1
|
Paulo TF, Akyaw PA, Paixão T, Sucena É. Evolution of resistance and disease tolerance mechanisms to oral bacterial infection in Drosophila melanogaster. Open Biol 2025; 15:240265. [PMID: 40068814 PMCID: PMC11896704 DOI: 10.1098/rsob.240265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 03/15/2025] Open
Abstract
Pathogens exert strong selection on hosts that evolve and deploy different defensive strategies, namely minimizing pathogen exposure (avoidance), directly promoting pathogen elimination (resistance) and/or managing the deleterious effects of illness (disease tolerance). However, how the host response partitions across these processes has not been directly tested in a single host-pathogen system, let alone in the context of known adaptive trajectories resulting from experimental evolution. Here, we compare a Drosophila melanogaster population adapted to oral infection with its natural pathogen Pseudomonas entomophila (BactOral), to its control population to find no evidence for behavioural changes but measurable differences in both resistance and disease tolerance. In BactOral, no differences were detected in bacterial intake or defecation, nor gut cell renewal. However, a measurable relative decrease in bacterial loads correlates with an increase in gut-specific anti-microbial peptide production, pointing to a strengthening in resistance. Additionally, we posit that disease tolerance also contributes to the response of BactOral through a tighter control of self- and pathogen-derived damage caused by bacteria exposure. This study reveals a genetically complex and mechanistically multi-layered response, possibly reflecting the structure of adaptation to infection in natural populations.
Collapse
Affiliation(s)
| | - Priscilla A. Akyaw
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, cE3c: Centre for Ecology, Evolution and Environmental Changes, Lisbon, Portugal
| | - Tiago Paixão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências, Universidade de Lisboa, cE3c: Centre for Ecology, Evolution and Environmental Changes, Lisbon, Portugal
- Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Franchet A, Haller S, Yamba M, Barbier V, Thomaz-Vieira A, Leclerc V, Becker S, Lee KZ, Orlov I, Spehner D, Daeffler L, Ferrandon D. Nora virus proliferates in dividing intestinal stem cells and sensitizes flies to intestinal infection and oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635658. [PMID: 39975242 PMCID: PMC11838516 DOI: 10.1101/2025.01.30.635658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The digestive tract represents the most complex interface of an organism with its biotope. Food may be contaminated by pathogens and toxicants while an abundant and complex microbiota strives in the gut lumen. The organism must defend itself against potentially noxious biotic or abiotic stresses while preserving its microbiota, provided it plays a beneficial role. The presence of intestinal viruses adds another layer of complexity. Starting from a differential sensitivity of two lines from the same Drosophila wild-type strain to ingested Pseudomonas aeruginosa, we report here that the presence of Nora virus in the gut epithelium promotes the sensitivity to this bacterial pathogen as well as to an ingested oxidizing xenobiotic. The genotype, age, nature of the ingested food and to a limited extent the microbiota are relevant parameters that influence the effects of Nora virus on host fitness. Mechanistically, we detect the initial presence of viral proteins essentially in progenitor cells. Upon stress such as infection, exposure to xenobiotics, aging or feeding on a rich-food diet, the virus is then detected in enterocytes, which correlates with a disruption of the intestinal barrier function in aged flies. Finally, we show that the virus proliferates only when ISCs are induced to divide and that blocking either enterocyte apoptosis or JAK/STAT-driven ISC division leads to a drastically reduced Nora virus titer. In conclusion, it is important to check that experimental strains are devoid of intestinal viruses when monitoring survival/life span of fly lines or when investigating the homeostasis of the intestinal epithelium as these viruses can constitute significant confounding factors.
Collapse
Affiliation(s)
- Adrien Franchet
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: The Francis Crick Institute, London, UK
| | | | - Miriam Yamba
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
| | | | - Angelica Thomaz-Vieira
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: Institute of Translational Medicine and Liver Disease, Inserm U1110, Strasbourg, France
| | | | - Stefanie Becker
- Institute for Parasitology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kwang-Zin Lee
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, Giessen, Germany
| | - Igor Orlov
- UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, France
| | - Danièle Spehner
- UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, France
| | - Laurent Daeffler
- UPR 9022 CNRS, IBMC, University of Strasbourg, France
- Present address: UMR 7178 CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | | |
Collapse
|
3
|
Chen J, Lin G, Ma K, Li Z, Liégeois S, Ferrandon D. A specific innate immune response silences the virulence of Pseudomonas aeruginosa in a latent infection model in the Drosophila melanogaster host. PLoS Pathog 2024; 20:e1012252. [PMID: 38833496 PMCID: PMC11178223 DOI: 10.1371/journal.ppat.1012252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/14/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Microbial pathogenicity often depends on the route of infection. For instance, P. aeruginosa or S. marcescens cause acute systemic infections when low numbers of bacteria are injected into D. melanogaster flies whereas flies succumb much slower to the continuous ingestion of these pathogens, even though both manage to escape from the gut compartment and reach the hemocoel. Here, we have developed a latent P. aeruginosa infection model by feeding flies on the bacteria for a short period. The bacteria stably colonize internal tissues yet hardly cause any damage since latently-infected flies live almost as long as noninfected control flies. The apparently dormant bacteria display particular characteristics in terms of bacterial colony morphology, composition of the outer cell wall, and motility. The virulence of these bacteria can however be reactivated upon wounding the host. We show that melanization but not the cellular or the systemic humoral response is the predominant host defense that establishes latency and may coerce the bacteria to a dormant state. In addition, the lasting activation of the melanization responses in latently-infected flies provides a degree of protection to the host against a secondary fungal infection. Latent infection by an ingested pathogen protects against a variety of homologous or heterologous systemic secondary infectious challenges, a situation previously described for the endosymbiotic Wolbachia bacteria, a guard against viral infections.
Collapse
Affiliation(s)
- Jing Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guiying Lin
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, Strasbourg, France
- Modèles Insectes de l’Immunité Innée, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
4
|
Miles J, Lozano GL, Rajendhran J, Stabb EV, Handelsman J, Broderick NA. Massively parallel mutant selection identifies genetic determinants of Pseudomonas aeruginosa colonization of Drosophila melanogaster. mSystems 2024; 9:e0131723. [PMID: 38380971 PMCID: PMC10949475 DOI: 10.1128/msystems.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing [Tn-Seq, also known as insertion sequencing (INSeq)] to identify genes in P. aeruginosa that contribute to fitness during the colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies on P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance the existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.IMPORTANCEDrosophila melanogaster is a powerful model for understanding host-pathogen interactions. Research with this system has yielded notable insights into mechanisms of host immunity and defense, many of which emerged from the analysis of bacterial mutants defective for well-characterized virulence factors. These foundational studies-and advances in high-throughput sequencing of transposon mutants-support unbiased screens of bacterial mutants in the fly. To investigate mechanisms of host-pathogen interplay and exploit the tractability of this model host, we used a high-throughput, genome-wide mutant analysis to find genes that enable the pathogen P. aeruginosa to colonize the fly. Our analysis reveals critical mediators of P. aeruginosa establishment in its host, some of which are required across fly and mouse systems. These findings demonstrate the utility of massively parallel mutant analysis and provide a platform for aligning the fly toolkit with comprehensive bacterial genomics.
Collapse
Affiliation(s)
- Jessica Miles
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Graduate Program in Microbiology, Yale University, New Haven, Connecticut, USA
| | - Gabriel L. Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Jeyaprakash Rajendhran
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
| | | |
Collapse
|
5
|
Shan T, Wang Y, Bhattarai K, Jiang H. An evolutionarily conserved serine protease network mediates melanization and Toll activation in Drosophila. SCIENCE ADVANCES 2023; 9:eadk2756. [PMID: 38117884 PMCID: PMC10732536 DOI: 10.1126/sciadv.adk2756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 12/22/2023]
Abstract
Melanization and Toll pathway activation are essential innate immune mechanisms in insects, which result in the generation of reactive compounds and antimicrobial peptides, respectively, to kill pathogens. These two processes are mediated by phenoloxidase (PO) and Spätzle (Spz) through an extracellular network of serine proteases. While some proteases have been identified in Drosophila melanogaster in genetic studies, the exact order of proteolytic activation events remains controversial. Here, we reconstituted the serine protease framework in Drosophila by biochemical methods. This system comprises 10 proteases, i.e., ModSP, cSP48, Grass, Psh, Hayan-PA, Hayan-PB, Sp7, MP1, SPE and Ser7, which form cascade pathways that recognize microbial molecular patterns and virulence factors, and generate PO1, PO2, and Spz from their precursors. Furthermore, the serpin Necrotic negatively regulates the immune response progression by inhibiting ModSP and Grass. The biochemical approach, when combined with genetic analysis, is crucial for addressing problems that long stand in this important research field.
