1
|
Acs-Szabo L, Papp LA, Miklos I. Understanding the molecular mechanisms of human diseases: the benefits of fission yeasts. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:288-311. [PMID: 39104724 PMCID: PMC11299203 DOI: 10.15698/mic2024.08.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024]
Abstract
The role of model organisms such as yeasts in life science research is crucial. Although the baker's yeast (Saccharomyces cerevisiae) is the most popular model among yeasts, the contribution of the fission yeasts (Schizosaccharomyces) to life science is also indisputable. Since both types of yeasts share several thousands of common orthologous genes with humans, they provide a simple research platform to investigate many fundamental molecular mechanisms and functions, thereby contributing to the understanding of the background of human diseases. In this review, we would like to highlight the many advantages of fission yeasts over budding yeasts. The usefulness of fission yeasts in virus research is shown as an example, presenting the most important research results related to the Human Immunodeficiency Virus Type 1 (HIV-1) Vpr protein. Besides, the potential role of fission yeasts in the study of prion biology is also discussed. Furthermore, we are keen to promote the uprising model yeast Schizosaccharomyces japonicus, which is a dimorphic species in the fission yeast genus. We propose the hyphal growth of S. japonicus as an unusual opportunity as a model to study the invadopodia of human cancer cells since the two seemingly different cell types can be compared along fundamental features. Here we also collect the latest laboratory protocols and bioinformatics tools for the fission yeasts to highlight the many possibilities available to the research community. In addition, we present several limiting factors that everyone should be aware of when working with yeast models.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, 4032Hungary
| |
Collapse
|
2
|
Iracane E, Arias-Sardá C, Maufrais C, Ene IV, d’Enfert C, Buscaino A. Identification of an active RNAi pathway in Candida albicans. Proc Natl Acad Sci U S A 2024; 121:e2315926121. [PMID: 38625945 PMCID: PMC11047096 DOI: 10.1073/pnas.2315926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.
Collapse
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Cristina Arias-Sardá
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatic Hub, ParisF-75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, ParisF-75015, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement USC2019, Fungal Biology and Pathogenicity Unit, ParisF-75015, France
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| |
Collapse
|
3
|
Kelani AA, Bruch A, Rivieccio F, Visser C, Krüger T, Weaver D, Pan X, Schäuble S, Panagiotou G, Kniemeyer O, Bromley MJ, Bowyer P, Barber AE, Brakhage AA, Blango MG. Disruption of the Aspergillus fumigatus RNA interference machinery alters the conidial transcriptome. RNA (NEW YORK, N.Y.) 2023; 29:1033-1050. [PMID: 37019633 PMCID: PMC10275271 DOI: 10.1261/rna.079350.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The RNA interference (RNAi) pathway has evolved numerous functionalities in eukaryotes, with many on display in Kingdom Fungi. RNAi can regulate gene expression, facilitate drug resistance, or even be altogether lost to improve growth potential in some fungal pathogens. In the WHO fungal priority pathogen, Aspergillus fumigatus, the RNAi system is known to be intact and functional. To extend our limited understanding of A. fumigatus RNAi, we first investigated the genetic variation in RNAi-associated genes in a collection of 217 environmental and 83 clinical genomes, where we found that RNAi components are conserved even in clinical strains. Using endogenously expressed inverted-repeat transgenes complementary to a conditionally essential gene (pabA) or a nonessential gene (pksP), we determined that a subset of the RNAi componentry is active in inverted-repeat transgene silencing in conidia and mycelium. Analysis of mRNA-seq data from RNAi double-knockout strains linked the A. fumigatus dicer-like enzymes (DclA/B) and RNA-dependent RNA polymerases (RrpA/B) to regulation of conidial ribosome biogenesis genes; however, surprisingly few endogenous small RNAs were identified in conidia that could explain this broad change. Although RNAi was not clearly linked to growth or stress response defects in the RNAi knockouts, serial passaging of RNAi knockout strains for six generations resulted in lineages with diminished spore production over time, indicating that loss of RNAi can exert a fitness cost on the fungus. Cumulatively, A. fumigatus RNAi appears to play an active role in defense against double-stranded RNA species alongside a previously unappreciated housekeeping function in regulation of conidial ribosomal biogenesis genes.
Collapse
Affiliation(s)
- Abdulrahman A Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Flora Rivieccio
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Corissa Visser
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Danielle Weaver
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Xiaoqing Pan
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Amelia E Barber
- Junior Research Group Fungal Informatics, Friedrich Schiller University, 07745 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, 07743 Jena, Germany
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| |
Collapse
|
4
|
Lu Y, Lei L, Deng Y, Zhang H, Xia M, Wei X, Yang Y, Hu T. RNase III coding genes modulate the cross-kingdom biofilm of Streptococcus mutans and Candida albicans. Front Microbiol 2022; 13:957879. [PMID: 36246231 PMCID: PMC9563999 DOI: 10.3389/fmicb.2022.957879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Streptococcus mutans constantly coexists with Candida albicans in plaque biofilms of early childhood caries (ECC). The progression of ECC can be influenced by the interactions between S. mutans and C. albicans through exopolysaccharides (EPS). Our previous studies have shown that rnc, the gene encoding ribonuclease III (RNase III), is implicated in the cariogenicity of S. mutans by regulating EPS metabolism. The DCR1 gene in C. albicans encodes the sole functional RNase III and is capable of producing non-coding RNAs. However, whether rnc or DCR1 can regulate the structure or cariogenic virulence of the cross-kingdom biofilm of S. mutans and C. albicans is not yet well understood. By using gene disruption or overexpression assays, this study aims to investigate the roles of rnc and DCR1 in modulating the biological characteristics of dual-species biofilms of S. mutans and C. albicans and to reveal the molecular mechanism of regulation. The morphology, biomass, EPS content, and lactic acid production of the dual-species biofilm were assessed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transcriptomic profiling were performed to unravel the alteration of C. albicans virulence. We found that both rnc and DCR1 could regulate the biological traits of cross-kingdom biofilms. The rnc gene prominently contributed to the formation of dual-species biofilms by positively modulating the extracellular polysaccharide synthesis, leading to increased biomass, biofilm roughness, and acid production. Changes in the microecological system probably impacted the virulence as well as polysaccharide or pyruvate metabolism pathways of C. albicans, which facilitated the assembly of a cariogenic cross-kingdom biofilm and the generation of an augmented acidic milieu. These results may provide an avenue for exploring new targets for the effective prevention and treatment of ECC.
