1
|
Abdel-Aal RA, Meligy FY, Maghraby N, Sayed N, Mohamed Ashry IES. Comparing levetiracetam and zonisamide effects on rivastigmine anti-Alzheimer's activity in aluminum chloride-induced Alzheimer's-like disease in rats: Impact on α7 nicotinic acetylcholine receptors and amyloid β. Brain Res 2025; 1855:149573. [PMID: 40096940 DOI: 10.1016/j.brainres.2025.149573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 02/02/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is the most progressive form of neurodegenerative disease, which severely impairs cognitive function. The leading class of drugs used to treat AD is acetylcholinesterase inhibitors (AChE-Is) as Rivastigmine (RIVA), partially ameliorate its cognitive symptoms. Since epilepsy is a common comorbidity with AD, we explored the potential that new the antiepileptic drugs; Levetiracetam (LEV) and Zonisamide (ZNS) may possess an additional therapeutic benefit to RIVA in AlCl3-induced AD rat model. MATERIALS AND METHODS AlCl3 was used to provoke AD in rats which were then supplemented with treatment drugs for 2 weeks. Treated groups were: Control, AlCl3, RIVA, LEV, RIVA + LEV, ZNS and RIVA + ZNS. Then, the behavioral tests; passive avoidance (PA), Morris water maze (MWM) and novel object recognition (NOR) were conducted to assess cognitive behavior and memory. The Hippocampal Aβ assembly was thoroughly examined by histopathology and ELISA. α7 Nicotinic ACh receptors' (α7nAChRs) expression was assessed immunohistochemically and by real-time quantitative polymerase chain reaction (qPCR). Caspase 3 expression was also assessed by real-time qPCR in hippocampal tissues. RESULTS AlCl3 administration impaired memory and cognitive functions in rats, augmented hippocampal Aβ deposition, with subsequent neurodegeneration and α7nAChRs down-regulation. LEV, but not ZNS, administration significantly mitigated AlCl3-induced cognitive impairment probably through suppression of amyloid β (Aβ) deposition, enhancement of neurogenesis and α7nAChRs expression. When combined to RIVA, ZNS treatment negatively affected cognition possibly through its impact on hippocampal Aβ and subsequent neuronal damage. CONCLUSION Although our results indicated that neither LEV nor ZNS provided any extra benefit to cognitive enhancements in AD rats receiving rivastigmine, LEV demonstrated positive effects individually while ZNS had negative effects when combined with RIVA. As a result, this study suggests the use of LEV rather than ZNS for managing epilepsy in patients with AD given that Alzheimer's and epilepsy can coexist.
Collapse
Affiliation(s)
- Raafat A Abdel-Aal
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Fatma Y Meligy
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman 11196, Jordan; Histology and Cell Biology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nashwa Maghraby
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Nehal Sayed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71515, Egypt.
| | | |
Collapse
|
2
|
Gonzalez MM, Magondu B, Rowan MJM, Forest CR. Regional susceptibility of PV interneurons in an hAPP-KI mouse model of Alzheimer's disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646485. [PMID: 40236235 PMCID: PMC11996532 DOI: 10.1101/2025.04.01.646485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Early-stage Alzheimer's pathology correlates with disrupted neuronal excitability, which can drive network and cognitive dysfunction even prior to neurodegeneration. However, the emergence and extent of these changes may vary by brain region and cell types situated in those regions. Here we aimed to investigate the effects of AD pathology on different neuron subtypes in both the entorhinal cortex, a region with enhanced pathology in early AD, and the primary visual cortex, a relatively unaffected region in early-stage AD. We designed and employed a semi-automated patch clamp electrophysiology apparatus to record from fast-spiking parvalbumin interneurons and excitatory neurons in these regions, recording from over 150 cells in young adult APP-KI mice. In entorhinal cortex, amyloid overproduction resulted in PV interneuron hypoexcitability, whereas excitatory neurons were concurrently hyperexcitable. Conversely, neurons of either subclass were largely unaffected in the visual cortex. Together, these findings suggest that fast-spiking parvalbumin interneurons in the entorhinal cortex, but not in the visual cortex, play an integral role in AD progression.
Collapse
|
3
|
Dupont S. Epilepsy and Alzheimer disease: New insights and perspectives. Rev Neurol (Paris) 2025:S0035-3787(25)00486-2. [PMID: 40169335 DOI: 10.1016/j.neurol.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
Numerous epidemiological and pathophysiological arguments suggest a bidirectional link between late-onset epilepsy and Alzheimer's disease. However, the temporal and causal relationship between the pathophysiological processes underlying these two conditions remains unclear. It is likely that these connections are complex, requiring consideration of various scenarios of causality and reciprocity. In the absence of targeted therapies that effectively address the progression of both diseases, specific measures can be taken to improve patient care. These include screening for cognitive disorders in patients with late-onset epilepsy, detecting subclinical EEG activity in patients with Alzheimer's disease, and identifying and managing cardiovascular risk factors in both populations. Looking ahead, it is evident that global population aging and the potential demographic surge in these two patient groups will necessitate greater efforts to raise awareness and enhance the training of physicians and healthcare professionals in the emerging field of "epileptogeriatrics".
Collapse
Affiliation(s)
- Sophie Dupont
- Epileptology Unit, Reference Center for Rare Epilepsies, Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Rehabilitation Unit, AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Paris Brain Institute (ICM), Sorbonne-Université, Inserm U1127, CNRS 7225, 75013 Paris, France; Université Paris Sorbonne, Paris, France.
| |
Collapse
|
4
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
5
|
Burns AP, Fortel I, Zhan L, Lazarov O, Mackin RS, Demos AP, Bendlin B, Leow A. Longitudinal excitation-inhibition balance altered by sex and APOE-ε4. Commun Biol 2025; 8:488. [PMID: 40133608 PMCID: PMC11937384 DOI: 10.1038/s42003-025-07876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Neuronal hyperexcitation affects memory and neural processing across the Alzheimer's disease (AD) cognitive continuum. Levetiracetam, an antiepileptic, shows promise in improving cognitive impairment by restoring the neural excitation/inhibition balance in AD patients. We previously identified a hyper-excitable phenotype in cognitively unimpaired female APOE-ε4 carriers relative to male counterparts cross-sectionally. This sex difference lacks longitudinal validation; however, clarifying the vulnerability of female ε4-carriers could better inform antiepileptic treatment efficacy. Here, we investigated this sex-by-ε4 interaction using a longitudinal design. We used resting-state fMRI and diffusion tensor imaging collected longitudinally from 106 participants who were cognitively unimpaired for at least one scan event but may have been assessed to have clinical dementia ratings corresponding to early mild cognitive impairment over time. By including scan events where participants transitioned to mild cognitive impairment, we modeled the trajectory of the whole-brain excitation-inhibition ratio throughout the preclinical cognitively healthy continuum and extended to early impairment. A linear mixed model revealed a significant three-way interaction among sex, ε4-status, and time, with female ε4-carriers showing a significant hyper-excitable trajectory. These findings suggest a possible pathway for preventative therapy targeting preclinical hyperexcitation in female ε4-carriers.
Collapse
Affiliation(s)
- Andrew P Burns
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| | - Igor Fortel
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St, Chicago, IL, 60612, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 18th St, San Francisco, CA, 94107, USA
- Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Alexander P Demos
- Department of Psychology, University of Illinois Chicago (UIC), 1007 W Harrison St, Chicago, IL, 60607, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin-Madison, 5158 Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Ave J5/1 Mezzanine, Madison, WI, 53792, USA
| | - Alex Leow
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| |
Collapse
|
6
|
Tinston J, Hudson MR, Harutyunyan A, Chen Z, Jones NC. Forty-hertz sensory entrainment impedes kindling epileptogenesis and reduces amyloid pathology in an Alzheimer disease mouse model. Epilepsia 2025; 66:886-898. [PMID: 39737719 DOI: 10.1111/epi.18222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025]
Abstract
OBJECTIVE The 5xFAD mouse model of Alzheimer disease (AD) recapitulates amyloid-beta (Aβ) deposition and pronounced seizure susceptibility observed in patients with AD. Forty-hertz audiovisual stimulation is a noninvasive technique that entrains gamma neural oscillations and can reduce Aβ pathology and modulate glial expression in AD models. We hypothesized that 40-Hz sensory stimulation would improve seizure susceptibility in 5xFAD mice and this would be associated with reduction of plaques and modulation of glial phenotypes. METHODS 5xFAD mice and wild-type (WT) littermates received 1 h/day 40-Hz audiovisual stimulation or sham (n = 7-11/group), beginning 2 weeks before and continuing throughout amygdala kindling epileptogenesis. Postmortem analyses included Aβ pathology and morphology of astrocytes and microglia. RESULTS 5xFAD mice exhibited enhanced susceptibility to seizures compared to WT, evidenced by fewer stimulations to reach kindling endpoint (incidence rate ratio [IRR] = 1.46, p < .0001) and a trend to higher seizure severity (odds ratio [OR] = .34, p = .059). Forty-hertz stimulation reduced the behavioral severity of the first seizure (OR = 4.04, p = .02) and delayed epileptogenesis, increasing the number of stimulations required to reach kindling endpoint (IRR = .82, p = .01) compared to sham, regardless of genotype. 5xFAD mice receiving sensory stimulation exhibited ~50% reduction in amyloid pathology compared to sham. Furthermore, markers of astrocytes and microglia were upregulated in both genotypes receiving 40-Hz stimulation. SIGNIFICANCE Forty-hertz sensory entrainment slows epileptogenesis in the mouse amygdala kindling model. Although this intervention improves Aβ pathology in 5xFAD mice, the observed antiepileptogenic effect may also relate to effects on glia, because mice without Aβ plaques (i.e., WT) also experienced antiepileptogenic effects of the intervention.
