1
|
Boncompte G, Cortínez LI, Toso A, Giordano A, Cruzat F, Fuentes R, Pedemonte JC, Contreras V, Biggs D, Chiu E, Ibacache M. Differential effects of propofol anaesthesia across three amplitude-defined electroencephalographic states in sedated critically ill term neonates: An observational study. Eur J Anaesthesiol 2025:00003643-990000000-00305. [PMID: 40420743 DOI: 10.1097/eja.0000000000002208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/08/2025] [Indexed: 05/28/2025]
Abstract
BACKGROUND The developing neonatal brain displays different electroencephalographic (EEG) responses to GABAergic anaesthetics than adults. Evidence suggests the importance of isoelectric-like activity patterns. However, markers of hypnotic depth are currently lacking for this population. OBJECTIVE To explore potential EEG markers of propofol-induced hypnosis in sedated critically ill term neonates. DESIGN Observational exploratory cohort study. PATIENTS Twenty critically ill term neonates (postmenstrual age 37 to 44 weeks) undergoing intensive care and requiring anaesthesia for noncardiac surgery. Patients with perinatal asphyxia, neurological pathology, brain malformations and metabolic or haemodynamic instability were excluded. INTERVENTIONS Frontal EEG (Sedline) was recorded before induction and during a 20-min continuous rate propofol infusion. MAIN OUTCOME MEASURES Depending on peak amplitude, segmented EEG signals (1 s epochs) were classified as either isoelectric (<10 μV), low-voltage 10 to 25 μV), or high-voltage (>25 μV). Propofol effects were evaluated in terms of time occupancy and spectral properties within these EEG states. Correlations between clinical variables and EEG states were explored. RESULTS The EEGs of 17 neonates were analysed. Most showed periods of low-voltage (16/17, 94%) and isoelectric states (2/17, 70.5%) before anaesthesia. The time spent in these EEG states increased significantly during propofol infusion; 17/17 (100%), P < 0.001 and 16/17 (94.1%), P = 0.016, respectively. Propofol increased the mean [95% confidence interval (CI)] time spent in the isoelectric state per patient: 12.4 (3.3 to 21.5)% versus 28.6 (14.4 to 42.8)%, P < 0.002. A reduced spectral power was observed across all frequency bands during low-voltage states (all P < 0.026). Gestational age was negatively correlated with time in the isoelectric state; rho, 95% CI, -0.539 (-0.11 to -0.87), P = 0.031. CONCLUSION Our results show that isoelectric periods are common before anaesthesia in our studied population and more frequent in patients born at earlier gestational ages. The data suggest that propofol anaesthesia increases isoelectric EEG states while also reducing the spectral power, specifically during low-voltage EEG states. Potentially, both of these EEG changes could be biomarkers of neonatal hypnosis depth in this particular critically ill subpopulation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04904965.
Collapse
Affiliation(s)
- Gonzalo Boncompte
- From the División de Anestesiología (GB, LIC, FC, RF, JCP, VC, DB, EC, MI), Programa de Farmacología y Toxicología (JCP, MI), Departamento de Neonatología (AT), Escuela de Medicina. Departamento de Química Inorgánica, Escuela de Química y Farmacia (AG). Departamento del Adulto, Escuela de Enfermería (VC) and Escuela de Odontología (EC). Pontificia Universidad Católica de Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Siegmann MJ, Parry S, Lark ARS, Mir FA, Choi J, Carpenter AH, Crowley EA, White CG, Kang J, Purdon PL, Nehs CJ. A ketogenic diet decreases sevoflurane-induced burst suppression in rats. Brain Res Bull 2025; 223:111274. [PMID: 40010575 PMCID: PMC11913213 DOI: 10.1016/j.brainresbull.2025.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/10/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The brain requires a continuous fuel supply to support cognition and can get energy from glucose and ketones. Dysregulated brain metabolism is thought to contribute to perioperative neurocognitive disorders and anesthesia-induced burst suppression. Therefore, we investigated the relationship between brain metabolites and neurophysiology during the behavioral states of sleep and anesthesia under a standard diet (SD) or a ketogenic diet (KD). METHODS We measured prefrontal cortex glucose, lactate, and electroencephalogram in Fischer344 rats during spontaneous sleep/wake followed by 3 % sevoflurane anesthesia. Nine rats were fed a KD and 8 rats a SD. To assess the role of adenosine receptor-mediated ketone activity on burst suppression, 5 additional rats on the KD received an intraperitoneal injection of vehicle or the adenosine A1 receptor antagonist, DPCPX, before 3 % sevoflurane. RESULTS Sevoflurane induced larger fluctuations in glucose (p < 0.001) and lactate (p = 0.015) concentrations compared to sleep as measured by the standard deviation (glucose 0.085 mM and lactate 0.16 mM in sleep/wake and 0.25 mM and 0.41 mM during sevoflurane respectively). Changes in glucose and lactate were closely tied to electrophysiological oscillations. Animals on the KD had reduced burst suppression ratio (mean 10 % in KD vs 30 % in SD) (p = 0.007) as well as increased time to loss of movement (mean 14 min in KD vs 8 min in SD) (p = 0.003) compared to SD. DPCPX in KD rats showed a trend to increased burst suppression, reduced the time to start of burst suppression (45 min in KD+vehicle to 37 min KD+DPCPX) (p = 0.007), and increased duration of burst suppression (49 min in KD+vehicle to 90 min in KD+DPCPX) (p = 0.046) compared to KD+vehicle. CONCLUSIONS It is thought that anesthesia-induced burst suppression reflects an underlying deficiency in brain energy. Accordingly, we found that upregulating ketones, which increase available brain ATP levels, delayed anesthetic induction and decreased burst suppression consistent with the idea that the underlying metabolic state of the brain influences an anesthetic's effect on the brain. These findings suggest that metabolic interventions could be useful therapeutic targets to modulate brain activity during sleep and anesthesia. Future studies will examine whether ketones can reduce the cognitive symptoms associated with postoperative delirium.
Collapse
Affiliation(s)
- Morgan J Siegmann
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel Parry
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arianna R S Lark
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Fayaz A Mir
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abigail Hardy Carpenter
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eliza A Crowley
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian G White
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Patrick L Purdon
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA, USA
| | - Christa J Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Chen J, Li W, Chen Q, Zhou Z, Chen C, Hu Y, Si Y, Zou J. Optimizing anesthesia management based on early identification of electroencephalogram burst suppression risk in non-cardiac surgery patients: a visualized dynamic nomogram. Ann Med 2024; 56:2407067. [PMID: 39317392 PMCID: PMC11423528 DOI: 10.1080/07853890.2024.2407067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/22/2024] [Accepted: 08/12/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Burst suppression (BS) is a specific electroencephalogram (EEG) pattern that may contribute to postoperative delirium and negative outcomes. Few prediction models of BS are available and some factors such as frailty and intraoperative hypotension (IOH) which have been reported to promote the occurrence of BS were not included. Therefore, we look forward to creating a straightforward, precise, and clinically useful prediction model by incorporating new factors, such as frailty and IOH. MATERIALS AND METHODS We retrospectively collected 540 patients and analyzed the data from 418 patients. Univariate analysis and backward stepwise logistic regression were used to select risk factors to develop a dynamic nomogram model, and then we developed a web calculator to visualize the process of prediction. The performance of the nomogram was evaluated in terms of discrimination, calibration, and clinical utility. RESULTS According to the receiver operating characteristic (ROC) analysis, the nomogram showed good discriminative ability (AUC = 0.933) and the Hosmer-Lemeshow goodness-of-fit test demonstrated the nomogram had good calibration (p = 0.0718). Age, Clinical Frailty Scale (CFS) score, midazolam dose, propofol induction dose, total area under the hypotensive threshold of mean arterial pressure (MAP_AUT), and cerebrovascular diseases were the independent risk predictors of BS and used to construct nomogram. The web-based dynamic nomogram calculator was accessible by clicking on the URL: https://eegbsnomogram.shinyapps.io/dynnomapp/ or scanning a converted Quick Response (QR) code. CONCLUSIONS Incorporating two distinctive new risk factors, frailty and IOH, we firstly developed a visualized nomogram for accurately predicting BS in non-cardiac surgery patients. The model is expected to guide clinical decision-making and optimize anesthesia management.
