1
|
Niu H, Gu J, Zhang Y. Bacterial persisters: molecular mechanisms and therapeutic development. Signal Transduct Target Ther 2024; 9:174. [PMID: 39013893 PMCID: PMC11252167 DOI: 10.1038/s41392-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 07/18/2024] Open
Abstract
Persisters refer to genetically drug susceptible quiescent (non-growing or slow growing) bacteria that survive in stress environments such as antibiotic exposure, acidic and starvation conditions. These cells can regrow after stress removal and remain susceptible to the same stress. Persisters are underlying the problems of treating chronic and persistent infections and relapse infections after treatment, drug resistance development, and biofilm infections, and pose significant challenges for effective treatments. Understanding the characteristics and the exact mechanisms of persister formation, especially the key molecules that affect the formation and survival of the persisters is critical to more effective treatment of chronic and persistent infections. Currently, genes related to persister formation and survival are being discovered and confirmed, but the mechanisms by which bacteria form persisters are very complex, and there are still many unanswered questions. This article comprehensively summarizes the historical background of bacterial persisters, details their complex characteristics and their relationship with antibiotic tolerant and resistant bacteria, systematically elucidates the interplay between various bacterial biological processes and the formation of persister cells, as well as consolidates the diverse anti-persister compounds and treatments. We hope to provide theoretical background for in-depth research on mechanisms of persisters and suggest new ideas for choosing strategies for more effective treatment of persistent infections.
Collapse
Affiliation(s)
- Hongxia Niu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiaying Gu
- School of Basic Medical Science and Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250022, Shandong, China.
| |
Collapse
|
2
|
Mishra AK, Thakare RP, Santani BG, Yabaji SM, Dixit SK, Srivastava KK. Unlocking the enigma of phenotypic drug tolerance: Mechanisms and emerging therapeutic strategies. Biochimie 2024; 220:67-83. [PMID: 38168626 DOI: 10.1016/j.biochi.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
In the ongoing battle against antimicrobial resistance, phenotypic drug tolerance poses a formidable challenge. This adaptive ability of microorganisms to withstand drug pressure without genetic alterations further complicating global healthcare challenges. Microbial populations employ an array of persistence mechanisms, including dormancy, biofilm formation, adaptation to intracellular environments, and the adoption of L-forms, to develop drug tolerance. Moreover, molecular mechanisms like toxin-antitoxin modules, oxidative stress responses, energy metabolism, and (p)ppGpp signaling contribute to this phenomenon. Understanding these persistence mechanisms is crucial for predicting drug efficacy, developing strategies for chronic bacterial infections, and exploring innovative therapies for refractory infections. In this comprehensive review, we dissect the intricacies of drug tolerance and persister formation, explore their role in acquired drug resistance, and highlight emerging therapeutic approaches to combat phenotypic drug tolerance. Furthermore, we outline the future landscape of interventions for persistent bacterial infections.
Collapse
Affiliation(s)
- Alok K Mishra
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA.
| | - Ritesh P Thakare
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; Department of Molecular Cell and Cancer Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Bela G Santani
- Department of Microbiology, Sant Gadge Baba Amravati University (SGBAU), Amravati, Maharashtra, India
| | - Shivraj M Yabaji
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, Boston, MA, USA
| | - Shivendra K Dixit
- Division of Medicine ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar Bareilly, Uttar Pradesh, 243122, India.
| | - Kishore K Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute (CDRI), Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.
| |
Collapse
|
3
|
Bouillet S, Hamdallah I, Majdalani N, Tripathi A, Gottesman S. A negative feedback loop is critical for recovery of RpoS after stress in Escherichia coli. PLoS Genet 2024; 20:e1011059. [PMID: 38466775 PMCID: PMC10957080 DOI: 10.1371/journal.pgen.1011059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 01/17/2024] [Indexed: 03/13/2024] Open
Abstract
RpoS is an alternative sigma factor needed for the induction of the general stress response in many gammaproteobacteria. Tight regulation of RpoS levels and activity is required for bacterial growth and survival under stress. In Escherichia coli, various stresses lead to higher levels of RpoS due to increased translation and decreased degradation. During non-stress conditions, RpoS is unstable, because the adaptor protein RssB delivers RpoS to the ClpXP protease. RpoS degradation is prevented during stress by the sequestration of RssB by anti-adaptors, each of which is induced in response to specific stresses. Here, we examined how the stabilization of RpoS is reversed during recovery of the cell from stress. We found that RpoS degradation quickly resumes after recovery from phosphate starvation, carbon starvation, and when transitioning from stationary phase back to exponential phase. This process is in part mediated by the anti-adaptor IraP, known to promote RpoS stabilization during phosphate starvation via the sequestration of adaptor RssB. The rapid recovery from phosphate starvation is dependent upon a feedback loop in which RpoS transcription of rssB, encoding the adaptor protein, plays a critical role. Crl, an activator of RpoS that specifically binds to and stabilizes the complex between the RNA polymerase and RpoS, is also required for the feedback loop to function efficiently, highlighting a critical role for Crl in restoring RpoS basal levels.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Issam Hamdallah
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Arti Tripathi
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Ahmed N, Azab M, Enany S, Hanora A. Draft genome sequence of novel Candidatus Ornithobacterium hominis carrying antimicrobial resistance genes in Egypt. BMC Microbiol 2024; 24:47. [PMID: 38302869 PMCID: PMC10835994 DOI: 10.1186/s12866-023-03172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Candidatus Ornithobacterium hominis (O. hominis), which was identified in nasopharyngeal swabs from Egypt, has been associated with respiratory disorders in humans. O. hominis, a recently identified member of the Flavobacteriaceae family, belongs to the largest family within the Bacteroidetes phylum. This family includes hundreds of species and 90 genera, including major human pathogens such as Capnocytophaga canimorsus and Elizabethkingia meningoseptica. Herein, we presented two draft genome assemblies of O. hominis that were extracted from metagenomic data using the Illumina sequencing method. The alignment of reads against the O. hominis genome was accomplished using BLASTN, and the reads with significant hits were extracted using Seqtk and assembled using SPAdes. The primary goal of this study was to obtain a more profound understanding of the genomic landscape of O. hominis, with an emphasis on identifying the associated virulence, antimicrobial genes, and distinct defense mechanisms to shed light on the potential role of O. hominis in human respiratory infections. RESULTS The genome size was estimated to be 1.84 Mb, including 1,931,660 base pairs (bp), with 1,837 predicted coding regions and a G+C content of 35.62%. Genes encoding gliding motility, antibiotic resistance (20 genes), and the toxA gene were all included in the genome assembly. Gliding motility lipoproteins (GldD, GldJ, GldN, and GldH) and the gliding motility-associated ABC transporter substrate-binding protein, which acts as a crucial virulence mechanism in Flavobacterium species, were identified. The genome contained unique genes encoding proteins, such as the ParE1 toxin that defend against the actions of quinolone and other antibiotics. The cobalt-zinc-cadmium resistance gene encoding the protein CzcB, which is necessary for metal resistance, urease regulation, and colonization, was also detected. Several multidrug resistance genes encoding proteins were identified, such as MexB, MdtK, YheI, and VanC. CONCLUSION Our study focused on identifying virulence factors, and antimicrobial resistance genes present in the core genome of O. hominis. These findings provide valuable insights into the potential pathogenicity and antibiotic susceptibility of O. hominis.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Marwa Azab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
- Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
- Department of Microbiology & Immunology, Faculty of Pharmacy, King Salman International University, Ras Sudr, Egypt.
| |
Collapse
|
5
|
Bollen C, Louwagie E, Verstraeten N, Michiels J, Ruelens P. Environmental, mechanistic and evolutionary landscape of antibiotic persistence. EMBO Rep 2023; 24:e57309. [PMID: 37395716 PMCID: PMC10398667 DOI: 10.15252/embr.202357309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
Recalcitrant infections pose a serious challenge by prolonging antibiotic therapies and contributing to the spread of antibiotic resistance, thereby threatening the successful treatment of bacterial infections. One potential contributing factor in persistent infections is antibiotic persistence, which involves the survival of transiently tolerant subpopulations of bacteria. This review summarizes the current understanding of antibiotic persistence, including its clinical significance and the environmental and evolutionary factors at play. Additionally, we discuss the emerging concept of persister regrowth and potential strategies to combat persister cells. Recent advances highlight the multifaceted nature of persistence, which is controlled by deterministic and stochastic elements and shaped by genetic and environmental factors. To translate in vitro findings to in vivo settings, it is crucial to include the heterogeneity and complexity of bacterial populations in natural environments. As researchers continue to gain a more holistic understanding of this phenomenon and develop effective treatments for persistent bacterial infections, the study of antibiotic persistence is likely to become increasingly complex.