Collapse
Affiliation(s)
- Jennifer Tinston
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Matthew R Hudson
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Anna Harutyunyan
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Zhibin Chen
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Dybowski FP, Scott DS, Tamminga CA. Pharmacological reduction of reverse-translated hippocampal hyperactivity in mouse: relevance for psychosis. Neuropsychopharmacology 2025:10.1038/s41386-025-02077-4. [PMID: 40016366 DOI: 10.1038/s41386-025-02077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Hippocampal hyperactivity (HH) is a potential biomarker in schizophrenia psychosis, which also appears in several other brain disorders, compromising specificity. We hypothesized that the reversal of HH in an established, reverse-translational animal preparation, coupled with a behavioral marker of psychosis may be a predictor of antipsychotic efficacy of a medication. We used a chemogenetic reverse-translational mouse preparation relevant to schizophrenia psychosis which shows HH and aberrant psychosis-relevant behaviors, specifically disrupted social recognition memory (SRM). Mice with and without HH were treated with three drugs; two known antipsychotics and one HH-reducing anticonvulsant, to assess their effects on both HH and SRM performance. All animals received one of the four treatments: vehicle (N = 15-24), haloperidol (N = 8-15), xanomeline (N = 8-13) or levetiracetam (N = 6-15) and were subsequently tested for baseline c-Fos protein expression within the hippocampal subfields (CA3 and CA1) as a measure of neuronal activity, or tested with the SRM task as a measure of social memory. All three drugs acutely reduced baseline HH compared to vehicle treatment. Subacute administration of haloperidol or xanomeline, the two drugs known to have antipsychotic activity, but not levetiracetam, normalized the SRM behavior to control levels. These results suggest that the reversal of HH alone cannot be a predictor of antipsychotic efficacy of an experimental drug and HH as a biomarker could benefit from a more sensitive readout approach.
Collapse
Affiliation(s)
- Filip P Dybowski
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Daniel S Scott
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carol A Tamminga
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
- O'Donnell Brain Institute, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Husain M. Listening into hippocampal hyperexcitability in Alzheimer's disease. Brain 2025; 148:347-348. [PMID: 39895050 DOI: 10.1093/brain/awaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
|
9
|
Barker-Haliski M. Seizing the opportunity to therapeutically address neuronal hyperexcitability in Alzheimer's disease. J Alzheimers Dis 2025; 103:662-665. [PMID: 39784685 DOI: 10.1177/13872877241305740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Seizures in people with Alzheimer's disease are increasingly recognized to worsen disease burden and accelerate functional decline. Harnessing established antiseizure medicine discovery strategies in rodents with Alzheimer's disease associated risk genes represents a novel way to uncover disease modifying treatments that may benefit these Alzheimer's disease patients. This commentary discusses the recent evaluation by Dejakaisaya and colleagues to assess the antiseizure and disease-modifying potential of the repurposed cephalosporin antibiotic, ceftriaxone, in the Tg2576 mouse model. The use of established epilepsy models in Alzheimer's disease research carries the potential to advance novel disease-modifying treatments.
Collapse
|
10
|
Joodi SA, Ibrahim WW, Khattab MM. Drugs repurposing in the experimental models of Alzheimer's disease. Inflammopharmacology 2025; 33:195-214. [PMID: 39752040 PMCID: PMC11799062 DOI: 10.1007/s10787-024-01608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy. Additionally, we demonstrated the different repurposed drugs in the experimental models of AD including the anti-inflammatory, anti-hypertensive, anti-diabetic, antiepileptic, antidepressant and anticancer drugs. Further, we showed the pipeline and FDA approved drugs for AD. The repurposed drugs have a promising therapeutic activity against AD, confirming the value of the drugs repurposing technique to elucidate curative therapy for AD.
Collapse
Affiliation(s)
- Sheer A Joodi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| |
Collapse
|
11
|
Thompson JC, Levis Rabi M, Novoa M, Nash KR, Joly-Amado A. Evaluating the Efficacy of Levetiracetam on Non-Cognitive Symptoms and Pathology in a Tau Mouse Model. Biomedicines 2024; 12:2891. [PMID: 39767797 PMCID: PMC11727630 DOI: 10.3390/biomedicines12122891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Alzheimer's disease (AD) is marked by amyloid-β plaques and hyperphosphorylated tau neurofibrillary tangles (NFTs), leading to cognitive decline and debilitating non-cognitive symptoms. This study aimed to evaluate compounds from four different classes in a short-term (7-day) study using transgenic tau mice to assess their ability to reduce non-cognitive symptoms. The best candidate was then evaluated for longer exposure to assess non-cognitive symptoms, cognition, and pathology. Methods: Tg4510 mice, expressing mutated human tau (P301L), were administered with levetiracetam, methylphenidate, diazepam, and quetiapine for 7 days at 6 months old, when pathology and cognitive deficits are established. Drugs were given in the diet, and non-cognitive symptoms were evaluated using metabolic cages. Levetiracetam was chosen for longer exposure (3 months) in 3-month-old Tg4510 mice and non-transgenic controls to assess behavior and pathology. Results: After 3 months of diet, levetiracetam mildly reduced tau pathology in the hippocampus but did not improve cognition in Tg4510 mice. Interestingly, it influenced appetite, body weight, anxiety-like behavior, and contextual fear memory in non-transgenic animals but not in Tg4510 mice. Conclusions: While levetiracetam has shown benefits in amyloid deposition models, it had limited effects on tau pathology and behavior in an animal model of tau deposition, which is crucial for AD context. The differential effects on non-transgenic versus Tg4510 mice warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | - Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (J.C.T.); (M.L.R.); (M.N.); (K.R.N.)
| |
Collapse
|
12
|
Rodriguez GA, Rothenberg EF, Shetler CO, Aoun A, Posani L, Vajram SV, Tedesco T, Fusi S, Hussaini SA. Impaired spatial coding and neuronal hyperactivity in the medial entorhinal cortex of aged App NL-G-F mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.624990. [PMID: 39651258 PMCID: PMC11623597 DOI: 10.1101/2024.11.26.624990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The progressive accumulation of amyloid beta (Aβ) pathology in the brain has been associated with aberrant neuronal network activity and poor cognitive performance in preclinical mouse models of Alzheimer's disease (AD). Presently, our understanding of the mechanisms driving pathology-associated neuronal dysfunction and impaired information processing in the brain remains incomplete. Here, we assessed the impact of advanced Aβ pathology on spatial information processing in the medial entorhinal cortex (MEC) of 18-month App NL-G-F/NL- G-F knock-in (APP KI) mice as they explored contextually novel and familiar open field arenas in a two-day, four-session recording paradigm. We tracked single unit firing activity across all sessions and found that spatial information scores were decreased in MEC neurons from APP KI mice versus those in age-matched C57BL/6J controls. MEC single unit spatial representations were also impacted in APP KI mice. Border cell firing preferences were unstable across sessions and spatial periodicity in putative grid cells was disrupted. In contrast, MEC border cells and grid cells in Control mice were intact and stable across sessions. We then quantified the stability of MEC spatial maps across sessions by utilizing a metric based on the Earth Mover's Distance (EMD). We found evidence for increased instability in spatially-tuned APP KI MEC neurons versus Controls when mice were re-exposed to familiar environments and exposed to a novel environment. Additionally, spatial decoding analysis of MEC single units revealed deficits in position and speed coding in APP KI mice in all session comparisons. Finally, MEC single unit analysis revealed a mild hyperactive phenotype in APP KI mice that appeared to be driven by narrow-spiking units (putative interneurons). These findings tie Aβ-associated dysregulation in neuronal firing to disruptions in spatial information processing that may underlie certain cognitive deficits associated with AD.
Collapse
|
13
|
Dharshini SAP, Sanz-Ros J, Pan J, Tang W, Vallejo K, Otero-Garcia M, Cobos I. Molecular Signatures of Resilience to Alzheimer's Disease in Neocortical Layer 4 Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.03.621787. [PMID: 39574639 PMCID: PMC11580857 DOI: 10.1101/2024.11.03.621787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Single-cell omics is advancing our understanding of selective neuronal vulnerability in Alzheimer's disease (AD), revealing specific subtypes that are either susceptible or resilient to neurodegeneration. Using single-nucleus and spatial transcriptomics to compare neocortical regions affected early (prefrontal cortex and precuneus) or late (primary visual cortex) in AD, we identified a resilient excitatory population in layer 4 of the primary visual cortex expressing RORB, CUX2, and EYA4. Layer 4 neurons in association neocortex also remained relatively preserved as AD progressed and shared overlapping molecular signatures of resilience. Early in the disease, resilient neurons upregulated genes associated with synapse maintenance, synaptic plasticity, calcium homeostasis, and neuroprotective factors, including GRIN2A, RORA, NRXN1, NLGN1, NCAM2, FGF14, NRG3, NEGR1, and CSMD1. We also identified KCNIP4, which encodes a voltage-gated potassium (Kv) channel-interacting protein that interacts with Kv4.2 channels and presenilins, as a key factor linked to resilience. KCNIP4 was consistently upregulated in the early stages of pathology. Furthermore, AAV-mediated overexpression of Kcnip4 in a humanized AD mouse model reduced the expression of the activity-dependent genes Arc and c-Fos, suggesting compensatory mechanisms against neuronal hyperexcitability. Our dataset provides a valuable resource for investigating mechanisms underlying resilience to neurodegeneration.