Collapse
Affiliation(s)
- Jian Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Anesthesiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanxia Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qianping Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhou Zhou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chen Chen
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| | - Yuping Hu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanna Si
- Department of Anesthesiology, Perioperative and Pain Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Gollwitzer S, Hopfengärtner R, Rampp S, Welte T, Madžar D, Lang J, Reindl C, Stritzelberger J, Koehn J, Kuramatsu J, Schwab S, Huttner HB, Hamer H. Spectral properties of bursts in therapeutic burst suppression predict successful treatment of refractory status epilepticus. Epilepsy Behav 2024; 161:110093. [PMID: 39489997 DOI: 10.1016/j.yebeh.2024.110093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Burst suppression (BS) on EEG induced by intravenous anesthesia (IVAT) is standard therapy for refractory status epilepticus (RSE). If BS has any independent therapeutic effect on RSE is disputed. We aimed to define EEG characteristics of BS predicting termination or recurrence of status after weaning. All RSE patients treated with IVAT while undergoing continuous EEG monitoring on the neurological intensive care unit between 2014 and 2019 were screened for inclusion. A one hour-period of visually preselected BS-EEG was analyzed. Bursts were segmented by a special thresholding technique and underwent power spectral analysis. Out of 48 enrolled patients, 25 (52.1 %) did not develop seizure recurrence (group Non SE) after weaning from IVAT; in 23 patients (47.9 %), SE reestablished (group SE). In group Non SE, bursts contained higher amounts of EEG delta power (91.59 % vs 80.53 %, p < 0.0001), while faster frequencies were more pronounced in bursts in group SE (theta: 11.38 % vs 5.41 %, p = 0.0008; alpha: 4.89 % vs 1.82 %, p < 0.0001; beta: 3.23 % vs 1.21 %, p = 0.0002). Spectral profiles of individual bursts closely resembled preceding seizure patterns in group SE but not in group Non SE. Accordingly, persistence of spectral composition of initial ictal patterns in bursts, suggests ongoing SE, merely interrupted but not altered by BS. Fast oscillations in bursts indicate a high risk of status recurrence after weaning from IVAT. EEG guided individualized sedation regimes might therefore be superior to standardized anesthesia protocols.
Collapse
Affiliation(s)
- Stephanie Gollwitzer
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Rüdiger Hopfengärtner
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Stefan Rampp
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Tamara Welte
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Dominik Madžar
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Johannes Lang
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Caroline Reindl
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Jenny Stritzelberger
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Julia Koehn
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Joji Kuramatsu
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Stefan Schwab
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Hagen B Huttner
- Department of Neurology, University Hospital Gießen, Klinikstraße 33, 35392 Gießen, Germany.
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Constant I. Challenge of Neonatal Anesthesia: Which Optimal EEG Target? Anesthesiology 2024; 141:632-634. [PMID: 39254535 DOI: 10.1097/aln.0000000000005157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Isabelle Constant
- Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Sorbonne University Pierre and Marie Curie Campus, Paris, France
| |
Collapse
|
6
|
Edoigiawerie S, Henry J, Issa N, David H. A Systematic Review of EEG and MRI Features for Predicting Long-Term Neurological Outcomes in Cooled Neonates With Hypoxic-Ischemic Encephalopathy (HIE). Cureus 2024; 16:e71431. [PMID: 39539899 PMCID: PMC11558949 DOI: 10.7759/cureus.71431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) represents a significant global disease burden, but more importantly, it leaves a lasting impact of disability on individual children and their families. HIE outcome prognostication is important for guiding clinical interventions and counseling families. The objective of this study was to systematically review early electroencephalogram (EEG) and magnetic resonance imaging (MRI) features associated with long-term neurological outcomes in infants after perinatal HIE. Articles were extracted from PubMed, CINAHL, and Scopus. Twenty studies were included that assessed EEG and/or MRI patterns in neonates who underwent therapeutic hypothermia and were followed to determine long-term outcomes. Articles that did not meet the inclusion criteria were excluded. Covidence review manager (Melbourne, Australia: Covidence) was used to extract, evaluate, and synthesize review results. Of the articles included, eight focused on EEG features, eight on MRI features, and four on assessments using both EEG and MRI. Abnormal EEG background and burst suppression severity were associated with poor outcomes. Higher MRI injury scores in the basal ganglia and thalamus were also correlated with poor outcomes. Finally, studies also revealed restricted diffusion and greater lesion size in the subcortical gray matter correlated with poor outcomes. We also identified limitations in the included studies which primarily involved sample size, potential for MRI pseudonormalization, and the potential tradeoff between retention of infants able to receive long-term follow-up and attrition of those lost to follow-up. We conclude that EEG background patterns, MRI scoring, subcortical lesion burden, and MRI diffusivity are sensitive metrics for predicting outcomes. Both early EEG and MRI features may serve as high-fidelity biomarkers for secondary energy failure and for counseling families of neonates at high risk for devastating neurologic outcomes. Additionally, there is a paucity of information on the impact of HIE on brain areas outside of the standard clinical basal-ganglia and watershed patterns, especially in locations like the corpus callosum. Finally, MRI pseudonormalization may underestimate the extent of injury in these studies.
Collapse
Affiliation(s)
| | - Julia Henry
- Pediatric Neurology, AdventHealth Medical Group, Orlando, USA
| | - Naoum Issa
- Neurological Surgery, University of Chicago Medical Center, Chicago, USA
| | - Henry David
- Pediatric Neurology, University of Chicago Medical Center, Chicago, USA
| |
Collapse
|
7
|
Hao D, Fritz BA, Saddawi-Konefka D, Palanca BJA. In Response. Anesth Analg 2024; 139:e22-e23. [PMID: 38885143 DOI: 10.1213/ane.0000000000007099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Affiliation(s)
- David Hao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,
| | - Bradley A Fritz
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel Saddawi-Konefka
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ben Julian A Palanca
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Pâslaru AC, Călin A, Morozan VP, Stancu M, Tofan L, Panaitescu AM, Zăgrean AM, Zăgrean L, Moldovan M. Burst-Suppression EEG Reactivity to Photic Stimulation-A Translational Biomarker in Hypoxic-Ischemic Brain Injury. Biomolecules 2024; 14:953. [PMID: 39199341 PMCID: PMC11352952 DOI: 10.3390/biom14080953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
The reactivity of an electroencephalogram (EEG) to external stimuli is impaired in comatose patients showing burst-suppression (BS) patterns following hypoxic-ischemic brain injury (HIBI). We explored the reactivity of BS induced by isoflurane in rat models of HIBI and controls using intermittent photic stimulation (IPS) delivered to one eye. The relative time spent in suppression referred to as the suppression ratio (SR) was measured on the contralateral fronto-occipital cortical EEG channel. The BS reactivity (BSR) was defined as the decrease in the SR during IPS from the baseline before stimulation (SRPRE). We found that BSR increased with SRPRE. To standardize by anesthetic depth, we derived the BSR index (BSRi) as BSR divided by SRPRE. We found that the BSRi was decreased at 3 days after transient global cerebral ischemia in rats, which is a model of brain injury after cardiac arrest. The BSRi was also reduced 2 months after experimental perinatal asphyxia in rats, a model of birth asphyxia, which is a frequent neonatal complication in humans. Furthermore, Oxytocin attenuated BSRi impairment, consistent with a neuroprotective effect in this model. Our data suggest that the BSRi is a promising translational marker in HIBI which should be considered in future neuroprotection studies.
Collapse
Affiliation(s)
- Alexandru-Cătălin Pâslaru
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Alexandru Călin
- Department of Clinical Neurophysiology, King’s College Hospital NHS Foundation Trust, London SE59RS, UK;
| | - Vlad-Petru Morozan
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Mihai Stancu
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
- Division of Neurobiology, Ludwig-Maximilian University, 80539 Munich, Germany
| | - Laurențiu Tofan
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Anca Maria Panaitescu
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
- Clinical Hospital of Obstetrics and Gynaecology Filantropia, 011132 Bucharest, Romania
- Obstetrics and Gynaecology Department, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Leon Zăgrean
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
| | - Mihai Moldovan
- Division of Physiology—Neuroscience, Department of Functional Sciences, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.-C.P.); (V.-P.M.); (M.S.); (L.T.); (A.M.P.); (A.-M.Z.); (L.Z.)
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Neurology, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Clinical Neurophysiology, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Wang S, Li T, He H, Li Y. Dynamical changes of interaction across functional brain communities during propofol-induced sedation. Cereb Cortex 2024; 34:bhae263. [PMID: 38918077 DOI: 10.1093/cercor/bhae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
It is crucial to understand how anesthetics disrupt information transmission within the whole-brain network and its hub structure to gain insight into the network-level mechanisms underlying propofol-induced sedation. However, the influence of propofol on functional integration, segregation, and community structure of whole-brain networks were still unclear. We recruited 12 healthy subjects and acquired resting-state functional magnetic resonance imaging data during 5 different propofol-induced effect-site concentrations (CEs): 0, 0.5, 1.0, 1.5, and 2.0 μg/ml. We constructed whole-brain functional networks for each subject under different conditions and identify community structures. Subsequently, we calculated the global and local topological properties of whole-brain network to investigate the alterations in functional integration and segregation with deepening propofol sedation. Additionally, we assessed the alteration of key nodes within the whole-brain community structure at each effect-site concentrations level. We found that global participation was significantly increased at high effect-site concentrations, which was mediated by bilateral postcentral gyrus. Meanwhile, connector hubs appeared and were located in posterior cingulate cortex and precentral gyrus at high effect-site concentrations. Finally, nodal participation coefficients of connector hubs were closely associated to the level of sedation. These findings provide valuable insights into the relationship between increasing propofol dosage and enhanced functional interaction within the whole-brain networks.