Collapse
Affiliation(s)
- Yangyu Lu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yingming Yang,
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Tao Hu,
| |
Collapse
|
5
|
Bruch A, Kelani AA, Blango MG. RNA-based therapeutics to treat human fungal infections. Trends Microbiol 2022; 30:411-420. [PMID: 34635448 PMCID: PMC8498853 DOI: 10.1016/j.tim.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
In recent decades, RNA-based therapeutics have transitioned from a near impossibility to a compelling treatment alternative for genetic disorders and infectious diseases. The mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are truly groundbreaking, and new adaptations are already being proposed to fight other microbes. Unfortunately, the potential of RNA-based therapeutics to treat human fungal infections has remained mostly absent from the conversation, despite the fact that invasive fungal infections kill as many per year as tuberculosis and even more than malaria. Here, we argue that RNA-based therapeutics should be investigated for the treatment of human fungal infections and discuss several major roadblocks and potential circumventions that may allow for the realization of RNA-based therapies against human fungal pathogens.
Collapse
Affiliation(s)
- Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Abdulrahman A. Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Matthew G. Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), Jena, Germany,Correspondence:
| |
Collapse
|
6
|
Iracane E, Vega-Estévez S, Buscaino A. On and Off: Epigenetic Regulation of C. albicans Morphological Switches. Pathogens 2021; 10:pathogens10111463. [PMID: 34832617 PMCID: PMC8619191 DOI: 10.3390/pathogens10111463] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The human fungal pathogen Candida albicans is a dimorphic opportunistic pathogen that colonises most of the human population without creating any harm. However, this fungus can also cause life-threatening infections in immunocompromised individuals. The ability to successfully colonise different host niches is critical for establishing infections and pathogenesis. C. albicans can live and divide in various morphological forms critical for its survival in the host. Indeed, C. albicans can grow as both yeast and hyphae and can form biofilms containing hyphae. The transcriptional regulatory network governing the switching between these different forms is complex but well understood. In contrast, non-DNA based epigenetic modulation is emerging as a crucial but still poorly studied regulatory mechanism of morphological transition. This review explores our current understanding of chromatin-mediated epigenetic regulation of the yeast to hyphae switch and biofilm formation. We highlight how modification of chromatin structure and non-coding RNAs contribute to these morphological transitions.
Collapse
|
7
|
Wang X, Yue Z, Xu F, Wang S, Hu X, Dai J, Zhao G. Coevolution of ribosomal RNA expansion segment 7L and assembly factor Noc2p specializes the ribosome biogenesis pathway between Saccharomyces cerevisiae and Candida albicans. Nucleic Acids Res 2021; 49:4655-4667. [PMID: 33823547 PMCID: PMC8096215 DOI: 10.1093/nar/gkab218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 01/20/2023] Open
Abstract
Ribosomes of different species share an evolutionarily conserved core, exhibiting flexible shells formed partially by the addition of species-specific ribosomal RNAs (rRNAs) with largely unexplored functions. In this study, we showed that by swapping the Saccharomyces cerevisiae 25S rRNA genes with non-S. cerevisiae homologs, species-specific rRNA variations caused moderate to severe pre-rRNA processing defects. Specifically, rRNA substitution by the Candida albicans caused severe growth defects and deficient pre-rRNA processing. We observed that such defects could be attributed primarily to variations in expansion segment 7L (ES7L) and could be restored by an assembly factor Noc2p mutant (Noc2p-K384R). We showed that swapping ES7L attenuated the incorporation of Noc2p and other proteins (Erb1p, Rrp1p, Rpl6p and Rpl7p) into pre-ribosomes, and this effect could be compensated for by Noc2p-K384R. Furthermore, replacement of Noc2p with ortholog from C. albicans could also enhance the incorporation of Noc2p and the above proteins into pre-ribosomes and consequently restore normal growth. Taken together, our findings help to elucidate the roles played by the species-specific rRNA variations in ribosomal biogenesis and further provide evidence that coevolution of rRNA expansion segments and cognate assembly factors specialized the ribosome biogenesis pathway, providing further insights into the function and evolution of ribosome.
Collapse
Affiliation(s)
- Xiangxiang Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhiyong Yue
- School of Medicine, Xi'an International University, Xi'an 710077, China
| | - Feifei Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Sufang Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xin Hu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanghou Zhao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
8
|
Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose of Review
Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi.
Recent Findings
Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs.
Summary
Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.
Collapse
|
9
|
Dubey H, Kiran K, Jaswal R, Bhardwaj SC, Mondal TK, Jain N, Singh NK, Kayastha AM, Sharma TR. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 2020; 20:711-721. [PMID: 32705366 DOI: 10.1007/s10142-020-00745-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, Karnataka, 560035, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Neha Jain
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - N K Singh
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology (formerly ICAR-National Research Centre on Plant Biotechnology), Pusa Campus, New Delhi, 110012, India. .,Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India.
| |
Collapse
|
10
|
Malavia D, Gow NAR, Usher J. Advances in Molecular Tools and In Vivo Models for the Study of Human Fungal Pathogenesis. Microorganisms 2020; 8:E803. [PMID: 32466582 PMCID: PMC7356103 DOI: 10.3390/microorganisms8060803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/08/2020] [Accepted: 05/16/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic fungi represent an increasing infectious disease threat to humans, especially with an increasing challenge of antifungal drug resistance. Over the decades, numerous tools have been developed to expedite the study of pathogenicity, initiation of disease, drug resistance and host-pathogen interactions. In this review, we highlight advances that have been made in the use of molecular tools using CRISPR technologies, RNA interference and transposon targeted mutagenesis. We also discuss the use of animal models in modelling disease of human fungal pathogens, focusing on zebrafish, the silkworm, Galleria mellonella and the murine model.
Collapse
Affiliation(s)
| | | | - Jane Usher
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; (D.M.); (N.A.R.G.)
| |
Collapse
|
11
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
12
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
13
|
Alam CM, Jain G, Kausar A, Singh AK, Mandal B, Varma A, Sharfuddin C, Chakraborty S. Dicer 1 of Candida albicans cleaves plant viral dsRNA in vitro and provides tolerance in plants against virus infection. Virusdisease 2019; 30:237-244. [PMID: 31179362 DOI: 10.1007/s13337-019-00520-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/13/2019] [Indexed: 11/25/2022] Open
Abstract
Most of the viral diseases of plants are caused by RNA viruses which drastically reduce crop yield. In order to generate resistance against RNA viruses infecting plants, we isolated the dicer 1 protein (CaDcr1), a member of RNAse III family (enzyme that cleaves double stranded RNA) from an opportunistic fungus Candida albicans. In vitro analysis revealed that the CaDcr1 cleaved dsRNA of the coat protein gene of cucumber mosaic virus (genus Cucumovirus, family Bromoviridae). Furthermore, we developed transgenic tobacco plants (Nicotiana tabacum cv. Xanthi) over-expressing expressing CaDcr1 by Agrobacterium mediated transformation. Transgenic tobacco lines were able to suppress infection of an Indian isolate of potato virus X (genus Potexvirus, family Alphaflexiviridae). The present study demonstrates that CaDcr1 can cleave double stranded replicative intermediate and provide tolerance to plant against RNA viruses.