Collapse
Affiliation(s)
| | - Jorge Sanz-Ros
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jie Pan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Weijing Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kristen Vallejo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marcos Otero-Garcia
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Inma Cobos
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Lead contact
| |
Collapse
|
14
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
15
|
Smeralda CL, Pandit S, Turrini S, Reilly J, Palmisano A, Sprugnoli G, Hampel H, Benussi A, Borroni B, Press D, Rotenberg A, El Fakhri G, Koch G, Rossi S, Santarnecchi E. The role of parvalbumin interneuron dysfunction across neurodegenerative dementias. Ageing Res Rev 2024; 101:102509. [PMID: 39306248 DOI: 10.1016/j.arr.2024.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Parvalbumin-positive (PV+) basket neurons are fast-spiking, non-adapting inhibitory interneurons whose oscillatory activity is essential for regulating cortical excitation/inhibition balance. Their dysfunction results in cortical hyperexcitability and gamma rhythm disruption, which have recently gained substantial traction as contributing factors as well as potential therapeutic targets for the treatment of Alzheimer's Disease (AD). Recent evidence indicates that PV+ cells are also impaired in Frontotemporal Dementia (FTD) and Dementia with Lewy bodies (DLB). However, no attempt has been made to integrate these findings into a coherent pathophysiological framework addressing the contribution of PV+ interneuron dysfunction to the generation of cortical hyperexcitability and gamma rhythm disruption in FTD and DLB. To fill this gap, we epitomized the most recent evidence on PV+ interneuron impairment in AD, FTD, and DLB, focusing on its contribution to the generation of cortical hyperexcitability and gamma oscillatory disruption and their interplay with misfolded protein accumulation, neuronal death, and clinical symptoms' onset. Our work deepens the current understanding concerning the role of PV+ interneuron dysfunction across neurodegenerative dementias, highlighting commonalities and differences among AD, FTD, and DLB, thus paving the way for identifying novel biomarkers and potential therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Carmelo Luca Smeralda
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Siddhartha Pandit
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, University of Bologna, Italy
| | - Julianne Reilly
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Annalisa Palmisano
- Chair of Lifespan Developmental Neuroscience, TUD Dresden University of Technology, Dresden, Germany
| | - Giulia Sprugnoli
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniel Press
- Cognitive Neurology Unit, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Brookline, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Simone Rossi
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Rao NR, DeGulis O, Nomura T, Lee S, Hark TJ, Dynes JC, Dexter EX, Dulewicz M, Ge J, Upadhyay A, Fornasiero EF, Vassar R, Hanrieder J, Contractor A, Savas JN. Levetiracetam prevents Aβ 42 production through SV2a-dependent modulation of App processing in Alzheimer's disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620698. [PMID: 39554163 PMCID: PMC11565754 DOI: 10.1101/2024.10.28.620698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
In Alzheimer's disease (AD), amyloid-beta (Aβ) peptides are produced by proteolytic cleavage of the amyloid precursor protein (APP), which can occur during synaptic vesicle (SV) cycling at presynapses. Precisely how amyloidogenic APP processing may impair presynaptic proteostasis and how to therapeutically target this process remains poorly understood. Using App knock-in mouse models of early Aβ pathology, we found proteins with hampered degradation accumulate at presynaptic sites. At this mild pathological stage, amyloidogenic processing leads to accumulation of Aβ42 inside SVs. To explore if targeting SVs modulates Aβ accumulation, we investigated levetiracetam (Lev), a SV-binding small molecule drug that has shown promise in mitigating AD-related pathologies despite its mechanism of action being unclear. We discovered Lev reduces Aβ42 levels by decreasing amyloidogenic processing of APP in a SV2a-dependent manner. Lev corrects SV protein levels and cycling, which results in increased surface localization of APP, where it favors processing via the non-amyloidogenic pathway. Using metabolic stable isotopes and mass spectrometry we confirmed that Lev prevents the production of Aβ42 in vivo. In transgenic mice with aggressive pathology, electrophysiological and immunofluorescent microscopy analyses revealed that Lev treatment reduces SV cycling and minimizes synapse loss. Finally, we found that human Down syndrome brains with early Aβ pathology, have elevated levels of presynaptic proteins, confirming a comparable presynaptic deficit in human brains. Taken together, we report a mechanism that highlights the therapeutic potential of Lev to modify the early stages of AD and represent a promising strategy to prevent Aβ42 pathology before irreversible damage occurs.
Collapse
Affiliation(s)
- Nalini R. Rao
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Olivia DeGulis
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Toshihiro Nomura
- Department of Neuroscience, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - SeungEun Lee
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Timothy J. Hark
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Justin C. Dynes
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Emily X. Dexter
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
| | - Arun Upadhyay
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Eugenio F. Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Vassar
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg; Mölndal, Sweden
- Department of Neurodegenerative disease, Queen Square Institute of Neurology, University College London, London, UK
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine; Chicago, IL USA
| |
Collapse
|
17
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
18
|
Knox KM, Davidson S, Lehmann LM, Skinner E, Lo A, Jayadev S, Barker-Haliski M. Alzheimer's disease-associated genotypes differentially influence chronic evoked seizure outcomes and antiseizure medicine activity in aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616921. [PMID: 39416203 PMCID: PMC11482912 DOI: 10.1101/2024.10.06.616921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) patients are at greater risk of focal seizures than similarly aged adults; these seizures, left untreated, may worsen functional decline. Older people with epilepsy generally respond well to antiseizure medications (ASMs). However, whether specific ASMs can differentially control seizures in AD is unknown. The corneal kindled mouse model of acquired chronic secondarily generalized focal seizures allows for precisely timed drug administration studies to quantify the efficacy and tolerability of ASMs in an AD-associated genetic model. Wh+e hypothesized that mechanistically distinct ASMs would exert differential anticonvulsant activity and tolerability in aged AD mice (8-15 months) to define whether rational ASM selection may benefit specific AD genotypes. METHODS Aged male and female PSEN2-N141I versus age-matched non-transgenic control (PSEN2 control) C57Bl/6J mice, and APPswe/PS1dE9 versus transgene negative (APP control) littermates underwent corneal kindling to quantify latency to fully kindled criterion. Dose-related ASM efficacy was then compared in each AD model versus matched control over 1-2 months using ASMs commonly prescribed in older adults with epilepsy: valproic acid, levetiracetam, lamotrigine, phenobarbital, and gabapentin. RESULTS Sex and AD genotype differentially impacted seizure susceptibility. Male PSEN2-N141I mice required more stimulations to attain kindling criterion (X2=5.521; p<0.05). Male APP/PS1 mice did not differ in kindling rate versus APP control mice, but they did have more severe seizures. There were significant ASM class-specific differences in acute seizure control and dose-related tolerability. APP/PS1 mice were more sensitive than APP controls to valproic acid, levetiracetam, and gabapentin. PSEN2-N141I mice were more sensitive than PSEN2 controls to valproic acid and lamotrigine. DISCUSSION AD genotypes may differentially impact ASMs activity and tolerability in vivo with advanced biological age. These findings highlight the heterogeneity of seizure risk in AD and suggest that precisely selected ASMs may beneficially control seizures in AD, thus reducing functional decline.
Collapse
Affiliation(s)
- Kevin M. Knox
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Stephanie Davidson
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Leanne M. Lehmann
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Erica Skinner
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Alexandria Lo
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Suman Jayadev
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195
| | - Melissa Barker-Haliski
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195
| |
Collapse
|
19
|
Bakker A, Rani N, Mohs R, Gallagher M. The HOPE4MCI study: AGB101 treatment slows progression of entorhinal cortex atrophy in APOE ε4 non-carriers with mild cognitive impairment due to Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70004. [PMID: 39748842 PMCID: PMC11694516 DOI: 10.1002/trc2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 08/24/2024] [Indexed: 01/04/2025]
Abstract
Introduction Hippocampal hyperactivity is a hallmark of prodromal Alzheimer's disease (AD) that predicts progression in patients with amnestic mild cognitive impairment (aMCI). AGB101 is an extended-release formulation of levetiracetam in the dose range previously demonstrated to normalize hippocampal activity and improve cognitive performance in aMCI. The HOPE4MCI study was a 78-week trial to assess the progression of MCI due to AD. As reported in Mohs et al., the decline in the Clinical Dementia Rating Sum of Boxes score (CDR-SB) was reduced by 40% in apolipoprotein E (APOE) ε4 non-carriers over the 78-week duration of the study with a negligible effect in carriers. Here we report an exploratory analysis of the effects of AGB101 on neuroimaging and biomarker measures in the 44 APOE ε4 non-carriers who completed the 78-week protocol. Methods Structural magnetic resonance imaging scans obtained at baseline and after 78 weeks were analyzed using the Automated Segmentation of Hippocampal Subfields software providing volume measures of key structures of the medial temporal lobe relevant to AD progression. Blood samples collected at 78 weeks in the study were analyzed for plasma biomarkers. Results Treatment with AGB101 significantly reduced atrophy of the left entorhinal cortex (ERC) compared to placebo. This reduction in atrophy was correlated with less decline in the CDR-SB score over 78 weeks and with lower neurofilament light chain (NfL), a marker of neurodegeneration. Discussion The HOPE4MCI study showed that APOE ε4 non-carriers treated with AGB101 demonstrated a substantially more favorable treatment effect compared to carriers. Here we report that treatment with AGB101 in non-carriers of APOE ε4 significantly reduced atrophy of the left ERC over 78 weeks. That reduction in atrophy was closely coupled with the change in CDR-SB and with plasma NfL indicative of neurodegeneration in the brain. These exploratory analyses are consistent with a reduction in neurodegeneration in APOE ε4 non-carriers treated with AGB101 before a clinical diagnosis of dementia. Highlights AGB101 slows entorhinal cortex (ERC) atrophy in apolipoprotein E (APOE) ε4 non-carriers with mild cognitive impairment (MCI) due to Alzheimer's disease (AD).Slowing ERC atrophy by AGB101 is associated with less Clinical Dementia Rating Sum of Boxes decline.Slowing ERC atrophy by AGB101 is associated with lower neurofilament light chain.AGB101 treatment reduces neurodegeneration in APOE ε4 non-carriers with MCI due to AD.