Collapse
Affiliation(s)
- Celien Bollen
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Elen Louwagie
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Natalie Verstraeten
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Jan Michiels
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
| | - Philip Ruelens
- Centre of Microbial and Plant GeneticsKU LeuvenLeuvenBelgium
- Center for Microbiology, VIBLeuvenBelgium
- Laboratory of Socioecology and Social EvolutionKU LeuvenLeuvenBelgium
| |
Collapse
|
6
|
Dorman CJ. Variable DNA topology is an epigenetic generator of physiological heterogeneity in bacterial populations. Mol Microbiol 2023; 119:19-28. [PMID: 36565252 PMCID: PMC10108321 DOI: 10.1111/mmi.15014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
Transcription is a noisy and stochastic process that produces sibling-to-sibling variations in physiology across a population of genetically identical cells. This pattern of diversity reflects, in part, the burst-like nature of transcription. Transcription bursting has many causes and a failure to remove the supercoils that accumulate in DNA during transcription elongation is an important contributor. Positive supercoiling of the DNA ahead of the transcription elongation complex can result in RNA polymerase stalling if this DNA topological roadblock is not removed. The relaxation of these positive supercoils is performed by the ATP-dependent type II topoisomerases DNA gyrase and topoisomerase IV. Interference with the action of these topoisomerases involving, inter alia, topoisomerase poisons, fluctuations in the [ATP]/[ADP] ratio, and/or the intervention of nucleoid-associated proteins with GapR-like or YejK-like activities, may have consequences for the smooth operation of the transcriptional machinery. Antibiotic-tolerant (but not resistant) persister cells are among the phenotypic outliers that may emerge. However, interference with type II topoisomerase activity can have much broader consequences, making it an important epigenetic driver of physiological diversity in the bacterial population.
Collapse
Affiliation(s)
- Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Chattopadhyay G, Ahmed S, Srilatha NS, Asok A, Varadarajan R. Ter-Seq: A high-throughput method to stabilize transient ternary complexes and measure associated kinetics. Protein Sci 2023; 32:e4514. [PMID: 36382921 PMCID: PMC9793979 DOI: 10.1002/pro.4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Regulation of biological processes by proteins often involves the formation of transient, multimeric complexes whose characterization is mechanistically important but challenging. The bacterial toxin CcdB binds and poisons DNA Gyrase. The corresponding antitoxin CcdA extracts CcdB from its complex with Gyrase through the formation of a transient ternary complex, thus rejuvenating Gyrase. We describe a high throughput methodology called Ter-Seq to stabilize probable ternary complexes and measure associated kinetics using the CcdA-CcdB-GyrA14 ternary complex as a model system. The method involves screening a yeast surface display (YSD) saturation mutagenesis library of one partner (CcdB) for mutants that show enhanced ternary complex formation. We also isolated CcdB mutants that were either resistant or sensitive to rejuvenation, and used surface plasmon resonance (SPR) with purified proteins to validate the kinetics measured using the surface display. Positions, where CcdB mutations lead to slower rejuvenation rates, are largely involved in CcdA-binding, though there were several notable exceptions suggesting allostery. Mutations at these positions reduce the affinity towards CcdA, thereby slowing down the rejuvenation process. Mutations at GyrA14-interacting positions significantly enhanced rejuvenation rates, either due to reduced affinity or complete loss of CcdB binding to GyrA14. We examined the effect of different parameters (CcdA affinity, GyrA14 affinity, surface accessibilities, evolutionary conservation) on the rate of rejuvenation. Finally, we further validated the Ter-Seq results by monitoring the kinetics of ternary complex formation for individual CcdB mutants in solution by fluorescence resonance energy transfer (FRET) studies.
Collapse
Affiliation(s)
- Gopinath Chattopadhyay
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- Institute for Evolutionary Biology and Environmental SciencesUniversity of ZurichZurichSwitzerland
| | - Shahbaz Ahmed
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
- St. Jude Children's Research HospitalTennesseeUSA
| | | | - Aparna Asok
- Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | | |
Collapse
|
8
|
Rybakova D, Müller H, Olimi E, Schaefer A, Cernava T, Berg G. To defend or to attack? Antagonistic interactions between Serratia plymuthica and fungal plant pathogens, a species-specific volatile dialogue. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1020634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are involved in microbial interspecies communication and in the mode of action of various antagonistic interactions. They are important for balancing host-microbe interactions and provide the basis for developing biological control strategies to control plant pathogens. We studied the interactions between the bacterial antagonist Serratia plymuthica HRO-C48 and three fungal plant pathogens Rhizoctonia solani, Leptosphaeria maculans and Verticillium longisporum. Significant differences in fungal growth inhibition by the Serratia-emitted VOCs in pairwise dual culture assays and changes in the transcriptome of the bacterium and in the volatilomes of both interacting partners were observed. Even though the rate of fungal growth inhibition by Serratia was variable, the confrontation of the bacterium with the VOCs of all three fungi changed the levels of expression of the genes involved in stress response, biofilm formation, and the production of antimicrobial VOCs. Pairwise interacting microorganisms switched between defense (downregulation of gene expression) and attack (upregulation of gene expression and metabolism followed by growth inhibition of the interacting partner) modes, subject to the combinations of microorganisms that were interacting. In the attack mode HRO-C48 significantly inhibited the growth of R. solani while simultaneously boosting its own metabolism; by contrast, its metabolism was downregulated when HRO-C48 went into a defense mode that was induced by the L. maculans and V. longisporum VOCs. L. maculans growth was slightly reduced by the one bacterial VOC methyl acetate that induced a strong downregulation of expression of genes involved in almost all metabolic functions in S. plymuthica. Similarly, the interaction between S. plymuthica and V. longisporum resulted in an insignificant growth reduction of the fungus and repressed the rate of bacterial metabolism on the transcriptional level, accompanied by an intense volatile dialogue. Overall, our results indicate that VOCs substantially contribute to the highly break species-specific interactions between pathogens and their natural antagonists and thus deserving of increased consideration for pathogen control.
Collapse
|
9
|
Chattopadhyay G, Bhasin M, Ahmed S, Gosain TP, Ganesan S, Das S, Thakur C, Chandra N, Singh R, Varadarajan R. Functional and Biochemical Characterization of the MazEF6 Toxin-Antitoxin System of Mycobacterium tuberculosis. J Bacteriol 2022; 204:e0005822. [PMID: 35357163 PMCID: PMC9053165 DOI: 10.1128/jb.00058-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
The Mycobacterium tuberculosis genome harbors nine toxin-antitoxin (TA) systems that are members of the mazEF family, unlike other prokaryotes, which have only one or two. Although the overall tertiary folds of MazF toxins are predicted to be similar, it is unclear how they recognize structurally different RNAs and antitoxins with divergent sequence specificity. Here, we have expressed and purified the individual components and complex of the MazEF6 TA system from M. tuberculosis. Size exclusion chromatography-multiangle light scattering (SEC-MALS) was performed to determine the oligomerization status of the toxin, antitoxin, and the complex in different stoichiometric ratios. The relative stabilities of the proteins were determined by nano-differential scanning fluorimetry (nano-DSF). Microscale thermophoresis (MST) and yeast surface display (YSD) were performed to measure the relative affinities between the cognate toxin-antitoxin partners. The interaction between MazEF6 complexes and cognate promoter DNA was also studied using MST. Analysis of paired-end RNA sequencing data revealed that the overexpression of MazF6 resulted in differential expression of 323 transcripts in M. tuberculosis. Network analysis was performed to identify the nodes from the top-response network. The analysis of mRNA protection ratios resulted in identification of putative MazF6 cleavage site in its native host, M. tuberculosis. IMPORTANCE M. tuberculosis harbors a large number of type II toxin-antitoxin (TA) systems, the exact roles for most of which are unclear. Prior studies have reported that overexpression of several of these type II toxins inhibits bacterial growth and contributes to the formation of drug-tolerant populations in vitro. To obtain insights into M. tuberculosis MazEF6 type II TA system function, we determined stability, oligomeric states, and binding affinities of cognate partners with each other and with their promoter operator DNA. Using RNA-seq data obtained from M. tuberculosis overexpression strains, we have identified putative MazF6 cleavage sites and targets in its native, cellular context.