Collapse
Affiliation(s)
- Chaudhary Mashhood Alam
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- 2Department of Botany, Patna University, Patna, Bihar 600005 India
| | - Garima Jain
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Aarzoo Kausar
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashish Kumar Singh
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Bikash Mandal
- 3Advanced Centre of Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anupam Varma
- 3Advanced Centre of Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | | | - Supriya Chakraborty
- 1Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
14
|
Lee Marzano SY, Neupane A, Domier L. Transcriptional and Small RNA Responses of the White Mold Fungus Sclerotinia sclerotiorum to Infection by a Virulence-Attenuating Hypovirus. Viruses 2018; 10:E713. [PMID: 30558121 PMCID: PMC6315951 DOI: 10.3390/v10120713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mycoviruses belonging to the family Hypoviridae cause persistent infection of many different host fungi. We previously determined that the white mold fungus, Sclerotiniasclerotiorum, infected with Sclerotinia sclerotiorum hypovirus 2-L (SsHV2-L) exhibits reduced virulence, delayed/reduced sclerotial formation, and enhanced production of aerial mycelia. To gain better insight into the cellular basis for these changes, we characterized changes in mRNA and small RNA (sRNA) accumulation in S.sclerotiorum to infection by SsHV2-L. A total of 958 mRNAs and 835 sRNA-producing loci were altered after infection by SsHV2-L, among which >100 mRNAs were predicted to encode proteins involved in the metabolism and trafficking of carbohydrates and lipids. Both S. sclerotiorum endogenous and virus-derived sRNAs were predominantly 22 nt in length suggesting one dicer-like enzyme cleaves both. Novel classes of endogenous small RNAs were predicted, including phasiRNAs and tRNA-derived small RNAs. Moreover, S. sclerotiorum phasiRNAs, which were derived from noncoding RNAs and have the potential to regulate mRNA abundance in trans, showed differential accumulation due to virus infection. tRNA fragments did not accumulate differentially after hypovirus infection. Hence, in-depth analysis showed that infection of S. sclerotiorum by a hypovirulence-inducing hypovirus produced selective, large-scale reprogramming of mRNA and sRNA production.
Collapse
Affiliation(s)
- Shin-Yi Lee Marzano
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
| | - Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57006, USA.
| | - Leslie Domier
- United States Department of Agriculture, Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
15
|
Abou Elela S, Ji X. Structure and function of Rnt1p: An alternative to RNAi for targeted RNA degradation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1521. [PMID: 30548404 DOI: 10.1002/wrna.1521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022]
Abstract
The double-stranded RNA-binding protein (dsRBP) family controls RNA editing, stability, and function in all eukaryotes. The central feature of this family is the recognition of a generic RNA duplex using highly conserved double-stranded RNA-binding domain (dsRBD) that recognizes the characteristic distance between the minor grooves created by the RNA helix. Variations on this theme that confer species and functional specificities have been reported but most dsRBPs retain their capacity to bind generic dsRNA. The ribonuclease III (RNase III) family members fall into four classes, represented by bacterial RNase III, yeast Rnt1p, human Drosha, and human Dicer, respectively. Like all dsRBPs and most members of the RNase III family, Rnt1p has a dsRBD, but unlike most of its kin, it poorly binds to generic RNA helices. Instead, Rnt1p, the only known RNase III expressed in Saccharomyces cerevisiae that lacks the RNAi (RNA interference) machinery, recognizes a specific class of stem-loop structures. To recognize the specific substrates, the dsRBD of Rnt1p is specialized, featuring a αβββααα topology and a sequence-specific RNA-binding motif at the C-terminus. Since the discovery of Rnt1p in 1996, significant progress has been made in studies of its genetics, function, structure, and mechanism of action, explaining the reasons and mechanisms for the increased specificity of this enzyme and its impact on the mechanism of RNA degradation. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sherif Abou Elela
- Microbiology and Infectiology Department, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Xinhua Ji
- Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
16
|
Rai LS, Singha R, Brahma P, Sanyal K. Epigenetic determinants of phenotypic plasticity in Candida albicans. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Abstract
The nucleolus is a distinct compartment of the nucleus responsible for ribosome biogenesis. Mis-regulation of nucleolar functions and of the cellular translation machinery has been associated with disease, in particular with many types of cancer. Indeed, many tumor suppressors (p53, Rb, PTEN, PICT1, BRCA1) and proto-oncogenes (MYC, NPM) play a direct role in the nucleolus, and interact with the RNA polymerase I transcription machinery and the nucleolar stress response. We have identified Dicer and the RNA interference pathway as having an essential role in the nucleolus of quiescent Schizosaccharomyces pombe cells, distinct from pericentromeric silencing, by controlling RNA polymerase I release. We propose that this novel function is evolutionarily conserved and may contribute to the tumorigenic pre-disposition of DICER1 mutations in mammals.