Collapse
Affiliation(s)
- Shengpei Wang
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Yangfangdian Tieyi Rd, Haidian District, Beijing 100038, PR China
| | - Huiguang He
- Laboratory of Brain Atlas and Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, Chinese Academy of Sciences, No. 95 Zhongguancun East Rd, Haidian District, Beijing 100190, PR China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 101408, PR China
| | - Yun Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Fengtai District, Beijing 100070, PR China
| |
Collapse
|
10
|
Rios RL, Green M, Smith SK, Kafashan M, Ching S, Farber NB, Lin N, Lucey BP, Reynolds CF, Lenze EJ, Palanca BJA. Propofol enhancement of slow wave sleep to target the nexus of geriatric depression and cognitive dysfunction: protocol for a phase I open label trial. BMJ Open 2024; 14:e087516. [PMID: 38816055 PMCID: PMC11138309 DOI: 10.1136/bmjopen-2024-087516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
INTRODUCTION Late-life treatment-resistant depression (LL-TRD) is common and increases risk for accelerated ageing and cognitive decline. Impaired sleep is common in LL-TRD and is a risk factor for cognitive decline. Slow wave sleep (SWS) has been implicated in key processes including synaptic plasticity and memory. A deficiency in SWS may be a core component of depression pathophysiology. The anaesthetic propofol can induce electroencephalographic (EEG) slow waves that resemble SWS. Propofol may enhance SWS and oral antidepressant therapy, but relationships are unclear. We hypothesise that propofol infusions will enhance SWS and improve depression in older adults with LL-TRD. This hypothesis has been supported by a recent small case series. METHODS AND ANALYSIS SWIPED (Slow Wave Induction by Propofol to Eliminate Depression) phase I is an ongoing open-label, single-arm trial that assesses the safety and feasibility of using propofol to enhance SWS in older adults with LL-TRD. The study is enrolling 15 English-speaking adults over age 60 with LL-TRD. Participants will receive two propofol infusions 2-6 days apart. Propofol infusions are individually titrated to maximise the expression of EEG slow waves. Preinfusion and postinfusion sleep architecture are evaluated through at-home overnight EEG recordings acquired using a wireless headband equipped with dry electrodes. Sleep EEG recordings are scored manually. Key EEG measures include sleep slow wave activity, SWS duration and delta sleep ratio. Longitudinal changes in depression, suicidality and anhedonia are assessed. Assessments are performed prior to the first infusion and up to 10 weeks after the second infusion. Cognitive ability is assessed at enrolment and approximately 3 weeks after the second infusion. ETHICS AND DISSEMINATION The study was approved by the Washington University Human Research Protection Office. Recruitment began in November 2022. Dissemination plans include presentations at scientific conferences, peer-reviewed publications and mass media. Positive results will lead to a larger phase II randomised placebo-controlled trial. TRIAL REGISTRATION NUMBER NCT04680910.
Collapse
Affiliation(s)
- Rachel Lynn Rios
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Michael Green
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - S Kendall Smith
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - ShiNung Ching
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St Louis, Missouri, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Nan Lin
- Department of Biostatistics and Data Science, Washington University in St Louis, St Louis, Missouri, USA
| | - Brendan P Lucey
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Charles F Reynolds
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eric J Lenze
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
| | - Ben Julian Agustin Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
11
|
Schiff ND. Toward an interventional science of recovery after coma. Neuron 2024; 112:1595-1610. [PMID: 38754372 PMCID: PMC11827330 DOI: 10.1016/j.neuron.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Recovery of consciousness after coma remains one of the most challenging areas for accurate diagnosis and effective therapeutic engagement in the clinical neurosciences. Recovery depends on preservation of neuronal integrity and evolving changes in network function that re-establish environmental responsiveness. It typically occurs in defined steps: it begins with eye opening and unresponsiveness in a vegetative state, then limited recovery of responsiveness characterizes the minimally conscious state, and this is followed by recovery of reliable communication. This review considers several points for novel interventions, for example, in persons with cognitive motor dissociation in whom a hidden cognitive reserve is revealed. Circuit mechanisms underlying restoration of behavioral responsiveness and communication are discussed. An emerging theme is the possibility to rescue latent capacities in partially damaged human networks across time. These opportunities should be exploited for therapeutic engagement to achieve individualized solutions for restoration of communication and environmental interaction across varying levels of recovery.
Collapse
Affiliation(s)
- Nicholas D Schiff
- Jerold B. Katz Professor of Neurology and Neuroscience, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Martin JC, Liley DTJ, Beer CFLA, Davidson AJ. Topographical Features of Pediatric Electroencephalography during High Initial Concentration Sevoflurane for Inhalational Induction of Anesthesia. Anesthesiology 2024; 140:890-905. [PMID: 38207324 DOI: 10.1097/aln.0000000000004902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
BACKGROUND High-density electroencephalographic (EEG) monitoring remains underutilized in clinical anesthesia, despite its obvious utility in unraveling the profound physiologic impact of these agents on central nervous system functioning. In school-aged children, the routine practice of rapid induction with high concentrations of inspiratory sevoflurane is commonplace, given its favorable efficacy and tolerance profile. However, few studies investigate topographic EEG during the critical timepoint coinciding with loss of responsiveness-a key moment for anesthesiologists in their everyday practice. The authors hypothesized that high initial sevoflurane inhalation would better precipitate changes in brain regions due to inhomogeneities in maturation across three different age groups compared with gradual stepwise paradigms utilized by other investigators. Knowledge of these changes may inform strategies for agent titration in everyday clinical settings. METHODS A total of 37 healthy children aged 5 to 10 yr underwent induction with 4% or greater sevoflurane in high-flow oxygen. Perturbations in anesthetic state were investigated in 23 of these children using 64-channel EEG with the Hjorth Laplacian referencing scheme. Topographical maps illustrated absolute, relative, and total band power across three age groups: 5 to 6 yr (n = 7), 7 to 8 yr (n = 8), and 9 to 10 yr (n = 8). RESULTS Spectral analysis revealed a large shift in total power driven by increased delta oscillations. Well-described topographic patterns of anesthesia, e.g., frontal predominance, paradoxical beta excitation, and increased slow activity, were evident in the topographic maps. However, there were no statistically significant age-related changes in spectral power observed in a midline electrode subset between the groups when responsiveness was lost compared to the resting state. CONCLUSIONS High initial concentration sevoflurane induction causes large-scale topographic effects on the pediatric EEG. Within the minute after unresponsiveness, this dosage may perturb EEG activity in children to an extent where age-related differences are not discernible. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
| | - David T J Liley
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Christopher F L A Beer
- Swinburne University of Technology, Faculty of Science, Engineering, and Technology, Australia
| | - Andrew J Davidson
- Department of Anaesthetics, Murdoch Children's Research Institute, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
13
|
Gao H, Wang J, Zhang R, Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: insights from optogenetics and chemogenetics. Front Pharmacol 2024; 15:1360864. [PMID: 38655183 PMCID: PMC11035785 DOI: 10.3389/fphar.2024.1360864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
For over 170 years, general anesthesia has played a crucial role in clinical practice, yet a comprehensive understanding of the neural mechanisms underlying the induction of unconsciousness by general anesthetics remains elusive. Ongoing research into these mechanisms primarily centers around the brain nuclei and neural circuits associated with sleep-wake. In this context, two sophisticated methodologies, optogenetics and chemogenetics, have emerged as vital tools for recording and modulating the activity of specific neuronal populations or circuits within distinct brain regions. Recent advancements have successfully employed these techniques to investigate the impact of general anesthesia on various brain nuclei and neural pathways. This paper provides an in-depth examination of the use of optogenetic and chemogenetic methodologies in studying the effects of general anesthesia on specific brain nuclei and pathways. Additionally, it discusses in depth the advantages and limitations of these two methodologies, as well as the issues that must be considered for scientific research applications. By shedding light on these facets, this paper serves as a valuable reference for furthering the accurate exploration of the neural mechanisms underlying general anesthesia. It aids researchers and clinicians in effectively evaluating the applicability of these techniques in advancing scientific research and clinical practice.
Collapse
Affiliation(s)
- Hui Gao
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
Yuan J, Liang Z, Geoffrey MB, Xie Y, Chen S, Liu J, Xia Y, Li H, Zhao Y, Mao Y, Xing N, Yang J, Wang Z, Xing F. Exploring the Median Effective Dose of Ciprofol for Anesthesia Induction in Elderly Patients: Impact of Frailty on ED 50. Drug Des Devel Ther 2024; 18:1025-1034. [PMID: 38585256 PMCID: PMC10999214 DOI: 10.2147/dddt.s453486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
Purpose Explore the median effective dose of ciprofol for inducing loss of consciousness in elderly patients and investigate how frailty influences the ED50 of ciprofol in elderly patients. Patients and Methods A total of 26 non-frail patients and 28 frail patients aged 65-78 years, with BMI ranging from 15 to 28 kg/m2, and classified as ASA grade II or III were selected. Patients were divided into two groups according to frailty: non-frail patients (CFS<4), frail patients (CFS≥4). With an initial dose of 0.3 mg/kg for elderly non-frail patients and 0.25 mg/kg for elderly frail patients, using the up-and-down Dixon method, and the next patient's dose was dependent on the previous patient's response. Demographic information, heart rate (HR), oxygen saturation (SpO2), mean blood pressure (MBP), and bispectral index (BIS) were recorded every 30 seconds, starting from the initiation of drug administration and continuing up to 3 minutes post-administration. Additionally, the total ciprofol dosage during induction, occurrences of hypotension, bradycardia, respiratory depression, and injection pain were recorded. Results The calculated ED50 (95% confidence interval [CI]) and ED95 (95% CI) values for ciprofol-induced loss of consciousness were as follows: 0.267 mg/kg (95% CI 0.250-0.284) and 0.301 mg/kg (95% CI 0.284-0.397) for elderly non-frail patients; and 0.263 mg/kg (95% CI 0.244-0.281) and 0.302 mg/kg (95% CI 0.283-0.412) for elderly frail patients. Importantly, no patients reported intravenous injection pain, required treatment for hypotension, or experienced significant bradycardia. Conclusion Frailty among elderly patients does not exert a notable impact on the median effective dose of ciprofol for anesthesia induction. Our findings suggest that anesthesiologists may forego the necessity of dosage adjustments when administering ciprofol for anesthesia induction in elderly frail patients.