Collapse
Affiliation(s)
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Shahbaz Ahmed
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tannu Priya Gosain
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srivarshini Ganesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Sayan Das
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Garcia JF, Nastro M, Dabos L, Campos J, Traglia G, Ocampo CV, Famiglietti A, Rodriguez CH, Vay CA. Molecular and Phenotypic Characterization of a Multidrug-Resistant Escherichia coli Coproducing OXA-232 and MCR -1.1 in Argentina. Microb Drug Resist 2022; 28:511-516. [PMID: 35275771 DOI: 10.1089/mdr.2021.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spread of carbapenem-resistant Enterobacterales has raised concern in clinical settings due to the limited therapeutic options available. OXA-48-like enzymes are still sporadic in South America. The aim of this study was to characterize a multidrug-resistant Escherichia coli isolate from a hospitalized patient in Buenos Aires city. The isolate was characterized phenotypically by determination of its susceptibility pattern, synergistic and colorimetric tests, and molecularly, by PCR, whole genome sequencing, and plasmid analysis. It belonged to ST-744, phylogroup A, and serotype O162/O89: H9. It remained susceptible to ceftazidime, meropenem, aminoglycosides, trimethoprim/sulfamethoxazole, and tigecycline. The presence of blaOXA-232 harbored by a nonconjugative plasmid ColKp3, and blaCTX-M-14, mcr-1.1, and fosL1 in 2 conjugative plasmids, together with their genetic environment, was revealed. To the best of our knowledge, this is the first report of the coproduction of the enzyme OXA-232 and the mcr-1.1 gene in an E. coli clinical isolate in South America in a patient who had not received colistin therapy.
Collapse
Affiliation(s)
- Javier F Garcia
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Nastro
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Dabos
- Evolutionary Systems Genetics of Microbes Laboratory, Center for Plant Biotechnology and Genomics (CBGP, UPM-INIA) Technical University of Madrid, Madrid, Spain
| | - Josefina Campos
- Plataforma Genómica y Bioinformática ANLIS "Dr Carlos G Malbran", Buenos Aires, Argentina
| | - German Traglia
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Vera Ocampo
- Servicio de Infectología, Sanatorio Mater Dei, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Angela Famiglietti
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos H Rodriguez
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Vay
- Cátedra de Microbiología Clínica, Laboratorio de Bacteriología, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, INFIBIOC, Universidad de Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Bacteriología. Sanatorio Mater Dei, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Takashima A, Kawano H, Ueda T, Suzuki-Minakuchi C, Okada K, Nojiri H. A toxin-antitoxin system confers stability to the IncP-7 plasmid pCAR1. Gene 2021; 812:146068. [PMID: 34838639 DOI: 10.1016/j.gene.2021.146068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022]
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems. Previously, our studies implied that the high stability of the IncP-7 plasmid pCAR1 in different Pseudomonas spp. hosts was due to the presence of a TA system on the plasmid. Bioinformatics approaches suggested that ORF174 and ORF175 could constitute a type II TA system, a member of the RES-Xre family, and that these two open reading frames (ORFs) constitute a single operon. As expected, the ORF175 product is a toxin, which decreases the viability of the host, P. resinovorans, while the ORF174 product functions as an antitoxin that counteracts the effect of ORF175 on cell growth. Based on these findings, we renamed ORF174 and ORF175 as prcA (antitoxin gene) and prcT (toxin gene), respectively. The prcA and prcT genes were cloned into the unstable plasmid vector pSEVA644. The recombinant vector was stably maintained in P. resinovorans and Escherichia coli cells under nonselective conditions following 6 days of daily subculturing. The empty vector (without the prcA and prcT genes) could not be maintained, which suggested that the PrcA/T system can be used as a tool to improve the stability of otherwise unstable plasmids in P. resinovorans and E. coli strains.
Collapse
Affiliation(s)
- Aya Takashima
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hibiki Kawano
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomomi Ueda
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiho Suzuki-Minakuchi
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
12
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
13
|
Functional Characterization of the mazEF Toxin-Antitoxin System in the Pathogenic Bacterium Agrobacterium tumefaciens. Microorganisms 2021; 9:microorganisms9051107. [PMID: 34065548 PMCID: PMC8160871 DOI: 10.3390/microorganisms9051107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Agrobacterium tumefaciens is a pathogen of various plants which transfers its own DNA (T-DNA) to the host plants. It is used for producing genetically modified plants with this ability. To control T-DNA transfer to the right place, toxin-antitoxin (TA) systems of A. tumefaciens were used to control the target site of transfer without any unintentional targeting. Here, we describe a toxin-antitoxin system, Atu0939 (mazE-at) and Atu0940 (mazF-at), in the chromosome of Agrobacterium tumefaciens. The toxin in the TA system has 33.3% identity and 45.5% similarity with MazF in Escherichia coli. The expression of MazF-at caused cell growth inhibition, while cells with MazF-at co-expressed with MazE-at grew normally. In vivo and in vitro assays revealed that MazF-at inhibited protein synthesis by decreasing the cellular mRNA stability. Moreover, the catalytic residue of MazF-at was determined to be the 24th glutamic acid using site-directed mutagenesis. From the results, we concluded that MazF-at is a type II toxin-antitoxin system and a ribosome-independent endoribonuclease. Here, we characterized a TA system in A. tumefaciens whose understanding might help to find its physiological function and to develop further applications.
Collapse
|
14
|
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020; 262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Wu AY, Kamruzzaman M, Iredell JR. Specialised functions of two common plasmid mediated toxin-antitoxin systems, ccdAB and pemIK, in Enterobacteriaceae. PLoS One 2020; 15:e0230652. [PMID: 32603331 PMCID: PMC7326226 DOI: 10.1371/journal.pone.0230652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Toxin-antitoxin systems (TAS) are commonly found on bacterial plasmids and are generally involved in plasmid maintenance. In addition to plasmid maintenance, several plasmid-mediated TAS are also involved in bacterial stress response and virulence. Even though the same TAS are present in a variety of plasmid types and bacterial species, differences in their sequences, expression and functions are not well defined. Here, we aimed to identify commonly occurring plasmid TAS in Escherichia coli and Klebsiella pneumoniae and compare the sequence, expression and plasmid stability function of their variants. 27 putative type II TAS were identified from 1063 plasmids of Klebsiella pneumoniae in GenBank. Among these, ccdAB and pemIK were found to be most common, also occurring in plasmids of E. coli. Comparisons of ccdAB variants, taken from E. coli and K. pneumoniae, revealed sequence differences, while pemIK variants from IncF and IncL/M plasmids were almost identical. Similarly, the expression and plasmid stability functions of ccdAB variants varied according to the host strain and species, whereas the expression and functions of pemIK variants were consistent among host strains. The specialised functions of some TAS may determine the host specificity and epidemiology of major antibiotic resistance plasmids.
Collapse
Affiliation(s)
- Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
| | - Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, New South Wales, Australia
- Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail: (MK); (JI)
| |
Collapse
|
16
|
Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems. Toxins (Basel) 2020; 12:toxins12060422. [PMID: 32604745 PMCID: PMC7354431 DOI: 10.3390/toxins12060422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
The diversity of Type-II toxin–antitoxin (TA) systems in bacterial genomes requires tightly controlled interaction specificity to ensure protection of the cell, and potentially to limit cross-talk between toxin–antitoxin pairs of the same family of TA systems. Further, there is a redundant use of toxin folds for different cellular targets and complexation with different classes of antitoxins, increasing the apparent requirement for the insulation of interactions. The presence of Type II TA systems has remained enigmatic with respect to potential benefits imparted to the host cells. In some cases, they play clear roles in survival associated with unfavorable growth conditions. More generally, they can also serve as a “cure” against acquisition of highly similar TA systems such as those found on plasmids or invading genetic elements that frequently carry virulence and resistance genes. The latter model is predicated on the ability of these highly specific cognate antitoxin–toxin interactions to form cross-reactions between chromosomal antitoxins and invading toxins. This review summarizes advances in the Type II TA system models with an emphasis on antitoxin cross-reactivity, including with invading genetic elements and cases where toxin proteins share a common fold yet interact with different families of antitoxins.