Collapse
Affiliation(s)
- Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yang Wang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Krishna Bhattarai
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
6
|
Khan SA, Kojour MAM, Han YS. Recent trends in insect gut immunity. Front Immunol 2023; 14:1272143. [PMID: 38193088 PMCID: PMC10773798 DOI: 10.3389/fimmu.2023.1272143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The gut is a crucial organ in insect defense against various pathogens and harmful substances in their environment and diet. Distinct insect gut compartments possess unique functionalities contributing to their physiological processes, including immunity. The insect gut's cellular composition is vital for cellular and humoral immunity. The peritrophic membrane, mucus layer, lumen, microvilli, and various gut cells provide essential support for activating and regulating immune defense mechanisms. These components also secrete molecules and enzymes that are imperative in physiological activities. Additionally, the gut microbiota initiates various signaling pathways and produces vitamins and minerals that help maintain gut homeostasis. Distinct immune signaling pathways are activated within the gut when insects ingest pathogens or hazardous materials. The pathway induced depends on the infection or pathogen type; include immune deficiency (imd), Toll, JAK/STAT, Duox-ROS, and JNK/FOXO regulatory pathways. These pathways produce different antimicrobial peptides (AMPs) and maintain gut homeostasis. Furthermore, various signaling mechanisms within gut cells regulate insect gut recovery following infection. Although some questions regarding insect gut immunity in different species require additional study, this review provides insights into the insect gut's structure and composition, commensal microorganism roles in Drosophila melanogaster and Tenebrio molitor life cycles, different signaling pathways involved in gut immune systems, and the insect gut post-infection recovery through various signaling mechanisms.
Collapse
Affiliation(s)
- Shahidul Ahmed Khan
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Ali Mohmmadie Kojour
- Life & Medical Sciences Institute (LIMES) Development, Genetics & Molecular Physiology Unit, University of Bonn, Bonn, Germany
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Miles J, Lozano GL, Rajendhran J, Stabb EV, Handelsman J, Broderick NA. Massively parallel mutant selection identifies genetic determinants of Pseudomonas aeruginosa colonization of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567573. [PMID: 38045230 PMCID: PMC10690197 DOI: 10.1101/2023.11.20.567573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pseudomonas aeruginosa is recognized for its ability to colonize diverse habitats and cause disease in a variety of hosts, including plants, invertebrates, and mammals. Understanding how this bacterium is able to occupy wide-ranging niches is important for deciphering its ecology. We used transposon sequencing (Tn-Seq, also known as INSeq) to identify genes in P. aeruginosa that contribute to fitness during colonization of Drosophila melanogaster. Our results reveal a suite of critical factors, including those that contribute to polysaccharide production, DNA repair, metabolism, and respiration. Comparison of candidate genes with fitness determinants discovered in previous studies of P. aeruginosa identified several genes required for colonization and virulence determinants that are conserved across hosts and tissues. This analysis provides evidence for both the conservation of function of several genes across systems, as well as host-specific functions. These findings, which represent the first use of transposon sequencing of a gut pathogen in Drosophila, demonstrate the power of Tn-Seq in the fly model system and advance existing knowledge of intestinal pathogenesis by D. melanogaster, revealing bacterial colonization determinants that contribute to a comprehensive portrait of P. aeruginosa lifestyles across habitats.
Collapse
Affiliation(s)
- Jessica Miles
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Graduate Program in Microbiology, Yale University, New Haven, CT, USA
| | - Gabriel L. Lozano
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Division of Infectious Diseases and Division of Gastroenterology, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Jeyaprakash Rajendhran
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, TN, India
| | - Eric V. Stabb
- Department of Biological Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Jo Handelsman
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Current address: Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
8
|
Touré H, Herrmann JL, Szuplewski S, Girard-Misguich F. Drosophila melanogaster as an organism model for studying cystic fibrosis and its major associated microbial infections. Infect Immun 2023; 91:e0024023. [PMID: 37847031 PMCID: PMC10652941 DOI: 10.1128/iai.00240-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Cystic fibrosis (CF) is a human genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene that encodes a chloride channel. The most severe clinical manifestation is associated with chronic pulmonary infections by pathogenic and opportunistic microbes. Drosophila melanogaster has become the invertebrate model of choice for modeling microbial infections and studying the induced innate immune response. Here, we review its contribution to the understanding of infections with six major pathogens associated with CF (Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia, Mycobacterium abscessus, Streptococcus pneumoniae, and Aspergillus fumigatus) together with the perspectives opened by the recent availability of two CF models in this model organism.
Collapse
Affiliation(s)
- Hamadoun Touré
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Ile-de-France Ouest, GHU Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| | - Sébastien Szuplewski
- Université Paris-Saclay, UVSQ, Laboratoire de Génétique et Biologie Cellulaire, Montigny-le-Bretonneux, France
| | - Fabienne Girard-Misguich
- Université Paris-Saclay, UVSQ, INSERM, Infection et Inflammation, Montigny-le-Bretonneux, France
| |
Collapse
|
9
|
Grandy S, Scur M, Dolan K, Nickerson R, Cheng Z. Using model systems to unravel host-Pseudomonas aeruginosa interactions. Environ Microbiol 2023; 25:1765-1784. [PMID: 37290773 DOI: 10.1111/1462-2920.16440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.
Collapse
Affiliation(s)
- Shannen Grandy
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kathleen Dolan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rhea Nickerson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
10
|
HP1a-mediated heterochromatin formation promotes antimicrobial responses against Pseudomonas aeruginosa infection. BMC Biol 2022; 20:234. [PMID: 36266682 PMCID: PMC9583553 DOI: 10.1186/s12915-022-01435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa is a Gram-negative bacterium that causes severe infectious disease in diverse host organisms, including humans. Effective therapeutic options for P. aeruginosa infection are limited due to increasing multidrug resistance and it is therefore critical to understand the regulation of host innate immune responses to guide development of effective therapeutic options. The epigenetic mechanisms by which hosts regulate their antimicrobial responses against P. aeruginosa infection remain unclear. Here, we used Drosophila melanogaster to investigate the role of heterochromatin protein 1a (HP1a), a key epigenetic regulator, and its mediation of heterochromatin formation in antimicrobial responses against PA14, a highly virulent P. aeruginosa strain. Results Animals with decreased heterochromatin levels showed less resistance to P. aeruginosa infection. In contrast, flies with increased heterochromatin formation, either in the whole organism or specifically in the fat body—an organ important in humoral immune response—showed greater resistance to P. aeruginosa infection, as demonstrated by increased host survival and reduced bacterial load. Increased heterochromatin formation in the fat body promoted the antimicrobial responses via upregulation of fat body immune deficiency (imd) pathway-mediated antimicrobial peptides (AMPs) before and in the middle stage of P. aeruginosa infection. The fat body AMPs were required to elicit HP1a-mediated antimicrobial responses against P. aeruginosa infection. Moreover, the levels of heterochromatin in the fat body were downregulated in the early stage, but upregulated in the middle stage, of P. aeruginosa infection. Conclusions These data indicate that HP1a-mediated heterochromatin formation in the fat body promotes antimicrobial responses by epigenetically upregulating AMPs of the imd pathway. Our study provides novel molecular, cellular, and organismal insights into new epigenetic strategies targeting heterochromatin that have the potential to combat P. aeruginosa infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01435-8.
Collapse
|
11
|
Cook J, Hui JPM, Zhang J, Kember M, Berrué F, Zhang J, Cheng Z. Production of quorum sensing-related metabolites and phytoalexins during Pseudomonas aeruginosa-Brassica napus interaction. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001212. [PMID: 35980361 PMCID: PMC11449044 DOI: 10.1099/mic.0.001212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that has been shown to interact with many organisms throughout the domains of life, including plants. How this broad-host-range bacterium interacts with each of its diverse hosts, especially the metabolites that mediate these interactions, is not completely known. In this work, we used a liquid culture root infection system to collect plant and bacterial metabolites on days 1, 3 and 5 post-P. aeruginosa (strain PA14) infection of the oilseed plant, canola (Brassica napus). Using MS-based metabolomics approaches, we identified the overproduction of quorum sensing (QS)-related (both signalling molecules and regulated products) metabolites by P. aeruginosa while interacting with canola plants. However, the P. aeruginosa infection induced the production of several phytoalexins, which is a part of the hallmark plant defence response to microbes. The QS system of PA14 appears to only mediate part of the canola-P. aeruginosa metabolomic interactions, as the use of isogenic mutant strains of each of the three QS signalling branches did not significantly affect the induction of the phytoalexin brassilexin, while induction of spirobrassinin was significantly decreased. Interestingly, a treatment of purified QS molecules in the absence of bacteria was not able to induce any phytoalexin production, suggesting that active bacterial colonization is required for eliciting phytoalexin production. Furthermore, we identified that brassilexin, the only commercially available phytoalexin that was detected in this study, demonstrated a MIC of 400 µg ml-1 against P. aeruginosa PA14. The production of phytoalexins can be an effective component of canola innate immunity to keep potential infections by the opportunistic pathogen P. aeruginosa at bay.