Collapse
Affiliation(s)
- Benjamin Roche
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoît Arcangioli
- b Genome Dynamics Unit, UMR 3525 CNRS, Institut Pasteur , Paris , France
| | - Rob Martienssen
- a Martienssen Lab, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute, Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| |
Collapse
|
18
|
Tomecki R, Sikorski PJ, Zakrzewska-Placzek M. Comparison of preribosomal RNA processing pathways in yeast, plant and human cells - focus on coordinated action of endo- and exoribonucleases. FEBS Lett 2017; 591:1801-1850. [PMID: 28524231 DOI: 10.1002/1873-3468.12682] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
Proper regulation of ribosome biosynthesis is mandatory for cellular adaptation, growth and proliferation. Ribosome biogenesis is the most energetically demanding cellular process, which requires tight control. Abnormalities in ribosome production have severe consequences, including developmental defects in plants and genetic diseases (ribosomopathies) in humans. One of the processes occurring during eukaryotic ribosome biogenesis is processing of the ribosomal RNA precursor molecule (pre-rRNA), synthesized by RNA polymerase I, into mature rRNAs. It must not only be accurate but must also be precisely coordinated with other phenomena leading to the synthesis of functional ribosomes: RNA modification, RNA folding, assembly with ribosomal proteins and nucleocytoplasmic RNP export. A multitude of ribosome biogenesis factors ensure that these events take place in a correct temporal order. Among them are endo- and exoribonucleases involved in pre-rRNA processing. Here, we thoroughly present a wide spectrum of ribonucleases participating in rRNA maturation, focusing on their biochemical properties, regulatory mechanisms and substrate specificity. We also discuss cooperation between various ribonucleolytic activities in particular stages of pre-rRNA processing, delineating major similarities and differences between three representative groups of eukaryotes: yeast, plants and humans.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | | | | |
Collapse
|
19
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
20
|
Woolford CA, Lagree K, Aleynikov T, Mitchell AP. Negative control of Candida albicans filamentation-associated gene expression by essential protein kinase gene KIN28. Curr Genet 2017; 63:1073-1079. [PMID: 28501989 DOI: 10.1007/s00294-017-0705-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/25/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
Abstract
The fungus Candida albicans can grow as either yeast or filaments, which include hyphae and pseudohyphae, depending on environmental conditions. Filamentous growth is of particular interest because it is required for biofilm formation and for pathogenesis. Environmentally induced filamentous growth is associated with expression of filamentation-associated genes, and both filamentous growth and associated gene expression depend upon several well-characterized transcription factors. Surprisingly, strains with reduced expression of many essential genes display filamentous growth under non-inducing conditions-those in which the wild type grows as yeast. We found recently that diminished expression of several essential protein kinase genes leads to both filamentous cell morphology and filamentation-associated gene expression under non-inducing conditions. Reduced expression of the essential protein kinase gene CAK1 promoted filamentation-associated gene expression and biofilm formation in strains that lacked key transcriptional activators of these processes, thus indicating that CAK1 expression is critical for both environmental and genetic control of filamentation. In this study, we extend our genetic interaction analysis to a second essential protein kinase gene, KIN28. Reduced expression of KIN28 also permits filamentation-associated gene expression, though not biofilm formation, in the absence of several key transcriptional activators. Our results argue that impairment of several essential cellular processes can alter the regulatory requirements for filamentation-associated gene expression. Our results also indicate that levels of filamentation-associated gene expression are not fully predictive of biofilm formation ability.
Collapse
Affiliation(s)
- C A Woolford
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - K Lagree
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - T Aleynikov
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - A P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Abstract
Most cells in nature are not actively dividing, yet are able to return to the cell cycle given the appropriate environmental signals. There is now ample evidence that quiescent G0 cells are not shut-down but still metabolically and transcriptionally active. Quiescent cells must maintain a basal transcriptional capacity to maintain transcripts and proteins necessary for survival. This implies a tight control over RNA polymerases: RNA pol II for mRNA transcription during G0, but especially RNA pol I and RNA pol III to maintain an appropriate level of structural RNAs, raising the possibility that specific transcriptional control mechanisms evolved in quiescent cells. In accordance with this, we recently discovered that RNA interference is necessary to control RNA polymerase I transcription during G0. While this mini-review focuses on yeast model organisms (Saccharomyces cerevisiae and Schizosaccharomyces pombe), parallels are drawn to other eukaryotes and mammalian systems, in particular stem cells.
Collapse
Affiliation(s)
- Benjamin Roche
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA
| | - Benoit Arcangioli
- b Genome Dynamics Unit , UMR 3525 CNRS, Institut Pasteur, 25-28 rue du Docteur Roux , Paris , France
| | - Robert Martienssen
- a Cold Spring Harbor Laboratory , Cold Spring Harbor , NY , USA.,c Howard Hughes Medical Institute-Gordon and Betty Moore Foundation (HHMI-GBM) Investigator , NY , USA
| |
Collapse
|
22
|
Roche B, Arcangioli B, Martienssen RA. RNA interference is essential for cellular quiescence. Science 2016; 354:science.aah5651. [PMID: 27738016 DOI: 10.1126/science.aah5651] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/27/2016] [Indexed: 12/19/2022]
Abstract
Quiescent cells play a predominant role in most organisms. Here we identify RNA interference (RNAi) as a major requirement for quiescence (G0 phase of the cell cycle) in Schizosaccharomyces pombe RNAi mutants lose viability at G0 entry and are unable to maintain long-term quiescence. We identified suppressors of G0 defects in cells lacking Dicer (dcr1Δ), which mapped to genes involved in chromosome segregation, RNA polymerase-associated factors, and heterochromatin formation. We propose a model in which RNAi promotes the release of RNA polymerase in cycling and quiescent cells: (i) RNA polymerase II release mediates heterochromatin formation at centromeres, allowing proper chromosome segregation during mitotic growth and G0 entry, and (ii) RNA polymerase I release prevents heterochromatin formation at ribosomal DNA during quiescence maintenance. Our model may account for the codependency of RNAi and histone H3 lysine 9 methylation throughout eukaryotic evolution.
Collapse
Affiliation(s)
- B Roche
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - B Arcangioli
- Dynamics of the Genome Unit, Department of Genomes and Genetics, Institut Pasteur, UMR3525, 25-28 rue du Docteur Roux, Paris 75015, France
| | - R A Martienssen
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
23
|
Kruse J, Meier D, Zenk F, Rehders M, Nellen W, Hammann C. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation. RNA Biol 2016; 13:1000-1010. [PMID: 27416267 PMCID: PMC5056781 DOI: 10.1080/15476286.2016.1212153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.