Collapse
|
17
|
Xu J, Xia K, Li P, Qian C, Li Y, Liang X. Functional investigation of the chromosomal ccdAB and hipAB operon in Escherichia coli Nissle 1917. Appl Microbiol Biotechnol 2020; 104:6731-6747. [PMID: 32535695 PMCID: PMC7293176 DOI: 10.1007/s00253-020-10733-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/31/2022]
Abstract
Toxin-antitoxin systems (TASs) have attracted much attention due to their important physiological functions. These small genetic factors have been widely studied mostly in commensal Escherichia coli strains, whereas the role of TASs in the probiotic E. coli Nissle 1917 (EcN) is still elusive. Here, the physiological role of chromosomally encoded type II TASs in EcN was examined. We showed that gene pair ECOLIN_00240-ECOLIN_00245 and ECOLIN_08365-ECOLIN_08370 were two functional TASs encoding CcdAB and HipAB, respectively. The homologs of CcdAB and HipAB were more conserved in E. coli species belonging to pathogenic groups, suggesting their important roles in EcN. CRISPRi-mediated repression of ccdAB and hipAB significantly reduced the biofilm formation of EcN in the stationary phase. Moreover, ccdAB and hipAB were shown to be responsible for the persister formation in EcN. Biofilm and persister formation of EcN controlled by the ccdAB and hipAB were associated with the expression of genes involved in DNA synthesis, SOS response, and stringent response. Besides, CRISPRi was proposed to be an efficient tool in annotating multiple TASs simultaneously. Collectively, our results advance knowledge and understanding of the role of TASs in EcN, which will enhance the utility of EcN in probiotic therapy. Key points • Two TASs in EcN were identified as hipAB and ccdAB. • Knockdown of HipAB and CcdAB resulted in decreased biofilm formation of EcN. • Transcriptional silencing of hipAB and ccdAB affected the persister formation of EcN. • An attractive link between TASs and stress response was unraveled in EcN. • CRISPRi afforded a fast and in situ annotation of multiple TASs simultaneously.
Collapse
Affiliation(s)
- Jun Xu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Kai Xia
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Pinyi Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chenggong Qian
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yudong Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xinle Liang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
18
|
Aghera NK, Prabha J, Tandon H, Chattopadhyay G, Vishwanath S, Srinivasan N, Varadarajan R. Mechanism of CcdA-Mediated Rejuvenation of DNA Gyrase. Structure 2020; 28:562-572.e4. [PMID: 32294467 DOI: 10.1016/j.str.2020.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/17/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Most biological processes involve formation of transient complexes where binding of a ligand allosterically modulates function. The ccd toxin-antitoxin system is involved in plasmid maintenance and bacterial persistence. The CcdA antitoxin accelerates dissociation of CcdB from its complex with DNA gyrase, binds and neutralizes CcdB, but the mechanistic details are unclear. Using a series of experimental and computational approaches, we demonstrate the formation of transient ternary and quaternary CcdA:CcdB:gyrase complexes and delineate the molecular steps involved in the rejuvenation process. Binding of region 61-72 of CcdA to CcdB induces the vital structural and dynamic changes required to facilitate dissociation from gyrase, region 50-60 enhances the dissociation process through additional allosteric effects, and segment 37-49 prevents gyrase rebinding. This study provides insights into molecular mechanisms responsible for recovery of CcdB-poisoned cells from a persister-like state. Similar methodology can be used to characterize other important transient, macromolecular complexes.
Collapse
Affiliation(s)
- Nilesh K Aghera
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Jyothi Prabha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | - Sneha Vishwanath
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 004, India.
| |
Collapse
|
19
|
A ParDE-family toxin antitoxin system in major resistance plasmids of Enterobacteriaceae confers antibiotic and heat tolerance. Sci Rep 2019; 9:9872. [PMID: 31285520 PMCID: PMC6614396 DOI: 10.1038/s41598-019-46318-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems were initially discovered as plasmid addiction systems on low-copy-number plasmids. Thousands of TA loci have since been identified on chromosomes, plasmids and mobile elements in bacteria and archaea with diverse roles in bacterial physiology and in maintenance of genetic elements. Here, we identified and characterised a plasmid mediated type II TA system in Enterobacteriaceae as a member of the ParDE super family. This system (hereafter, ParDEI) is distributed among IncI and IncF-type antibiotic resistance and virulence plasmids found in avian and human-source Escherichia coli and Salmonella. It is found that ParDEI is a plasmid stability and stress response module that increases tolerance of aminoglycoside, quinolone and β-lactam antibiotics in E. coli by ~100–1,000-fold, and thus to levels beyond those achievable in the course of antibiotic therapy for human infections. ParDEI also confers a clear survival advantage at 42 °C and expression of the ParEI toxin in trans induces the SOS response, inhibits cell division and promotes biofilm formation. This transmissible high-level antibiotic tolerance is likely to be an important factor in the success of the IncI and IncF plasmids which carry it and the important pathogens in which these are resident.
Collapse
|
20
|
De Bruyn P, Hadži S, Vandervelde A, Konijnenberg A, Prolič-Kalinšek M, Sterckx YGJ, Sobott F, Lah J, Van Melderen L, Loris R. Thermodynamic Stability of the Transcription Regulator PaaR2 from Escherichia coli O157:H7. Biophys J 2019; 116:1420-1431. [PMID: 30979547 DOI: 10.1016/j.bpj.2019.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/26/2019] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
PaaR2 is a putative transcription regulator encoded by a three-component parDE-like toxin-antitoxin module from Escherichia coli O157:H7. Although this module's toxin, antitoxin, and toxin-antitoxin complex have been more thoroughly investigated, little remains known about its transcription regulator PaaR2. Using a wide range of biophysical techniques (circular dichroism spectroscopy, size-exclusion chromatography-multiangle laser light scattering, dynamic light scattering, small-angle x-ray scattering, and native mass spectrometry), we demonstrate that PaaR2 mainly consists of α-helices and displays a concentration-dependent octameric build-up in solution and that this octamer contains a global shape that is significantly nonspherical. Thermal unfolding of PaaR2 is reversible and displays several transitions, suggesting a complex unfolding mechanism. The unfolding data obtained from spectroscopic and calorimetric methods were combined into a unifying thermodynamic model, which suggests a five-state unfolding trajectory. Furthermore, the model allows the calculation of a stability phase diagram, which shows that, under physiological conditions, PaaR2 mainly exists as a dimer that can swiftly oligomerize into an octamer depending on local protein concentrations. These findings, based on a thorough biophysical and thermodynamic analysis of PaaR2, may provide important insights into biological function such as DNA binding and transcriptional regulation.
Collapse
Affiliation(s)
- Pieter De Bruyn
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexandra Vandervelde
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium
| | - Maruša Prolič-Kalinšek
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Yann G-J Sterckx
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium; Laboratory of Medical Biochemistry, University of Antwerp, Campus Drie Eiken, Wilrijk, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerpen, Belgium; Astbury Centre for Structural Molecular Biology, Leeds, United Kingdom; School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Laurence Van Melderen
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, Gosselies, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Brussels, Belgium; Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.
| |
Collapse
|
21
|
Zhan W, Yao J, Tang K, Li Y, Guo Y, Wang X. Characterization of Two Toxin-Antitoxin Systems in Deep-Sea Streptomyces sp. SCSIO 02999. Mar Drugs 2019; 17:md17040211. [PMID: 30987346 PMCID: PMC6521030 DOI: 10.3390/md17040211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are ubiquitous and abundant genetic elements in bacteria and archaea. Most previous TA studies have focused on commensal and pathogenic bacteria, but have rarely focused on marine bacteria, especially those isolated from the deep sea. Here, we identified and characterized three putative TA pairs in the deep-sea-derived Streptomyces sp. strain SCSIO 02999. Our results showed that Orf5461/Orf5462 and Orf2769/Orf2770 are bona fide TA pairs. We provide several lines of evidence to demonstrate that Orf5461 and Orf5462 constitute a type-II TA pair that are homologous to the YoeB/YefM TA pair from Escherichia coli. Although YoeB from SCSIO 02999 was toxic to an E. coli host, the homologous YefM antitoxin from SCSIO 02999 did not neutralize the toxic effect of YoeB from E. coli. For the Orf2769/Orf2770 TA pair, Orf2769 overexpression caused significant cell elongation and could lead to cell death in E. coli, and the neighboring Orf2770 could neutralize the toxic effect of Orf2769. However, no homologous toxin or antitoxin was found for this pair, and no direct interaction was found between Orf2769 and Orf2770. These results suggest that Orf2769 and Orf2770 may constitute a novel TA pair. Thus, deep-sea bacteria harbor typical and novel TA pairs. The biochemical and physiological functions of different TAs in deep-sea bacteria warrant further investigation.