Collapse
Affiliation(s)
- Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Joseph P. M. Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela Kember
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Fabrice Berrué
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Letizia M, Mellini M, Fortuna A, Visca P, Imperi F, Leoni L, Rampioni G. PqsE Expands and Differentially Modulates the RhlR Quorum Sensing Regulon in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0096122. [PMID: 35604161 PMCID: PMC9241726 DOI: 10.1128/spectrum.00961-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
In the opportunistic pathogen Pseudomonas aeruginosa, many virulence traits are finely regulated by quorum sensing (QS), an intercellular communication system that allows the cells of a population to coordinate gene expression in response to cell density. The key aspects underlying the functionality of the complex regulatory network governing QS in P. aeruginosa are still poorly understood, including the interplay between the effector protein PqsE and the transcriptional regulator RhlR in controlling the QS regulon. Different studies have focused on the characterization of PqsE- and RhlR-controlled genes in genetic backgrounds in which RhlR activity can be modulated by PqsE and pqsE expression is controlled by RhlR, thus hampering identification of the distinct regulons controlled by PqsE and RhlR. In this study, a P. aeruginosa PAO1 mutant strain with deletion of multiple QS elements and inducible expression of pqsE and/or rhlR was generated and validated. Transcriptomic analyses performed on this genetic background allowed us to unambiguously define the regulons controlled by PqsE and RhlR when produced alone or in combination. Transcriptomic data were validated via reverse transcription-quantitative PCR (RT-qPCR) and transcriptional fusions. Overall, our results showed that PqsE has a negligible effect on the P. aeruginosa transcriptome in the absence of RhlR, and that multiple RhlR subregulons exist with distinct dependency on PqsE. Overall, this study contributes to untangling the regulatory link between the pqs and rhl QS systems mediated by PqsE and RhlR and clarifying the impact of these QS elements on the P. aeruginosa transcriptome. IMPORTANCE The ability of Pseudomonas aeruginosa to cause difficult-to-treat infections relies on its capacity to fine-tune the expression of multiple virulence traits via the las, rhl, and pqs QS systems. Both the pqs effector protein PqsE and the rhl transcriptional regulator RhlR are required for full production of key virulence factors in vitro and pathogenicity in vivo. While it is known that PqsE can stimulate the ability of RhlR to control some virulence factors, no data are available to allow clear discrimination of the PqsE and RhlR regulons. The data produced in this study demonstrate that PqsE mainly impacts the P. aeruginosa transcriptome via an RhlR-dependent pathway and splits the RhlR regulon into PqsE-dependent and PqsE-independent subregulons. Besides contributing to untangling of the complex QS network of P. aeruginosa, our data confirm that both PqsE and RhlR are suitable targets for the development of antivirulence drugs.
Collapse
Affiliation(s)
| | - Marta Mellini
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, Roma Tre University, Rome, Italy
| | - Giordano Rampioni
- Department of Science, Roma Tre University, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
13
|
Caravello G, Franchet A, Niehus S, Ferrandon D. Phagocytosis Is the Sole Arm of Drosophila melanogaster Known Host Defenses That Provides Some Protection Against Microsporidia Infection. Front Immunol 2022; 13:858360. [PMID: 35493511 PMCID: PMC9043853 DOI: 10.3389/fimmu.2022.858360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular parasites able to infest specifically a large range of species, including insects. The knowledge about the biology of microsporidial infections remains confined to mostly descriptive studies, including molecular approaches such as transcriptomics or proteomics. Thus, functional data to understand insect host defenses are currently lacking. Here, we have undertaken a genetic analysis of known host defenses of the Drosophila melanogaster using an infection model whereby Tubulinosema ratisbonensis spores are directly injected in this insect. We find that phagocytosis does confer some protection in this infection model. In contrast, the systemic immune response, extracellular reactive oxygen species, thioester proteins, xenophagy, and intracellular antiviral response pathways do not appear to be involved in the resistance against this parasite. Unexpectedly, several genes such as PGRP-LE seem to promote this infection. The prophenol oxidases that mediate melanization have different functions; PPO1 presents a phenotype similar to that of PGRP-LE whereas that of PPO2 suggests a function in the resilience to infection. Similarly, eiger and Unpaired3, which encode two cytokines secreted by hemocytes display a resilience phenotype with a strong susceptibility to T. ratisbonensis.
Collapse
Affiliation(s)
| | | | | | - Dominique Ferrandon
- UPR9022, University of Strasbourg, Institut de Biologie Moléculaire et Cellulaire (IBMC), Modèles Insectes D’Immunité Innée (M3I) Unité Propre Recherche (UPR) 9022 du Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
14
|
ABCDs of the Relative Contributions of Pseudomonas aeruginosa Quorum Sensing Systems to Virulence in Diverse Nonvertebrate Hosts. mBio 2022; 13:e0041722. [PMID: 35311532 PMCID: PMC9040828 DOI: 10.1128/mbio.00417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that exhibits pathogenicity in an unusually broad range of plants and animals, and it is of interest to study the roles of particular virulence-related factors in diverse hosts. The production of many P. aeruginosa virulence factors is under the control of a quorum sensing (QS) signaling network, which has three interconnected branches that engage in intricate cross talk: Las, Rhl, and MvfR. Because there has been no systematic comparison of the roles of the three QS systems in mediating P. aeruginosa virulence in various hosts, we compared the virulence of wild-type (WT) P. aeruginosa PA14 and a set of isogenic PA14 QS in-frame deletion mutants in four selected hosts, the reference plant Arabidopsis thaliana (Arabidopsis), the crop plant Brassica napus (canola), the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster. The first letters of the selected host genera, A, B, C, and D, inspired the title of this article and indicate that this work lays the groundwork for future elucidation of the specific roles of each QS branch in mediating virulence in diverse hosts.
Collapse
|
15
|
Sina Rahme B, Lestradet M, Di Venanzio G, Ayyaz A, Yamba MW, Lazzaro M, Liégeois S, Garcia Véscovi E, Ferrandon D. The fliR gene contributes to the virulence of S. marcescens in a Drosophila intestinal infection model. Sci Rep 2022; 12:3068. [PMID: 35197500 PMCID: PMC8866479 DOI: 10.1038/s41598-022-06780-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Serratia marcescens is an opportunistic bacterium that infects a wide range of hosts including humans. It is a potent pathogen in a septic injury model of Drosophila melanogaster since a few bacteria directly injected in the body cavity kill the insect within a day. In contrast, flies do not succumb to ingested bacteria for days even though some bacteria cross the intestinal barrier into the hemolymph within hours. The mechanisms by which S. marcescens attacks enterocytes and damages the intestinal epithelium remain uncharacterized. To better understand intestinal infections, we performed a genetic screen for loss of virulence of ingested S. marcescens and identified FliR, a structural component of the flagellum, as a virulence factor. Next, we compared the virulence of two flagellum mutants fliR and flhD in two distinct S. marcescens strains. Both genes are required for S. marcescens to escape the gut lumen into the hemocoel, indicating that the flagellum plays an important role for the passage of bacteria through the intestinal barrier. Unexpectedly, fliR but not flhD is involved in S. marcescens-mediated damages of the intestinal epithelium that ultimately contribute to the demise of the host. Our results therefore suggest a flagellum-independent role for fliR in bacterial virulence.
Collapse
Affiliation(s)
- Bechara Sina Rahme
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Matthieu Lestradet
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Gisela Di Venanzio
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Arshad Ayyaz
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Miriam Wennida Yamba
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Martina Lazzaro
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Samuel Liégeois
- Université de Strasbourg, Strasbourg, France
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France
| | - Eleonora Garcia Véscovi
- Instituto de Biología Molecular y Cellular de Rosario, Consejo Nacional de Investigaciones Cientificas y Tecnológicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Dominique Ferrandon
- Université de Strasbourg, Strasbourg, France.
- UPR 9022 du CNRS, Institut de Biologie Moléculaire du CNRS, CNRS, Strasbourg, France.
| |
Collapse
|
16
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
17
|
Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics 2022; 74:35-62. [DOI: 10.1007/s00251-021-01239-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/20/2021] [Indexed: 12/17/2022]
|
18
|
Miranda SW, Asfahl KL, Dandekar AA, Greenberg EP. Pseudomonas aeruginosa Quorum Sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:95-115. [PMID: 36258070 PMCID: PMC9942581 DOI: 10.1007/978-3-031-08491-1_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Pseudomonas aeruginosa, like many bacteria, uses chemical signals to communicate between cells in a process called quorum sensing (QS). QS allows groups of bacteria to sense population density and, in response to changing cell densities, to coordinate behaviors. The P. aeruginosa QS system consists of two complete circuits that involve acyl-homoserine lactone signals and a third system that uses quinolone signals. Together, these three QS circuits regulate the expression of hundreds of genes, many of which code for virulence factors. P. aeruginosa has become a model for studying the molecular biology of QS and the ecology and evolution of group behaviors in bacteria. In this chapter, we recount the history of discovery of QS systems in P. aeruginosa, discuss how QS relates to virulence and the ecology of this bacterium, and explore strategies to inhibit QS. Finally, we discuss future directions for research in P. aeruginosa QS.