Collapse
Affiliation(s)
- Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Zenghui Liang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Muhoza Bertrand Geoffrey
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yanle Xie
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Shuhan Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Jing Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Yuzhong Xia
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Huixin Li
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yanling Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Yuanyuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| | - Zhongyu Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People’s Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
15
|
Ryalino C, Sahinovic MM, Drost G, Absalom AR. Intraoperative monitoring of the central and peripheral nervous systems: a narrative review. Br J Anaesth 2024; 132:285-299. [PMID: 38114354 DOI: 10.1016/j.bja.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023] Open
Abstract
The central and peripheral nervous systems are the primary target organs during anaesthesia. At the time of the inception of the British Journal of Anaesthesia, monitoring of the central nervous system comprised clinical observation, which provided only limited information. During the 100 yr since then, and particularly in the past few decades, significant progress has been made, providing anaesthetists with tools to obtain real-time assessments of cerebral neurophysiology during surgical procedures. In this narrative review article, we discuss the rationale and uses of electroencephalography, evoked potentials, near-infrared spectroscopy, and transcranial Doppler ultrasonography for intraoperative monitoring of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Christopher Ryalino
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marko M Sahinovic
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gea Drost
- Department of Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands; Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
16
|
Gao Z, Zhang J, Zhang X, Wang L, Huang Y, Yu J. A Retrospective Study of the Patient State Index During General Anesthesia in Infants and Young Children. Clin Pediatr (Phila) 2024; 63:249-256. [PMID: 37042054 DOI: 10.1177/00099228231168475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
This study described electroencephalogram (EEG) parameters in children under general anesthesia, which could monitor patient-specific brain responses to anesthetics and assess the effects of anesthesia. The objective was to detect the patient state index (PSI) and associated factors. We analyzed EEG parameters in patients in the age range 1 to 36 months. Patients were stratified into 2 groups as those aged 1 to 12 months and 13 to 36 months. Sixty-two patients were involved. Spectral edge frequency (SEF), PSI, and blood pressure were lower, and burst suppression rate (BSR) and heart rate were higher in the 1 to 12 months group. The SEF was associated with PSI in both groups. Age and blood pressure were positively associated with PSI, and BSR was negatively related to PSI in children under 1 year of age. Blood pressure was not associated with PSI in the 13 to 36 months age group. We found that the PSI levels did not accurately assess the depth of anesthesia in children under 1 year of age.
Collapse
Affiliation(s)
- Zhengzheng Gao
- Department of Anaesthesiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jianmin Zhang
- Department of Anaesthesiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xuemei Zhang
- Department of Anaesthesiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Liya Wang
- Department of Anaesthesiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yao Huang
- Department of Anaesthesiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Jie Yu
- Department of Anaesthesiology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
17
|
Zhu J, Chen C, Liu X, He M, Fang Y, Wang L, Jia J, Guo J, Zhao Z, Gao C, He J, Xu C, Xu F, Ma D, Wang J, Zhang Z. Cerebellar Purkinje cell firing promotes conscious recovery from anesthesia state through coordinating neuronal communications with motor cortex. Theranostics 2024; 14:480-495. [PMID: 38169536 PMCID: PMC10758059 DOI: 10.7150/thno.89592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Background: The neurobiological basis of gaining consciousness from unconscious state induced by anesthetics remains unknown. This study was designed to investigate the involvement of the cerebello-thalamus-motor cortical loop mediating consciousness transitions from the loss of consciousness (LOC) induced by an inhalational anesthetic sevoflurane in mice. Methods: The neural tracing and fMRI together with opto-chemogenetic manipulation were used to investigate the potential link among cerebello-thalamus-motor cortical brain regions. The fiber photometry of calcium and neurotransmitters, including glutamate (Glu), γ-aminobutyric acid (GABA) and norepinephrine (NE), were monitored from the motor cortex (M1) and the 5th lobule of the cerebellar vermis (5Cb) during unconsciousness induced by sevoflurane and gaining consciousness after sevoflurane exposure. Cerebellar Purkinje cells were optogenetically manipulated to investigate their influence on consciousness transitions during and after sevoflurane exposure. Results: Activation of 5Cb Purkinje cells increased the Ca2+ flux in the M1 CaMKIIα+ neurons, but this increment was significantly reduced by inactivation of posterior and parafascicular thalamic nucleus. The 5Cb and M1 exhibited concerted calcium flux, and glutamate and GABA release during transitions from wakefulness, loss of consciousness, burst suppression to conscious recovery. Ca2+ flux and Glu release in the M1, but not in the 5Cb, showed a strong synchronization with the EEG burst suppression, particularly, in the gamma-band range. In contrast, the Glu, GABA and NE release and Ca2+ oscillations were coherent with the EEG gamma band activity only in the 5Cb during the pre-recovery of consciousness period. The optogenetic activation of Purkinje cells during burst suppression significantly facilitated emergence from anesthesia while the optogenetic inhibition prolonged the time to gaining consciousness. Conclusions: Our data indicate that cerebellar neuronal communication integrated with motor cortex through thalamus promotes consciousness recovery from anesthesia which may likely serve as arousal regulation.
Collapse
Affiliation(s)
- Jinpiao Zhu
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
- Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chang Chen
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaodong Liu
- Department of Anesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mengying He
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yuanyuan Fang
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Li Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Junke Jia
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Juan Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyue Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Chenyi Gao
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Jingang He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
| | - Chengshi Xu
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daqing Ma
- Department of Anesthesiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Division of Anesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongze Zhang
- Department of Anesthesiology, Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Sookplung P, Suchartwatnachai P, Akavipat P. The dosage of thiopental as pharmacological cerebral protection during non-shunt carotid endarterectomy: A retrospective study. F1000Res 2023; 12:381. [PMID: 38143589 PMCID: PMC10748806 DOI: 10.12688/f1000research.131838.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
Background Thiopental has been used as a pharmacological cerebral protection strategy during carotid endarterectomy surgeries. However, the optimal dosage required to induce burst suppression on the electroencephalogram (EEG) remains unknown. This retrospective study aimed to determine the optimal dosage of thiopental required to induce burst suppression during non-shunt carotid endarterectomy. Methods The Neurological Institute of Thailand Review Board approved the study. Data were collected from 2009 to 2019 for all non-shunt carotid endarterectomy patients who received thiopental for pharmacological cerebral protection and had intraoperative EEG monitoring. Demographic information, carotid stenosis severity, intraoperative EEG parameters, thiopental dosage, carotid clamp time, intraoperative events, and patient outcomes were abstracted. Results The study included 57 patients. Among them, 24 patients (42%) achieved EEG burst suppression pattern with a thiopental dosage of 26.3±10.1 mg/kg/hr. There were no significant differences in perioperative events between patients who achieved burst suppression and those who did not. After surgery, 33.3% of patients who achieved burst suppression were extubated and awakened. One patient in the non-burst suppression group experienced mild neurological deficits. No deaths occurred within one month postoperative. Conclusions The optimal dosage of thiopental required to achieve burst suppression on intraoperative EEG during non-shunt carotid endarterectomy was 26.3±10.1 mg/kg/hr.