Collapse
Affiliation(s)
- Waner Zhan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianyun Yao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Complete Genome Sequences of Five Salmonella enterica Strains Used in Inoculation Cocktails in Low-Moisture Food Storage Studies. Microbiol Resour Announc 2019; 8:MRA01588-18. [PMID: 30643905 PMCID: PMC6328678 DOI: 10.1128/mra.01588-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022] Open
Abstract
Survival kinetics of Salmonella enterica have been previously studied using an inoculum cocktail composed of different strains that have been associated with low-moisture foods. Here, we report the closed genome sequences of five strains of Salmonella enterica that are commonly used in these storage studies.
Collapse
|
23
|
ClpAP protease is a universal factor that activates the parDE toxin-antitoxin system from a broad host range RK2 plasmid. Sci Rep 2018; 8:15287. [PMID: 30327496 PMCID: PMC6191456 DOI: 10.1038/s41598-018-33726-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The activity of type II toxin-antitoxin systems (TA), which are responsible for many important features of bacterial cells, is based on the differences between toxin and antitoxin stabilities. The antitoxin lability results from bacterial protease activity. Here, we investigated how particular Escherichia coli cytosolic proteases, namely, Lon, ClpAP, ClpXP, and ClpYQ, affect the stability of both the toxin and antitoxin components of the parDE system from the broad host range plasmid RK2. The results of our in vivo and in vitro experiments show that the ParD antitoxin is degraded by the ClpAP protease, and dsDNA stimulates this process. The ParE toxin is not degraded by any of these proteases and can therefore cause growth inhibition of plasmid-free cells after an unequal plasmid distribution during cell division. We also demonstrate that the ParE toxin interaction with ParD prevents antitoxin proteolysis by ClpAP; however, this interaction does not prevent the ClpAP interaction with ParD. We show that ClpAP protease homologs affect plasmid stability in other bacterial species, indicating that ClpAP is a universal activator of the parDE system and that ParD is a universal substrate for ClpAP.
Collapse
|
24
|
Klimina KM, Poluektova EU, Danilenko VN. Bacterial toxin–antitoxin systems: Properties, functional significance, and possibility of use (Review). APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Contribution of the Chromosomal ccdAB Operon to Bacterial Drug Tolerance. J Bacteriol 2017; 199:JB.00397-17. [PMID: 28674066 DOI: 10.1128/jb.00397-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
One of the first identified and best-studied toxin-antitoxin (TA) systems in Escherichia coli is the F-plasmid-based CcdAB system. This system is involved in plasmid maintenance through postsegregational killing. More recently, ccdAB homologs have been found on the chromosome, including in pathogenic strains of E. coli and other bacteria. However, the functional role of chromosomal ccdAB genes, if any, has remained unclear. We show that both the native ccd operon of the E. coli O157 strain (ccdO157) and the ccd operon from the F plasmid (ccdF), when inserted on the E. coli chromosome, lead to protection from cell death under multiple antibiotic stress conditions through formation of persisters, with the O157 operon showing higher protection. While the plasmid-encoded CcdB toxin is a potent gyrase inhibitor and leads to bacterial cell death even under fully repressed conditions, the chromosomally encoded toxin leads to growth inhibition, except at high expression levels, where some cell death is seen. This was further confirmed by transiently activating the chromosomal ccd operon through overexpression of an active-site inactive mutant of F-plasmid-encoded CcdB. Both the ccdF and ccdO157 operons may share common mechanisms for activation under stress conditions, eventually leading to multidrug-tolerant persister cells. This study clearly demonstrates an important role for chromosomal ccd systems in bacterial persistence.IMPORTANCE A large number of free-living and pathogenic bacteria are known to harbor multiple toxin-antitoxin systems, on plasmids as well as on chromosomes. The F-plasmid CcdAB system has been extensively studied and is known to be involved in plasmid maintenance. However, little is known about the function of its chromosomal counterpart, found in several pathogenic E. coli strains. We show that the native chromosomal ccd operon of the E. coli O157 strain is involved in drug tolerance and confers protection from cell death under multiple antibiotic stress conditions. This has implications for generation of potential therapeutics that target these TA systems and has clinical significance because the presence of persisters in an antibiotic-treated population can lead to resuscitation of chronic infection and may contribute to failure of antibiotic treatment.
Collapse
|
26
|
Díaz-Orejas R, Espinosa M, Yeo CC. The Importance of the Expendable: Toxin-Antitoxin Genes in Plasmids and Chromosomes. Front Microbiol 2017; 8:1479. [PMID: 28824602 PMCID: PMC5543033 DOI: 10.3389/fmicb.2017.01479] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/24/2017] [Indexed: 02/01/2023] Open
Abstract
Toxin–antitoxin (TA) genes were first reported in plasmids and were considered expendable genetic cassettes involved in the stable maintenance of the plasmid replicon by interfering with growth and/or viability of bacteria in which the plasmid was lost. TAs were later found in bacterial chromosomes and also in integrated mobile genetic elements; they were proposed to be involved in the bacterial response to stressful situations. At present, 100s of TAs have been identified and classified in up to six families (I to VI), with those belonging to the type II (constituted by two protein components) being the most studied. Based on well-characterized examples of several type II TAs, we discuss in this review that irrespective of their locations in plasmids or chromosomes, TAs functionally overlap as indicated by: (i) in both locations they can mediate the maintenance of genetic elements to which they are physical linked, and (ii) they can induce persistence or virulence in response to stress situations. Examples of functional confluences in homologous TA systems with different locations are also given. We also consider whether the physiological role of TAs is due to their genetic organization as operons or to their inherent properties, like the short lifespan of the antitoxin component.
Collapse
Affiliation(s)
- Ramón Díaz-Orejas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC)Madrid, Spain
| | - Chew Chieng Yeo
- Faculty of Medicine, Biomedical Research Centre, Universiti Sultan Zainal AbidinKuala Terengganu, Malaysia
| |
Collapse
|
27
|
Parker A, Cureoglu S, De Lay N, Majdalani N, Gottesman S. Alternative pathways for Escherichia coli biofilm formation revealed by sRNA overproduction. Mol Microbiol 2017; 105:309-325. [PMID: 28470798 DOI: 10.1111/mmi.13702] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2017] [Indexed: 01/06/2023]
Abstract
Small regulatory RNAs have major roles in many regulatory circuits in Escherichia coli and other bacteria, including the transition from planktonic to biofilm growth. We tested Hfq-dependent sRNAs in E. coli for their ability, when overproduced, to inhibit or stimulate biofilm formation, in two different growth media. We identify two mutually exclusive pathways for biofilm formation. In LB, PgaA, encoding an adhesion export protein, played a critical role; biofilm was independent of the general stress factor RpoS or CsgD, regulator of curli and other biofilm genes. The PgaA-dependent pathway was stimulated upon overproduction of DsrA, via negative regulation of H-NS, or of GadY, likely by titration of CsrA. In yeast extract casamino acids (YESCA) media, biofilm was dependent on RpoS and CsgD, but independent of PgaA; RpoS appears to indirectly negatively regulate the PgaA-dependent pathway in YESCA medium. Deletions of most sRNAs had very little effect on biofilm, although deletion of hfq, encoding an RNA chaperone, was defective in both LB and YESCA. Deletion of ArcZ, a small RNA activator of RpoS, decreased biofilm in YESCA; only a portion of this defect could be bypassed by overproduction of RpoS. Overall, sRNAs highlight different pathways to biofilm formation.