Collapse
Affiliation(s)
| | - Kyle L Asfahl
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Ajai A Dandekar
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - E P Greenberg
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
19
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
20
|
Laudanski K, Soh J, DiMeglio M, Sullivan KE. Prolonged Transcriptional Consequences in Survivors of Sepsis. Int J Mol Sci 2021; 22:ijms22115422. [PMID: 34063857 PMCID: PMC8196560 DOI: 10.3390/ijms22115422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
Survivors of sepsis often suffer from prolonged post-critical illness syndrome secondary to the immune system’s reprogramming. It is unclear if this process is static and pervasive due to methodological difficulties studying long-term outcomes of sepsis. The purpose of this study is to evaluate transcriptional profiles longitudinally in Drosophila melanogaster in the aftermath of sepsis to provide preliminary data for targets playing a role in post-sepsis immunostasis. Adult Drosophila melanogaster were infected with E. coli, and survivors were euthanized at 7, 14, and 21 days. Control flies were subjected to sham stress. Gene profiling was done with RNA-seq, and potential miRNA factors were computed. Profiling identified 55 unique genes at seven days, 61 unique genes at 14 days, and 78 genes at 21 days in sepsis survivors vs. sham control. Each post-sepsis timepoint had a distinctive transcriptional pattern with a signature related to oxidative stress at seven days, neuronal signal transduction at 14 days, and metabolism at 21 days. Several potential miRNA patterns were computed as potentially affecting several of the genes expressed in sepsis survivors. Our study demonstrated that post-sepsis changes in the transcriptome profile are dynamic and extend well into the Drosophila melanogaster natural life span.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, The University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104, USA;
- Leonard Davis Institute of Healthcare Economics, The University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-(215)-746-1307
| | - James Soh
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Matthew DiMeglio
- School of Medicine, Jefferson University, Philadelphia, PA 19104, USA;
| | - Kathleen E. Sullivan
- Division of Allergy and Immunology, Children Hospital Philadelphia, Philadelphia, PA 19104, USA;
| |
Collapse
|
21
|
Huang C, Xu R, Liégeois S, Chen D, Li Z, Ferrandon D. Differential Requirements for Mediator Complex Subunits in Drosophila melanogaster Host Defense Against Fungal and Bacterial Pathogens. Front Immunol 2021; 11:478958. [PMID: 33746938 PMCID: PMC7977287 DOI: 10.3389/fimmu.2020.478958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The humoral immune response to bacterial or fungal infections in Drosophila relies largely on a transcriptional response mediated by the Toll and Immune deficiency NF-κB pathways. Antimicrobial peptides are potent effectors of these pathways and allow the organism to attack invading pathogens. Dorsal-related Immune Factor (DIF), a transcription factor regulated by the Toll pathway, is required in the host defense against fungal and some Gram-positive bacterial infections. The Mediator complex is involved in the initiation of transcription of most RNA polymerase B (PolB)-dependent genes by forming a functional bridge between transcription factors bound to enhancer regions and the gene promoter region and then recruiting the PolB pre-initiation complex. Mediator is formed by several modules that each comprises several subunits. The Med17 subunit of the head module of Mediator has been shown to be required for the expression of Drosomycin, which encodes a potent antifungal peptide, by binding to DIF. Thus, Mediator is expected to mediate the host defense against pathogens controlled by the Toll pathway-dependent innate immune response. Here, we first focus on the Med31 subunit of the middle module of Mediator and find that it is required in host defense against Aspergillus fumigatus, Enterococcus faecalis, and injected but not topically-applied Metarhizium robertsii. Thus, host defense against M. robertsii requires Dif but not necessarily Med31 in the two distinct infection models. The induction of some Toll-pathway-dependent genes is decreased after a challenge of Med31 RNAi-silenced flies with either A. fumigatus or E. faecalis, while these flies exhibit normal phagocytosis and melanization. We have further tested most Mediator subunits using RNAi by monitoring their survival after challenges to several other microbial infections known to be fought off through DIF. We report that the host defense against specific pathogens involves a distinct set of Mediator subunits with only one subunit for C. glabrata or Erwinia carotovora carotovora, at least one for M. robertsii or a somewhat extended repertoire for A. fumigatus (at least eight subunits) and E. faecalis (eight subunits), with two subunits, Med6 and Med11 being required only against A. fumigatus. Med31 but not Med17 is required in fighting off injected M. robertsii conidia. Thus, the involvement of Mediator in Drosophila innate immunity is more complex than expected.
Collapse
Affiliation(s)
- Chuqin Huang
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Di Chen
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
22
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
23
|
Drosophila as a model for studying cystic fibrosis pathophysiology of the gastrointestinal system. Proc Natl Acad Sci U S A 2020; 117:10357-10367. [PMID: 32345720 DOI: 10.1073/pnas.1913127117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is a recessive disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The most common symptoms include progressive lung disease and chronic digestive conditions. CF is the first human genetic disease to benefit from having five different species of animal models. Despite the phenotypic differences among the animal models and human CF, these models have provided invaluable insight into understanding disease mechanisms at the organ-system level. Here, we identify a member of the ABCC4 family, CG5789, that has the structural and functional properties expected for encoding the Drosophila equivalent of human CFTR, and thus refer to it as Drosophila CFTR (Dmel\CFTR). We show that knockdown of Dmel\CFTR in the adult intestine disrupts osmotic homeostasis and displays CF-like phenotypes that lead to intestinal stem cell hyperplasia. We also show that expression of wild-type human CFTR, but not mutant variants of CFTR that prevent plasma membrane expression, rescues the mutant phenotypes of Dmel\CFTR Furthermore, we performed RNA sequencing (RNA-Seq)-based transcriptomic analysis using Dmel\CFTR fly intestine and identified a mucin gene, Muc68D, which is required for proper intestinal barrier protection. Altogether, our findings suggest that Drosophila can be a powerful model organism for studying CF pathophysiology.
Collapse
|
24
|
Sun L, Chi X, Feng Z, Wang K, Kai L, Zhang K, Cheng S, Hao X, Xie W, Ge Y. phz1 contributes much more to phenazine-1-carboxylic acid biosynthesis than phz2 in Pseudomonas aeruginosa rpoS mutant. J Basic Microbiol 2019; 59:914-923. [PMID: 31294863 DOI: 10.1002/jobm.201900165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/07/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Pseudomonas aeruginosa PAO1, a common opportunistic bacterial pathogen, contains two phenazine-biosynthetic operons, phz1 (phzA1 B1 C1 D1 E1 F1 G1 ) and phz2 (phzA2 B2 C2 D2 E2 F2 G2 ). Each of two operons can independently encode a set of enzymes involving in the biosynthesis of phenazine-1-carboxylic acid. As a global transcriptional regulator, RpoS mediates a lot of genes involving secondary metabolites biosynthesis in many bacteria. In an other previous study, it was reported that RpoS deficiency caused overproduction of pyocyanin, a derivative of phenazine-1-carboxylic acid in P. aeruginosa PAO1. But it is not known how RpoS mediates the expression of each of two phz operons and modulates phenazine-1-carboxylic acid biosynthesis in detail. In this study, by deleting the rpoS gene in the mutant PNΔphz1 and the mutant PNΔphz2, we found that the phz1 operon contributes much more to phenazine-1-carboxylic acid biosynthesis than the phz2 operon in the absence of RpoS. With the construction of the translational and transcriptional fusion vectors with the truncated lacZ reporter gene, we demonstrated that RpoS negatively regulates the expression of phz1 and positively controls the expression of phz2, and the regulation of phenazine-1-carboxylic acid biosynthesis mediated by RopS occurs at the posttranscriptional level, not at the transcriptional level. Obviously, two copies of phz operons and their differential expression mediated by RpoS might help P. aeruginosa adapt to its diverse environments and establish infection in its hosts.
Collapse
Affiliation(s)
- Longshuo Sun
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiaoyan Chi
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Zhibin Feng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Kewen Wang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Le Kai
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Kailu Zhang
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Shiwei Cheng
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Xiuying Hao
- Laboratory of Applied and Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Weihai Xie
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Life Sciences, Ludong University, Yantai, China
| |
Collapse
|
25
|
Ng CT, Yu LE, Ong CN, Bay BH, Baeg GH. The use of Drosophila melanogaster as a model organism to study immune-nanotoxicity. Nanotoxicology 2018; 13:429-446. [DOI: 10.1080/17435390.2018.1546413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Teng Ng
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
| | - Liya E Yu
- Department of Civil and Environmental, National University of Singapore, Singapore, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Boon Huat Bay
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gyeong Hun Baeg
- Department of Anatomy Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Siva-Jothy JA, Prakash A, Vasanthakrishnan RB, Monteith KM, Vale PF. Oral Bacterial Infection and Shedding in Drosophila melanogaster. J Vis Exp 2018. [PMID: 29912178 PMCID: PMC6101445 DOI: 10.3791/57676] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The fruit fly Drosophila melanogaster is one of the best developed model systems of infection and innate immunity. While most work has focused on systemic infections, there has been a recent increase of interest in the mechanisms of gut immunocompetence to pathogens, which require methods to orally infect flies. Here we present a protocol to orally expose individual flies to an opportunistic bacterial pathogen (Pseudomonas aeruginosa) and a natural bacterial pathogen of D. melanogaster (Pseudomonas entomophila). The goal of this protocol is to provide a robust method to expose male and female flies to these pathogens. We provide representative results showing survival phenotypes, microbe loads, and bacterial shedding, which is relevant for the study of heterogeneity in pathogen transmission. Finally, we confirm that Dcy mutants (lacking the protective peritrophic matrix in the gut epithelium) and Relish mutants (lacking a functional immune deficiency (IMD) pathway), show increased susceptibility to bacterial oral infection. This protocol, therefore, describes a robust method to infect flies using the oral route of infection, which can be extended to the study of a variety genetic and environmental sources of variation in gut infection outcomes and bacterial transmission.
