatile method was designed and applied successfully to obtain access to lipase-based cross-linked-enzyme aggregate-like copolymers (CLEA-LCs) using one-pot, consecutive cross-linking steps using two types of homobifunctional cross-linkers (glutaraldehyde and putrescine), mediated with amine activation through pH alteration (pH jump) as a key step in the process. Six lipases were utilised in order to assess the effectiveness of the technique, in terms of immobilization yields, hydrolytic activities, thermal stability and application in kinetic resolution. A good retention of catalytic properties was found for all cases, together with an important thermal and storage stability improvement. Particularly, the CLEA-LCs derived from Candida rugosa lipase showed an outstanding behaviour in terms of thermostability and capability for catalysing the enantioselective hydrolysis of racemic ibuprofen ethyl ester, furnishing the eutomer (S)-ibuprofen with very high conversion and enantioselectivity.
Collapse
Affiliation(s)
- Oussama Khiari
- Eco Compatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry, Badji Mokhtar University, Annaba 23000, Algeria; (O.K.); (N.B.)
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| | - Nassima Bouzemi
- Eco Compatible Asymmetric Catalysis Laboratory (LCAE), Department of Chemistry, Badji Mokhtar University, Annaba 23000, Algeria; (O.K.); (N.B.)
| | - José María Sánchez-Montero
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| | - Andrés R. Alcántara
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy Faculty, Complutense University of Madrid (UCM), Ciudad Universitaria, Plaza de Ramon y Cajal, s/n., 28040 Madrid, Spain
| |
Collapse
|
6
|
Wang ZK, Gong JS, Feng DT, Su C, Li H, Rao ZM, Lu ZM, Shi JS, Xu ZH. Geometric Remodeling of Nitrilase Active Pocket Based on ALF-Scanning Strategy To Enhance Aromatic Nitrile Substrate Preference and Catalytic Efficiency. Appl Environ Microbiol 2023; 89:e0022023. [PMID: 37191513 PMCID: PMC10304902 DOI: 10.1128/aem.00220-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Nitrilase can catalyze nitrile compounds to generate corresponding carboxylic acids. Nitrilases as promiscuous enzymes can catalyze a variety of nitrile substrates, such as aliphatic nitriles, aromatic nitriles, etc. However, researchers tend to prefer enzymes with high substrate specificity and high catalytic efficiency. In this study, we developed an active pocket remodeling (ALF-scanning) based on modulating the geometry of the nitrilase active pocket to alter substrate preference and improve catalytic efficiency. Using this strategy, combined with site-directed saturation mutagenesis, we successfully obtained 4 mutants with strong aromatic nitrile preference and high catalytic activity, W170G, V198L, M197F, and F202M, respectively. To explore the synergistic relationship of these 4 mutations, we constructed 6 double-combination mutants and 4 triple-combination mutants. By combining mutations, we obtained the synergistically enhanced mutant V198L/W170G, which has a significant preference for aromatic nitrile substrates. Compared with the wild type, its specific activities for 4 aromatic nitrile substrates are increased to 11.10-, 12.10-, 26.25-, and 2.55-fold, respectively. By mechanistic dissection, we found that V198L/W170G introduced a stronger substrate-residue π-alkyl interaction in the active pocket and obtained a larger substrate cavity (225.66 Å3 to 307.58 Å3), making aromatic nitrile substrates more accessible to be catalyzed by the active center. Finally, we conducted experiments to rationally design the substrate preference of 3 other nitrilases based on the substrate preference mechanism and also obtained the corresponding aromatic nitrile substrate preference mutants of these three nitrilases and these mutants with greatly improved catalytic efficiency. Notably, the substrate range of SmNit is widened. IMPORTANCE In this study, the active pocket was largely remodeled based on the ALF-scanning strategy we developed. It is believed that ALF-scanning not only could be employed for substrate preference modification but might also play a role in protein engineering of other enzymatic properties, such as substrate region selectivity and substrate spectrum. In addition, the mechanism of aromatic nitrile substrate adaptation we found is widely applicable to other nitrilases in nature. To a large extent, it could provide a theoretical basis for the rational design of other industrial enzymes.
Collapse
Affiliation(s)
- Zi-Kai Wang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, People’s Republic of China
| | - Jin-Song Gong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, People’s Republic of China
| | - Dan-Ting Feng
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Chang Su
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, People’s Republic of China
| | - Hui Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
| | - Zhi-Ming Rao
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, People’s Republic of China
| | - Zhen-Ming Lu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, People’s Republic of China
| | - Jin-Song Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, People’s Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, People’s Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, People’s Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd., Yixing, People’s Republic of China
| |
Collapse
|
7
|
Alejaldre L, Lemay-St-Denis C, Pelletier JN, Quaglia D. Tuning Selectivity in CalA Lipase: Beyond Tunnel Engineering. Biochemistry 2023; 62:396-409. [PMID: 36580299 PMCID: PMC9851156 DOI: 10.1021/acs.biochem.2c00513] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Engineering studies of Candida (Pseudozyma) antarctica lipase A (CalA) have demonstrated the potential of this enzyme in the selective hydrolysis of fatty acid esters of different chain lengths. CalA has been shown to bind substrates preferentially through an acyl-chain binding tunnel accessed via the hydrolytic active site; it has also been shown that selectivity for substrates of longer or shorter chain length can be tuned, for instance by modulating steric hindrance within the tunnel. Here we demonstrate that, whereas the tunnel region is certainly of paramount importance for substrate recognition, residues in distal regions of the enzyme can also modulate substrate selectivity. To this end, we investigate variants that carry one or more substitutions within the substrate tunnel as well as in distal regions. Combining experimental determination of the substrate selectivity using natural and synthetic substrates with computational characterization of protein dynamics and of tunnels, we deconvolute the effect of key substitutions and demonstrate that epistatic interactions contribute to procuring selectivity toward either long-chain or short/medium-chain fatty acid esters. We demonstrate that various mechanisms contribute to the diverse selectivity profiles, ranging from reshaping tunnel morphology and tunnel stabilization to obstructing the main substrate-binding tunnel, highlighting the dynamic nature of the substrate-binding region. This work provides important insights into the versatility of this robust lipase toward diverse applications.