Collapse
Affiliation(s)
- Janis Kruse
- a Department of Life Sciences and Chemistry, Molecular Life Sciences Research Center, Ribogenetics Biochemistry Lab , Jacobs University Bremen , Bremen , Germany
| | - Doreen Meier
- b Abteilung Genetik, Universität Kassel , Kassel , Germany
| | - Fides Zenk
- b Abteilung Genetik, Universität Kassel , Kassel , Germany
| | - Maren Rehders
- a Department of Life Sciences and Chemistry, Molecular Life Sciences Research Center, Ribogenetics Biochemistry Lab , Jacobs University Bremen , Bremen , Germany
| | | | - Christian Hammann
- a Department of Life Sciences and Chemistry, Molecular Life Sciences Research Center, Ribogenetics Biochemistry Lab , Jacobs University Bremen , Bremen , Germany
| |
Collapse
|
24
|
Small RNA-Based Antiviral Defense in the Phytopathogenic Fungus Colletotrichum higginsianum. PLoS Pathog 2016; 12:e1005640. [PMID: 27253323 PMCID: PMC4890784 DOI: 10.1371/journal.ppat.1005640] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022] Open
Abstract
Even though the fungal kingdom contains more than 3 million species, little is known about the biological roles of RNA silencing in fungi. The Colletotrichum genus comprises fungal species that are pathogenic for a wide range of crop species worldwide. To investigate the role of RNA silencing in the ascomycete fungus Colletotrichum higginsianum, knock-out mutants affecting genes for three RNA-dependent RNA polymerase (RDR), two Dicer-like (DCL), and two Argonaute (AGO) proteins were generated by targeted gene replacement. No effects were observed on vegetative growth for any mutant strain when grown on complex or minimal media. However, Δdcl1, Δdcl1Δdcl2 double mutant, and Δago1 strains showed severe defects in conidiation and conidia morphology. Total RNA transcripts and small RNA populations were analyzed in parental and mutant strains. The greatest effects on both RNA populations was observed in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains, in which a previously uncharacterized dsRNA mycovirus [termed Colletotrichum higginsianum non-segmented dsRNA virus 1 (ChNRV1)] was derepressed. Phylogenetic analyses clearly showed a close relationship between ChNRV1 and members of the segmented Partitiviridae family, despite the non-segmented nature of the genome. Immunoprecipitation of small RNAs associated with AGO1 showed abundant loading of 5’U-containing viral siRNA. C. higginsianum parental and Δdcl1 mutant strains cured of ChNRV1 revealed that the conidiation and spore morphology defects were primarily caused by ChNRV1. Based on these results, RNA silencing involving ChDCL1 and ChAGO1 in C. higginsianum is proposed to function as an antiviral mechanism. Colletotrichum sp. comprises a diverse group of fungal pathogens that attack over 3000 plant species worldwide. Understanding the underlying mechanisms that govern fungal development and pathogenicity may enable more effective and sustainable approaches to crop disease management and control. In most organisms, RNA silencing is an important mechanism to control endogenous and exogenous RNA. RNA silencing utilizes small regulatory molecules (small RNAs) produced by proteins called Dicer (DCL), and exercise their function though effector proteins named Argonaute (AGO). Here, we investigated the role of RNA silencing machinery in the fungus Colletotrichum higginsianum, by generating deletions in genes encoding RNA silencing components. Severe defects were observed in both conidiation and conidia morphology in the Δdcl1, Δdcl1Δdcl2, and Δago1 strains. Analysis of transcripts and small RNAs revealed an uncharacterized dsRNA virus persistently infecting C. higginsianum. The virus was shown (1) to be de-repressed in the Δdcl1, Δdcl1Δdcl2 and Δago1 strains, and (2) to cause the conidiation and spore mutant phenotypes. Our results indicate that C. higginsianum employs RNA silencing as an antiviral mechanism to suppress viruses and their debilitating effects.
Collapse
|
25
|
Feretzaki M, Billmyre RB, Clancey SA, Wang X, Heitman J. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex. PLoS Genet 2016; 12:e1005868. [PMID: 26943821 PMCID: PMC4778953 DOI: 10.1371/journal.pgen.1005868] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory. Genome instability and mutations provoked by transposon movement are counteracted by novel defense mechanisms in organisms as diverse as fungi, plants, and mammals. In the human fungal pathogen Cryptococcus neoformans, an RNAi silencing pathway operates to defend the genome against mobile elements and transgene repeats. RNAi silencing pathways are conserved in the Cryptococcus pathogenic species complex and are mediated by canonical RNAi components. Surprisingly, several of these components are missing from all analyzed C. deuterogattii VGII strains, the molecular type responsible for the North American Pacific Northwest outbreak. To identify novel components of the RNAi pathways, we surveyed the reference genomes of C. deuterogattii, C. gattii, C. neoformans, and C. deneoformans. We identified 14 otherwise conserved genes missing in R265, including the RDP1, AGO1, and DCR1 canonical RNAi components, and focused on four potentially novel RNAi components: ZNF3, QIP1, CPR2, and FZC28. We found that Znf3 and Qip1 are both required for mitotic- and sex-induced silencing, while Cpr2 and Fzc28 contribute to sex-induced but not mitosis-induced silencing. Our studies reveal elements of RNAi pathways that operate to defend the genome during sexual development and vegetative growth and illustrate the power of network polymorphisms to illuminate novel components of biological pathways.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - R. Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Elvira-Matelot E, Hachet M, Shamandi N, Comella P, Sáez-Vásquez J, Zytnicki M, Vaucheret H. Arabidopsis RNASE THREE LIKE2 Modulates the Expression of Protein-Coding Genes via 24-Nucleotide Small Interfering RNA-Directed DNA Methylation. THE PLANT CELL 2016; 28:406-25. [PMID: 26764378 PMCID: PMC4790866 DOI: 10.1105/tpc.15.00540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/12/2016] [Indexed: 05/08/2023]
Abstract
RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression.
Collapse
Affiliation(s)
- Emilie Elvira-Matelot
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000 Versailles, France
| | | | - Nahid Shamandi
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000 Versailles, France Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Pascale Comella
- CNRS, UMR 5096, LGDP, 66860 Perpignan, France Université de Perpignan Via Domitia, UMR 5096, LGDP, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- CNRS, UMR 5096, LGDP, 66860 Perpignan, France Université de Perpignan Via Domitia, UMR 5096, LGDP, 66860 Perpignan, France
| | | | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRA AgroParisTech CNRS, Université Paris-Saclay, 78000 Versailles, France
| |
Collapse
|
27
|
Ellahi A, Rine J. Evolution and Functional Trajectory of Sir1 in Gene Silencing. Mol Cell Biol 2016; 36:1164-79. [PMID: 26811328 PMCID: PMC4800792 DOI: 10.1128/mcb.01013-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/08/2015] [Accepted: 01/21/2016] [Indexed: 01/28/2023] Open
Abstract
We used the budding yeasts Saccharomyces cerevisiae and Torulaspora delbrueckii to examine the evolution of Sir-based silencing, focusing on Sir1, silencers, the molecular topography of silenced chromatin, and the roles of SIR and RNA interference (RNAi) genes in T. delbrueckii. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) analysis of Sir proteins in T. delbrueckii revealed a different topography of chromatin at the HML and HMR loci than was observed in S. cerevisiae. S. cerevisiae Sir1, enriched at the silencers of HMLα and HMR A: , was absent from telomeres and did not repress subtelomeric genes. In contrast to S. cerevisiae SIR1's partially dispensable role in silencing, the T. delbrueckii SIR1 paralog KOS3 was essential for silencing. KOS3 was also found at telomeres with T. delbrueckii Sir2 (Td-Sir2) and Td-Sir4 and repressed subtelomeric genes. Silencer mapping in T. delbrueckii revealed single silencers at HML and HMR, bound by Td-Kos3, Td-Sir2, and Td-Sir4. The KOS3 gene mapped near HMR, and its expression was regulated by Sir-based silencing, providing feedback regulation of a silencing protein by silencing. In contrast to the prominent role of Sir proteins in silencing, T. delbrueckii RNAi genes AGO1 and DCR1 did not function in heterochromatin formation. These results highlighted the shifting role of silencing genes and the diverse chromatin architectures underlying heterochromatin.