Collapse
Affiliation(s)
- Jonathon A Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | | | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh; Centre for Immunity, Infection and Evolution, University of Edinburgh;
| |
Collapse
|
27
|
Drenkard E, Hibbler RM, Gutu DA, Eaton AD, Silverio AL, Ausubel FM, Hurley BP, Yonker LM. Replication of the Ordered, Nonredundant Library of Pseudomonas aeruginosa strain PA14 Transposon Insertion Mutants. J Vis Exp 2018. [PMID: 29781996 DOI: 10.3791/57298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pseudomonas aeruginosa is a phenotypically and genotypically diverse and adaptable Gram-negative bacterium ubiquitous in human environments. P. aeruginosa is able to form biofilms, develop antibiotic resistance, produce virulence factors, and rapidly evolve in the course of a chronic infection. Thus P. aeruginosa can cause both acute and chronic, difficult to treat infections, resulting in significant morbidity in certain patient populations. P. aeruginosa strain PA14 is a human clinical isolate with a conserved genome structure that infects a variety of mammalian and nonvertebrate hosts making PA14 an attractive strain for studying this pathogen. In 2006, a nonredundant transposon insertion mutant library containing 5,459 mutants corresponding to 4,596 predicted PA14 genes was generated. Since then, distribution of the PA14 library has allowed the research community to better understand the function of individual genes and complex pathways of P. aeruginosa. Maintenance of library integrity through the replication process requires proper handling and precise techniques. To that end, this manuscript presents protocols that describe in detail the steps involved in library replication, library quality control and proper storage of individual mutants.
Collapse
Affiliation(s)
- Eliana Drenkard
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital
| | - Rhianna M Hibbler
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital
| | - D Alina Gutu
- Department of Molecular Biology, Massachusetts General Hospital
| | - Alexander D Eaton
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital
| | - Amy L Silverio
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital
| | - Frederick M Ausubel
- Department of Molecular Biology, Massachusetts General Hospital; Department of Genetics, Harvard Medical School
| | - Bryan P Hurley
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School
| | - Lael M Yonker
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital; Department of Pediatrics, Harvard Medical School;
| |
Collapse
|
28
|
Haller S, Franchet A, Hakkim A, Chen J, Drenkard E, Yu S, Schirmeier S, Li Z, Martins N, Ausubel FM, Liégeois S, Ferrandon D. Quorum-sensing regulator RhlR but not its autoinducer RhlI enables Pseudomonas to evade opsonization. EMBO Rep 2018. [PMID: 29523648 DOI: 10.15252/embr.201744880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
When Drosophila melanogaster feeds on Pseudomonas aeruginosa, some bacteria cross the intestinal barrier and eventually proliferate in the hemocoel. This process is limited by hemocytes through phagocytosis. P. aeruginosa requires the quorum-sensing regulator RhlR to elude the cellular immune response of the fly. RhlI synthesizes the autoinducer signal that activates RhlR. Here, we show that rhlI mutants are unexpectedly more virulent than rhlR mutants, both in fly and in nematode intestinal infection models, suggesting that RhlR has RhlI-independent functions. We also report that RhlR protects P. aeruginosa from opsonization mediated by the Drosophila thioester-containing protein 4 (Tep4). RhlR mutant bacteria show higher levels of Tep4-mediated opsonization, as compared to rhlI mutants, which prevents lethal bacteremia in the Drosophila hemocoel. In contrast, in a septic model of infection, in which bacteria are introduced directly into the hemocoel, Tep4 mutant flies are more resistant to wild-type P. aeruginosa, but not to the rhlR mutant. Thus, depending on the infection route, the Tep4 opsonin can either be protective or detrimental to host defense.
Collapse
Affiliation(s)
- Samantha Haller
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Adrien Franchet
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Abdul Hakkim
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jing Chen
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Eliana Drenkard
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shen Yu
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Nelson Martins
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Liégeois
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Dominique Ferrandon
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France .,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
29
|
Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, Oglesby-Sherrouse AG, Goldberg JB, Cody WL, Schurr MJ, Vasil ML, Schurr MJ. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. mBio 2018; 9:e02318-17. [PMID: 29382736 PMCID: PMC5790918 DOI: 10.1128/mbio.02318-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection.IMPORTANCE Pyoverdine and pyocyanin production are well-known P. aeruginosa virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state inversely controls pyoverdine and pyocyanin production and that this control is carbon source dependent. P. aeruginosa expressing AlgR D54N, mimicking the constitutively unphosphorylated state, produced more pyocyanin than cells expressing wild-type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the prrf2 small regulatory RNA and the pyoverdine sigma factor, PvdS. Abrogating pyoverdine or pyocyanin gene expression has been shown to attenuate virulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenuates virulence in three different models, a Drosophila melanogaster feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR-dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study.
Collapse
Affiliation(s)
- Alexander S. Little
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yuta Okkotsu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexandria A. Reinhart
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Brandon Barrett
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Amanda G. Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William L. Cody
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Michael J. Schurr
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael L. Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
30
|
Combination Therapy Strategy of Quorum Quenching Enzyme and Quorum Sensing Inhibitor in Suppressing Multiple Quorum Sensing Pathways of P. aeruginosa. Sci Rep 2018; 8:1155. [PMID: 29348452 PMCID: PMC5773576 DOI: 10.1038/s41598-018-19504-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/03/2018] [Indexed: 01/10/2023] Open
Abstract
The threat of antibiotic resistant bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Many bacteria employ quorum sensing (QS) to govern the production of virulence factors and formation of drug-resistant biofilms. Targeting the mechanism of QS has proven to be a functional alternative to conventional antibiotic control of infections. However, the presence of multiple QS systems in individual bacterial species poses a challenge to this approach. Quorum sensing inhibitors (QSI) and quorum quenching enzymes (QQE) have been both investigated for their QS interfering capabilities. Here, we first simulated the combination effect of QQE and QSI in blocking bacterial QS. The effect was next validated by experiments using AiiA as QQE and G1 as QSI on Pseudomonas aeruginosa LasR/I and RhlR/I QS circuits. Combination of QQE and QSI almost completely blocked the P. aeruginosa las and rhl QS systems. Our findings provide a potential chemical biology application strategy for bacterial QS disruption.
Collapse
|
31
|
Rafaluk-Mohr C, Wagner S, Joop G. Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. J Invertebr Pathol 2017; 152:1-7. [PMID: 29273219 DOI: 10.1016/j.jip.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
Immunity is a key trait in host defence against parasites and is thus likely to be under selection during host-parasite coevolution. Broadly, the immune system consists of several lines of defence including physiological innate immunity, physical barriers such as the cuticle, avoidance behaviours and in some cases antimicrobial secretions. The defence conferring the highest fitness benefit may be situation specific and depend on the taxon and infection route of the parasite. We carried out a host-parasite coevolution experiment between the red flour beetle T. castaneum, which possesses a comprehensive immune system including the ability to secrete antimicrobial compounds into its environment, and the generalist entomopathogenic fungus Beauveria bassiana. We measured levels of external immunity (benzoquinone secretion) and an internal immune trait, phenoloxidase (PO) activity throughout and in F2 to beetles at the end of the experiment. Survival (a proxy for resistance) of F2 coevolved and control beetles exposed to the fungus was also measured. No change in external immunity or survival was observed as a consequence of host-parasite coevolution, however, PO responses in evolved beetles showed increased flexibility dependent on the route of infection of the parasite. This more flexible PO response appeared to result in beetle populations being better able to cope with the parasite, buffering their fitness during the course of the coevolution experiment. This represents a subtle but significant adaptation to the presence of a parasite over evolutionary time.