Collapse
Affiliation(s)
- Pimwan Sookplung
- Department of Anesthesiology, Neurological Institute of Thailand, Bangkok, 10400, Thailand
| | | | - Phuping Akavipat
- Department of Anesthesiology, Neurological Institute of Thailand, Bangkok, 10400, Thailand
| |
Collapse
|
19
|
Laurent GH, Ko TS, Mensah-Brown KG, Mavroudis CD, Jacobwitz M, Ranieri N, Nicolson SC, Gaynor JW, Baker WB, Licht DJ, Massey SL, Lynch JM. Electroencephalography as a tool to predict cerebral oxygen metabolism during deep-hypothermic circulatory arrest in neonates with critical congenital heart disease. JTCVS OPEN 2023; 16:801-809. [PMID: 38204663 PMCID: PMC10774939 DOI: 10.1016/j.xjon.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 01/12/2024]
Abstract
Objectives Recent research suggests that increased cerebral oxygen use during surgical intervention for neonates with congenital heart disease may play a role in the development of postoperative white matter injury. The objective of this study is to determine whether increased cerebral electrical activity correlates with greater decrease of cerebral oxygen saturation during deep hypothermic circulatory arrest. Methods Neonates with critical congenital heart disease requiring surgical intervention during the first week of life were studied. All subjects had continuous neuromonitoring with electroencephalography and an optical probe (to quantify cerebral oxygen saturation) during cardiac surgical repair that involved the use of cardiopulmonary bypass and deep hypothermic circulatory arrest. A simple linear regression was used to investigate the association between electroencephalography metrics before the deep hypothermic circulatory arrest period and the change in cerebral oxygen saturation during the deep hypothermic circulatory arrest period. Results Sixteen neonates had both neuromonitoring modalities attached during surgical repair. Cerebral oxygen saturation data from 5 subjects were excluded due to poor data quality, yielding a total sample of 11 neonates. A simple linear regression model found that the presence of electroencephalography activity at the end of cooling is positively associated with the decrease in cerebral oxygen saturation that occurs during deep hypothermic circulatory arrest (P < .05). Conclusions Electroencephalography characteristics within 5 minutes before the initiation of deep hypothermic circulatory arrest may be useful in predicting the decrease in cerebral oxygen saturation that occurs during deep hypothermic circulatory arrest. Electroencephalography may be an important tool for guiding cooling and the initiation of circulatory arrest to potentially decrease the prevalence of new white matter injury in neonates with critical congenital heart disease.
Collapse
Affiliation(s)
- Gerard H. Laurent
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Tiffany S. Ko
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | | | | | - Marin Jacobwitz
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Nicolina Ranieri
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Susan C. Nicolson
- Division of Cardiothoracic Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - J. William Gaynor
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Wesley B. Baker
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Daniel J. Licht
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Shavonne L. Massey
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jennifer M. Lynch
- Division of Cardiothoracic Anesthesiology, Children's Hospital of Philadelphia, Philadelphia, Pa
| |
Collapse
|
20
|
Neuner B, Wolter S, McCarthy WJ, Spies C, Cunningham C, Radtke FM, Franck M, Koenig T. EEG microstate quantifiers and state space descriptors during anaesthesia in patients with postoperative delirium: a descriptive analysis. Brain Commun 2023; 5:fcad270. [PMID: 37942086 PMCID: PMC10629467 DOI: 10.1093/braincomms/fcad270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
Postoperative delirium is a serious sequela of surgery and surgery-related anaesthesia. One recommended method to prevent postoperative delirium is using bi-frontal EEG recording. The single, processed index of depth of anaesthesia allows the anaesthetist to avoid episodes of suppression EEG and excessively deep anaesthesia. The study data presented here were based on multichannel (19 channels) EEG recordings during anaesthesia. This enabled the analysis of various parameters of global electrical brain activity. These parameters were used to compare microstate topographies under anaesthesia with those in healthy volunteers and to analyse changes in microstate quantifiers and EEG global state space descriptors with increasing exposure to anaesthesia. Seventy-three patients from the Surgery Depth of Anaesthesia and Cognitive Outcome study (SRCTN 36437985) received intraoperative multichannel EEG recordings. Altogether, 720 min of artefact-free EEG data, including 210 min (29.2%) of suppression EEG, were analysed. EEG microstate topographies, microstate quantifiers (duration, frequency of occurrence and global field power) and the state space descriptors sigma (overall EEG power), phi (generalized frequency) and omega (number of uncorrelated brain processes) were evaluated as a function of duration of exposure to anaesthesia, suppression EEG and subsequent development of postoperative delirium. The major analyses involved covariate-adjusted linear mixed-effects models. The older (71 ± 7 years), predominantly male (60%) patients received a median exposure of 210 (range: 75-675) min of anaesthesia. During seven postoperative days, 21 patients (29%) developed postoperative delirium. Microstate topographies under anaesthesia resembled topographies from healthy and much younger awake persons. With increasing duration of exposure to anaesthesia, single microstate quantifiers progressed differently in suppression or non-suppression EEG and in patients with or without subsequent postoperative delirium. The most pronounced changes occurred during enduring suppression EEG in patients with subsequent postoperative delirium: duration and frequency of occurrence of microstates C and D progressed in opposite directions, and the state space descriptors showed a pattern of declining uncorrelated brain processes (omega) combined with increasing EEG variance (sigma). With increasing exposure to general anaesthesia, multiple changes in the dynamics of microstates and global EEG parameters occurred. These changes varied partly between suppression and non-suppression EEG and between patients with or without subsequent postoperative delirium. Ongoing suppression EEG in patients with subsequent postoperative delirium was associated with reduced network complexity in combination with increased overall EEG power. Additionally, marked changes in quantifiers in microstate C and in microstate D occurred. These putatively adverse intraoperative trajectories in global electrical brain activity may be seen as preceding and ultimately predicting postoperative delirium.
Collapse
Affiliation(s)
- Bruno Neuner
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Simone Wolter
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - William J McCarthy
- Centre for Cancer Prevention and Control Research, Fielding School of Public Health and Jonsson Comprehensive Cancer Centre, University of California Los Angeles (UCLA), Los Angeles, CA 90095-1781, USA
| | - Claudia Spies
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute & Trinity College Institute of Neuroscience, Trinity College Dublin, 2 D02 R590 Dublin, Ireland
| | - Finn M Radtke
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Department of Anaesthesia and Intensive Care, Hospital of Nykøbing Falster, Fjordvej 15, 4800 Nykøbing Falster, Denmark
- University of Southern Denmark (SDU), Campusvej 55, 5230 Odense, Denmark
| | - Martin Franck
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 10117 Berlin, Germany
- Department of Anaesthesia, Alexianer St.Hedwig Hospital, 10115 Berlin, Germany
| | - Thomas Koenig
- University Hospital of Psychiatry, Translational Research Centre, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
21
|
Zheng N, Jiang Y, Jiang S, Kim J, Chen G, Li Y, Cheng J, Jia X, Yang C. Multifunctional Fiber-Based Optoacoustic Emitter as a Bidirectional Brain Interface. Adv Healthc Mater 2023; 12:e2300430. [PMID: 37451259 PMCID: PMC10592200 DOI: 10.1002/adhm.202300430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber-based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.
Collapse
Affiliation(s)
- Nan Zheng
- Division of Materials Science and EngineeringBoston UniversityBostonMA02215USA
| | - Ying Jiang
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Shan Jiang
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Jongwoon Kim
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
| | - Guo Chen
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Yueming Li
- Department of Mechanical EngineeringBoston UniversityBostonMA02215USA
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer EngineeringVirginia TechBlacksburgVA24061USA
- Department of Materials Science and EngineeringVirginia TechBlacksburgVA24061USA
| | - Chen Yang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMAUSA
- Department of ChemistryBoston UniversityBostonMA02215USA
| |
Collapse
|
22
|
Potestio CP, Dibato J, Bolkus K, Awad A, Thayasivam U, Patel A, Bright A, Mitrev LV. Post-Operative Cognitive Dysfunction in Elderly Patients Receiving Propofol Sedation for Gastrointestinal Endoscopies: An Observational Study Utilizing Processed Electroencephalography. Cureus 2023; 15:e46588. [PMID: 37933341 PMCID: PMC10625787 DOI: 10.7759/cureus.46588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Propofol sedation is commonly administered during gastrointestinal (GI) procedures. The Patient State Index (PSI) is a processed electroencephalography (EEG) parameter obtained with the SedLine® Sedation Monitoring system (Masimo Corporation, Irvine, CA). When used to objectively assess the patient's level of consciousness, PSI may provide a more effective, safer titration of sedation during GI procedures. We hypothesize that having more or longer episodes of deep sedation as assessed by PSI (i.e., PSI<26) would correlate with developing new-onset or worsening post-operative cognitive dysfunction (POCD). METHODS This was a pragmatic, double-blinded observational study of 400 patients aged ≥65 years undergoing upper GI endoscopy, lower GI endoscopy, or a combined procedure utilizing propofol sedation at a tertiary-care [A1] academic medical center. The patients were monitored with the SedLine® Brain Function Monitor, software version 2 (Masimo Corporation, Irvine, CA), throughout the case, starting at baseline (i.e., before administration of propofol) and stopping at case end. We assessed the subjects' cognitive function via an in-person interview at baseline (pre-procedure) and telephone interviews at 1, 7 (±1), and 90 days after study enrollment. Cognitive function was assessed by administering the short blessed test (SBT), which is a validated brief cognitive screening appropriate for in-person and telephone administration. RESULTS The correlations between the change in SBT score and the pre-defined parameters of PSI were not significant (all p-values >5%). There was a significant drop in SBT scores on day seven. Higher age was also significantly associated with a drop in SBT from baseline. Deep sedation, as evidenced by the number of times PSI was lower than 26, was not predictive of the change in SBT, nor was gender, total propofol dose, or vasoactive drug use during the procedure. CONCLUSIONS The observed incidence of POCD after GI procedures with propofol sedation was low (1.3% at seven days and 2.95% at 90 days) and lower than at the baseline. Age was associated with a greater average decline in SBT score, although the absolute change was small (-0.067 per year of age increase). Deeper sedation, as documented by the PSI score, was not associated with a change in POCD measured with the SBT.