Collapse
Affiliation(s)
- Aisha Ellahi
- Department of Molecular and Cell Biology and California Institute of Quantitative Biology, University of California Berkeley, Berkeley, California, USA
| | - Jasper Rine
- Department of Molecular and Cell Biology and California Institute of Quantitative Biology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
28
|
Aghcheh RK, Kubicek CP. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol 2015; 99:6167-81. [PMID: 26115753 DOI: 10.1007/s00253-015-6763-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/07/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Filamentous fungi are today a major source of industrial biotechnology for the production of primary and secondary metabolites, as well as enzymes and recombinant proteins. All of them have undergone extensive improvement strain programs, initially by classical mutagenesis and later on by genetic manipulation. Thereby, strategies to overcome rate-limiting or yield-reducing reactions included manipulating the expression of individual genes, their regulatory genes, and also their function. Yet, research of the last decade clearly showed that cells can also undergo heritable changes in gene expression that do not involve changes in the underlying DNA sequences (=epigenetics). This involves three levels of regulation: (i) DNA methylation, (ii) chromatin remodeling by histone modification, and (iii) RNA interference. The demonstration of the occurrence of these processes in fungal model organisms such as Aspergillus nidulans and Neurospora crassa has stimulated its recent investigation as a tool for strain improvement in industrially used fungi. This review describes the progress that has thereby been obtained.
Collapse
Affiliation(s)
- Razieh Karimi Aghcheh
- Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/166-5, 1060, Vienna, Austria,
| | | |
Collapse
|
29
|
Burger K, Gullerova M. Swiss army knives: non-canonical functions of nuclear Drosha and Dicer. Nat Rev Mol Cell Biol 2015; 16:417-30. [DOI: 10.1038/nrm3994] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Somatic DICER1 gene mutation in sporadic intraocular medulloepithelioma without pleuropulmonary blastoma syndrome. Hum Pathol 2015; 46:783-7. [DOI: 10.1016/j.humpath.2015.01.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/13/2023]
|
31
|
Cheng L, Ling J, Liang L, Luo Z, Zhang J, Xie B. Qip gene in Fusarium oxysporum is required for normal hyphae morphology and virulence. Mycology 2015; 6:130-137. [PMID: 30151321 PMCID: PMC6106068 DOI: 10.1080/21501203.2015.1027313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 03/04/2015] [Indexed: 01/07/2023] Open
Abstract
Ribonucleic acid (RNA)-silencing mechanisms exist in many eukaryotes to regulate a variety of biological processes. The known molecular components are related to Dicers, Argonautes and RNA-dependent RNA polymerases. Previous biochemical studies have also suggested that Qip, with an exonuclease domain, facilitates the conversion of duplex small interfering RNAs into single strands. In our study, the Qip gene in Fusarium oxysporum was disrupted using homologous recombination technology. The deletion of the Qip gene resulted in a decrease in colony growth rates but increased the number of branches. Additionally, the ΔQip mutant had a reduced pathogenicity in cabbage. Our results show Qip gene in F. oxysporum is required for normal hyphae morphology and virulence. The mutant will be useful for elucidating the relationship between the RNA-silencing mechanism and hyphal growth and development in F. oxysporum.
Collapse
Affiliation(s)
- Lin Cheng
- College of Life Science, Shanxi Normal University, Gong yuan Street No. 1, Yaodu, Linfen041004, China
| | - Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Street No. 12, Zhongguancun, Haidian, Beijing100081, China
| | - Liqin Liang
- College of Life Science, Shanxi Normal University, Gong yuan Street No. 1, Yaodu, Linfen041004, China
| | - Zhongqin Luo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Street No. 12, Zhongguancun, Haidian, Beijing100081, China
| | - Jie Zhang
- College of Life Science, Shanxi Normal University, Gong yuan Street No. 1, Yaodu, Linfen041004, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, South Street No. 12, Zhongguancun, Haidian, Beijing100081, China
| |
Collapse
|
32
|
Vyas VK, Barrasa MI, Fink GR. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. SCIENCE ADVANCES 2015; 1:e1500248. [PMID: 25977940 PMCID: PMC4428347 DOI: 10.1126/sciadv.1500248] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Candida albicans is a pathogenic yeast that causes mucosal and systematic infections with high mortality. The absence of facile molecular genetics has been a major impediment to analysis of pathogenesis. The lack of meiosis coupled with the absence of plasmids makes genetic engineering cumbersome, especially for essential functions and gene families. We describe a C. albicans CRISPR system that overcomes many of the obstacles to genetic engineering in this organism. The high frequency with which CRISPR-induced mutations can be directed to target genes enables easy isolation of homozygous gene knockouts, even without selection. Moreover, the system permits the creation of strains with mutations in multiple genes, gene families, and genes that encode essential functions. This CRISPR system is also effective in a fresh clinical isolate of undetermined ploidy. Our method transforms the ability to manipulate the genome of Candida and provides a new window into the biology of this pathogen.