Collapse
Affiliation(s)
- Charlotte Rafaluk-Mohr
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 25392 Giessen, Germany.
| | - Sophia Wagner
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Gerrit Joop
- Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany; Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 25392 Giessen, Germany.
| |
Collapse
|
32
|
Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 2017; 13:e1006504. [PMID: 28715477 PMCID: PMC5531660 DOI: 10.1371/journal.ppat.1006504] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/27/2017] [Accepted: 07/01/2017] [Indexed: 12/22/2022] Open
Abstract
Quorum sensing (QS) is a bacterial cell-to-cell communication process that relies on the production, release, and response to extracellular signaling molecules called autoinducers. QS controls virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. P. aeruginosa possesses two canonical LuxI/R-type QS systems, LasI/R and RhlI/R, which produce and detect 3OC12-homoserine lactone and C4-homoserine lactone, respectively. Here, we use biofilm analyses, reporter assays, RNA-seq studies, and animal infection assays to show that RhlR directs both RhlI-dependent and RhlI-independent regulons. In the absence of RhlI, RhlR controls the expression of genes required for biofilm formation as well as genes encoding virulence factors. Consistent with these findings, ΔrhlR and ΔrhlI mutants have radically different biofilm phenotypes and the ΔrhlI mutant displays full virulence in animals whereas the ΔrhlR mutant is attenuated. The ΔrhlI mutant cell-free culture fluids contain an activity that stimulates RhlR-dependent gene expression. We propose a model in which RhlR responds to an alternative ligand, in addition to its canonical C4-homoserine lactone autoinducer. This alternate ligand promotes a RhlR-dependent transcriptional program in the absence of RhlI.
Collapse
Affiliation(s)
- Sampriti Mukherjee
- Princeton University, Department of Molecular Biology, Princeton, NJ, United States of America
| | - Dina Moustafa
- Emory University School of Medicine, Children’s Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Atlanta, GA, United States of America
| | - Chari D. Smith
- Princeton University, Department of Molecular Biology, Princeton, NJ, United States of America
| | - Joanna B. Goldberg
- Emory University School of Medicine, Children’s Healthcare of Atlanta, Inc., Department of Pediatrics, and Center for Cystic Fibrosis and Airway Diseases Research, Atlanta, GA, United States of America
| | - Bonnie L. Bassler
- Princeton University, Department of Molecular Biology, Princeton, NJ, United States of America
- Howard Hughes Medical Institute, Chevy Chase, MD, United States of America
| |
Collapse
|
33
|
Regulation of acetyl-CoA synthetase transcription by the CrbS/R two-component system is conserved in genetically diverse environmental pathogens. PLoS One 2017; 12:e0177825. [PMID: 28542616 PMCID: PMC5436829 DOI: 10.1371/journal.pone.0177825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/03/2017] [Indexed: 12/04/2022] Open
Abstract
The CrbS/R two-component signal transduction system is a conserved regulatory mechanism through which specific Gram-negative bacteria control acetate flux into primary metabolic pathways. CrbS/R governs expression of acetyl-CoA synthase (acsA), an enzyme that converts acetate to acetyl-CoA, a metabolite at the nexus of the cell’s most important energy-harvesting and biosynthetic reactions. During infection, bacteria can utilize this system to hijack host acetate metabolism and alter the course of colonization and pathogenesis. In toxigenic strains of Vibrio cholerae, CrbS/R-dependent expression of acsA is required for virulence in an arthropod model. Here, we investigate the function of the CrbS/R system in Pseudomonas aeruginosa, Pseudomonas entomophila, and non-toxigenic V. cholerae strains. We demonstrate that its role in acetate metabolism is conserved; this system regulates expression of the acsA gene and is required for growth on acetate as a sole carbon source. As a first step towards describing the mechanism of signaling through this pathway, we identify residues and domains that may be critical for phosphotransfer. We further demonstrate that although CrbS, the putative hybrid sensor kinase, carries both a histidine kinase domain and a receiver domain, the latter is not required for acsA transcription. In order to determine whether our findings are relevant to pathogenesis, we tested our strains in a Drosophila model of oral infection previously employed for the study of acetate-dependent virulence by V. cholerae. We show that non-toxigenic V. cholerae strains lacking CrbS or CrbR are significantly less virulent than are wild-type strains, while P. aeruginosa and P. entomophila lacking CrbS or CrbR are fully pathogenic. Together, the data suggest that the CrbS/R system plays a central role in acetate metabolism in V. cholerae, P. aeruginosa, and P. entomophila. However, each microbe’s unique environmental adaptations and pathogenesis strategies may dictate conditions under which CrbS/R-mediated acs expression is most critical.
Collapse
|
34
|
Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack. Cell Host Microbe 2016; 20:716-730. [PMID: 27889464 DOI: 10.1016/j.chom.2016.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 02/08/2023]
Abstract
Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.
Collapse
|
35
|
Bonfini A, Liu X, Buchon N. From pathogens to microbiota: How Drosophila intestinal stem cells react to gut microbes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:22-38. [PMID: 26855015 DOI: 10.1016/j.dci.2016.02.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
The intestine acts as one of the interfaces between an organism and its external environment. As the primary digestive organ, it is constantly exposed to a multitude of stresses as it processes and absorbs nutrients. Among these is the recurring damage induced by ingested pathogenic and commensal microorganisms. Both the bacterial activity and immune response itself can result in the loss of epithelial cells, which subsequently requires replacement. In the Drosophila midgut, this regenerative role is fulfilled by intestinal stem cells (ISCs). Microbes not only trigger cell loss and replacement, but also modify intestinal and whole organism physiology, thus modulating ISC activity. Regulation of ISCs is integrated through a complex network of signaling pathways initiated by other gut cell populations, including enterocytes, enteroblasts, enteroendocrine and visceral muscles cells. The gut also receives signals from circulating immune cells, the hemocytes, to properly respond against infection. This review summarizes the types of gut microbes found in Drosophila, mechanisms for their elimination, and provides an integrated view of the signaling pathways that regulate tissue renewal in the midgut.
Collapse
Affiliation(s)
| | - Xi Liu
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Enkler L, Richer D, Marchand AL, Ferrandon D, Jossinet F. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci Rep 2016; 6:35766. [PMID: 27767081 PMCID: PMC5073330 DOI: 10.1038/srep35766] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/05/2016] [Indexed: 12/31/2022] Open
Abstract
Among Candida species, the opportunistic fungal pathogen Candida glabrata has become the second most common causative agent of candidiasis in the world and a major public health concern. Yet, few molecular tools and resources are available to explore the biology of C. glabrata and to better understand its virulence during infection. In this study, we describe a robust experimental strategy to generate loss-of-function mutants in C. glabrata. The procedure is based on the development of three main tools: (i) a recombinant strain of C. glabrata constitutively expressing the CRISPR-Cas9 system, (ii) an online program facilitating the selection of the most efficient guide RNAs for a given C. glabrata gene, and (iii) the identification of mutant strains by the Surveyor technique and sequencing. As a proof-of-concept, we have tested the virulence of some mutants in vivo in a Drosophila melanogaster infection model. Our results suggest that yps11 and a previously uncharacterized serine/threonine kinase are involved, directly or indirectly, in the ability of the pathogenic yeast to infect this model host organism.
Collapse
Affiliation(s)
- Ludovic Enkler
- Architecture et Réactivité de l'ARN, UPR9022 du CNRS, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084, Strasbourg, France
| | - Delphine Richer
- Architecture et Réactivité de l'ARN, UPR9022 du CNRS, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084, Strasbourg, France
| | - Anthony L Marchand
- Architecture et Réactivité de l'ARN, UPR9022 du CNRS, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084, Strasbourg, France
| | - Dominique Ferrandon
- Architecture et Réactivité de l'ARN, UPR9022 du CNRS, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084, Strasbourg, France
| | - Fabrice Jossinet
- Architecture et Réactivité de l'ARN, UPR9022 du CNRS, Université de Strasbourg, Institut de biologie moléculaire et cellulaire du CNRS, 15 rue René Descartes, 67084, Strasbourg, France
| |
Collapse
|
37
|
Rhl quorum sensing affects the virulence potential of Pseudomonas aeruginosa in an experimental urinary tract infection. Antonie Van Leeuwenhoek 2016; 109:1535-1544. [DOI: 10.1007/s10482-016-0755-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/16/2016] [Indexed: 11/26/2022]
|
38
|
Shanbhag SR, Vazhappilly AT, Sane A, D'Silva NM, Tripathi S. Electrolyte transport pathways induced in the midgut epithelium of Drosophila melanogaster larvae by commensal gut microbiota and pathogens. J Physiol 2016; 595:523-539. [PMID: 27373966 DOI: 10.1113/jp272617] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/20/2016] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS The digestive tract of larval and adult Drosophila is an excellent analogue of the mammalian gut. Enterocytes of the posterior midgut are separated by septa, with no paracellular path, and therefore perform both immune and transport functions. Using microperfusion electrophysiology, we show that larvae emerging from the embryo into sterile medium have symmetrical apical and basal membrane conductances while larvae emerging into non-sterile medium have apical membranes fivefold more conductive than basal membranes. The channels inserted into the apical membranes could originate in microbiata or host and mediate recognition of microbes. Entomopathogenic cyclic peptide toxins deplete intracellular ions reversibly, forming transient ion channels that do not conduct water, unlike an ionophore like nystatin that depletes ions irreversibly. We show the feasibility of studying the interaction of a single microbial species, or tractable combinatorials of microbial species, with only enterocytes in the primary epithelial barrier. ABSTRACT Microbiota colonizing exposed epithelial surfaces are vital for sustenance of metazoan life, but communication between microbiota, epithelial cells and the host immune system is only beginning to be understood. We address this issue in the posterior midgut epithelium of Drosophila larvae where nutrient transport and immune functions are exclusively transcellular. We showed that larvae emerging into a sterile post-embryonic environment have symmetrical apical and basal membranes. In contrast, larvae emerging into non-sterile media, the source of microbiota, have markedly asymmetrical membranes, with apical membrane conductance more than fivefold higher than the basal membrane. As an example of pathogen action, we showed that the entomopathogenic fungal toxin destruxin A (Dx) depleted intracellular ions. Reversibility of action of Dx was verified by bilayer reconstitution in forming transient non-specific channels that conduct ions but not water. Dx was also less effective from the apical side as compared to the basal side of the epithelium. We also showed that intercellular septa are not conductive in non-sterile cells, even though most cells are isopotential. Luminal microbiota therefore impart asymmetry to the epithelium, by activation of apical membrane conductance, enhancing inter-enterocyte communication, separated by insulating septa, via the gut lumen. These results also open the possibility of studying the basis of bidirectional molecular conversation specifically between enterocytes and microbiota that enables discrimination between commensals and pathogens, establishment of the former, and elimination of the latter.