Collapse
Affiliation(s)
- Ashley Parker
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Suanur Cureoglu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nicholas De Lay
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Yang QE, Walsh TR. Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol Rev 2017; 41:343-353. [PMID: 28449040 PMCID: PMC5812544 DOI: 10.1093/femsre/fux006] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Toxin-antitoxin systems (TAs) are ubiquitous among bacteria and play a crucial role in the dissemination and evolution of antibiotic resistance, such as maintaining multi-resistant plasmids and inducing persistence formation. Generally, activities of the toxins are neutralised by their conjugate antitoxins. In contrast, antitoxins are more liable to degrade under specific conditions such as stress, and free active toxins interfere with essential cellular processes including replication, translation and cell-wall synthesis. TAs have also been shown to be responsible for plasmid maintenance, stress management, bacterial persistence and biofilm formation. We discuss here the recent findings of these multifaceted TAs (type I-VI) and in particular examine the role of TAs in augmenting the dissemination and maintenance of multi-drug resistance in bacteria.
Collapse
Affiliation(s)
- Qiu E. Yang
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| | - Timothy R. Walsh
- Division of Infection and Immunity, Heath Park Hospital, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
29
|
Vandervelde A, Drobnak I, Hadži S, Sterckx YGJ, Welte T, De Greve H, Charlier D, Efremov R, Loris R, Lah J. Molecular mechanism governing ratio-dependent transcription regulation in the ccdAB operon. Nucleic Acids Res 2017; 45:2937-2950. [PMID: 28334797 PMCID: PMC5389731 DOI: 10.1093/nar/gkx108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 02/06/2023] Open
Abstract
Bacteria can become transiently tolerant to several classes of antibiotics. This phenomenon known as persistence is regulated by small genetic elements called toxin-antitoxin modules with intricate yet often poorly understood self-regulatory features. Here, we describe the structures of molecular complexes and interactions that drive the transcription regulation of the ccdAB toxin-antitoxin module. Low specificity and affinity of the antitoxin CcdA2 for individual binding sites on the operator are enhanced by the toxin CcdB2, which bridges the CcdA2 dimers. This results in a unique extended repressing complex that spirals around the operator and presents equally spaced DNA binding sites. The multivalency of binding sites induces a digital on-off switch for transcription, regulated by the toxin:antitoxin ratio. The ratio at which this switch occurs is modulated by non-specific interactions with the excess chromosomal DNA. Altogether, we present the molecular mechanisms underlying the ratio-dependent transcriptional regulation of the ccdAB operon.
Collapse
Affiliation(s)
- Alexandra Vandervelde
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Igor Drobnak
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - San Hadži
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Yann G.-J. Sterckx
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
- Research Unit for Cellular and Molecular Immunology (CMIM), VUB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Thomas Welte
- Dynamic Biosensors GmbH, Lochhamer Strasse 15, D-82152 Martinsried, Germany
| | - Henri De Greve
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Rouslan Efremov
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Remy Loris
- Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Bustamante P, Iredell JR. Carriage of type II toxin-antitoxin systems by the growing group of IncX plasmids. Plasmid 2017; 91:19-27. [PMID: 28267580 DOI: 10.1016/j.plasmid.2017.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/19/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
The stable maintenance of certain plasmids in bacterial populations has contributed significantly to the current worldwide antibiotic resistance (AbR) emergency. IncX plasmids, long underestimated in this regard, have achieved recent notoriety for their roles in transmission of resistance to carbapenem and colistin, the last-line antibiotics for Gram-negative infections. Toxin-antitoxin (TA) systems contribute to stable maintenance of many AbR plasmids, and a few TA systems have been previously described in the IncX plasmids. Here we present an updated overview of the IncX plasmid family and an in silico analysis of the type II TA systems carried in 153 completely sequenced IncX plasmids that are readily available in public databases at time of writing. The greatest number is in the IncX1 subgroup, followed by IncX3 and IncX4, with only a few representatives of IncX2, IncX5 and IncX6. Toxins from the RelE/ParE superfamily are abundant within IncX1 and IncX4 subgroups, and are associated with a variety of antitoxins. By contrast, the HicBA system is almost exclusively encoded by IncX4 plasmids. Toxins from the superfamily CcdB/MazF were also identified, as were less common systems such as PIN-like and GNAT toxins, and plasmids encoding more than one TA system are probably not unusual. Our results highlight the importance of the IncX plasmid group and update previous much smaller studies, and we present for the first time a detailed analysis of type II TA systems in these plasmids.
Collapse
Affiliation(s)
- Paula Bustamante
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
31
|
Najar TA, Khare S, Pandey R, Gupta SK, Varadarajan R. Mapping Protein Binding Sites and Conformational Epitopes Using Cysteine Labeling and Yeast Surface Display. Structure 2017; 25:395-406. [PMID: 28132782 DOI: 10.1016/j.str.2016.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/10/2016] [Accepted: 12/28/2016] [Indexed: 11/16/2022]
Abstract
We describe a facile method for mapping protein:ligand binding sites and conformational epitopes. The method uses a combination of Cys scanning mutagenesis, chemical labeling, and yeast surface display. While Ala scanning is widely used for similar purposes, often mutation to Ala (or other amino acids) has little effect on binding, except at hotspot residues. Many residues in physical contact with a binding partner are insensitive to substitution with Ala. In contrast, we show that labeling of Cys residues in a binding site consistently abrogates binding. We couple this methodology to yeast surface display and deep sequencing to map conformational epitopes targeted by both monoclonal antibodies and polyclonal sera as well as a protein:ligand binding site. The method does not require purified protein, can distinguish buried and exposed residues, and can be extended to other display formats, including mammalian cells and viruses, emphasizing its wide applicability.
Collapse
Affiliation(s)
- Tariq Ahmad Najar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Shruti Khare
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110 020, India
| | - Satish K Gupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India; Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560 064, India.
| |
Collapse
|
32
|
Baliga C, Varadarajan R, Aghera N. Homodimeric Escherichia coli Toxin CcdB (Controller of Cell Division or Death B Protein) Folds via Parallel Pathways. Biochemistry 2016; 55:6019-6031. [PMID: 27696818 DOI: 10.1021/acs.biochem.6b00726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The existence of parallel pathways in the folding of proteins seems intuitive, yet remains controversial. We explore the folding kinetics of the homodimeric Escherichia coli toxin CcdB (Controller of Cell Division or Death B protein) using multiple optical probes and approaches. Kinetic studies performed as a function of protein and denaturant concentrations demonstrate that the folding of CcdB is a four-state process. The two intermediates populated during folding are present on parallel pathways. Both form by rapid association of the monomers in a diffusion limited manner and appear to be largely unstructured, as they are silent to the optical probes employed in the current study. The existence of parallel pathways is supported by the insensitivity of the amplitudes of the refolding kinetic phases to the different probes used in the study. More importantly, interrupted refolding studies and ligand binding studies clearly demonstrate that the native state forms in a biexponential manner, implying the presence of at least two pathways. Our studies indicate that the CcdA antitoxin binds only to the folded CcdB dimer and not to any earlier folding intermediates. Thus, despite being part of the same operon, the antitoxin does not appear to modulate the folding pathway of the toxin encoded by the downstream cistron. This study highlights the utility of ligand binding in distinguishing between sequential and parallel pathways in protein folding studies, while also providing insights into molecular interactions during folding in Type II toxin-antitoxin systems.
Collapse
Affiliation(s)
- Chetana Baliga
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research , Jakkur P.O., Bangalore 560 004, India
| | - Nilesh Aghera
- Molecular Biophysics Unit, Indian Institute of Science , Bangalore 560 012, India
| |
Collapse
|
33
|
Kaldalu N, Jõers A, Ingelman H, Tenson T. A General Method for Measuring Persister Levels in Escherichia coli Cultures. Methods Mol Biol 2016; 1333:29-42. [PMID: 26468097 DOI: 10.1007/978-1-4939-2854-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetically homogeneous bacterial cultures contain persisters, cells that are not killed by bactericidal antibiotics. These cells are suggested to be involved in the establishment of chronic infections. Persister levels depend on growth conditions. Here, we discuss the parameters that have to be considered when measuring persister levels and provide a sample protocol to do it.