Collapse
Affiliation(s)
- Lorea Alejaldre
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
| | - Claudèle Lemay-St-Denis
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
| | - Joelle N. Pelletier
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, CanadaH3T 1J4
- Department
of Chemistry, Université de Montréal, Montréal, QC, CanadaH2V 0B3
| | - Daniela Quaglia
- PROTEO,
The Québec Network for Research on Protein, Function, Engineering
and Applications, https://proteo.ca/en/
- CGCC, Center
in Green Chemistry and Catalysis, Montréal, QC, CanadaG1V 0A6
- Department
of Chemistry, Université de Montréal, Montréal, QC, CanadaH2V 0B3
- Department
of Chemistry, Carleton University, Ottawa, ON, CanadaK1S 5B6
| |
Collapse
|
8
|
Wu T, Wang Y, Zhang N, Yin D, Xu Y, Nie Y, Mu X. Reshaping Substrate-Binding Pocket of Leucine Dehydrogenase for Bidirectionally Accessing Structurally Diverse Substrates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| | - Yinmiao Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Ningxin Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Dejing Yin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| |
Collapse
|
9
|
Wang D, Cui F, Ren L, Tan X, Li Q, Li J, Li T. Enhancing the Inhibition Potential of AHL Acylase PF2571 against Food Spoilage by Remodeling Its Substrate Scope via a Computationally Driven Protein Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14510-14521. [PMID: 36331356 DOI: 10.1021/acs.jafc.2c05753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The N-acyl homoserine lactone (AHL) acylases are widely used as quorum sensing (QS) blockers to inhibit bacterial food spoilage. However, their substrate specificity for long-chain substrates weakens their efficiency. In this study, a computer-assisted design of AHL acylase PF2571 was performed to modify its substrate scope. The results showed that the variant PF2571H194Y, L221R could effectively quench N-hexanoyl-l-homoserine lactone and N-octanoyl-l-homoserine lactone without impairing its activity against long-chain AHLs. Kinetic analysis of the enzymatic activities further corroborated the observed substrate expansion. The inhibitory activities of this variant were significantly enhanced against the QS phenotype of Aeromonas veronii BY-8, with inhibition rates of 45.67, 78.25, 54.21, and 54.65% against proteases, motility, biofilms, and extracellular polysaccharides, respectively. Results for molecular dynamics simulation showed that the steric hindrance, induced by residue substitution, could have been responsible for the change in substrate scope. This study dramatically improves the practicability of AHL acylase in controlling food spoilage.
Collapse
Affiliation(s)
- Dangfeng Wang
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Fangchao Cui
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Heilongjiang, Harbin150076, China
| | - Xiqian Tan
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Qiuying Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
| | - Jianrong Li
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Liaoning, Jinzhou121013, China
- College of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi214122, China
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Liaoning, Dalian116029, China
| |
Collapse
|
10
|
Engineering of Cyclodextrin Glycosyltransferase through a Size/Polarity Guided Triple-Code Strategy with Enhanced α-Glycosyl Hesperidin Synthesis Ability. Appl Environ Microbiol 2022; 88:e0102722. [PMID: 35950845 PMCID: PMC9469708 DOI: 10.1128/aem.01027-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hesperidin, a flavonoid enriched in citrus peel, can be enzymatically glycosylated using CGTase with significantly improved water solubility. However, the reaction catalyzed by wild-type CGTase is rather inefficient, reflected in the poor production rate and yield. By focusing on the aglycon attacking step, seven residues were selected for mutagenesis in order to improve the transglycosylation efficiency. Due to the lack of high-throughput screening technology regarding to the studied reaction, we developed a size/polarity guided triple-code strategy in order to reduce the library size. The selected residues were replaced by three rationally chosen amino acids with either changed size or polarity, leading to an extremely condensed library with only 32 mutants to be screened. Twenty-five percent of the constructed mutants were proved to be positive, suggesting the high quality of the constructed library. Specific transglycosylation activity of the best mutant Y217F was assayed to be 935.7 U/g, and its kcat/KmA is 6.43 times greater than that of the wild type. Homology modeling and docking computation suggest the source of notably enhanced catalytic efficiency is resulted from the combination of ligand transfer and binding effect. IMPORTANCE Size/polarity guided triple-code strategy, a novel semirational mutagenesis strategy, was developed in this study and employed to engineer the aglycon attacking site of CGTase. Screening pressure was set as improved hesperidin glucoside synthesis ability, and eight positive mutants were obtained by screening only 32 mutants. The high quality of the designed library confirms the effectiveness of the developed strategy is potentially valuable to future mutagenesis studies. Mechanisms of positive effect were explained. The best mutant exhibits 6.43 times enhanced kcat/KmA value and confirmed to be a superior whole-cell catalyst with potential application value in synthesizing hesperidin glucosides.
Collapse
|
11
|
Substrate multiplexed protein engineering facilitates promiscuous biocatalytic synthesis. Nat Commun 2022; 13:5242. [PMID: 36068220 PMCID: PMC9448781 DOI: 10.1038/s41467-022-32789-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enzymes with high activity are readily produced through protein engineering, but intentionally and efficiently engineering enzymes for an expanded substrate scope is a contemporary challenge. One approach to address this challenge is Substrate Multiplexed Screening (SUMS), where enzyme activity is measured on competing substrates. SUMS has long been used to rigorously quantitate native enzyme specificity, primarily for in vivo settings. SUMS has more recently found sporadic use as a protein engineering approach but has not been widely adopted by the field, despite its potential utility. Here, we develop principles of how to design and interpret SUMS assays to guide protein engineering. This rich information enables improving activity with multiple substrates simultaneously, identifies enzyme variants with altered scope, and indicates potential mutational hot-spots as sites for further engineering. These advances leverage common laboratory equipment and represent a highly accessible and customizable method for enzyme engineering. Efficient engineering of enzymes for expanded substrate scope is currently challenging. Here, the authors develop simple principles of how to design and interpret Substrate Multiplexed Screening assays to guide protein engineering to enable activity improvements with simultaneously with multiple substrates.