Collapse
Affiliation(s)
| | - John Dibato
- Department of Clinical Biostatistics, Cooper Medical School of Rowan University, Camden, USA
| | - Kelly Bolkus
- Department of Anesthesiology, Cooper University Health Care, Camden, USA
| | - Ahmed Awad
- Department of Anesthesiology, Cooper University Hospital, Camden, USA
| | | | - Avish Patel
- Department of Anesthesiology, Cooper Medical School of Rowan University, Camden, USA
| | - Anshel Bright
- Department of Anesthesiology, Cooper Medical School of Rowan University, Camden, USA
| | - Ludmil V Mitrev
- Department of Anesthesiology, Cooper University Hospital, Camden, USA
| |
Collapse
|
23
|
Tanabe S, Lee H, Wang S, Hudetz AG. Spontaneous and Visual Stimulation Evoked Firing Sequences Are Distinct Under Desflurane Anesthesia. Neuroscience 2023; 528:54-63. [PMID: 37473851 DOI: 10.1016/j.neuroscience.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Recurring spike sequences are thought to underlie cortical computations and may be essential for information processing in the conscious state. How anesthesia at graded levels may influence spontaneous and stimulus-related spike sequences in visual cortex has not been fully elucidated. We recorded extracellular single-unit activity in the rat primary visual cortex in vivo during wakefulness and three levels of anesthesia produced by desflurane. The latencies of spike sequences within 0-200 ms from the onset of spontaneous UP states and visual flash-evoked responses were compared. During wakefulness, spike latency patterns linked to the local field potential theta cycle were similar to stimulus-evoked patterns. Under desflurane anesthesia, spontaneous UP state sequences differed from flash-evoked sequences due to the recruitment of low-firing excitatory neurons to the UP state. Flash-evoked spike sequences showed higher reliability and longer latency when stimuli were applied during DOWN states compared to UP states. At deeper levels, desflurane altered both UP state and flash-evoked spike sequences by selectively suppressing inhibitory neuron firing. The results reveal desflurane-induced complex changes in cortical firing sequences that may influence visual information processing.
Collapse
Affiliation(s)
- Sean Tanabe
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
24
|
Doubovikov ED, Serdyukova NA, Greenberg SB, Gascoigne DA, Minhaj MM, Aksenov DP. Electric Field Effects on Brain Activity: Implications for Epilepsy and Burst Suppression. Cells 2023; 12:2229. [PMID: 37759452 PMCID: PMC10527339 DOI: 10.3390/cells12182229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Electric fields are now considered a major mechanism of epileptiform activity. However, it is not clear if another electrophysiological phenomenon, burst suppression, utilizes the same mechanism for its bursting phase. Thus, the purpose of this study was to compare the role of ephaptic coupling-the recruitment of neighboring cells via electric fields-in generating bursts in epilepsy and burst suppression. We used local injections of the GABA-antagonist picrotoxin to elicit epileptic activity and a general anesthetic, sevoflurane, to elicit burst suppression in rabbits. Then, we applied an established computational model of pyramidal cells to simulate neuronal activity in a 3-dimensional grid, with an additional parameter to trigger a suppression phase based on extra-cellular calcium dynamics. We discovered that coupling via electric fields was sufficient to produce bursting in scenarios where inhibitory control of excitatory neurons was sufficiently low. Under anesthesia conditions, bursting occurs with lower neuronal recruitment in comparison to seizures. Our model predicts that due to the effect of electric fields, the magnitude of bursts during seizures should be roughly 2-3 times the magnitude of bursts that occur during burst suppression, which is consistent with our in vivo experimental results. The resulting difference in magnitude between bursts during anesthesia and epileptiform bursts reflects the strength of the electric field effect, which suggests that burst suppression and epilepsy share the same ephaptic coupling mechanism.
Collapse
Affiliation(s)
- Evan D. Doubovikov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Natalya A. Serdyukova
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Steven B. Greenberg
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - David A. Gascoigne
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Mohammed M. Minhaj
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Daniil P. Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Ren S, Zang C, Yuan F, Yan X, Zhang Y, Yuan S, Sun Z, Lang B. Correlation between burst suppression and postoperative delirium in elderly patients: a prospective study. Aging Clin Exp Res 2023; 35:1873-1879. [PMID: 37479909 DOI: 10.1007/s40520-023-02460-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/29/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVE To explore the correlation between intraoperative burst suppression (BS) and postoperative delirium (POD) in elderly patients, and provide more ideas for reducing POD in clinical. METHODS Ninety patients, aged over 60 years, who underwent lumbar internal fixation surgery in our hospital were selected. General information of patients was obtained and informed consent was signed during preoperative visits. Patients were divided into burst suppression (BS) group and non-burst suppression (NBS) group by intraoperative electroencephalogram monitoring. Intraoperative systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), and heart rate (HR) were recorded, and the variation and minimum value were obtained by calculating. Hemoglobin (HGB), C-reactive protein (CRP), system immune inflammatory index (SII) at 24 and 72 h after surgery, the incidence of postoperative adverse reactions, postoperative hospital stay, and total cost were recorded after operation. POD assessment was performed using CAM within 7 days after surgery or until discharge. SPSS25.0 was used for statistical analysis. RESULTS Compared with the NBS group, the number of elderly patients with high frailty level in BS group was more (P = 0.048). There is correlation between BS and POD (OR: 4.954, 95%CI 1.034-23.736, P = 0.045), and most of the POD patients in BS group behave as hyperactive type. CONCLUSION The occurrence of intraoperative BS is associated with POD, and elderly patients with frailty are more likely to have intraoperative BS. BS can be used as a predictor of POD.
Collapse
Affiliation(s)
- Shengjie Ren
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
- Department of Anesthesiology, Weifang Second People's Hospital, Weifang, 261041, China
| | - Chuanbo Zang
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Fang Yuan
- Department of Anesthesiology, Zibo Central Hospital, Zibo, 255020, China
| | - Xuemei Yan
- Department of Anesthesiology, Weifang People's Hospital, Weifang, 261041, China
| | - Yanan Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Shu Yuan
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Zenggang Sun
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Bao Lang
- Department of Anesthesiology, Weifang People's Hospital, Weifang, 261041, China.
| |
Collapse
|
26
|
Zheng J, Storad Z, Al-Chalabi M, Gharaibeh K, Saleem S, Sheikh A, Mahfooz N. Lance-Adams Syndrome: Case series and literature review. Clin Neurophysiol Pract 2023; 8:187-193. [PMID: 37822592 PMCID: PMC10562981 DOI: 10.1016/j.cnp.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Lance-Adams Syndrome (LAS) is a rare complication of successful cardiopulmonary resuscitation (CPR). It is a form of posthypoxic myoclonus characterized by action or intention myoclonus developing days to months after an hypoxic insult to the brain. LAS, especially early in a patient's clinical course, can be challenging to diagnose. Electroencephalogram (EEG) pattern of midline spike-wave discharge associated with favorable prognosis. There is no consensus in treatment of LAS but use of various anti-epileptic medications has been documented in literature. Case Presentation In this case series, all of the patients presented after achieving return of spontaneous circulation (ROSC) and subsequently developed myoclonus. EEG findings beyond the initial hospitalization continued to show later showed changes consistent with LAS in three of the four patients. Different combinations of AEDs were used in the management of LAS with variable success and adverse effects. Conclusion Our cases highlight that the characteristic EEG pattern can be useful in the diagnosis of LAS and allow for better prognostication and management in patients with posthypoxic myoclonus. We reviewed the available literature to better understand the prevalence, mechanism, clinical presentation, diagnosis, and management of LAS.
Collapse
Affiliation(s)
- Judy Zheng
- Department of Neurology, University of Toledo, Toledo, OH, USA
| | - Zachary Storad
- College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | | | | | - Sidra Saleem
- Department of Neurology, University of Toledo, Toledo, OH, USA
| | - Ajaz Sheikh
- Department of Neurology, University of Toledo, Toledo, OH, USA
| | - Naeem Mahfooz
- Department of Neurology, University of Toledo, Toledo, OH, USA
| |
Collapse
|
27
|
Dutta S, Iyer KK, Vanhatalo S, Breakspear M, Roberts JA. Mechanisms underlying pathological cortical bursts during metabolic depletion. Nat Commun 2023; 14:4792. [PMID: 37553358 PMCID: PMC10409751 DOI: 10.1038/s41467-023-40437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
Cortical activity depends upon a continuous supply of oxygen and other metabolic resources. Perinatal disruption of oxygen availability is a common clinical scenario in neonatal intensive care units, and a leading cause of lifelong disability. Pathological patterns of brain activity including burst suppression and seizures are a hallmark of the recovery period, yet the mechanisms by which these patterns arise remain poorly understood. Here, we use computational modeling of coupled metabolic-neuronal activity to explore the mechanisms by which oxygen depletion generates pathological brain activity. We find that restricting oxygen supply drives transitions from normal activity to several pathological activity patterns (isoelectric, burst suppression, and seizures), depending on the potassium supply. Trajectories through parameter space track key features of clinical electrophysiology recordings and reveal how infants with good recovery outcomes track toward normal parameter values, whereas the parameter values for infants with poor outcomes dwell around the pathological values. These findings open avenues for studying and monitoring the metabolically challenged infant brain, and deepen our understanding of the link between neuronal and metabolic activity.