Collapse
Affiliation(s)
- Niilo Kaldalu
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Arvi Jõers
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Henri Ingelman
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
34
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
35
|
Abstract
Toxin-antitoxin (TA) systems are small genetic modules formed by a stable toxin and an unstable antitoxin that are widely present in plasmids and in chromosomes of Bacteria and Archaea. Toxins can interfere with cell growth or viability, targeting a variety of key processes. Antitoxin inhibits expression of the toxin, interacts with it, and neutralizes its effect. In a plasmid context, toxins are kept silent by the continuous synthesis of the unstable antitoxins; in plasmid-free cells (segregants), toxins can be activated owing to the faster decay of the antitoxin, and this results in the elimination of these cells from the population (postsegregational killing [PSK]) and in an increase of plasmid-containing cells in a growing culture. Chromosomal TA systems can also be activated in particular circumstances, and the interference with cell growth and viability that ensues contributes in different ways to the physiology of the cell. In this article, we review the conditional activation of TAs in selected plasmidic and chromosomal TA pairs and the implications of this activation. On the whole, the analysis underscores TA interactions involved in PSK and points to the effective contribution of TA systems to the physiology of the cell.
Collapse
|
36
|
Abstract
Bacterial persister cells are dormant cells, tolerant to multiple antibiotics, that are involved in several chronic infections. Toxin-antitoxin modules play a significant role in the generation of such persister cells. Toxin-antitoxin modules are small genetic elements, omnipresent in the genomes of bacteria, which code for an intracellular toxin and its neutralizing antitoxin. In the past decade, mathematical modeling has become an important tool to study the regulation of toxin-antitoxin modules and their relation to the emergence of persister cells. Here, we provide an overview of several numerical methods to simulate toxin-antitoxin modules. We cover both deterministic modeling using ordinary differential equations and stochastic modeling using stochastic differential equations and the Gillespie method. Several characteristics of toxin-antitoxin modules such as protein production and degradation, negative autoregulation through DNA binding, toxin-antitoxin complex formation and conditional cooperativity are gradually integrated in these models. Finally, by including growth rate modulation, we link toxin-antitoxin module expression to the generation of persister cells.
Collapse
|
37
|
Phan MD, Forde BM, Peters KM, Sarkar S, Hancock S, Stanton-Cook M, Ben Zakour NL, Upton M, Beatson SA, Schembri MA. Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone. PLoS One 2015; 10:e0122369. [PMID: 25875675 PMCID: PMC4398462 DOI: 10.1371/journal.pone.0122369] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the blaCTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131.
Collapse
Affiliation(s)
- Minh Duy Phan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brian M. Forde
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kate M. Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sohinee Sarkar
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Hancock
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mitchell Stanton-Cook
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nouri L. Ben Zakour
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mathew Upton
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- * E-mail:
| |
Collapse
|
38
|
Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev 2015; 78:510-43. [PMID: 25184564 DOI: 10.1128/mmbr.00013-14] [Citation(s) in RCA: 836] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called "recalcitrance" and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections.
Collapse
|
39
|
Chan WT, Balsa D, Espinosa M. One cannot rule them all: Are bacterial toxins-antitoxins druggable? FEMS Microbiol Rev 2015; 39:522-40. [PMID: 25796610 PMCID: PMC4487406 DOI: 10.1093/femsre/fuv002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2015] [Indexed: 01/31/2023] Open
Abstract
Type II (proteic) toxin–antitoxin (TA) operons are widely spread in bacteria and archaea. They are organized as operons in which, usually, the antitoxin gene precedes the cognate toxin gene. The antitoxin generally acts as a transcriptional self-repressor, whereas the toxin acts as a co-repressor, both proteins constituting a harmless complex. When bacteria encounter a stressful environment, TAs are triggered. The antitoxin protein is unstable and will be degraded by host proteases, releasing the free toxin to halt essential processes. The result is a cessation of cell growth or even death. Because of their ubiquity and the essential processes targeted, TAs have been proposed as good candidates for development of novel antimicrobials. We discuss here the possible druggability of TAs as antivirals and antibacterials, with focus on the potentials and the challenges that their use may find in the ‘real’ world. We present strategies to develop TAs as antibacterials in view of novel technologies, such as the use of very small molecules (fragments) as inhibitors of protein–protein interactions. Appropriate fragments could disrupt the T:A interfaces leading to the release of the targeted TA pair. Possible ways of delivery and formulation of Tas are also discussed. We consider various approaches to develop the toxins of the type II family as possible candidates to drug discovery; druggability of toxins-antitoxins could be possible as antivirals. As antibacterials, they might be considered as druggable but delivery and formulation may not be simple so far.
Collapse
Affiliation(s)
- Wai Ting Chan
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28006-Madrid, Spain
| | - Dolors Balsa
- Immunology & Vaccines, Laboratorios LETI, Gran Via de les Corts Catalanes 184. 08034-Barcelona, Spain
| | - Manuel Espinosa
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, 28006-Madrid, Spain
| |
Collapse
|
40
|
Kwan BW, Lord DM, Peti W, Page R, Benedik MJ, Wood TK. The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol 2015; 17:3168-81. [PMID: 25534751 DOI: 10.1111/1462-2920.12749] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/11/2014] [Indexed: 02/03/2023]
Abstract
Toxin/antitoxin (TA) systems are ubiquitous within bacterial genomes, and the mechanisms of many TA systems are well characterized. As such, several roles for TA systems have been proposed, such as phage inhibition, gene regulation and persister cell formation. However, the significance of these roles is nebulous due to the subtle influence from individual TA systems. For example, a single TA system has only a minor contribution to persister cell formation. Hence, there is a lack of defining physiological roles for individual TA systems. In this study, phenotype assays were used to determine that the MqsR/MqsA type II TA system of Escherichia coli is important for cell growth and tolerance during stress from the bile salt deoxycholate. Using transcriptomics and purified MqsR, we determined that endoribonuclease toxin MqsR degrades YgiS mRNA, which encodes a periplasmic protein that promotes deoxycholate uptake and reduces tolerance to deoxycholate exposure. The importance of reducing YgiS mRNA by MqsR is evidenced by improved growth, reduced cell death and reduced membrane damage when cells without ygiS are stressed with deoxycholate. Therefore, we propose that MqsR/MqsA is physiologically important for E. coli to thrive in the gallbladder and upper intestinal tract, where high bile concentrations are prominent.
Collapse
Affiliation(s)
- Brian W Kwan
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA
| | - Dana M Lord
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI, 02912, USA.,Department of Chemistry, Brown University, Providence, RI, 02912, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Michael J Benedik
- Department of Biology, Texas A & M University, College Station, TX, 77845, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA, 16802-4400, USA.,Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802-4400, USA
| |
Collapse
|
41
|
De Gieter S, Konijnenberg A, Talavera A, Butterer A, Haesaerts S, De Greve H, Sobott F, Loris R, Garcia-Pino A. The intrinsically disordered domain of the antitoxin Phd chaperones the toxin Doc against irreversible inactivation and misfolding. J Biol Chem 2014; 289:34013-23. [PMID: 25326388 PMCID: PMC4256337 DOI: 10.1074/jbc.m114.572396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site.
Collapse
Affiliation(s)
- Steven De Gieter
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Ariel Talavera
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Annika Butterer
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Sarah Haesaerts
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Henri De Greve
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels, Belgium, and
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and Center for Proteomics (CFP-CeProMa), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Remy Loris
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Abel Garcia-Pino
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe),
| |
Collapse
|
42
|
Tripathi A, Dewan PC, Siddique SA, Varadarajan R. MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 2014; 289:4191-205. [PMID: 24375411 PMCID: PMC3924284 DOI: 10.1074/jbc.m113.510511] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/24/2013] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.