Collapse
|
12
|
Reetz M. Witnessing the Birth of Directed Evolution of Stereoselective Enzymes as Catalysts in Organic Chemistry. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Ramdass AC, Rampersad SN. Detection and diversity of the mannosylerythritol lipid (MEL) gene cluster and lipase A and B genes of Moesziomyces antarcticus isolated from terrestrial sites chronically contaminated with crude oil in Trinidad. BMC Microbiol 2022; 22:43. [PMID: 35120442 PMCID: PMC8815271 DOI: 10.1186/s12866-021-02419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.
Collapse
Affiliation(s)
- Amanda C. Ramdass
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| |
Collapse
|
14
|
Singhania V, Cortes-Clerget M, Dussart-Gautheret J, Akkachairin B, Yu J, Akporji N, Gallou F, Lipshutz BH. Lipase-catalyzed esterification in water enabled by nanomicelles. Applications to 1-pot multi-step sequences. Chem Sci 2022; 13:1440-1445. [PMID: 35222928 PMCID: PMC8809412 DOI: 10.1039/d1sc05660c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Esterification in an aqueous micellar medium is catalyzed by a commercially available lipase in the absence of any co-factors. The presence of only 2 wt% designer surfactant, TPGS-750-M, assists in a 100% selective enzymatic process in which only primary alcohols participate (in a 1 : 1 ratio with carboxylic acid). An unexpected finding is also disclosed where the simple additive, PhCF3 (1 equiv. vs. substrate), appears to significantly extend the scope of usable acid/alcohol combinations. Taken together, several chemo- and bio-catalyzed 1-pot, multi-step reactions can now be performed in water.
Collapse
Affiliation(s)
- Vani Singhania
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Margery Cortes-Clerget
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Jade Dussart-Gautheret
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Bhornrawin Akkachairin
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education 54 Kamphaeng Phet 6, Laksi Bangkok 10210 Thailand
| | - Julie Yu
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | - Nnamdi Akporji
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California Santa Barbara CA 93106 USA
| |
Collapse
|
15
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
16
|
Cadet XF, Gelly JC, van Noord A, Cadet F, Acevedo-Rocha CG. Learning Strategies in Protein Directed Evolution. Methods Mol Biol 2022; 2461:225-275. [PMID: 35727454 DOI: 10.1007/978-1-0716-2152-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic biology is a fast-evolving research field that combines biology and engineering principles to develop new biological systems for medical, pharmacological, and industrial applications. Synthetic biologists use iterative "design, build, test, and learn" cycles to efficiently engineer genetic systems that are reliable, reproducible, and predictable. Protein engineering by directed evolution can benefit from such a systematic engineering approach for various reasons. Learning can be carried out before starting, throughout or after finalizing a directed evolution project. Computational tools, bioinformatics, and scanning mutagenesis methods can be excellent starting points, while molecular dynamics simulations and other strategies can guide engineering efforts. Similarly, studying protein intermediates along evolutionary pathways offers fascinating insights into the molecular mechanisms shaped by evolution. The learning step of the cycle is not only crucial for proteins or enzymes that are not suitable for high-throughput screening or selection systems, but it is also valuable for any platform that can generate a large amount of data that can be aided by machine learning algorithms. The main challenge in protein engineering is to predict the effect of a single mutation on one functional parameter-to say nothing of several mutations on multiple parameters. This is largely due to nonadditive mutational interactions, known as epistatic effects-beneficial mutations present in a genetic background may not be beneficial in another genetic background. In this work, we provide an overview of experimental and computational strategies that can guide the user to learn protein function at different stages in a directed evolution project. We also discuss how epistatic effects can influence the success of directed evolution projects. Since machine learning is gaining momentum in protein engineering and the field is becoming more interdisciplinary thanks to collaboration between mathematicians, computational scientists, engineers, molecular biologists, and chemists, we provide a general workflow that familiarizes nonexperts with the basic concepts, dataset requirements, learning approaches, model capabilities and performance metrics of this intriguing area. Finally, we also provide some practical recommendations on how machine learning can harness epistatic effects for engineering proteins in an "outside-the-box" way.
Collapse
Affiliation(s)
- Xavier F Cadet
- PEACCEL, Artificial Intelligence Department, Paris, France
| | - Jean Christophe Gelly
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | | - Frédéric Cadet
- Laboratoire d'Excellence GR-Ex, Paris, France
- BIGR, DSIMB, UMR_S1134, INSERM, University of Paris & University of Reunion, Paris, France
| | | |
Collapse
|
17
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
18
|
Li D, Chen X, Chen Z, Lin X, Xu J, Wu Q. Directed evolution of lipase A from Bacillus subtilis for the preparation of enantiocomplementary sec-alcohols. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Maldonado MR, Alnoch RC, de Almeida JM, Santos LAD, Andretta AT, Ropaín RDPC, de Souza EM, Mitchell DA, Krieger N. Key mutation sites for improvement of the enantioselectivity of lipases through protein engineering. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Püllmann P, Weissenborn MJ. Improving the Heterologous Production of Fungal Peroxygenases through an Episomal Pichia pastoris Promoter and Signal Peptide Shuffling System. ACS Synth Biol 2021; 10:1360-1372. [PMID: 34075757 DOI: 10.1021/acssynbio.0c00641] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal peroxygenases (UPOs) have emerged as oxyfunctionalization catalysts of tremendous interest in recent years. However, their widespread use in the field of biocatalysis is still hampered by their challenging heterologous production, substantially limiting the panel of accessible enzymes for investigation and enzyme engineering. Building upon previous work on UPO production in yeast, we have developed a combined promoter and signal peptide shuffling system for episomal high throughput UPO production in the industrially relevant, methylotrophic yeast Pichia pastoris. Eleven endogenous and orthologous promoters were shuffled with a diverse set of 17 signal peptides. Three previously described UPOs were selected as first test set, leading to the identification of beneficial promoter/signal peptide combinations for protein production. We applied the system then successfully to produce two novel UPOs: MfeUPO from Myceliophthora fergusii and MhiUPO from Myceliophthora hinnulea. To demonstrate the feasibility of the developed system to other enzyme classes, it was applied for the industrially relevant lipase CalB and the laccase Mrl2. In total, approximately 3200 transformants of eight diverse enzymes were screened and the best promoter/signal peptide combinations studied at various cofeeding, derepression, and induction conditions. High volumetric production titers were achieved by subsequent creation of stable integration lines and harnessing orthologous promoters from Hansenula polymorpha. In most cases promising yields were also achieved without the addition of methanol under derepressed conditions. To foster the use of the episomal high throughput promoter/signal peptide Pichia pastoris system, we made all plasmids available through Addgene.