Collapse
Affiliation(s)
- Shrey Dutta
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- School of Psychological Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia.
| | - Kartik K Iyer
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Sampsa Vanhatalo
- Pediatric Research Center, Department of Physiology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
- School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
28
|
Luppi AI, Cabral J, Cofre R, Mediano PAM, Rosas FE, Qureshi AY, Kuceyeski A, Tagliazucchi E, Raimondo F, Deco G, Shine JM, Kringelbach ML, Orio P, Ching S, Sanz Perl Y, Diringer MN, Stevens RD, Sitt JD. Computational modelling in disorders of consciousness: Closing the gap towards personalised models for restoring consciousness. Neuroimage 2023; 275:120162. [PMID: 37196986 PMCID: PMC10262065 DOI: 10.1016/j.neuroimage.2023.120162] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
Disorders of consciousness are complex conditions characterised by persistent loss of responsiveness due to brain injury. They present diagnostic challenges and limited options for treatment, and highlight the urgent need for a more thorough understanding of how human consciousness arises from coordinated neural activity. The increasing availability of multimodal neuroimaging data has given rise to a wide range of clinically- and scientifically-motivated modelling efforts, seeking to improve data-driven stratification of patients, to identify causal mechanisms for patient pathophysiology and loss of consciousness more broadly, and to develop simulations as a means of testing in silico potential treatment avenues to restore consciousness. As a dedicated Working Group of clinicians and neuroscientists of the international Curing Coma Campaign, here we provide our framework and vision to understand the diverse statistical and generative computational modelling approaches that are being employed in this fast-growing field. We identify the gaps that exist between the current state-of-the-art in statistical and biophysical computational modelling in human neuroscience, and the aspirational goal of a mature field of modelling disorders of consciousness; which might drive improved treatments and outcomes in the clinic. Finally, we make several recommendations for how the field as a whole can work together to address these challenges.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Joana Cabral
- Life and Health Sciences Research Institute, University of Minho, Portugal
| | - Rodrigo Cofre
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile; Centre National de la Recherche Scientifique (CNRS), Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Gif-sur-Yvette, France
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK; Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| | - Abid Y Qureshi
- University of Kansas Medical Center, Kansas City, MO, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, USA
| | - Enzo Tagliazucchi
- Departamento de Física (UBA) e Instituto de Fisica de Buenos Aires (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Germany; Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso and Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - ShiNung Ching
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Yonatan Sanz Perl
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; National Scientific and Technical Research Council (CONICET), Godoy Cruz, CABA 2290, Argentina
| | - Michael N Diringer
- Department of Neurology and Neurosurgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - Paris Brain Institute, ICM, Paris, France; Sorbonne Université, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
29
|
Soplata AE, Adam E, Brown EN, Purdon PL, McCarthy MM, Kopell N. Rapid thalamocortical network switching mediated by cortical synchronization underlies propofol-induced EEG signatures: a biophysical model. J Neurophysiol 2023; 130:86-103. [PMID: 37314079 PMCID: PMC10312318 DOI: 10.1152/jn.00068.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
Propofol-mediated unconsciousness elicits strong alpha/low-beta and slow oscillations in the electroencephalogram (EEG) of patients. As anesthetic dose increases, the EEG signal changes in ways that give clues to the level of unconsciousness; the network mechanisms of these changes are only partially understood. Here, we construct a biophysical thalamocortical network involving brain stem influences that reproduces transitions in dynamics seen in the EEG involving the evolution of the power and frequency of alpha/low-beta and slow rhythm, as well as their interactions. Our model suggests that propofol engages thalamic spindle and cortical sleep mechanisms to elicit persistent alpha/low-beta and slow rhythms, respectively. The thalamocortical network fluctuates between two mutually exclusive states on the timescale of seconds. One state is characterized by continuous alpha/low-beta-frequency spiking in thalamus (C-state), whereas in the other, thalamic alpha spiking is interrupted by periods of co-occurring thalamic and cortical silence (I-state). In the I-state, alpha colocalizes to the peak of the slow oscillation; in the C-state, there is a variable relationship between an alpha/beta rhythm and the slow oscillation. The C-state predominates near loss of consciousness; with increasing dose, the proportion of time spent in the I-state increases, recapitulating EEG phenomenology. Cortical synchrony drives the switch to the I-state by changing the nature of the thalamocortical feedback. Brain stem influence on the strength of thalamocortical feedback mediates the amount of cortical synchrony. Our model implicates loss of low-beta, cortical synchrony, and coordinated thalamocortical silent periods as contributing to the unconscious state.NEW & NOTEWORTHY GABAergic anesthetics induce alpha/low-beta and slow oscillations in the EEG, which interact in dose-dependent ways. We constructed a thalamocortical model to investigate how these interdependent oscillations change with propofol dose. We find two dynamic states of thalamocortical coordination, which change on the timescale of seconds and dose-dependently mirror known changes in EEG. Thalamocortical feedback determines the oscillatory coupling and power seen in each state, and this is primarily driven by cortical synchrony and brain stem neuromodulation.
Collapse
Affiliation(s)
- Austin E Soplata
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Elie Adam
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Michelle M McCarthy
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
30
|
Bong CL, Balanza GA, Khoo CEH, Tan JSK, Desel T, Purdon PL. A Narrative Review Illustrating the Clinical Utility of Electroencephalogram-Guided Anesthesia Care in Children. Anesth Analg 2023; 137:108-123. [PMID: 36729437 DOI: 10.1213/ane.0000000000006267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The major therapeutic end points of general anesthesia include hypnosis, amnesia, and immobility. There is a complex relationship between general anesthesia, responsiveness, hemodynamic stability, and reaction to noxious stimuli. This complexity is compounded in pediatric anesthesia, where clinicians manage children from a wide range of ages, developmental stages, and body sizes, with their concomitant differences in physiology and pharmacology. This renders anesthetic requirements difficult to predict based solely on a child's age, body weight, and vital signs. Electroencephalogram (EEG) monitoring provides a window into children's brain states and may be useful in guiding clinical anesthesia management. However, many clinicians are unfamiliar with EEG monitoring in children. Young children's EEGs differ substantially from those of older children and adults, and there is a lack of evidence-based guidance on how and when to use the EEG for anesthesia care in children. This narrative review begins by summarizing what is known about EEG monitoring in pediatric anesthesia care. A key knowledge gap in the literature relates to a lack of practical information illustrating the utility of the EEG in clinical management. To address this gap, this narrative review illustrates how the EEG spectrogram can be used to visualize, in real time, brain responses to anesthetic drugs in relation to hemodynamic stability, surgical stimulation, and other interventions such as cardiopulmonary bypass. This review discusses anesthetic management principles in a variety of clinical scenarios, including infants, children with altered conscious levels, children with atypical neurodevelopment, children with hemodynamic instability, children undergoing total intravenous anesthesia, and those undergoing cardiopulmonary bypass. Each scenario is accompanied by practical illustrations of how the EEG can be visualized to help titrate anesthetic dosage to avoid undersedation or oversedation when patients experience hypotension or other physiological challenges, when surgical stimulation increases, and when a child's anesthetic requirements are otherwise less predictable. Overall, this review illustrates how well-established clinical management principles in children can be significantly complemented by the addition of EEG monitoring, thus enabling personalized anesthesia care to enhance patient safety and experience.
Collapse
Affiliation(s)
- Choon Looi Bong
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Gustavo A Balanza
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charis Ern-Hui Khoo
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Josephine Swee-Kim Tan
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Tenzin Desel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patrick Lee Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Kocsis B, Pittman-Polletta B. Neuropsychiatric consequences of COVID-19 related olfactory dysfunction: could non-olfactory cortical-bound inputs from damaged olfactory bulb also contribute to cognitive impairment? Front Neurosci 2023; 17:1164042. [PMID: 37425004 PMCID: PMC10323442 DOI: 10.3389/fnins.2023.1164042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | | |
Collapse
|
32
|
Jones KG, Lybbert C, Euler MJ, Huang J, Lunt S, Richards SV, Jessop JE, Larson A, Odell DH, Kuck K, Tadler SC, Mickey BJ. Diversity of electroencephalographic patterns during propofol-induced burst suppression. Front Syst Neurosci 2023; 17:1172856. [PMID: 37397237 PMCID: PMC10309040 DOI: 10.3389/fnsys.2023.1172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Burst suppression is a brain state consisting of high-amplitude electrical activity alternating with periods of quieter suppression that can be brought about by disease or by certain anesthetics. Although burst suppression has been studied for decades, few studies have investigated the diverse manifestations of this state within and between human subjects. As part of a clinical trial examining the antidepressant effects of propofol, we gathered burst suppression electroencephalographic (EEG) data from 114 propofol infusions across 21 human subjects with treatment-resistant depression. This data was examined with the objective of describing and quantifying electrical signal diversity. We observed three types of EEG burst activity: canonical broadband bursts (as frequently described in the literature), spindles (narrow-band oscillations reminiscent of sleep spindles), and a new feature that we call low-frequency bursts (LFBs), which are brief deflections of mainly sub-3-Hz power. These three features were distinct in both the time and frequency domains and their occurrence differed significantly across subjects, with some subjects showing many LFBs or spindles and others showing very few. Spectral-power makeup of each feature was also significantly different across subjects. In a subset of nine participants with high-density EEG recordings, we noted that each feature had a unique spatial pattern of amplitude and polarity when measured across the scalp. Finally, we observed that the Bispectral Index Monitor, a commonly used clinical EEG monitor, does not account for the diversity of EEG features when processing the burst suppression state. Overall, this study describes and quantifies variation in the burst suppression EEG state across subjects and repeated infusions of propofol. These findings have implications for the understanding of brain activity under anesthesia and for individualized dosing of anesthetic drugs.