Collapse
Affiliation(s)
- Valmik K. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Gerald R. Fink
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Corresponding author. E-mail:
| |
Collapse
|
33
|
Thomas MF, L'Etoile ND, Ansel KM. Eri1: a conserved enzyme at the crossroads of multiple RNA-processing pathways. Trends Genet 2014; 30:298-307. [PMID: 24929628 DOI: 10.1016/j.tig.2014.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Eri1 is an evolutionarily conserved 3'-5' exoribonuclease that participates in 5.8S rRNA 3' end processing and turnover of replication-dependent histone mRNAs. Over the course of evolution, Eri1 has also been recruited into a variety of conserved and species-specific regulatory small RNA pathways that include endogenous small interfering (si)RNAs and miRNAs. Recent advances in Eri1 biology illustrate the importance of RNA metabolism in epigenetic gene regulation and illuminate common principles and players in RNA biogenesis and turnover. In this review, we highlight Eri1 as a member of a growing class of ribosome- and histone mRNA-associated proteins that have been recruited into divergent RNA metabolic pathways. We summarize recent advances in the understanding of Eri1 function in these pathways and discuss how Eri1 impacts gene expression and physiology in a variety of eukaryotic species. This emerging view highlights the possibility for crosstalk and coregulation of diverse cellular processes regulated by RNA.
Collapse
Affiliation(s)
- Molly F Thomas
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Noelle D L'Etoile
- Department of Cell & Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet 2014; 47:405-31. [PMID: 24274754 DOI: 10.1146/annurev-genet-110711-155618] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.
Collapse
Affiliation(s)
- Donald L Court
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702; , , , , , , ,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Burroughs AM, Ando Y, Aravind L. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:141-81. [PMID: 24311560 DOI: 10.1002/wrna.1210] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/03/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022]
Abstract
Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently known small RNA classes and place them in context of the reconstructed evolutionary history of the RNA interference (RNAi) protein machinery. This synthesis indicates that the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: (1) sense-antisense transcriptional products, (2) genome-encoded, imperfectly complementary hairpin sequences, and (3) larger noncoding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNAi. They were recruited alongside RNaseIII domains and RNA-dependent RNA polymerase (RdRP) domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleocytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs.
Collapse
Affiliation(s)
- Alexander Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
36
|
Fox SJ, Shelton BT, Kruppa MD. Characterization of genetic determinants that modulate Candida albicans filamentation in the presence of bacteria. PLoS One 2013; 8:e71939. [PMID: 23951271 PMCID: PMC3737206 DOI: 10.1371/journal.pone.0071939] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
In the human body, fungi and bacteria share many niches where the close contact of these organisms maintains a balance among the microbial population. However, when this microbial balance is disrupted, as with antibiotic treatment, other bacteria or fungi can grow uninhibited. C. albicans is the most common opportunistic fungal pathogen affecting humans and can uniquely control its morphogenesis between yeast, pseudohyphal, and hyphal forms. Numerous studies have shown that C. albicans interactions with bacteria can impact its ability to undergo morphogenesis; however, the genetics that govern this morphological control via these bacterial interactions are still relatively unknown. To aid in the understanding of the cross-kingdom interactions of C. albicans with bacteria and the impact on morphology we utilized a haploinsufficiency based C. albicans mutant screen to test for the ability of C. albicans to produce hyphae in the presence of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). Of the 18,144 mutant strains tested, 295 mutants produced hyphae in the presence of all three bacterial species. The 295 mutants identified 132 points of insertion, which included identified/predicted genes, major repeat sequences, and a number of non-coding/unannotated transcripts. One gene, CDR4, displayed increased expression when co-cultured with S. aureus, but not E. coli or P. aeruginosa. Our data demonstrates the ability to use a large scale library screen to identify genes involved in Candida-bacterial interactions and provides the foundation for comprehending the genetic pathways relating to bacterial control of C. albicans morphogenesis.
Collapse
Affiliation(s)
- Sean J. Fox
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Bryce T. Shelton
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Michael D. Kruppa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
37
|
Wang Y, Mercier R, Hobman TC, LaPointe P. Regulation of RNA interference by Hsp90 is an evolutionarily conserved process. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2673-2681. [PMID: 23827255 DOI: 10.1016/j.bbamcr.2013.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
RNAi is a highly conserved mechanism in almost every eukaryote with a few exceptions including the model organism Saccharomyces cerevisiae. A recent study showed that the introduction of the two core components of canonical RNAi systems, Argonaute and Dicer, from another budding yeast, Saccharomyces castellii, restores RNAi in S. cerevisiae. We report here that a functional RNAi system can be reconstituted in yeast with the introduction of only S. castellii Dicer and human Argonaute2. Interestingly, whether or not TRBP2 was present, human Dicer was unable to restore RNAi with either S. castellii or human Argonaute. Contrary to previous reports, we find that human Dicer, TRBP2 and Argonaute2 are not sufficient to reconstitute RNAi in yeast when bona fide RNAi precursors are co-expressed. We and others have previously reported that Hsp90 regulates conformational changes in human and Drosophila Argonautes required to accommodate the loading of dsRNA duplexes. Here we show that the activities of both human and S. castellii Argonaute are subject to Hsp90 regulation in S. cerevisiae. In summary, our results suggest that regulation of the RNAi machinery by Hsp90 may have evolved at the same time as ancestral RNAi.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Tom C Hobman
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Department of Medical Microbiology & Immunology, Faculty of Medicine and Dentistry, University of Alberta, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Canada.
| |
Collapse
|
38
|
Carreras-Villaseñor N, Esquivel-Naranjo EU, Villalobos-Escobedo JM, Abreu-Goodger C, Herrera-Estrella A. The RNAi machinery regulates growth and development in the filamentous fungusTrichoderma atroviride. Mol Microbiol 2013; 89:96-112. [DOI: 10.1111/mmi.12261] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Nohemi Carreras-Villaseñor
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - Edgardo U. Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - J. Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad; Cinvestav Sede Irapuato; Km 9.6 Libramiento Norte Carretera Irapuato-León; 36821; Irapuato; Gto.; Mexico
| |
Collapse
|
39
|
Identification of small RNA pathway genes using patterns of phylogenetic conservation and divergence. Nature 2012; 493:694-8. [PMID: 23364702 PMCID: PMC3762460 DOI: 10.1038/nature11779] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 11/08/2012] [Indexed: 11/12/2022]
Abstract
Genetic and biochemical analyses of RNA interference (RNAi) and microRNA (miRNA) pathways have revealed proteins such as Argonaute/PIWI and Dicer that process and present small RNAs to their targets. Well validated small RNA pathway cofactors, such as the Argonaute/PIWI proteins show distinctive patterns of conservation or divergence in particular animal, plant, fungal, and protist species. We compared 86 divergent eukaryotic genome sequences to discern sets of proteins that show similar phylogenetic profiles with known small RNA cofactors. A large set of additional candidate small RNA cofactors have emerged from functional genomic screens for defects in miRNA- or siRNA-mediated repression in C. elegans and D. melanogaster1,2 and from proteomic analyses of proteins co-purifying with validated small RNA pathway proteins3,4. The phylogenetic profiles of many of these candidate small RNA pathway proteins are similar to those of known small RNA cofactor proteins. We used a Bayesian approach to integrate the phylogenetic profile analysis with predictions from diverse transcriptional coregulation and proteome interaction datasets to assign a probability for each protein for a role in a small RNA pathway. Testing high-confidence candidates from this analysis for defects in RNAi silencing, we found that about half of the predicted small RNA cofactors are required for RNAi silencing. Many of the newly identified small RNA pathway proteins are orthologues of proteins implicated in RNA splicing. In support of a deep connection between the mechanism of RNA splicing and small RNA-mediated gene silencing, the presence of the Argonaute proteins and other small RNA components in the many species analysed strongly correlates with the number of introns in that species.