Collapse
Affiliation(s)
- Arnold Bakker
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nisha Rani
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Michela Gallagher
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
- AgeneBio, Inc.BaltimoreMarylandUSA
| |
Collapse
|
20
|
Luo H, de Velasco EMF, Gansemer B, Frederick M, Aguado C, Luján R, Thayer SA, Wickman K. Amyloid-β oligomers trigger sex-dependent inhibition of GIRK channel activity in hippocampal neurons in mice. Sci Signal 2024; 17:eado4132. [PMID: 39353038 PMCID: PMC11600338 DOI: 10.1126/scisignal.ado4132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques and cognitive decline, the latter of which is thought to be driven by soluble oligomeric amyloid-β (oAβ). The dysregulation of G protein-gated inwardly rectifying K+ (GIRK; also known as Kir3) channels has been implicated in rodent models of AD. Here, seeking mechanistic insights, we uncovered a sex-dependent facet of GIRK-dependent signaling in AD-related amyloid pathophysiology. Synthetic oAβ1-42 suppressed GIRK-dependent signaling in hippocampal neurons from male mice, but not from female mice. This effect required cellular prion protein, the receptor mGluR5, and production of arachidonic acid by the phospholipase PLA2. Although oAβ suppressed GIRK channel activity only in male hippocampal neurons, intrahippocampal infusion of oAβ or genetic suppression of GIRK channel activity in hippocampal pyramidal neurons impaired performance on a memory test in both male and female mice. Moreover, genetic enhancement of GIRK channel activity in hippocampal pyramidal neurons blocked oAβ-induced cognitive impairment in both male and female mice. In APP/PS1 AD model mice, GIRK-dependent signaling was diminished in hippocampal CA1 pyramidal neurons from only male mice before cognitive deficit was detected. However, enhancing GIRK channel activity rescued cognitive deficits in older APP/PS1 mice of both sexes. Thus, whereas diminished GIRK channel activity contributes to cognitive deficits in male mice with increased oAβ burden, enhancing its activity may have therapeutic potential for both sexes.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Benjamin Gansemer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - McKinzie Frederick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolina Aguado
- Synaptic Structure Laboratory, Departmento de Ciencias Médicas, Instituto de Biomedicina, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete 02006, SPAIN
| | - Rafael Luján
- Synaptic Structure Laboratory, Departmento de Ciencias Médicas, Instituto de Biomedicina, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete 02006, SPAIN
| | - Stanley A. Thayer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Rodemer W, Ra I, Jia E, Gujral J, Zhang B, Hoxha K, Xing B, Mehta S, Farag M, Porta S, Jensen FE, Talos DM, Lee VMY. Hyperexcitability precedes CA3 hippocampal neurodegeneration in a dox-regulatable TDP-43 mouse model of ALS-FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.612703. [PMID: 39386447 PMCID: PMC11463581 DOI: 10.1101/2024.09.24.612703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Neuronal hyperexcitability is a hallmark of amyotrophic lateral sclerosis (ALS) but its relationship with the TDP-43 aggregates that comprise the predominant pathology in over 90% of ALS cases remains unclear. Emerging evidence in tissue and slice culture models indicate that TDP-43 pathology induces neuronal hyperexcitability suggesting it may be responsible for the excitotoxicity long believed to be a major driver of ALS neuron death. Here, we characterized hyperexcitability and neurodegeneration in the hippocampus of doxycycline-regulatable rNLS8 mice (NEFH-tTA x tetO-hTDP-43ΔNLS), followed by treatment with AAV encoded DREADDs and anti-seizure medications to measure the effect on behavioral function and neurodegeneration. We found that approximately half of the CA3 neurons in the dorsal hippocampus are lost between 4 and 6 weeks after TDP-43ΔNLS induction. Neurodegeneration was preceded by selective hyperexcitability in the mossy fiber - CA3 circuit, leading us to hypothesize that glutamate excitotoxicity may be a significant contributor to neurodegeneration in this model. Interestingly, hippocampal injection of AAV encoded inhibitory DREADDs (hM4Di) and daily activation with CNO ligand rescued anxiety deficits on elevated zero maze (EZM) but did not reduce neurodegeneration. Therapeutic doses of the anti-seizure medications, valproic acid and levetiracetam, did not improve behavior or prevent neurodegeneration. These results highlight the complexity of TDP-43 - induced alterations to neuronal excitability and suggest that whereas targeting hyperexcitability can meliorate some behavioral deficits, it may not be sufficient to halt or slow neurodegeneration in TDP-43-related proteinopathies. Significance Statement Cytoplasmic aggregates of TAR DNA Binding Protein 43 (TDP-43) are the predominant pathology in over 90% of Amyotrophic lateral sclerosis (ALS) and the majority of frontotemporal lobar degeneration (FTLD-TDP) cases. Understanding how TDP-43 pathology promotes neurodegeneration may lead to therapeutic strategies to slow disease progression in humans. Recent reports in mouse and cell culture models suggest loss-of-normal TDP-43 function may drive neuronal hyperexcitability, a key physiological hallmark of ALS and possible contributor to neurodegeneration. In this study, we identified region-specific hyperexcitability that precedes neurodegeneration in the inducible rNLS8 TDP-43 mouse model. Suppressing hyperexcitability with chemogenetics improved behavioral function but did not reduce hippocampal neuron loss. Anti-seizure medications had no beneficial effects suggesting directly targeting hyperexcitability may not be therapeutically effective.
Collapse
|
22
|
Niazi SK. Bioavailability as Proof to Authorize the Clinical Testing of Neurodegenerative Drugs-Protocols and Advice for the FDA to Meet the ALS Act Vision. Int J Mol Sci 2024; 25:10211. [PMID: 39337696 PMCID: PMC11432374 DOI: 10.3390/ijms251810211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Although decades of intensive drug discovery efforts to treat neurodegenerative disorders (NDs) have failed, around half a million patients in more than 2000 studies continue being tested, costing over USD 100 billion, despite the conclusion that even those drugs which have been approved have no better effect than a placebo. The US Food and Drug Administration (FDA) has established multiple programs to innovate the treatment of rare diseases, particularly NDs, providing millions of USD in funding primarily by encouraging novel clinical trials to account for issues related to study sizes and adopting multi-arm studies to account for patient dropouts. Instead, the FDA should focus on the primary reason for failure: the poor bioavailability of drugs reaching the brain (generally 0.1% at most) due to the blood-brain barrier (BBB). There are several solutions to enhance entry into the brain, and the FDA must require proof of significant entry into the brain as the prerequisite to approving Investigational New Drug (IND) applications. The FDA should also rely on factors other than biomarkers to confirm efficacy, as these are rarely relevant to clinical use. This study summarizes how the drugs used to treat NDs can be made effective and how the FDA should change its guidelines for IND approval of these drugs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
23
|
Cretin B. Epileptic variant in the spectrum of Alzheimer's disease - practical implications. Seizure 2024:S1059-1311(24)00263-2. [PMID: 39343706 DOI: 10.1016/j.seizure.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD) is known to be associated with an increased risk of epilepsy, which is not exclusively related to the late stage of the disease - when a major cognitive impairment is observed, previously known as the dementia stage - but also to its prodromal stage (mild cognitive impairment). Moreover, published case reports and cohorts have shown that epilepsy may occur even earlier, at the preclinical stage of AD: Epileptic seizures may therefore be the sole objective manifestation of the disease. Such a situation is called the epileptic variant of AD (evAD). EvAD is one of the etiologies of late-onset epilepsy, which means that it carries a risk of later progression to dementia and that it can only be diagnosed by assessing amyloid and tau biomarkers. However, evAD is a window of therapeutic opportunity that is probably optimal for preventing, through antiseizure medication treatment, the accelerated cognitive decline associated with AD-related brain hyperexcitability (manifested by seizures or interictal epileptiform activities).
Collapse
Affiliation(s)
- Benjamin Cretin
- Centre Mémoire, de Ressources et de Recherche de Strasbourg, France; Unité de Neuropsychologie, Service de Neurologie des Hôpitaux Universitaires de Strasbourg, Strasbourg, France; University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS/Neurocrypto Strasbourg, France; Centre de Compétences des démences rares des Hôpitaux Universitaires de Strasbourg, France.
| |
Collapse
|
24
|
Ray A, Loghinov I, Ravindranath V, Barth AL. Early hippocampal hyperexcitability and synaptic reorganization in mouse models of amyloidosis. iScience 2024; 27:110629. [PMID: 39262788 PMCID: PMC11388185 DOI: 10.1016/j.isci.2024.110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/09/2024] [Accepted: 07/29/2024] [Indexed: 09/13/2024] Open
Abstract
The limited success of plaque-reducing therapies in Alzheimer's disease suggests that early treatment might be more effective in delaying or reversing memory impairments. Toward this end, it is important to establish the progression of synaptic and circuit changes before onset of plaques or cognitive deficits. Here, we used quantitative, fluorescence-based methods for synapse detection in CA1 pyramidal neurons to investigate the interaction between abnormal circuit activity, measured by Fos-immunoreactivity, and synapse reorganization in mouse models of amyloidosis. Using a genetically encoded, fluorescently labeled synaptic marker in juvenile mice (prior to sexual maturity), we find both synapse gain and loss depending on dendritic location. This progresses to broad synapse loss in aged mice. Elevated hippocampal activity in both CA3 and CA1 was present at weaning and preceded this reorganization. Thus, Aβ overproduction may initiate abnormal activity and subsequent input-specific synapse plasticity. These findings indicate that sustained amyloidosis drives heterogeneous and progressive circuit-wide abnormalities.