Collapse
Affiliation(s)
- Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany
| |
Collapse
|
21
|
Liu G, Li S, Shi Q, Li H, Guo J, Ouyang J, Jia X, Zhang L, You S, Qin B. Engineering of Saccharomyces pastorianus old yellow enzyme 1 for the synthesis of pharmacologically active (S)-profen derivatives. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Monteiro RR, Virgen-Ortiz JJ, Berenguer-Murcia Á, da Rocha TN, dos Santos JC, Alcántara AR, Fernandez-Lafuente R. Biotechnological relevance of the lipase A from Candida antarctica. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Acevedo-Rocha CG, Hollmann F, Sanchis J, Sun Z. A Pioneering Career in Catalysis: Manfred T. Reetz. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04108] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ Deft, Netherlands
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville 3052, Victoria, Australia
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin, 300308 China
| |
Collapse
|
24
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201901491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Deutschland
- Department of Chemistry, Hans-Meerwein-Straße 4 Philipps-Universität 35032 Marburg Deutschland
| |
Collapse
|
25
|
Qu G, Li A, Acevedo‐Rocha CG, Sun Z, Reetz MT. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angew Chem Int Ed Engl 2020; 59:13204-13231. [PMID: 31267627 DOI: 10.1002/anie.201901491] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-resources Hubei Key Laboratory of Industrial Biotechnology College of Life Sciences Hubei University 368 Youyi Road Wuchang Wuhan 430062 China
| | | | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim Germany
- Department of Chemistry, Hans-Meerwein-Strasse 4 Philipps-University 35032 Marburg Germany
| |
Collapse
|
26
|
Lu Z, Li X, Zhang R, Yi L, Ma Y, Zhang G. Tunnel engineering to accelerate product release for better biomass-degrading abilities in lignocellulolytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:275. [PMID: 31768193 PMCID: PMC6874815 DOI: 10.1186/s13068-019-1616-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND For enzymes with buried active sites, transporting substrates/products ligands between active sites and bulk solvent via access tunnels is a key step in the catalytic cycle of these enzymes. Thus, tunnel engineering is becoming a powerful strategy to refine the catalytic properties of these enzymes. The tunnel-like structures have been described in enzymes catalyzing bulky substrates like glycosyl hydrolases, while it is still uncertain whether these structures involved in ligands exchange. Till so far, no studies have been reported on the application of tunnel engineering strategy for optimizing properties of enzymes catalyzing biopolymers. RESULTS In this study, xylanase S7-xyl (PDB: 2UWF) with a deep active cleft was chosen as a study model to evaluate the functionalities of tunnel-like structures on the properties of biopolymer-degrading enzymes. Three tunnel-like structures in S7-xyl were identified and simultaneously reshaped through multi-sites saturated mutagenesis; the most advantageous mutant 254RL1 (V207N/Q238S/W241R) exhibited 340% increase in specific activity compared to S7-xyl. Deconvolution analysis revealed that all three mutations contributed synergistically to the improved activity of 254RL1. Enzymatic characterization showed that larger end products were released in 254RL1, while substrate binding and structural stability were not changed. Dissection of the structural alterations revealed that both the tun_1 and tun_2 in 254RL1 have larger bottleneck radius and shorter length than those of S7-xyl, suggesting that these tunnel-like structures may function as products transportation pathways. Attributed to the improved catalytic efficiency, 254RL1 represents a superior accessory enzyme to enhance the hydrolysis efficiency of cellulase towards different pretreated lignocellulose materials. In addition, tunnel engineering strategy was also successfully applied to improve the catalytic activities of three other xylanases including xylanase NG27-xyl from Bacillus sp. strain NG-27, TSAA1-xyl from Geobacillus sp. TSAA1 and N165-xyl from Bacillus sp. N16-5, with 80%, 20% and 170% increase in specific activity, respectively. CONCLUSIONS This study represents a pilot study of engineering and functional verification of tunnel-like structures in enzymes catalyzing biopolymer. The specific activities of four xylanases with buried active sites were successfully improved by tunnel engineering. It is highly likely that tunnel reshaping can be used to engineer better biomass-degrading abilities in other lignocellulolytic enzymes with buried active sites.
Collapse
Affiliation(s)
- Zhenghui Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Xinzhi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Rui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Li Yi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| | - Yanhe Ma
- Tianjin Institutes of Industrial Biotechnology, Chinese Academy of Science, Tianjin, 300308 China
| | - Guimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
27
|
Monteiro RRC, Neto DMA, Fechine PBA, Lopes AAS, Gonçalves LRB, dos Santos JCS, de Souza MCM, Fernandez-Lafuente R. Ethyl Butyrate Synthesis Catalyzed by Lipases A and B from Candida antarctica Immobilized onto Magnetic Nanoparticles. Improvement of Biocatalysts' Performance under Ultrasonic Irradiation. Int J Mol Sci 2019; 20:ijms20225807. [PMID: 31752306 PMCID: PMC6888514 DOI: 10.3390/ijms20225807] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022] Open
Abstract
The synthesis of ethyl butyrate catalyzed by lipases A (CALA) or B (CALB) from Candida antarctica immobilized onto magnetic nanoparticles (MNP), CALA-MNP and CALB-MNP, respectively, is hereby reported. MNPs were prepared by co-precipitation, functionalized with 3-aminopropyltriethoxysilane, activated with glutaraldehyde, and then used as support to immobilize either CALA or CALB (immobilization yield: 100 ± 1.2% and 57.6 ± 3.8%; biocatalysts activities: 198.3 ± 2.7 Up-NPB/g and 52.9 ± 1.7 Up-NPB/g for CALA-MNP and CALB-MNP, respectively). X-ray diffraction and Raman spectroscopy analysis indicated the production of a magnetic nanomaterial with a diameter of 13.0 nm, whereas Fourier-transform infrared spectroscopy indicated functionalization, activation and enzyme immobilization. To determine the optimum conditions for the synthesis, a four-variable Central Composite Design (CCD) (biocatalyst content, molar ratio, temperature and time) was performed. Under optimized conditions (1:1, 45 °C and 6 h), it was possible to achieve 99.2 ± 0.3% of conversion for CALA-MNP (10 mg) and 97.5 ± 0.8% for CALB-MNP (12.5 mg), which retained approximately 80% of their activity after 10 consecutive cycles of esterification. Under ultrasonic irradiation, similar conversions were achieved but at 4 h of incubation, demonstrating the efficiency of ultrasound technology in the enzymatic synthesis of esters.