Collapse
|
40
|
Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J Mol Biol 2012. [PMID: 23201338 DOI: 10.1016/j.jmb.2012.11.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Saccharomyces cerevisiae RNase III enzyme Rnt1p preferentially binds to double-stranded RNA hairpin substrates with a conserved (A/u)GNN tetraloop fold, via shape-specific interactions by its double-stranded RNA-binding domain (dsRBD) helix α1 to the tetraloop minor groove. To investigate whether conformational flexibility in the dsRBD regulates the binding specificity, we determined the backbone dynamics of the Rnt1p dsRBD in the free and AGAA hairpin-bound states using NMR spin-relaxation experiments. The intrinsic microsecond-to-millisecond timescale dynamics of the dsRBD suggests that helix α1 undergoes conformational sampling in the free state, with large dynamics at some residues in the α1-β1 loop (α1-β1 hinge). To correlate free dsRBD dynamics with structural changes upon binding, we determined the solution structure of the free dsRBD used in the previously determined RNA-bound structures. The Rnt1p dsRBD has an extended hydrophobic core comprising helix α1, the α1-β1 loop, and helix α3. Analysis of the backbone dynamics and structures of the free and bound dsRBD reveals that slow-timescale dynamics in the α1-β1 hinge are associated with concerted structural changes in the extended hydrophobic core that govern binding of helix α1 to AGAA tetraloops. The dynamic behavior of the dsRBD bound to a longer AGAA hairpin reveals that dynamics within the hydrophobic core differentiate between specific and nonspecific sites. Mutations of residues in the α1-β1 hinge result in changes to the dsRBD stability and RNA-binding affinity and cause defects in small nucleolar RNA processing invivo. These results reveal that dynamics in the extended hydrophobic core are important for binding site selection by the Rnt1p dsRBD.
Collapse
Affiliation(s)
- Elon Hartman
- Department of Chemistry and Biochemistry, and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Enzymes from the ribonuclease III family bind and cleave double-stranded RNA to initiate RNA processing and degradation of a large number of transcripts in bacteria and eukaryotes. This chapter focuses on the description of the diverse functions of fungal RNase III members in the processing and degradation of cellular RNAs, with a particular emphasis on the well-characterized representative in Saccharomyces cerevisiae, Rnt1p. RNase III enzymes fulfill important functions in the processing of the precursors of various stable noncoding RNAs such as ribosomal RNAs and small nuclear and nucleolar RNAs. In addition, they cleave and promote the degradation of specific mRNAs or improperly processed forms of certain mRNAs. The cleavage of these mRNAs serves both surveillance and regulatory functions. Finally, recent advances have shown that RNase III enzymes are involved in mediating fail-safe transcription termination by RNA polymerase II (Pol II), by cleaving intergenic stem-loop structures present downstream from Pol II transcription units. Many of these processing functions appear to be conserved in fungal species close to the Saccharomyces genus, and even in more distant eukaryotic species.
Collapse
Affiliation(s)
- Kevin Roy
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
42
|
Bernstein DA, Vyas VK, Fink GR. Genes come and go: the evolutionarily plastic path of budding yeast RNase III enzymes. RNA Biol 2012; 9:1123-8. [PMID: 23018782 PMCID: PMC3579876 DOI: 10.4161/rna.21360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Our recent finding that the Candida albicans RNase III enzyme CaDcr1 is an unusual, multifunctional RNase III coupled with data on the RNase III enzymes from other fungal species prompted us to seek a model that explained the evolution of RNase III’s in modern budding yeast species. CaDcr1 has both dicer function (generates small RNA molecules from dsRNA precursors) and Rnt1 function, (catalyzes the maturation of 35S rRNA and U4 snRNA). Some budding yeast species have two distinct genes that encode these functions, a Dicer and RNT1, whereas others have only an RNT1 and no Dicer. As none of the budding yeast species has the canonical Dicer found in many other fungal lineages and most eukaryotes, the extant species must have evolved from an ancestor that lost the canonical Dicer, and evolved a novel Dicer from the essential RNT1 gene. No single, simple model could explain the evolution of RNase III enzymes from this ancestor because existing sequence data are consistent with two equally plausible models. The models share an architecture for RNase III evolution that involves gene duplication, loss, subfunctionalization, and neofunctionalization. This commentary explains our reasoning, and offers the prospect that further genomic data could further resolve the dilemma surrounding the budding yeast RNase III’s evolution.
Collapse
Affiliation(s)
- Douglas A Bernstein
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, USA
| | | | | |
Collapse
|
43
|
Cleary IA, Lazzell AL, Monteagudo C, Thomas DP, Saville SP. BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 2012; 85:557-73. [PMID: 22757963 DOI: 10.1111/j.1365-2958.2012.08127.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the opportunistic fungal pathogen Candida albicans both cellular morphology and the capacity to cause disease are regulated by the transcriptional repressor Nrg1p. One of the genes repressed by Nrg1p is BRG1, which encodes a putative GATA family transcription factor. Deletion of both copies of this gene prevents hypha formation. We discovered that BRG1 overexpression is sufficient to overcome Nrg1p-mediated repression and drive the morphogenetic shift from yeast to hyphae even in the absence of environmental stimuli. We further observed that expression of BRG1 influences the stability of the NRG1 transcript, thus controlling filamentation through a feedback loop. Analysis of this phenomenon revealed that BRG1 expression is required for the induction of an antisense NRG1 transcript. This is the first demonstration of a role for mRNA stability in regulating the key C. albicans virulence trait: the ability to form hyphae.
Collapse
Affiliation(s)
- Ian A Cleary
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | |
Collapse
|