Collapse
Affiliation(s)
- Ajit Ray
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Iulia Loghinov
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Vijayalakshmi Ravindranath
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Alison L. Barth
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
26
|
Barker-Haliski M, Hawkins NA. Innovative drug discovery strategies in epilepsy: integrating next-generation syndrome-specific mouse models to address pharmacoresistance and epileptogenesis. Expert Opin Drug Discov 2024; 19:1099-1113. [PMID: 39075876 PMCID: PMC11390315 DOI: 10.1080/17460441.2024.2384455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Although there are numerous treatment options already available for epilepsy, over 30% of patients remain resistant to these antiseizure medications (ASMs). Historically, ASM discovery has relied on the demonstration of efficacy through the use of 'traditional' acute in vivo seizure models (e.g. maximal electroshock, subcutaneous pentylenetetrazol, and kindling). However, advances in genetic sequencing technologies and remaining medical needs for people with treatment-resistant epilepsy or special patient populations have encouraged recent efforts to identify novel compounds in syndrome-specific models of epilepsy. Syndrome-specific models, including Scn1a variant models of Dravet syndrome and APP/PS1 mice associated with familial early-onset Alzheimer's disease, have already led to the discovery of two mechanistically novel treatments for developmental and epileptic encephalopathies (DEEs), namely cannabidiol and soticlestat, respectively. AREAS COVERED In this review, the authors discuss how it is likely that next-generation drug discovery efforts for epilepsy will more comprehensively integrate syndrome-specific epilepsy models into early drug discovery providing the reader with their expert perspectives. EXPERT OPINION The percentage of patients with pharmacoresistant epilepsy has remained unchanged despite over 30 marketed ASMs. Consequently, there is a high unmet need to reinvent and revise discovery strategies to more effectively address the remaining needs of patients with specific epilepsy syndromes, including drug-resistant epilepsy and DEEs.
Collapse
Affiliation(s)
| | - Nicole A Hawkins
- Feinberg School of Medicine Chicago, Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Walker CK, Liu E, Greathouse KM, Adamson AB, Wilson JP, Poovey EH, Curtis KA, Muhammad HM, Weber AJ, Bennett DA, Seyfried NT, Gaiteri C, Herskowitz JH. Dendritic spine head diameter predicts episodic memory performance in older adults. SCIENCE ADVANCES 2024; 10:eadn5181. [PMID: 39110801 PMCID: PMC11305389 DOI: 10.1126/sciadv.adn5181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Episodic memory in older adults is varied and perceived to rely on numbers of synapses or dendritic spines. We analyzed 2157 neurons among 128 older individuals from the Religious Orders Study and Rush Memory and Aging Project. Analysis of 55,521 individual dendritic spines by least absolute shrinkage and selection operator regression and nested model cross-validation revealed that the dendritic spine head diameter in the temporal cortex, but not the premotor cortex, improved the prediction of episodic memory performance in models containing β amyloid plaque scores, neurofibrillary tangle pathology, and sex. These findings support the emerging hypothesis that, in the temporal cortex, synapse strength is more critical than quantity for memory in old age.
Collapse
Affiliation(s)
- Courtney K. Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey M. Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashley B. Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Julia P. Wilson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily H. Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kendall A. Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hamad M. Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Audrey J. Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher Gaiteri
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeremy H. Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Xiao L, Xiang S, Chen C, Zhu H, Zhou M, Tang Y, Feng L, Hu S. Association of synaptic density and cognitive performance in temporal lobe epilepsy: Humans and animals PET imaging study with [ 18F]SynVesT-1. Psychiatry Clin Neurosci 2024; 78:456-467. [PMID: 38804583 DOI: 10.1111/pcn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/08/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
AIM Cognitive impairment is a common comorbidity in individuals with temporal lobe epilepsy (TLE), yet the underlying mechanisms remain unknown. This study explored the putative association between in vivo synaptic loss and cognitive outcomes in TLE patients by PET imaging of synaptic vesicle glycoprotein 2A (SV2A). METHODS We enrolled 16 TLE patients and 10 cognitively normal controls. All participants underwent SV2A PET imaging using [18F]SynVesT-1 and cognitive assessment. Lithium chloride-pilocarpine-induced rats with status epilepticus (n = 20) and controls (n = 6) rats received levetiracetam (LEV, specifically binds to SV2A), valproic acid (VPA), or saline for 14 days. Then, synaptic density was quantified by [18F]SynVesT-1 micro-PET/CT. The novel object recognition and Morris water maze tests evaluated TLE-related cognitive function. SV2A expression was examined and confirmed by immunohistochemistry. RESULTS Temporal lobe epilepsy patients showed significantly reduced synaptic density in hippocampus, which was associated with cognitive performance. In the rat model of TLE, the expression of SV2A and synaptic density decreased consistently in a wider range of brain regions, including the entorhinal cortex, insula, hippocampus, amygdala, thalamus, and cortex. We treated TLE animal models with LEV or VPA to explore whether synaptic loss contributes to cognitive deficits. It was found that LEV significantly exerted protective effects against brain synaptic deficits and cognitive impairment. CONCLUSION This is the first study to link synaptic loss to cognitive deficits in TLE, suggesting [18F]SynVesT-1 PET could be a promising biomarker for monitoring synaptic loss and cognitive dysfunction. LEV might help reverse synaptic deficits and ameliorate learning and memory impairments in TLE patients.
Collapse
Affiliation(s)
- Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Shijun Xiang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Haoyue Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Wu S, Xie J, Zhao H, Zhao X, Sánchez OF, Rochet JC, Freeman JL, Yuan C. Developmental neurotoxicity of PFOA exposure on hiPSC-derived cortical neurons. ENVIRONMENT INTERNATIONAL 2024; 190:108914. [PMID: 39079332 PMCID: PMC11406754 DOI: 10.1016/j.envint.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
PFOA is a legacy Per- and Polyfluorinated Substances (PFAS), a group of chemicals widely used in various industrial applications and consumer products. Although there has been a voluntary phase out of PFOA since 2005, it is still widely detected in various water supplies. A growing body of evidence suggests an association between PFOA exposure, particularly during developmental stages, with increased risks of neurodegenerative diseases (NDs). The neurotoxic mechanism of developmental PFOA exposure, however, remains poorly understood. Utilizing human induced-pluripotent stem cell (hiPSC)-derived cortical neurons, we investigated the effect of PFOA exposure prior to differentiation and assessed changes in neuronal characteristics, transcriptome, and neurodegeneration markers mimicking a Developmental Origin of Health and Disease (DoHAD) paradigm. Exposure to PFOA before neuron differentiation resulted in persistent alterations in nuclear morphology, neuronal network, and calcium activity. RNA sequencing analysis further revealed transcriptomic changes aligning with Alzheimer's Disease (AD) after PFOA exposure. These observations were further corroborated by alterations in tau phosphorylation markers, the presence of fibrillar tau, an increase in liquid droplets, and a decrease in RNA translational efficiency characterized using a battery of biochemical assays. Taken together, our results revealed persistent deficits of key neuronal characteristics induced by pre-differentiation PFOA exposure, suggesting impairments in several AD-related pathways that can together contribute to the elevation of AD risk after pre-differentiation PFOA exposure.
Collapse
Affiliation(s)
- Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xihui Zhao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacy, Purdue University, West Lafayette, IN, 47907; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN, 47907
| | | | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Integrated Neuroscience, Purdue University, West Lafayette, IN, 47907.
| |
Collapse
|
30
|
Tabuena DR, Jang SS, Grone B, Yip O, Aery Jones EA, Blumenfeld J, Liang Z, Koutsodendris N, Rao A, Ding L, Zhang AR, Hao Y, Xu Q, Yoon SY, Leon SD, Huang Y, Zilberter M. Neuronal APOE4-induced Early Hippocampal Network Hyperexcitability in Alzheimer's Disease Pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555153. [PMID: 37693533 PMCID: PMC10491126 DOI: 10.1101/2023.08.28.555153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The full impact of apolipoprotein E4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on neuronal and network function remains unclear. We found hippocampal region-specific network hyperexcitability in young APOE4 knock-in (E4-KI) mice which predicted cognitive deficits at old age. Network hyperexcitability in young E4-KI mice was mediated by hippocampal region-specific subpopulations of smaller and hyperexcitable neurons that were eliminated by selective removal of neuronal APOE4. Aged E4-KI mice exhibited hyperexcitable granule cells, a progressive inhibitory deficit, and E/I imbalance in the dentate gyrus, exacerbating hippocampal hyperexcitability. Single-nucleus RNA-sequencing revealed neuronal cell type-specific and age-dependent transcriptomic changes, including Nell2 overexpression in E4-KI mice. Reducing Nell2 expression in specific neuronal types of E4-KI mice with CRISPRi rescued their abnormal excitability phenotypes, implicating Nell2 overexpression as a cause of APOE4-induced hyperexcitability. These findings highlight the early transcriptomic and electrophysiological alterations underlying APOE4-induced hippocampal network dysfunction and its contribution to AD pathogenesis with aging.
Collapse
|
31
|
Ikegaya N, Nakamura H, Takayama Y, Miyake Y, Hayashi T, Sonoda M, Sato M, Tateishi K, Suenaga J, Takaishi M, Kitazawa Y, Kunii M, Abe H, Miyazaki T, Arai T, Iwasaki M, Abe T, Yamamoto T. Anti-epileptic drug use and subsequent degenerative dementia occurrence. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e70001. [PMID: 39257557 PMCID: PMC11386337 DOI: 10.1002/trc2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION The use of anti-epileptic drugs (AEDs) in degenerative dementia (DD) remains uncertain. We aimed to evaluate the association of early AED administration with subsequent DD occurrence. METHODS Using a large nationwide database, we enrolled patients newly diagnosed with epilepsy from 2014 to 2019 (n = 104,225), and using propensity score matching, we divided them into treatment (those prescribed AEDs in 2014) and control groups. The primary outcome was subsequent DD occurrence in 2019. RESULTS Overall, 4489 pairs of patients (2156 women) were matched. The odds ratio (treatment/control) for DD occurrence was 0.533 (95% confidence interval: 0.459-0.617). The DD proportions significantly differed between the treatment (340/4489 = 0.076) and control (577/4489 = 0.129) groups. DISCUSSION Among patients newly diagnosed with epilepsy, compared to non-use, early AED use was associated with a lower occurrence of subsequent DD. Further investigations into and optimization of early intervention for epilepsy in DD are warranted. Highlights Anti-epileptic drug (AED) use before epilepsy diagnosis was linked with a lower subsequent degenerative dementia (DD) occurrence.Identifying the epileptic phenotype was crucial for justifying early AED use in DD.AED use with an epilepsy diagnosis did not pose an additional risk of DD.The potential contribution of combination drug therapy to the strategy was noted.