Collapse
Affiliation(s)
- Shubha R Shanbhag
- Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005, India
| | | | - Abhay Sane
- Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005, India
| | - Natalie M D'Silva
- Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005, India
| | - Subrata Tripathi
- Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005, India.,Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India
| |
Collapse
|
39
|
Loper JE, Henkels MD, Rangel LI, Olcott MH, Walker FL, Bond KL, Kidarsa TA, Hesse CN, Sneh B, Stockwell VO, Taylor BJ. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ Microbiol 2016; 18:3509-3521. [PMID: 27130686 DOI: 10.1111/1462-2920.13369] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
Abstract
Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its capacity to suppress plant diseases and has since been shown to be lethal to certain insects. Among these is the common fruit fly Drosophila melanogaster, a well-established model organism for studies evaluating the molecular and cellular basis of the immune response to bacterial challenge. Pf-5 produces the insect toxin FitD, but a ΔfitD mutant of Pf-5 retained full toxicity against D. melanogaster in a noninvasive feeding assay, indicating that FitD is not a major determinant of Pf-5's oral toxicity against this insect. Pf-5 also produces a broad spectrum of exoenzymes and natural products with antibiotic activity, whereas a mutant with a deletion in the global regulatory gene gacA produces none of these exoproducts and also lacks toxicity to D. melanogaster. In this study, we made use of a panel of Pf-5 mutants having single or multiple mutations in the biosynthetic gene clusters for seven natural products and two exoenzymes that are produced by the bacterium under the control of gacA. Our results demonstrate that the production of rhizoxin analogs, orfamide A, and chitinase are required for full oral toxicity of Pf-5 against D. melanogaster, with rhizoxins being the primary determinant.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA. .,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Marcella D Henkels
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lorena I Rangel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Marika H Olcott
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Francesca L Walker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kise L Bond
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Cedar N Hesse
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA
| | - Baruch Sneh
- Department of Molecular Biology and Ecology of Plants, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Virginia O Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Barbara J Taylor
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
40
|
Welsh MA, Blackwell HE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol Rev 2016; 40:774-94. [PMID: 27268906 DOI: 10.1093/femsre/fuw009] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2016] [Indexed: 01/20/2023] Open
Abstract
Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA
| |
Collapse
|
41
|
Welsh MA, Blackwell HE. Chemical Genetics Reveals Environment-Specific Roles for Quorum Sensing Circuits in Pseudomonas aeruginosa. Cell Chem Biol 2016; 23:361-9. [PMID: 26905657 DOI: 10.1016/j.chembiol.2016.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 12/22/2022]
Abstract
Nutritional cues differentially influence the activities of the three quorum sensing (QS) circuits-Las, Rhl, and Pqs-in the pathogen Pseudomonas aeruginosa. A full understanding of how these systems work together to tune virulence factor production to the environment is lacking. Here, we used chemical probes to evaluate the contribution of each QS circuit to virulence in wild-type P. aeruginosa under defined environmental conditions. Our results indicate that Rhl and Pqs drive virulence factor production in phosphate- and iron-limiting environments, while Las has a minor influence. Consequently, simultaneous inhibition of Rhl and Pqs can attenuate virulence in environments where Las inhibition fails. The activity trends generated in this study can be extrapolated to predict QS inhibitor activity in infection-relevant environments, such as cystic fibrosis sputum. These results indicate that environmental signals can drastically alter the efficacy of small-molecule QS inhibitors in P. aeruginosa and possibly other pathogens.
Collapse
Affiliation(s)
- Michael A Welsh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA.
| |
Collapse
|
42
|
Cui Q, Lv H, Qi Z, Jiang B, Xiao B, Liu L, Ge Y, Hu X. Cross-Regulation between the phz1 and phz2 Operons Maintain a Balanced Level of Phenazine Biosynthesis in Pseudomonas aeruginosa PAO1. PLoS One 2016; 11:e0144447. [PMID: 26735915 PMCID: PMC4703396 DOI: 10.1371/journal.pone.0144447] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022] Open
Abstract
Gene duplication often provides selective advantages for the survival of microorganisms in adapting to varying environmental conditions. P. aeruginosa PAO1 possesses two seven-gene operons [phz1 (phzA1B1C1D1E1F1G1) and phz2 (phzA2B2C2D2E2F2G2)] that are involved in the biosynthesis of phenazine-1-carboxylic acid and its derivatives. Although the two operons are highly homologous and their functions are well known, it is unclear how the two phz operons coordinate their expressions to maintain the phenazine biosynthesis. By constructing single and double deletion mutants of the two phz operons, we found that the phz1-deletion mutant produced the same or less amount of phenazine-1-carboxylic acid and pyocyanin in GA medium than the phz2-knockout mutant while the phz1-phz2 double knockout mutant did not produce any phenazines. By generating phzA1 and phzA2 translational and transcriptional fusions with a truncated lacZ reporter, we found that the expression of the phz1 operon increased significantly at the post-transcriptional level and did not alter at the transcriptional level in the absence of the phz2 operon. Surprisingly, the expression the phz2 operon increased significantly at the post-transcriptional level and only moderately at the transcriptional level in the absence of the phz1 operon. Our findings suggested that a complex cross-regulation existed between the phz1 and phz2 operons. By mediating the upregulation of one phz operon expression while the other was deleted, this crosstalk would maintain the homeostatic balance of phenazine biosynthesis in P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Qinna Cui
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Huinan Lv
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Zhuangzhuang Qi
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Bei Jiang
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bo Xiao
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Linde Liu
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
| | - Yihe Ge
- Department of Applied and Environmental Microbiology, School of Biological Sciences, Ludong University, Yantai, China
- * E-mail: (YG); (XH)
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail: (YG); (XH)
| |
Collapse
|
43
|
Lidor O, Al-Quntar A, Pesci EC, Steinberg D. Mechanistic analysis of a synthetic inhibitor of the Pseudomonas aeruginosa LasI quorum-sensing signal synthase. Sci Rep 2015; 5:16569. [PMID: 26593271 PMCID: PMC4655403 DOI: 10.1038/srep16569] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen responsible for many human infections. LasI is an acyl-homoserine lactone synthase that produces a quorum-sensing (QS) signal that positively regulates numerous P. aeruginosa virulence determinants. The inhibition of the LasI protein is therefore an attractive drug target. In this study, a novel in silico to in vitro complementation was applied to screen thiazolidinedione-type compounds for their ability to inhibit biofilm formation at concentrations not affecting bacterial growth. The compound (z)-5-octylidenethiazolidine-2, 4-dione (TZD-C8) was a strong inhibitor of biofilm formation and chosen for further study. Structural exploration of in silico docking predicted that the compound had high affinity for the LasI activity pocket. The TZD-C8 compound was also predicted to create hydrogen bonds with residues Arg30 and Ile107. Site-directed mutagenesis (SDM) of these two sites demonstrated that TZD-C8 inhibition was abolished in the lasI double mutant PAO-R30D, I107S. In addition, in vitro swarming motility and quorum sensing signal production were affected by TZD-C 8, confirming this compound alters the cell to cell signalling circuitry. Overall, this novel inhibitor of P. aeruginosa quorum sensing shows great promise and validates our mechanistic approach to discovering inhibitors of LuxI-type acyl-homoserine lactone synthases.