Collapse
Affiliation(s)
- Rodolpho R. C. Monteiro
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (R.R.C.M.); (L.R.B.G.)
| | - Davino M. Andrade Neto
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (D.M.A.N.); (P.B.A.F.)
| | - Pierre B. A. Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (D.M.A.N.); (P.B.A.F.)
| | - Ada A. S. Lopes
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
| | - Luciana R. B. Gonçalves
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, CEP 60455760, Fortaleza 60000-000, CE, Brazil; (R.R.C.M.); (L.R.B.G.)
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| | - Maria C. M. de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, CEP 62790970, Redenção 68550-000, CE, Brazil;
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain
- Correspondence: (J.C.S.d.S.); (M.C.M.d.S.); (R.F.-L.); Tel.: +55-85-3332-6109 (J.C.S.d.S. & M.C.M.d.S.); +34-915-854-941 (R.F.-L.)
| |
Collapse
|
28
|
Li A, Qu G, Sun Z, Reetz MT. Statistical Analysis of the Benefits of Focused Saturation Mutagenesis in Directed Evolution Based on Reduced Amino Acid Alphabets. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02548] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, 368 Youyi Road, Wuchang Wuhan 430062, China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
29
|
Xu J, Cen Y, Singh W, Fan J, Wu L, Lin X, Zhou J, Huang M, Reetz MT, Wu Q. Stereodivergent Protein Engineering of a Lipase To Access All Possible Stereoisomers of Chiral Esters with Two Stereocenters. J Am Chem Soc 2019; 141:7934-7945. [DOI: 10.1021/jacs.9b02709] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Yixin Cen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Warispreet Singh
- School of Chemistry and Chemical Engineering, Queen’s University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, U.K
| | - Jiajie Fan
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, Queen’s University, David Keir Building, Stranmillis Road, Belfast BT9 5AG, Northern Ireland, U.K
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Chemistry Department, Philipps-University, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
30
|
Löfgren J, Görbe T, Oschmann M, Svedendahl Humble M, Bäckvall J. Transesterification of a Tertiary Alcohol by Engineered
Candida antarctica
Lipase A. Chembiochem 2019; 20:1438-1443. [DOI: 10.1002/cbic.201800792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Johanna Löfgren
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 106 91 Stockholm Sweden
| | - Tamás Görbe
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 106 91 Stockholm Sweden
| | - Michael Oschmann
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 106 91 Stockholm Sweden
| | - Maria Svedendahl Humble
- KTH Royal Institute of TechnologySchool of Engineering Sciences in ChemistryBiotechnology and Health (CBH)Department of Industrial Biotechnology AlbaNova University Center 106 91 Stockholm Sweden
- Pharem Biotech ABBiovation Park Forskargatan 20 J 151 36 Södertälje Sweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius Laboratory Stockholm University 106 91 Stockholm Sweden
| |
Collapse
|
31
|
He Y, Wang X, Wei H, Zhang J, Chen B, Chen F. Direct enzymatic ethanolysis of potential Nannochloropsis biomass for co-production of sustainable biodiesel and nutraceutical eicosapentaenoic acid. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:78. [PMID: 30992715 PMCID: PMC6449970 DOI: 10.1186/s13068-019-1418-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/27/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Marine microalga Nannochloropsis is a promising source for the production of renewable and sustainable biodiesel in replacement of depleting petroleum. Other than biodiesel, Nannochloropsis is a green and potential resource for the commercial production of nutraceutical eicosapentaenoic acid (EPA, C20:5). In recent studies, low-value biodiesel can be achieved by transesterification of Nannochloropsis biomass. However, it is undoubtedly wasteful to produce microalgal biodiesel containing EPA from nutritional and economical aspects. A new strategy was addressed and exploited to produce low-value bulky biodiesel along with EPA enrichment via enzymatic ethanolysis of Nannochloropsis biomass with a specific lipase. RESULTS Cellulase pretreatment on Nannochloropsis sp. biomass significantly improved the biodiesel conversion by direct ethanolysis with five enzymes from Candida antarctica (CALA and CALB), Thermomyces lanuginosus (TL), Rhizomucor miehei (RM), and Aspergillus oryzae (PLA). Among these five biocatalysts, CALA was the best suitable enzyme to yield high biodiesel conversion and effectively enrich EPA. After optimization, the maximum biodiesel conversion (46.53-48.57%) was attained by CALA at 8:1 ethanol/biomass ratio (v/w) in 10-15% water content with 10% lipase weight at 35 °C for 72 h. Meanwhile, EPA (60.81%) was highly enriched in microalgae NPLs (neutral lipids and polar lipids), increasing original EPA levels by 1.51-fold. Moreover, this process was re-evaluated with two Nannochloropsis species (IMET1 and Salina 537). Under the optimized conditions, the biodiesel conversions of IMET1 and Salina 537 by CALA were 63.41% and 54.33%, respectively. EPA contents of microalgal NPLs were 50.06% for IMET1 and 53.73% for Salina 537. CONCLUSION CALA was the potential biocatalyst to discriminate against EPA in the ethanolysis of Nannochloropsis biomass. The biodiesel conversion and EPA enrich efficiency of CALA were greatly dependent on lipidic class and fatty acid compositions of Nannochloropsis biomass. CALA-catalyzed ethanolysis with Nannochloropsis biomass was a promising approach for co-production of low-value biodiesel and high-value microalgae products rich in EPA.