Collapse
Affiliation(s)
- Naoki Ikegaya
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Yutaro Takayama
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yohei Miyake
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Takahiro Hayashi
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masaki Sonoda
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Mitsuru Sato
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kensuke Tateishi
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Jun Suenaga
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Masao Takaishi
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of PsychiatryYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yu Kitazawa
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of Neurology and Stroke MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Misako Kunii
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of Neurology and Stroke MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Hiroki Abe
- Department of PhysiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Tomoyuki Miyazaki
- Department of Core Project Promotion, Center for Promotion of Research and Industry‐Academic CollaborationYokohama City UniversityYokohamaJapan
| | - Tetsuaki Arai
- Department of PsychiatryDivision of Clinical MedicineInstitute of MedicineUniversity of TsukubaTsukubaJapan
| | - Manabu Iwasaki
- School of Data ScienceYokohama City UniversityYokohamaJapan
- The Institute of Statistical Mathematics, Center for Training Professors in StatisticsTachikawaJapan
| | - Takayuki Abe
- School of Data ScienceYokohama City UniversityYokohamaJapan
- Faculty of Data ScienceKyoto Women's UniversityKyotoJapan
| | - Tetsuya Yamamoto
- YCU Epilepsy CenterYokohama City University HospitalYokohamaJapan
- Department of NeurosurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
32
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. eLife 2024; 12:RP89889. [PMID: 38904658 PMCID: PMC11192536 DOI: 10.7554/elife.89889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Karim S Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
33
|
Li H, Lai L, Li X, Wang R, Fang X, Xu N, Zhao J. Electroacupuncture Ameliorates Cognitive Impairment by Regulating γ-Amino Butyric Acidergic Interneurons in the Hippocampus of 5 Familial Alzheimer's Disease Mice. Neuromodulation 2024; 27:730-741. [PMID: 36604241 DOI: 10.1016/j.neurom.2022.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES γ-amino butyric acid (GABA)-ergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). Inhibitory interneurons play an important role in the regulation of E/I balance, synaptic transmission, and network oscillation through manipulation of GABAergic functions, showing positive outcomes in AD animal models. Mice expressing 5 familial AD mutation (5xFAD) exhibited a series of AD-like pathology and learning and memory deficits with age. Because electroacupuncture (EA) treatment has been used for a complementary alternative medicine therapy in patients with AD, we aimed to examine any usefulness of EA therapy in GABA interneuron function and its associated synaptic proteins, to determine whether EA could effectively improve inhibitory transmission and network oscillation and eventually alleviate cognitive impairments in 5xFAD mice, and to further elucidate the GABAergic system function underlying the antidementia response of EA. MATERIALS AND METHODS 5xFAD mice were used to evaluate the potential neuroprotective effect of electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) through behavioral testing, immunofluorescence staining, electrophysiology recording, and molecular biology analysis. RESULTS First, we observed that EA improved memory deficits and inhibitory synaptic protein expression. Second, EA treatment alleviated the decrease of somatostatin-positive interneurons in the dorsal hippocampus. Third, EA attenuated E/I imbalance in 5xFAD mice. Last, EA treatment enhanced theta and gamma oscillation in the hippocampus of 5xFAD mice. CONCLUSIONS EA stimulation at DU20 and DU14 acupoints may be a potential alternative therapy to ameliorate cognitive deficits in AD through the regulation of the function of the GABAergic interneuron.
Collapse
Affiliation(s)
- Hongzhu Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rehabilitation, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanfeng Lai
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runyi Wang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Fang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
34
|
Stephens GS, Park J, Eagle A, You J, Silva-Pérez M, Fu CH, Choi S, Romain CPS, Sugimoto C, Buffington SA, Zheng Y, Costa-Mattioli M, Liu Y, Robison AJ, Chin J. Persistent ∆FosB expression limits recurrent seizure activity and provides neuroprotection in the dentate gyrus of APP mice. Prog Neurobiol 2024; 237:102612. [PMID: 38642602 PMCID: PMC11406539 DOI: 10.1016/j.pneurobio.2024.102612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
Recurrent seizures lead to accumulation of the activity-dependent transcription factor ∆FosB in hippocampal dentate granule cells in both mouse models of epilepsy and mouse models of Alzheimer's disease (AD), which is also associated with increased incidence of seizures. In patients with AD and related mouse models, the degree of ∆FosB accumulation corresponds with increasing severity of cognitive deficits. We previously found that ∆FosB impairs spatial memory in mice by epigenetically regulating expression of target genes such as calbindin that are involved in synaptic plasticity. However, the suppression of calbindin in conditions of neuronal hyperexcitability has been demonstrated to provide neuroprotection to dentate granule cells, indicating that ∆FosB may act over long timescales to coordinate neuroprotective pathways. To test this hypothesis, we used viral-mediated expression of ∆JunD to interfere with ∆FosB signaling over the course of several months in transgenic mice expressing mutant human amyloid precursor protein (APP), which exhibit spontaneous seizures and develop AD-related neuropathology and cognitive deficits. Our results demonstrate that persistent ∆FosB activity acts through discrete modes of hippocampal target gene regulation to modulate neuronal excitability, limit recurrent seizure activity, and provide neuroprotection to hippocampal dentate granule cells in APP mice.
Collapse
Affiliation(s)
| | - Jin Park
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Andrew Eagle
- Department of Physiology, Michigan State University, USA
| | - Jason You
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chia-Hsuan Fu
- Department of Neuroscience, Baylor College of Medicine, USA
| | - Sumin Choi
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Chiho Sugimoto
- Department of Physiology, Michigan State University, USA
| | - Shelly A Buffington
- Center for Precision Environmental Health, Department of Neuroscience, Baylor College of Medicine, USA
| | - Yi Zheng
- Department of Neuroscience, Baylor College of Medicine, USA
| | | | - Yin Liu
- Department of Neurobiology and Anatomy, McGovern Medical School at UT Health, USA
| | - A J Robison
- Department of Physiology, Michigan State University, USA
| | - Jeannie Chin
- Department of Neuroscience, Baylor College of Medicine, USA.
| |
Collapse
|
35
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
36
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
37
|
Wang X, Zhang X, Liu J, Zhang J, Liu C, Cui Y, Song Q, Hou Y, Wang Y, Zhang Q, Zhang Y, Fan Y, Jia J, Wang P. Synaptic vesicle glycoprotein 2 A in serum is an ideal biomarker for early diagnosis of Alzheimer's disease. Alzheimers Res Ther 2024; 16:82. [PMID: 38615037 PMCID: PMC11015666 DOI: 10.1186/s13195-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Previous studies have demonstrated that early intervention was the best plan to inhibit the progression of Alzheimer's disease (AD), which relied on the discovery of early diagnostic biomarkers. In this study, synaptic vesicle glycoprotein 2 A (SV2A) was examined to improve the early diagnostic efficiency in AD. METHODS In this study, biomarker testing was performed through the single-molecule array (Simoa). A total of 121 subjects including cognitively unimpaired controls, amnestic mild cognitive impairment (aMCI), AD and other types of dementia underwent cerebrospinal fluid (CSF) SV2A testing; 430 subjects including health controls, aMCI, AD and other types of dementia underwent serum SV2A, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL) and p-tau217 testing; 92 subjects including aMCI and AD underwent both CSF SV2A and serum SV2A testing; 115 cognitively unimpaired subjects including APOE ε4 carriers and APOE ε4 non-carriers were tested for serum SV2A, GFAP, NfL and p-tau217. Then, the efficacy of SV2A for the early diagnosis of AD and its ability to identify those at high risk of AD from a cognitively unimpaired population were further analyzed. RESULTS Both CSF and serum SV2A significantly and positively correlated with cognitive performance in patients with AD, and their levels gradually decreased with the progression of AD. Serum SV2A demonstrated excellent diagnostic efficacy for aMCI, with a sensitivity of 97.8%, which was significantly higher than those of NfL, GFAP, and p-tau217. The SV2A-positive rates ranged from 92.86 to 100% in aMCI cases that were negative for the above three biomarkers. Importantly, of all the biomarkers tested, serum SV2A had the highest positivity rate (81.82%) in individuals at risk for AD. CONCLUSIONS Serum SV2A was demonstrated to be a novel and ideal biomarker for the early diagnosis of AD, which can effectively distinguish those at high risk of AD in cognitively unimpaired populations.
Collapse
Affiliation(s)
- Xiaoling Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xiaomin Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jing Liu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jingjing Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Congcong Liu
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuting Cui
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qiao Song
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuli Hou
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yaqi Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qian Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yingzhen Zhang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yujian Fan
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Jianping Jia
- National Clinical Research Center for Geriatric Disorders, 45 Changchun Street, Beijing, 100053, China.