Collapse
Affiliation(s)
- O. Lidor
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - A. Al-Quntar
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - E. C. Pesci
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, USA
| | - D. Steinberg
- Biofilm Research Laboratory, Institute of Dental Sciences, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol 2014; 14:796-810. [PMID: 25421701 PMCID: PMC6190593 DOI: 10.1038/nri3763] [Citation(s) in RCA: 574] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Collapse
Affiliation(s)
- Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, University of Massachusetts School of Medicine, Worcester, Massachusetts 01605, USA
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
45
|
Pan J, Jin LH. rgn gene is required for gut cell homeostasis after ingestion of sodium dodecyl sulfate in Drosophila. Gene 2014; 549:141-8. [DOI: 10.1016/j.gene.2014.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 11/30/2022]
|
46
|
Schlotz N, Pester M, Freese HM, Martin-Creuzburg D. A dietary polyunsaturated fatty acid improves consumer performance during challenge with an opportunistic bacterial pathogen. FEMS Microbiol Ecol 2014; 90:467-77. [DOI: 10.1111/1574-6941.12407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Nina Schlotz
- Limnological Institute; University of Konstanz; Konstanz Germany
- Institute for Environmental Health Sciences and Hospital Infection Control; Medical Center; University of Freiburg; Freiburg Germany
| | - Michael Pester
- Department of Biology; University of Konstanz; Konstanz Germany
| | - Heike M. Freese
- Leibniz Institute DSMZ; German Collection of Microorganisms and Cell Cultures; Braunschweig Germany
| | | |
Collapse
|
47
|
Cao Q, Wang Y, Chen F, Xia Y, Lou J, Zhang X, Yang N, Sun X, Zhang Q, Zhuo C, Huang X, Deng X, Yang CG, Ye Y, Zhao J, Wu M, Lan L. A novel signal transduction pathway that modulates rhl quorum sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Pathog 2014; 10:e1004340. [PMID: 25166864 PMCID: PMC4148453 DOI: 10.1371/journal.ppat.1004340] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/15/2014] [Indexed: 01/10/2023] Open
Abstract
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs. The rhl quorum-sensing (QS) system allows P. aeruginosa to regulate diverse metabolic adaptations and virulence. However, how rhl QS system is regulated remains largely unknown. Here, we report that two-component sensor BfmS controls rhl QS system by repressing its cognate response regulator BfmR, which directly suppresses the expression of rhl QS regulator RhlR gene and reduces the production of QS signal molecule N-butanoyl-L-homoserine lactone (C4-HSL). We find that BfmS is critical to the ability of P. aeruginosa to modulate the expression of virulence-associated traits and adapt to the host. Intriguingly, although wild-type BfmS is a repressor of BfmR, naturally occurring missense mutation (L181P, L181P/E376Q, or R393H) can convert its function from a repressor to an activator of BfmR, leading to BfmR activation, which in turn reduces the level of rhl QS signal C4-HSL. These results, therefore, provide important and novel insight into the regulation and evolution of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Qiao Cao
- Hainan University, Haikou, Hainan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Institute of Chemistry and BioMedical Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Feifei Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yongjie Xia
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingyu Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xue Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Nana Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qin Zhang
- State Key Laboratory of Respiratory Diseases and the First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Diseases and the First Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Xi Huang
- Hainan University, Haikou, Hainan, China
| | - Xin Deng
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, United States of America
| | - Cai-Guang Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Ye
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jing Zhao
- Institute of Chemistry and BioMedical Sciences, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (JZ); (MW); (LL)
| | - Min Wu
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
- * E-mail: (JZ); (MW); (LL)
| | - Lefu Lan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JZ); (MW); (LL)
| |
Collapse
|
48
|
Zhang CR, Zhang S, Xia J, Li FF, Xia WQ, Liu SS, Wang XW. The immune strategy and stress response of the Mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen. PLoS One 2014; 9:e94477. [PMID: 24722540 PMCID: PMC3983193 DOI: 10.1371/journal.pone.0094477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background The whitefly, Bemisia tabaci, a notorious agricultural pest, has complex relationships with diverse microbes. The interactions of the whitefly with entomopathogens as well as its endosymbionts have received great attention, because of their potential importance in developing novel whitefly control technologies. To this end, a comprehensive understanding on the whitefly defense system is needed to further decipher those interactions. Methodology/Principal Findings We conducted a comprehensive investigation of the whitefly's defense responses to infection, via oral ingestion, of the pathogen, Pseudomonas aeruginosa, using RNA-seq technology. Compared to uninfected whiteflies, 6 and 24 hours post-infected whiteflies showed 1,348 and 1,888 differentially expressed genes, respectively. Functional analysis of the differentially expressed genes revealed that the mitogen associated protein kinase (MAPK) pathway was activated after P. aeruginosa infection. Three knottin-like antimicrobial peptide genes and several components of the humoral and cellular immune responses were also activated, indicating that key immune elements recognized in other insect species are also important for the response of B. tabaci to pathogens. Our data also suggest that intestinal stem cell mediated epithelium renewal might be an important component of the whitefly's defense against oral bacterial infection. In addition, we show stress responses to be an essential component of the defense system. Conclusions/Significance We identified for the first time the key immune-response elements utilized by B. tabaci against bacterial infection. This study provides a framework for future research into the complex interactions between whiteflies and microbes.
Collapse
Affiliation(s)
- Chang-Rong Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun Xia
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang-Fang Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Qiang Xia
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
49
|
Fauvarque MO. Small flies to tackle big questions: assaying complex bacterial virulence mechanisms usingDrosophila melanogaster. Cell Microbiol 2014; 16:824-33. [DOI: 10.1111/cmi.12292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/05/2014] [Accepted: 03/10/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Marie-Odile Fauvarque
- Univ. Grenoble Alpes; iRTSV-BGE; F-38000 Grenoble France
- CEA; iRTSV-BGE; F-38000 Grenoble France
- INSERM; BGE; F-38000 Grenoble France
| |
Collapse
|
50
|
Moyano AJ, Tobares RA, Rizzi YS, Krapp AR, Mondotte JA, Bocco JL, Saleh MC, Carrillo N, Smania AM. A long-chain flavodoxin protects Pseudomonas aeruginosa from oxidative stress and host bacterial clearance. PLoS Genet 2014; 10:e1004163. [PMID: 24550745 PMCID: PMC3923664 DOI: 10.1371/journal.pgen.1004163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/20/2013] [Indexed: 12/12/2022] Open
Abstract
Long-chain flavodoxins, ubiquitous electron shuttles containing flavin mononucleotide (FMN) as prosthetic group, play an important protective role against reactive oxygen species (ROS) in various microorganisms. Pseudomonas aeruginosa is an opportunistic pathogen which frequently has to face ROS toxicity in the environment as well as within the host. We identified a single ORF, hereafter referred to as fldP (for flavodoxin from P. aeruginosa), displaying the highest similarity in length, sequence identity and predicted secondary structure with typical long-chain flavodoxins. The gene was cloned and expressed in Escherichia coli. The recombinant product (FldP) could bind FMN and exhibited flavodoxin activity in vitro. Expression of fldP in P. aeruginosa was induced by oxidative stress conditions through an OxyR-independent mechanism, and an fldP-null mutant accumulated higher intracellular ROS levels and exhibited decreased tolerance to H2O2 toxicity compared to wild-type siblings. The mutant phenotype could be complemented by expression of a cyanobacterial flavodoxin. Overexpression of FldP in a mutT-deficient P. aeruginosa strain decreased H2O2-induced cell death and the hypermutability caused by DNA oxidative damage. FldP contributed to the survival of P. aeruginosa within cultured mammalian macrophages and in infected Drosophila melanogaster, which led in turn to accelerated death of the flies. Interestingly, the fldP gene is present in some but not all P. aeruginosa strains, constituting a component of the P. aeruginosa accessory genome. It is located in a genomic island as part of a self-regulated polycistronic operon containing a suite of stress-associated genes. The collected results indicate that the fldP gene encodes a long-chain flavodoxin, which protects the cell from oxidative stress, thereby expanding the capabilities of P. aeruginosa to thrive in hostile environments. Coping with toxic reactive oxygen species (ROS) generated as by-products of aerobic metabolism is a major challenge for O2-thriving organisms, which deploy multilevel responses to prevent ROS-triggered damage, including membrane modifications, induction of antioxidant and repair systems and/or replacement of ROS-sensitive targets by resistant isofunctional versions, among others. The opportunistic pathogen Pseudomonas aeruginosa is frequently exposed to ROS in the environment as well as within the host, and we describe herein a new response by which this microorganism can deal with oxidative stress. This pathway depends on a previously uncharacterized gene that we named fldP (for flavodoxin from P. aeruginosa), which encodes a flavoprotein that belongs to the family of long-chain flavodoxins. FldP exhibited a protective role against ROS-dependent physiological and mutational damage, and contributed to the survival of P. aeruginosa during in vivo infection of flies as well as within mammalian macrophagic cells. Thus, fldP increases the adaptive repertoire of P. aeruginosa to face oxidative stress.
Collapse
Affiliation(s)
- Alejandro J. Moyano
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Romina A. Tobares
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina S. Rizzi
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana R. Krapp
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan A. Mondotte
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - José L. Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea M. Smania
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|