Collapse
Affiliation(s)
- Yongjin He
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture of the People’s Republic of China, Beijing, 100081 China
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Xiaofei Wang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Hehong Wei
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Jianzhi Zhang
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou, 350117 China
| | - Feng Chen
- BIC-ESAT, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Food & Bioresource Engineering, College of Engineering, Peking University, Beijing, 100871 China
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518000 China
| |
Collapse
|
32
|
Quaglia D, Alejaldre L, Ouadhi S, Rousseau O, Pelletier JN. Holistic engineering of Cal-A lipase chain-length selectivity identifies triglyceride binding hot-spot. PLoS One 2019; 14:e0210100. [PMID: 30640952 PMCID: PMC6331120 DOI: 10.1371/journal.pone.0210100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Through the application of a region-focused saturation mutagenesis and randomization approach, protein engineering of the Cal-A enzyme was undertaken with the goal of conferring new triglyceride selectivity. Little is known about the mode of triglyceride binding to Cal-A. Engineering Cal-A thus requires a systemic approach. Targeted and randomized Cal-A libraries were created, recombined using the Golden Gate approach and screened to detect variants able to discriminate between long-chain (olive oil) and short-chain (tributyrin) triglyceride substrates using a high-throughput in vivo method to visualize hydrolytic activity. Discriminative variants were analyzed using an in-house script to identify predominant substitutions. This approach allowed identification of variants that exhibit strong discrimination for the hydrolysis of short-chain triglycerides and others that discriminate towards hydrolysis of long-chain triglycerides. A clear pattern emerged from the discriminative variants, identifying the 217–245 helix-loop-helix motif as being a hot-spot for triglyceride recognition. This was the consequence of introducing the entire mutational load in selected regions, without putting a strain on distal parts of the protein. Our results improve our understanding of the Cal-A lipase mode of action and selectivity. This holistic perspective to protein engineering, where parts of the gene are individually mutated and the impact evaluated in the context of the whole protein, can be applied to any protein scaffold.
Collapse
Affiliation(s)
- Daniela Quaglia
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Lorea Alejaldre
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
| | - Sara Ouadhi
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Olivier Rousseau
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Joelle N. Pelletier
- Département de Chimie and Center for Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- Département de Biochimie, Université de Montréal, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
33
|
Jan Deniau A, Subileau M, Dubreucq E. Characterization and Reshaping of a Large and Hydrophobic Nucleophile Pocket in Lipases/Acyltransferases. Chembiochem 2018; 19:1839-1844. [DOI: 10.1002/cbic.201800279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Anne‐Hélène Jan Deniau
- UMR IATEMontpellier SupAgro 2 place Pierre Viala Bâtiment 32 34060 Montpellier Cedex 2 France
| | - Maeva Subileau
- UMR IATEMontpellier SupAgro 2 place Pierre Viala Bâtiment 32 34060 Montpellier Cedex 2 France
| | - Eric Dubreucq
- UMR IATEMontpellier SupAgro 2 place Pierre Viala Bâtiment 32 34060 Montpellier Cedex 2 France
| |
Collapse
|
34
|
Li G, Maria-Solano MA, Romero-Rivera A, Osuna S, Reetz MT. Inducing high activity of a thermophilic enzyme at ambient temperatures by directed evolution. Chem Commun (Camb) 2018; 53:9454-9457. [PMID: 28795696 DOI: 10.1039/c7cc05377k] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The long-standing problem of achieving high activity of a thermophilic enzyme at low temperatures and short reaction times with little tradeoff in thermostability has been solved by directed evolution, an alcohol dehydrogenase found in hot springs serving as the catalyst in enantioselective ketone reductions.
Collapse
Affiliation(s)
- Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany and Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032, Marburg, Germany.
| | - Miguel A Maria-Solano
- Institut de Química Computacional i Catàlisi and Department de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 6, Girona 17003, Catalonia, Spain.
| | - Adrian Romero-Rivera
- Institut de Química Computacional i Catàlisi and Department de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 6, Girona 17003, Catalonia, Spain.
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Department de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 6, Girona 17003, Catalonia, Spain.
| | - Manfred T Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany and Fachbereich Chemie der Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032, Marburg, Germany.
| |
Collapse
|
35
|
Ma F, Chung MT, Yao Y, Nidetz R, Lee LM, Liu AP, Feng Y, Kurabayashi K, Yang GY. Efficient molecular evolution to generate enantioselective enzymes using a dual-channel microfluidic droplet screening platform. Nat Commun 2018; 9:1030. [PMID: 29531246 PMCID: PMC5847605 DOI: 10.1038/s41467-018-03492-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
Directed evolution has long been a key strategy to generate enzymes with desired properties like high selectivity, but experimental barriers and analytical costs of screening enormous mutant libraries have limited such efforts. Here, we describe an ultrahigh-throughput dual-channel microfluidic droplet screening system that can be used to screen up to ~107 enzyme variants per day. As an example case, we use the system to engineer the enantioselectivity of an esterase to preferentially produce desired enantiomers of profens, an important class of anti-inflammatory drugs. Using two types of screening working modes over the course of five rounds of directed evolution, we identify (from among 5 million mutants) a variant with 700-fold improved enantioselectivity for the desired (S)-profens. We thus demonstrate that this screening platform can be used to rapidly generate enzymes with desired enzymatic properties like enantiospecificity, chemospecificity, and regiospecificity.