Collapse
Affiliation(s)
- Arti Tripathi
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Pooja C. Dewan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Shahbaz A. Siddique
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P. O., Bangalore 560 004, India
| |
Collapse
|
43
|
Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 2014; 6:304-24. [PMID: 24434905 PMCID: PMC3920263 DOI: 10.3390/toxins6010304] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/05/2023] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic modules usually composed of a toxin and an antitoxin counteracting the activity of the toxic protein. These systems are widely spread in bacterial and archaeal genomes. TA systems have been assigned many functions, ranging from persistence to DNA stabilization or protection against mobile genetic elements. They are classified in five types, depending on the nature and mode of action of the antitoxin. In type I and III, antitoxins are RNAs that either inhibit the synthesis of the toxin or sequester it. In type II, IV and V, antitoxins are proteins that either sequester, counterbalance toxin activity or inhibit toxin synthesis. In addition to these interactions between the antitoxin and toxin components (RNA-RNA, protein-protein, RNA-protein), TA systems interact with a variety of cellular factors, e.g., toxins target essential cellular components, antitoxins are degraded by RNAses or ATP-dependent proteases. Hence, TA systems have the capacity to interact with each other at different levels. In this review, we will discuss the different interactions in which TA systems are involved and their implications in TA system functions and evolution.
Collapse
|
44
|
Abstract
Microbial drug persistence is a widespread phenomenon in which a subpopulation of microorganisms is able to survive antimicrobial treatment without acquiring resistance-conferring genetic changes. Microbial persisters can cause recurrent or intractable infections, and, like resistant mutants, they carry an increasing clinical burden. In contrast to heritable drug resistance, however, the biology of persistence is only beginning to be unraveled. Persisters have traditionally been thought of as metabolically dormant, nondividing cells. As discussed in this review, increasing evidence suggests that persistence is in fact an actively maintained state, triggered and enabled by a network of intracellular stress responses that can accelerate processes of adaptive evolution. Beyond shedding light on the basis of persistence, these findings raise the possibility that persisters behave as an evolutionary reservoir from which resistant organisms can emerge. As persistence and its consequences come into clearer focus, so too does the need for clinically useful persister-eradication strategies.
Collapse
|
45
|
Hadži S, Garcia-Pino A, Martinez-Rodriguez S, Verschueren K, Christensen-Dalsgaard M, Gerdes K, Lah J, Loris R. Crystallization of the HigBA2 toxin-antitoxin complex from Vibrio cholerae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1052-9. [PMID: 23989162 PMCID: PMC3758162 DOI: 10.1107/s1744309113021490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
The genome of Vibrio cholerae encodes two higBA toxin-antitoxin (TA) modules that are activated by amino-acid starvation. Here, the TA complex of the second module, higBA2, as well as the C-terminal domain of the corresponding HigA2 antitoxin, have been purified and crystallized. The HigBA2 complex crystallized in two crystal forms. Crystals of form I belonged to space group P2(1)2(1)2, with unit-cell parameters a = 129.0, b = 119.8, c = 33.4 Å, and diffracted to 3.0 Å resolution. The asymmetric unit is likely to contain a single complex consisting of two toxin monomers and one antitoxin dimer. The second crystal form crystallized in space group P3(2)21, with unit-cell parameters a = 134.5, c = 55.4 Å. These crystals diffracted to 2.2 Å resolution and probably contain a complex with a different stoichiometry. Crystals of the C-terminal domain of HigA2 belonged to space group C2, with unit-cell parameters a = 115.4, b = 61.2, c = 73.8 Å, β = 106.7°, and diffracted to 1.8 Å resolution.
Collapse
Affiliation(s)
- San Hadži
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Abel Garcia-Pino
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Sergio Martinez-Rodriguez
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
- Departamento de Quimica y Fisica, Universidad de Almeria, Almeria, Spain
| | - Koen Verschueren
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| | - Mikkel Christensen-Dalsgaard
- Center for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England
| | - Kenn Gerdes
- Center for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, England
| | - Jurij Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Remy Loris
- Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- Molecular Recognition Unit, Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussel, Belgium
| |
Collapse
|
46
|
Gelens L, Hill L, Vandervelde A, Danckaert J, Loris R. A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli. PLoS Comput Biol 2013; 9:e1003190. [PMID: 24009490 PMCID: PMC3757116 DOI: 10.1371/journal.pcbi.1003190] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/06/2013] [Indexed: 02/02/2023] Open
Abstract
Toxin-Antitoxin modules are small operons involved in stress response and persister cell formation that encode a “toxin” and its corresponding neutralizing “antitoxin”. Regulation of these modules involves a complex mechanism known as conditional cooperativity, which is supposed to prevent unwanted toxin activation. Here we develop mathematical models for their regulation, based on published molecular and structural data, and parameterized using experimental data for F-plasmid ccdAB, bacteriophage P1 phd/doc and E. coli relBE. We show that the level of free toxin in the cell is mainly controlled through toxin sequestration in toxin-antitoxin complexes of various stoichiometry rather than by gene regulation. If the toxin translation rate exceeds twice the antitoxin translation rate, toxins accumulate in all cells. Conditional cooperativity and increasing the number of binding sites on the operator serves to reduce the metabolic burden of the cell by reducing the total amounts of proteins produced. Combining conditional cooperativity and bridging of antitoxins by toxins when bound to their operator sites allows creation of persister cells through rare, extreme stochastic spikes in the free toxin level. The amplitude of these spikes determines the duration of the persister state. Finally, increases in the antitoxin degradation rate and decreases in the bacterial growth rate cause a rise in the amount of persisters during nutritional stress. Bacterial persistence plays an important role in many chronic infections. Persisters are subpopulations of bacteria which are tolerant to biological stresses such as antibiotics because they are in a dormant, non-dividing state. Toxin-antitoxin (TA) modules play a pivotal role in persister generation and bacterial stress response. These small genetic loci, ubiquitous in bacterial genomes and plasmids, code for a toxin that slows down or halts bacterial metabolism and a corresponding antitoxin that regulates this activity. In order to further unravel the intricate autoregulation of TA modules and their role in persister cell formation, we built stochastic models describing the transcriptional regulation including conditional cooperativity. This is a complex mechanism in which the molar ratio between both proteins determines whether the toxin will behave as a co-repressor or as a de-repressor for the antitoxin. We found that the necessary protein production and therefore the energetic cost decreases with increased binding site number. Finally, these models allow us to simulate the formation of persister cells through rare, stochastic increases in the free toxin level. We believe that our analysis provides a fresh view and contributes to our understanding of TA regulation and how it may be related to the emergence of persisters.
Collapse
Affiliation(s)
- Lendert Gelens
- Applied Physics Research Group APHY, Vrije Universiteit Brussel, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
47
|
Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 2013; 340:73-85. [DOI: 10.1111/1574-6968.12074] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/24/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Christopher F. Schuster
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Lehrbereich Mikrobielle Genetik; Eberhard Karls Universität Tübingen; Waldhäuser Str. 70/8; Tübingen; Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Lehrbereich Mikrobielle Genetik; Eberhard Karls Universität Tübingen; Waldhäuser Str. 70/8; Tübingen; Germany
| |
Collapse
|
48
|
New-found fundamentals of bacterial persistence. Trends Microbiol 2012; 20:577-85. [DOI: 10.1016/j.tim.2012.08.009] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/10/2012] [Accepted: 08/17/2012] [Indexed: 12/26/2022]
|
49
|
Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. J Bacteriol 2012. [PMID: 23204462 DOI: 10.1128/jb.01397-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacterial persistence is characterized by the ability of a subpopulation within bacterial cultures to survive exposure to antibiotics and other lethal treatments. The surviving persisters are not the result of genetic changes but represent epigenetic variants that are in a physiological state where growth is inhibited. Since characterization of persisters has been performed mainly in Escherichia coli K-12, we sought to identify mechanisms of persistence in the pathogen Salmonella enterica serovar Typhimurium. Isolation of new highly persistent mutants revealed that the shpAB locus (Salmonella high persistence) imparted a 3- to 4-order-of-magnitude increase in survival after ampicillin exposure throughout its growth phase and protected the population against exposure to multiple antibiotics. Genetic characterization revealed that shpAB is a newly discovered toxin-antitoxin (TA) module. The high-persistence phenotype was attributed to a nonsense mutation in the 3' end of the shpB gene encoding an antitoxin protein. Characteristic of other TA modules, shpAB is autoregulated, and high persistence depends on the Lon protease.
Collapse
|