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, 45 Changchun Street, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, 45 Changchun Street, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, 45 Changchun Street, Beijing, 100053, China.
| | - Peichang Wang
- Department of Clinical Laboratory, Xuanwu Hospital, National Clinical Research Center for Geriatric Diseases, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Disorders, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
38
|
Slutsky I. Linking activity dyshomeostasis and sleep disturbances in Alzheimer disease. Nat Rev Neurosci 2024; 25:272-284. [PMID: 38374463 DOI: 10.1038/s41583-024-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
The presymptomatic phase of Alzheimer disease (AD) starts with the deposition of amyloid-β in the cortex and begins a decade or more before the emergence of cognitive decline. The trajectory towards dementia and neurodegeneration is shaped by the pathological load and the resilience of neural circuits to the effects of this pathology. In this Perspective, I focus on recent advances that have uncovered the vulnerability of neural circuits at early stages of AD to hyperexcitability, particularly when the brain is in a low-arousal states (such as sleep and anaesthesia). Notably, this hyperexcitability manifests before overt symptoms such as sleep and memory deficits. Using the principles of control theory, I analyse the bidirectional relationship between homeostasis of neuronal activity and sleep and propose that impaired activity homeostasis during sleep leads to hyperexcitability and subsequent sleep disturbances, whereas sleep disturbances mitigate hyperexcitability via negative feedback. Understanding the interplay among activity homeostasis, neuronal excitability and sleep is crucial for elucidating the mechanisms of vulnerability to and resilience against AD pathology and for identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Inna Slutsky
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
39
|
Brigo F, Lattanzi S. Diagnosing epileptic seizures in patients with Alzheimer's disease and deciding on the appropriate treatment plan. Expert Rev Neurother 2024; 24:361-370. [PMID: 38426448 DOI: 10.1080/14737175.2024.2325038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is the predominant cause of dementia and a significant contributor to morbidity among the elderly. Patients diagnosed with AD face an increased risk of epileptic seizures. AREAS COVERED Herein, the authors review the challenges in the diagnosis of seizures in patients with AD, the risks of seizures related to medications used in AD and the pharmacological treatment of seizures in AD. The authors also provide the reader with their expert opinion on the subject matter and future perspectives. EXPERT OPINION Healthcare professionals should maintain a vigilant approach to suspecting seizures in AD patients. Acute symptomatic seizures triggered by metabolic disturbances, infections, toxins, or drug-related factors often have a low risk of recurrence. In such cases, addressing the underlying cause may suffice without initiating antiseizure medications (ASMs). However, unprovoked seizures in certain AD patients carry a higher risk of recurrence over time, warranting the use of ASMs. Although data is limited, both lamotrigine and levetiracetam appear to be reasonable choices for controlling seizures in elderly AD patients. Decisions should be informed by the best available evidence, the treating physician's clinical experience, and the patient's preferences.
Collapse
Affiliation(s)
- Francesco Brigo
- Innovation, Research and Teaching Service (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Bolzano, Italy
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
40
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
41
|
Yook Y, Lee KY, Kim E, Lizarazo S, Yu X, Tsai NP. Hyperfunction of post-synaptic density protein 95 promotes seizure response in early-stage aβ pathology. EMBO Rep 2024; 25:1233-1255. [PMID: 38413732 PMCID: PMC10933348 DOI: 10.1038/s44319-024-00090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Accumulation of amyloid-beta (Aβ) can lead to the formation of aggregates that contribute to neurodegeneration in Alzheimer's disease (AD). Despite globally reduced neural activity during AD onset, recent studies have suggested that Aβ induces hyperexcitability and seizure-like activity during the early stages of the disease that ultimately exacerbate cognitive decline. However, the underlying mechanism is unknown. Here, we reveal an Aβ-induced elevation of postsynaptic density protein 95 (PSD-95) in cultured neurons in vitro and in an in vivo AD model using APP/PS1 mice at 8 weeks of age. Elevation of PSD-95 occurs as a result of reduced ubiquitination caused by Akt-dependent phosphorylation of E3 ubiquitin ligase murine-double-minute 2 (Mdm2). The elevation of PSD-95 is consistent with the facilitation of excitatory synapses and the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induced by Aβ. Inhibition of PSD-95 corrects these Aβ-induced synaptic defects and reduces seizure activity in APP/PS1 mice. Our results demonstrate a mechanism underlying elevated seizure activity during early-stage Aβ pathology and suggest that PSD-95 could be an early biomarker and novel therapeutic target for AD.
Collapse
Affiliation(s)
- Yeeun Yook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eunyoung Kim
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinzhu Yu
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
42
|
Kamondi A, Grigg-Damberger M, Löscher W, Tanila H, Horvath AA. Epilepsy and epileptiform activity in late-onset Alzheimer disease: clinical and pathophysiological advances, gaps and conundrums. Nat Rev Neurol 2024; 20:162-182. [PMID: 38356056 DOI: 10.1038/s41582-024-00932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
A growing body of evidence has demonstrated a link between Alzheimer disease (AD) and epilepsy. Late-onset epilepsy and epileptiform activity can precede cognitive deterioration in AD by years, and its presence has been shown to predict a faster disease course. In animal models of AD, amyloid and tau pathology are linked to cortical network hyperexcitability that precedes the first signs of memory decline. Thus, detection of epileptiform activity in AD has substantial clinical importance as a potential novel modifiable risk factor for dementia. In this Review, we summarize the epidemiological evidence for the complex bidirectional relationship between AD and epilepsy, examine the effect of epileptiform activity and seizures on cognition in people with AD, and discuss the precision medicine treatment strategies based on the latest research in human and animal models. Finally, we outline some of the unresolved questions of the field that should be addressed by rigorous research, including whether particular clinicopathological subtypes of AD have a stronger association with epilepsy, and the sequence of events between epileptiform activity and amyloid and tau pathology.
Collapse
Affiliation(s)
- Anita Kamondi
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.
- Department of Neurology, Semmelweis University, Budapest, Hungary.
| | | | - Wolfgang Löscher
- Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Andras Attila Horvath
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
43
|
Alcantara-Gonzalez D, Kennedy M, Criscuolo C, Botterill J, Scharfman HE. Increased excitability of dentate gyrus mossy cells occurs early in life in the Tg2576 model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579729. [PMID: 38645244 PMCID: PMC11027210 DOI: 10.1101/2024.02.09.579729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Hyperexcitability in Alzheimer's disease (AD) emerge early and contribute to disease progression. The dentate gyrus (DG) is implicated in hyperexcitability in AD. We hypothesized that mossy cells (MCs), regulators of DG excitability, contribute to early hyperexcitability in AD. Indeed, MCs generate hyperexcitability in epilepsy. METHODS Using the Tg2576 model and WT mice (∼1month-old), we compared MCs electrophysiologically, assessed c-Fos activity marker, Aβ expression and mice performance in a hippocampal-dependent memory task. RESULTS Tg2576 MCs exhibit increased spontaneous excitatory events and decreased inhibitory currents, increasing the charge transfer excitation/inhibition ratio. Tg2576 MC intrinsic excitability was enhanced, and showed higher c-Fos, intracellular Aβ expression, and axon sprouting. Granule cells only showed changes in synaptic properties, without intrinsic changes. The effects occurred before a memory task is affected. DISCUSSION Early electrophysiological and morphological alterations in Tg2576 MCs are consistent with enhanced excitability, suggesting an early role in DG hyperexcitability and AD pathophysiology. HIGHLIGHTS ∘ MCs from 1 month-old Tg2576 mice had increased spontaneous excitatory synaptic input. ∘ Tg2576 MCs had reduced spontaneous inhibitory synaptic input. ∘ Several intrinsic properties were abnormal in Tg2576 MCs. ∘ Tg2576 GCs had enhanced synaptic excitation but no changes in intrinsic properties. ∘ Tg2576 MCs exhibited high c-Fos expression, soluble Aβ and axonal sprouting.
Collapse
|
44
|
Henney MA, Carstensen M, Thorning-Schmidt M, Kubińska M, Grønberg MG, Nguyen M, Madsen KH, Clemmensen LKH, Petersen PM. Brain stimulation with 40 Hz heterochromatic flicker extended beyond red, green, and blue. Sci Rep 2024; 14:2147. [PMID: 38273009 PMCID: PMC10810780 DOI: 10.1038/s41598-024-52679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/21/2024] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is associated with electrophysiological changes in the brain. Pre-clinical and early clinical trials have shown promising results for the possible therapy of AD with 40 Hz neurostimulation. The most notable findings used stroboscopic flicker, but this technique poses an inherent barrier for human applications due to its visible flickering and resulting high level of perceived discomfort. Therefore, alternative options should be investigated for entraining 40 Hz brain activity with light sources that appear less flickering. Previously, chromatic flicker based on red, green, and blue (RGB) have been studied in the context of brain-computer interfaces, but this is an incomplete representation of the colours in the visual spectrum. This study introduces a new kind of heterochromatic flicker based on spectral combinations of blue, cyan, green, lime, amber, and red (BCGLAR). These combinations are investigated by the steady-state visually evoked potential (SSVEP) response from the flicker with an aim of optimising the choice of 40 Hz light stimulation with spectrally similar colour combinations in BCGLAR space. Thirty healthy young volunteers were stimulated with heterochromatic flicker in an electroencephalography experiment with randomised complete block design. Responses were quantified as the 40 Hz signal-to-noise ratio and analysed using mixed linear models. The size of the SSVEP response to heterochromatic flicker is dependent on colour combinations and influenced by both visual and non-visual effects. The amber-red flicker combination evoked the highest SSVEP, and combinations that included blue and/or red consistently evoked higher SSVEP than combinations only with mid-spectrum colours. Including a colour from either extreme of the visual spectrum (blue and/or red) in at least one of the dyadic phases appears to be more important than choosing pairs of colours that are far from each other on the visual spectrum. Spectrally adjacent colour pairs appear less flickering to the perceiver, and thus the results motivate investigations into the limits for how alike the two phases can be and still evoke a 40 Hz response. Specifically, combining a colour on either extreme of the visual spectrum with another proximal colour might provide the best trade-off between flickering sensation and SSVEP magnitude.
Collapse
Affiliation(s)
- Mark Alexander Henney
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark.