Collapse
Affiliation(s)
- Fuqiang Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Meng Ting Chung
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Robert Nidetz
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lap Man Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
36
|
Mügge C, Kourist R. Practical Considerations Regarding the Choice of the Best High-Throughput Assay. Methods Mol Biol 2018; 1685:189-208. [PMID: 29086310 DOI: 10.1007/978-1-4939-7366-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
All protein engineering studies include the stage of identifying and characterizing variants within a mutant library by employing a suitable assay or selection method. A large variety of different assay approaches for different enzymes have been developed in the last few decades, and the throughput performance of these assays vary considerably. Thus, the concept of a protein engineering study must be adapted to the available assay methods. This introductory review chapter describes different assay concepts on selected examples, including selection and screening approaches, detection of pH and cosubstrate changes, coupled enzyme assays, methods using surrogate substrates and selective derivatization. The given examples should guide and inspire the reader when choosing and developing own high-throughput screening approaches.
Collapse
Affiliation(s)
- Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Robert Kourist
- Institute of Molecular Biotechnology, TU Graz, Petersgasse 14, A8010, Graz, Austria.
| |
Collapse
|
37
|
Infanzón B, Sotelo PH, Martínez J, Diaz P. Rational evolution of the unusual Y-type oxyanion hole of Rhodococcus sp. CR53 lipase LipR. Enzyme Microb Technol 2017; 108:26-33. [PMID: 29108624 DOI: 10.1016/j.enzmictec.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/26/2017] [Accepted: 09/02/2017] [Indexed: 01/10/2023]
Abstract
Rhodococcus sp CR-53 lipase LipR was the first characterized member of bacterial lipase family X. Interestingly, LipR displays some similarity with α/β-hydrolases of the C. antartica lipase A (CAL-A)-like superfamily (abH38), bearing a Y-type oxyanion hole, never found before among bacterial lipases. In order to explore this unusual Y-type oxyanion hole, and to improve LipR performance, two modification strategies based on site directed or saturation mutagenesis were addressed. Initially, a small library of mutants was designed to convert LipR Y-type oxyanion hole (YDS) into one closer to those most frequently found in bacteria (GGG(X)). However, activity was completely lost in all mutants obtained, indicating that the Y-type oxyanion hole of LipR is required for activity. A second approach was addressed to modify the two main oxyanion hole residues Tyr110 and Asp111, previously described for CAL-A as the most relevant amino acids involved in stabilization of the enzyme-substrate complex. A saturation mutagenesis library was prepared for each residue (Tyr110 and Asp111), and activity of the resulting variants was assayed on different chain length substrates. No functional LipR variants could be obtained when Tyr110 was replaced by any other amino acids, indicating that this is a crucial residue for catalysis. However, among the Asp111 variants obtained, LipR D111G produced a functional enzyme. Interestingly, this LipR-YGS variant showed less activity than wild type LipR on short- or mid- chain substrates but displayed a 5.6-fold increased activity on long chain length substrates. Analysis of the 3D model and in silico docking studies of this enzyme variant suggest that substitution of Asp by Gly produces a wider entrance tunnel that would allow for a better and tight accommodation of larger substrates, thus justifying the experimental results obtained.
Collapse
Affiliation(s)
- Belén Infanzón
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Av. Diagonal 643, 08028-Barcelona, Spain
| | - Pablo H Sotelo
- Department of Biotechnology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus Universitario, P.0. Box 1055, San Lorenzo, Paraguay
| | - Josefina Martínez
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Av. Diagonal 643, 08028-Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Spain
| | - Pilar Diaz
- Department of Genetics, Microbiology & Statistics, University of Barcelona, Av. Diagonal 643, 08028-Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Spain.
| |
Collapse
|
38
|
Xia B, Xu J, Xiang Z, Cen Y, Hu Y, Lin X, Wu Q. Stereoselectivity-Tailored, Metal-Free Hydrolytic Dynamic Kinetic Resolution of Morita–Baylis–Hillman Acetates Using an Engineered Lipase–Organic Base Cocatalyst. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Xia
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Jian Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Zhiwei Xiang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yixin Cen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yujing Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Xianfu Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
39
|
Bayer CD, van Loo B, Hollfelder F. Specificity Effects of Amino Acid Substitutions in Promiscuous Hydrolases: Context-Dependence of Catalytic Residue Contributions to Local Fitness Landscapes in Nearby Sequence Space. Chembiochem 2017; 18:1001-1015. [PMID: 28464395 PMCID: PMC5488252 DOI: 10.1002/cbic.201600657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/18/2022]
Abstract
Catalytic promiscuity can facilitate evolution of enzyme functions-a multifunctional catalyst may act as a springboard for efficient functional adaptation. We test the effect of single mutations on multiple activities in two groups of promiscuous AP superfamily members to probe this hypothesis. We quantify the effect of site-saturating mutagenesis of an analogous, nucleophile-flanking residue in two superfamily members: an arylsulfatase (AS) and a phosphonate monoester hydrolase (PMH). Statistical analysis suggests that no one physicochemical characteristic alone explains the mutational effects. Instead, these effects appear to be dominated by their structural context. Likewise, the effect of changing the catalytic nucleophile itself is not reaction-type-specific. Mapping of "fitness landscapes" of four activities onto the possible variation of a chosen sequence position revealed tremendous potential for respecialization of AP superfamily members through single-point mutations, highlighting catalytic promiscuity as a powerful predictor of adaptive potential.
Collapse
Affiliation(s)
- Christopher D. Bayer
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
- Present address: c-LEcta GmbHPerlickstrasse 504103LeipzigGermany
| | - Bert van Loo
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
- Present address: Institute for Evolution and BiodiversityUniversity of MünsterHüfferstrasse 148149MünsterGermany
| | - Florian Hollfelder
- Department of BiochemistryUniversity of Cambridge80 Tennis Court RoadCB2 1GACambridgeUK
| |
Collapse
|
40
|
Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg Med Chem 2017; 26:1241-1251. [PMID: 28693917 DOI: 10.1016/j.bmc.2017.05.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 05/09/2017] [Indexed: 01/01/2023]
Abstract
Enzymes have been used for a long time as catalysts in the asymmetric synthesis of chiral intermediates needed in the production of therapeutic drugs. However, this alternative to man-made catalysts has suffered traditionally from distinct limitations, namely the often observed wrong or insufficient enantio- and/or regioselectivity, low activity, narrow substrate range, and insufficient thermostability. With the advent of directed evolution, these problems can be generally solved. The challenge is to develop and apply the most efficient mutagenesis methods which lead to highest-quality mutant libraries requiring minimal screening. Structure-guided saturation mutagenesis and its iterative form have emerged as the method of choice for evolving stereo- and regioselective mutant enzymes needed in the asymmetric synthesis of chiral intermediates. The number of (industrial) applications in the preparation of chiral pharmaceuticals is rapidly increasing. This review features and analyzes typical case studies.
Collapse
|
41
|
Efficient resolution of profen ethyl ester racemates by engineered Yarrowia lipolytica Lip2p lipase. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
42
|
Kaushik S, Prokop Z, Damborsky J, Chaloupkova R. Kinetics of binding of fluorescent ligands to enzymes with engineered access tunnels. FEBS J 2016; 284:134-148. [DOI: 10.1111/febs.13957] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/30/2016] [Accepted: 11/04/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Shubhangi Kaushik
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
| | - Zbynek Prokop
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories Department of Experimental Biology Research Centre for Toxic Compounds in the Environment (RECETOX) Masaryk University Brno Czech Republic
- International Clinical Research Center St. Anne's University Hospital Brno Czech Republic
| |
Collapse
|
43
|
Miyamoto K, Kourist R. Arylmalonate decarboxylase—a highly selective bacterial biocatalyst with unknown function. Appl Microbiol Biotechnol 2016; 100:8621-31. [PMID: 27566691 DOI: 10.1007/s00253-016-7778-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 11/24/2022]
Affiliation(s)
- Kenji Miyamoto
- Department for Biosciences and Bioinformatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Robert Kourist
- Junior Research Group for Microbial Biotechnology, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
44
|
Reetz MT. What are the Limitations of Enzymes in Synthetic Organic Chemistry? CHEM REC 2016; 16:2449-2459. [DOI: 10.1002/tcr.201600040] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Manfred T. Reetz
- Fachbereich Chemie (15) Philipps-Universität Marburg Hans-Meerwein Straße; 35032 Marburg Germany
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
45
|
Parages ML, Gutiérrez-Barranquero JA, Reen FJ, Dobson ADW, O'Gara F. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Mar Drugs 2016; 14:E62. [PMID: 27007381 PMCID: PMC4810074 DOI: 10.3390/md14030062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 02/18/2016] [Accepted: 03/11/2016] [Indexed: 12/21/2022] Open
Abstract
In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.
Collapse
Affiliation(s)
- María L Parages
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - José A Gutiérrez-Barranquero
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - F Jerry Reen
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6845, Australia.
| |
Collapse
|
46
|
Sun Z, Wikmark Y, Bäckvall JE, Reetz MT. New Concepts for Increasing the Efficiency in Directed Evolution of Stereoselective Enzymes. Chemistry 2016; 22:5046-54. [DOI: 10.1002/chem.201504406] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Ylva Wikmark
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Jan-E. Bäckvall
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
- Fachbereich Chemie; Philipps-Universität Marburg; Hans-Meerwein-Strasse 4 35032 Marburg Germany
| |
Collapse
|
47
|
Mäenpää H, Kanerva LT, Liljeblad A. Acylation of β-Amino Esters and Hydrolysis of β-Amido Esters: Candida antarctica
Lipase A as a Chemoselective Deprotection Catalyst. ChemCatChem 2016. [DOI: 10.1002/cctc.201501381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Harri Mäenpää
- Institute of Biomedicine/Department of Pharmacology; Drug Development and Therapeutics; University of Turku; FI-20014 Finland
| | - Liisa T. Kanerva
- Institute of Biomedicine/Department of Pharmacology; Drug Development and Therapeutics; University of Turku; FI-20014 Finland
| | - Arto Liljeblad
- Institute of Biomedicine/Department of Pharmacology; Drug Development and Therapeutics; University of Turku; FI-20014 Finland
| |
Collapse
|
48
|
Sun Z, Lonsdale R, Wu L, Li G, Li A, Wang J, Zhou J, Reetz MT. Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02751] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhoutong Sun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Richard Lonsdale
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guangyue Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Aitao Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jianbo Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie der Philipps-Universität, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
49
|
Wikmark Y, Engelmark Cassimjee K, Lihammar R, Bäckvall JE. Removing the Active-Site Flap in Lipase A fromCandida antarcticaProduces a Functional Enzyme without Interfacial Activation. Chembiochem 2015; 17:141-5. [DOI: 10.1002/cbic.201500471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Ylva Wikmark
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Karim Engelmark Cassimjee
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Richard Lihammar
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| | - Jan-E. Bäckvall
- Department of Organic Chemistry; Arrhenius Laboratory; Stockholm University; 106 91 Stockholm Sweden
| |
Collapse
|
50
|
Šiekštelė R, Veteikytė A, Tvaska B, Matijošytė I. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp. ACTA ACUST UNITED AC 2015; 42:1309-17. [DOI: 10.1007/s10295-015-1655-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/22/2015] [Indexed: 11/28/2022]
Abstract
Abstract
Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey––cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability.
Collapse
Affiliation(s)
- Rimantas Šiekštelė
- grid.6441.7 0000000122432806 Sector of Applied Biocatalysis, Institute of Biotechnology Vilnius University V.A. Graičiūno str. 8 02241 Vilnius Lithuania
| | - Aušra Veteikytė
- grid.6441.7 0000000122432806 Sector of Applied Biocatalysis, Institute of Biotechnology Vilnius University V.A. Graičiūno str. 8 02241 Vilnius Lithuania
| | - Bronius Tvaska
- JSC Biocentras V.A. Graičiūno str. 10 02241 Vilnius Lithuania
| | - Inga Matijošytė
- grid.6441.7 0000000122432806 Sector of Applied Biocatalysis, Institute of Biotechnology Vilnius University V.A. Graičiūno str. 8 02241 Vilnius Lithuania
| |
Collapse
|