- OptoCeutics ApS, Copenhagen, 1610, Denmark.
| | - Marcus Carstensen
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Martin Thorning-Schmidt
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Marta Kubińska
- OptoCeutics ApS, Copenhagen, 1610, Denmark
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Manja Gersholm Grønberg
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Mai Nguyen
- OptoCeutics ApS, Copenhagen, 1610, Denmark
| | - Kristoffer Hougaard Madsen
- Department of Applied Mathematics and Computer Science, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, 2650, Denmark
| | | | - Paul Michael Petersen
- Department of Electrical and Photonics Engineering, Technichal University of Denmark, Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
45
|
Burton CP, Chumin EJ, Collins AY, Persohn SA, Onos KD, Pandey RS, Quinney SK, Territo PR. Levetiracetam modulates brain metabolic networks and transcriptomic signatures in the 5XFAD mouse model of Alzheimer's disease. Front Neurosci 2024; 17:1336026. [PMID: 38328556 PMCID: PMC10847229 DOI: 10.3389/fnins.2023.1336026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
Introduction Subcritical epileptiform activity is associated with impaired cognitive function and is commonly seen in patients with Alzheimer's disease (AD). The anti-convulsant, levetiracetam (LEV), is currently being evaluated in clinical trials for its ability to reduce epileptiform activity and improve cognitive function in AD. The purpose of the current study was to apply pharmacokinetics (PK), network analysis of medical imaging, gene transcriptomics, and PK/PD modeling to a cohort of amyloidogenic mice to establish how LEV restores or drives alterations in the brain networks of mice in a dose-dependent basis using the rigorous preclinical pipeline of the MODEL-AD Preclinical Testing Core. Methods Chronic LEV was administered to 5XFAD mice of both sexes for 3 months based on allometrically scaled clinical dose levels from PK models. Data collection and analysis consisted of a multi-modal approach utilizing 18F-FDG PET/MRI imaging and analysis, transcriptomic analyses, and PK/PD modeling. Results Pharmacokinetics of LEV showed a sex and dose dependence in Cmax, CL/F, and AUC0-∞, with simulations used to estimate dose regimens. Chronic dosing at 10, 30, and 56 mg/kg, showed 18F-FDG specific regional differences in brain uptake, and in whole brain covariance measures such as clustering coefficient, degree, network density, and connection strength (i.e., positive and negative). In addition, transcriptomic analysis via nanoString showed dose-dependent changes in gene expression in pathways consistent 18F-FDG uptake and network changes, and PK/PD modeling showed a concentration dependence for key genes, but not for network covariance modeling. Discussion This study represents the first report detailing the relationships of metabolic covariance and transcriptomic network changes resulting from LEV administration in 5XFAD mice. Overall, our results highlight non-linear kinetics based on dose and sex, where gene expression analysis demonstrated LEV dose- and concentration-dependent changes, along with cerebral metabolism, and/or cerebral homeostatic mechanisms relevant to human AD, which aligned closely with network covariance analysis of 18F-FDG images. Collectively, this study show cases the value of a multimodal connectomic, transcriptomic, and pharmacokinetic approach to further investigate dose dependent relationships in preclinical studies, with translational value toward informing clinical study design.
Collapse
Affiliation(s)
- Charles P. Burton
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Evgeny J. Chumin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Alyssa Y. Collins
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Scott A. Persohn
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Ravi S. Pandey
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Sara K. Quinney
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
46
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Lin CY, Chang MC, Jhou HJ. Effect of Levetiracetam on Cognition: A Systematic Review and Meta-analysis of Double-Blind Randomized Placebo-Controlled Trials. CNS Drugs 2024; 38:1-14. [PMID: 38102532 DOI: 10.1007/s40263-023-01058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Studies have suggested that levetiracetam may help improve cognitive function in patients with epilepsy. Recently, its efficacy in improving cognitive function was reported in patients with amnestic mild cognitive impairment, schizophrenia, and Alzheimer's disease. However, the specific cognitive domains affected and the degree of evidence supporting these effects remain unclear. This systematic review and meta-analysis aimed to explore the effects of levetiracetam on different cognitive domains. METHODS This meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. We defined our inclusion criteria for the systematic review as: (1) randomized placebo-controlled trials (RCTs) involving human subjects, (2) double-blinded RCTs, and (3) RCTs evaluating the quantitative differences in cognitive function between levetiracetam and placebo. We excluded: (1) non-RCT studies, (2) open-label studies, and (3) RCTs lacking cognitive assessments for either intervention. Two authors independently searched electronic databases, including PubMed, Embase, Cochrane CENTRAL, and ClinicalTrials.gov, from inception until 2 July 2023. The methodological quality of the included studies was assessed using the Cochrane risk of bias tool. Meta-analytic techniques were applied to examine the impact of levetiracetam on cognitive domain tests, with Hedges' g facilitating the comparison with placebo. The domains analyzed comprised multi-domain, executive function, processing speed, working memory, verbal memory/learning (verbal ML), visuospatial memory/learning (visuospatial ML), and language. We used odds ratios to compare the incidence of treatment-emergent adverse events between the groups, including somnolence, fatigue, dizziness, headache, irritability, and cognitive adverse events. RESULTS A random-effects model was utilized to perform a meta-analysis of 16 RCTs including 545 participants. Compared with a placebo, levetiracetam was associated with improved executive function [Hedges'g = - 0.390, 95% confidence interval (CI) = - 0.609 to - 0.172, p < 0.001, I2 = 24.0%]. Subgroup analysis showed that levetiracetam outperformed placebo in patients without epilepsy (Hedges' g = - 0.419, 95% CI = - 0.647 to - 0.191, p < 0.001, I2 = 26.2%). Meanwhile, low-dose levetiracetam showed a moderate favorable effect over placebo (Hedges' g = -0.544, 95% CI = - 1.085 to - 0.003, p = 0.049, I2 = 65.3%). In patients without epilepsy, low-dose levetiracetam was associated with improved executive function (Hedges'g = - 0.544, 95% CI = - 1.085 to - 0.003, p = 0.049, I2 = 65.3%). Concurrently, levetiracetam was associated with more frequent somnolence than a placebo (odds ratio = 4.654, 95% CI = 1.533 to 14.124, p = 0.007, I2 = 32.9%). Potential publication bias was observed in the executive function domain. CONCLUSIONS This exploratory study suggests that levetiracetam might improve executive function in specific populations. However, the diversity in study populations and potential publication bias warrant caution.
Collapse
Affiliation(s)
- Chia-Yen Lin
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan
| | - Meng-Chia Chang
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan
| | - Hong-Jie Jhou
- Department of Neurology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua, 50006, Taiwan.
| |
Collapse
|
48
|
Mohs R, Bakker A, Rosenzweig‐Lipson S, Rosenblum M, Barton RL, Albert MS, Cohen S, Zeger S, Gallagher M. The HOPE4MCI study: A randomized double-blind assessment of AGB101 for the treatment of MCI due to AD. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2024; 10:e12446. [PMID: 38356475 PMCID: PMC10865488 DOI: 10.1002/trc2.12446] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/25/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION In addition to the accumulation of amyloid plaques and neurofibrillary tangles, the presence of excess neural activity is a pathological hallmark of Alzheimer's disease (AD) and a prognostic indicator for progression of AD pathology and clinical/cognitive worsening in mild cognitive impairment due to Alzheimer's disease (MCI due to AD). The HOPE4MCI clinical study tested the efficacy of a therapeutic with demonstrated ability to normalize heightened neural activity in the hippocampus in a randomized controlled trial of 78 weeks duration in patients with MCI due to AD. METHODS One hundred and sixty-four participants were randomized to placebo (n = 83) or AGB101 (n = 81), an extended-release formulation of low dose (220 mg) levetiracetam. The primary endpoint was the change in Clinical Dementia Rating Scale Sum of Boxes score (CDR-SB) comparing follow up at 18 months to baseline. The goal of the primary efficacy analysis was to estimate the difference between the AGB101 and placebo arms in the mean change of the primary endpoint. RESULTS The mean change in CDR-SB was estimated to be 1.12 (95% confidence interval [CI]: 0.66, 1.69) for the AGB101 arm and 1.22 (95% CI: 0.75, 1.78) for the placebo arm. The estimated difference between arms is -0.10 (95% CI: -0.85, 0.58), which was not statistically significant. In a prespecified analysis, the difference was -0.45 (95% CI: -1.43, 0.53) for ApoE-4 noncarriers and -0.10 (95% CI: -0.92, 0.72) for apolipoprotein E (ApoE)-4 carriers. DISCUSSION The possibility that ApoE-4 carriers and noncarriers will respond differently to therapeutic intervention is consistent with recently reported findings from biologics and the present results show further testing of AGB101 in patients with MCI due to AD who are noncarriers of the ApoeE-4 allele is warranted. Conclusions from the HOPE4MCI study are limited primarily due to the small sample size and results can only be regarded as a guide to future research.
Collapse
Affiliation(s)
| | - Arnold Bakker
- Department of Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | | | - Michael Rosenblum
- Department of BiostatisticsJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | | | - Marilyn S. Albert
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | - Scott Zeger
- Department of BiostatisticsJohns Hopkins University Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Michela Gallagher
- AgeneBio, Inc.BaltimoreMarylandUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
49
|
Dejanovic B, Sheng M, Hanson JE. Targeting synapse function and loss for treatment of neurodegenerative diseases. Nat Rev Drug Discov 2024; 23:23-42. [PMID: 38012296 DOI: 10.1038/s41573-023-00823-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/29/2023]
Abstract
Synapse dysfunction and loss are hallmarks of neurodegenerative diseases that correlate with cognitive decline. However, the mechanisms and therapeutic strategies to prevent or reverse synaptic damage remain elusive. In this Review, we discuss recent advances in understanding the molecular and cellular pathways that impair synapses in neurodegenerative diseases, including the effects of protein aggregation and neuroinflammation. We also highlight emerging therapeutic approaches that aim to restore synaptic function and integrity, such as enhancing synaptic plasticity, preventing synaptotoxicity, modulating neuronal network activity and targeting immune signalling. We discuss the preclinical and clinical evidence for each strategy, as well as the challenges and opportunities for developing effective synapse-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesse E Hanson
- Department of Neuroscience, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
50
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|