Collapse
Affiliation(s)
- Keith G. Jones
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
| | - Carter Lybbert
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Matthew J. Euler
- Department of Psychology, The University of Utah, Salt Lake City, UT, United States
| | - Jason Huang
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
| | - Seth Lunt
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
| | - Sindhu V. Richards
- Department of Neurology, The University of Utah, Salt Lake City, UT, United States
| | - Jacob E. Jessop
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Adam Larson
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - David H. Odell
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Kai Kuck
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Scott C. Tadler
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| | - Brian J. Mickey
- Interdepartmental Program in Neuroscience, The University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, Huntsman Mental Health Institute, The University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, UT, United States
- Department of Anesthesiology, The University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
33
|
Liu M, Wang QQ, Lin WX, Ma BX, Lin QY. Effects of EEG burst suppression on cerebral oxygen metabolism and postoperative cognitive function in elderly surgical patients: A randomized clinical trial. Medicine (Baltimore) 2023; 102:e33148. [PMID: 37000051 PMCID: PMC10063258 DOI: 10.1097/md.0000000000033148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND This randomized clinical trial determined the effects of electroencephalographic burst suppression on cerebral oxygen metabolism and postoperative cognitive function in elderly surgical patients. METHODS The patients were placed into burst suppression (BS) and non-burst suppression (NBS) groups. All patients were under bispectral index monitoring of an etomidate target-controlled infusion for anesthesia induction and intraoperative combination sevoflurane and remifentanil for anesthesia maintenance. The cerebral oxygen extraction ratio (CERO2), jugular bulb venous saturation (SjvO2), and difference in arteriovenous oxygen (Da-jvO2) were measured at T0, T1, and T2. One day before surgery, and 1, 3, and 7 days after surgery, postoperative cognitive dysfunction was assessed using the mini-mental state examination (MMSE). RESULTS Compared with T0, the Da-jvO2 and CERO2 values were decreased, and SjvO2 was increased in the 2 groups at T1 and T2 (P < .05). There was no statistical difference in the SjvO2, Da-jvO2, and CERO2 values between T1 and T2. Compared with the NBS group, the SjvO2 value increased, and the Da-jvO2 and CERO2 values decreased at T1 and T2 in the BS group (P < .05). The MMSE scores on the 1st and 3rd days postoperatively were significantly lower in the 2 groups compared to the preoperative MMSE scores (P < .05). The MMSE scores of the NBS group were higher than the BS group on the 1st and 3rd days postoperatively (P < .05). CONCLUSION In elderly patients undergoing surgery, intraoperative BS significantly reduced cerebral oxygen metabolism, which temporarily affected postoperative neurocognitive function.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Qi-Qi Wang
- Department of Anesthesiology, Women and Children’s Hospital Xiamen University, Xiamen, China
| | - Wen-Xin Lin
- Department of Anesthesiology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Bao-Xin Ma
- Department of Anesthesiology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Quan-Yang Lin
- Department of Anesthesiology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
34
|
Okonji S, Bulgarelli C, Troìa R, Pontiero A, Foglia A, Giunti M, Gandini G. Electroencephalographic patterns in a mechanically ventilated cat with permethrin intoxication. JFMS Open Rep 2023; 9:20551169231160228. [PMID: 37007979 PMCID: PMC10064162 DOI: 10.1177/20551169231160228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Case summary A 1-year-old male castrated domestic shorthair cat was presented in a condition of status epilepticus following incidental permethrin spot-on administration by its owner. General anaesthesia and mechanical positive pressure control ventilation were necessary to control the epileptic seizures and a progressive condition of hypoventilation. The cat was managed with an intravenous constant rate infusion of midazolam, propofol and ketamine associated with a low-dose intravenous lipid emulsion. A condition of non-convulsive status epilepticus was detected by serial continuous electroencephalogram (cEEG) monitoring. Initial cEEG showed paroxysmal epileptiform discharges; thus, antiseizure treatment with phenobarbital was added and a bolus of hypertonic saline solution was administered to treat suspected intracranial hypertension. A second cEEG performed 24 h later showed the presence of rare spikes and a burst-suppression pattern, so the decision was made to discontinue propofol. A third cEEG, 72 h post-hospitalisation, showed a normal encephalographic pattern; therefore, anaesthetic drugs were progressively tapered, and the patient was extubated. Five days after admission the cat was discharged on phenobarbital treatment, which was gradually tapered during the following months. Relevance and novel information This is the first reported case to describe cEEG monitoring during hospitalisation for feline permethrin intoxication. cEEG should be encouraged in cats with altered mental status that have previously suffered cluster seizures or status epilepticus, which could guide clinicians in the choice of antiseizure drugs.
Collapse
Affiliation(s)
| | - Cecilia Bulgarelli
- Cecilia Bulgarelli DVM, Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Via Tolara di Sopra, 50, Ozzano dell’Emilia, BO 40064, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Boorman LW, Harris SS, Shabir O, Lee L, Eyre B, Howarth C, Berwick J. Bidirectional alterations in brain temperature profoundly modulate spatiotemporal neurovascular responses in-vivo. Commun Biol 2023; 6:185. [PMID: 36797344 PMCID: PMC9935519 DOI: 10.1038/s42003-023-04542-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Neurovascular coupling (NVC) is a mechanism that, amongst other known and latent critical functions, ensures activated brain regions are adequately supplied with oxygen and glucose. This biological phenomenon underpins non-invasive perfusion-related neuroimaging techniques and recent reports have implicated NVC impairment in several neurodegenerative disorders. Yet, much remains unknown regarding NVC in health and disease, and only recently has there been burgeoning recognition of a close interplay with brain thermodynamics. Accordingly, we developed a novel multi-modal approach to systematically modulate cortical temperature and interrogate the spatiotemporal dynamics of sensory-evoked NVC. We show that changes in cortical temperature profoundly and intricately modulate NVC, with low temperatures associated with diminished oxygen delivery, and high temperatures inducing a distinct vascular oscillation. These observations provide novel insights into the relationship between NVC and brain thermodynamics, with important implications for brain-temperature related therapies, functional biomarkers of elevated brain temperature, and in-vivo methods to study neurovascular coupling.
Collapse
Affiliation(s)
- Luke W Boorman
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Samuel S Harris
- UK Dementia Research Institute at University College London, University College London, London, UK
| | - Osman Shabir
- Department of Psychology, University of Sheffield, Sheffield, UK
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Llywelyn Lee
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Beth Eyre
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Clare Howarth
- Department of Psychology, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Healthy Lifespan Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
36
|
Contribution of intraoperative electroencephalogram suppression to frailty-associated postoperative delirium: mediation analysis of a prospective surgical cohort. Br J Anaesth 2023; 130:e263-e271. [PMID: 36503826 DOI: 10.1016/j.bja.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Frailty is a risk factor for postoperative delirium (POD), and has led to preoperative interventions that have reduced, but not eliminated, the risk. We hypothesised that EEG suppression, another risk factor for POD, mediates some of the frailty risk for POD. METHODS A prospective cohort study enrolled patients aged 65 yr or older, scheduled for noncardiac surgery under total intravenous anaesthesia. Frailty was assessed using the FRAIL scale. Cumulative duration of EEG suppression, defined as an amplitude between -5 and 5 μV for >0.5 s during anaesthesia, was measured. POD was diagnosed by either confusion assessment method (CAM), CAM-ICU, or medical records. The severity of POD was assessed using the Delirium Rating Scale - Revised-98 (DRS). Mediation analysis was used to estimate the relationships between frailty, EEG suppression, and severity of POD. RESULTS Among 252 enrolled patients, 51 were robust, 129 were prefrail, and 72 were frail. Patients classified as frail had higher duration of EEG suppression than either the robust (19 vs 0.57 s, P<0.001) or prefrail groups (19 vs 3.22 s, P<0.001). Peak delirium score was higher in the frail group than either the robust (17 vs 15, P<0.001) or prefrail groups (17 vs 16, P=0.007). EEG suppression time mediated 24.2% of the frailty-DRS scores association. CONCLUSION EEG suppression time mediated a statistically significant portion of the frailty-POD association in older noncardiac surgery patients. Trials directed at reducing EEG suppression time could result in intraoperative interventions to reduce POD in frail patients. CLINICAL TRIAL REGISTRATION ChiCTR2000041092 (Chinese Clinical Trial Registry).
Collapse
|
37
|
Joshi SN, Joshi AN, Joshi ND. Interplay between biochemical processes and network properties generates neuronal up and down states at the tripartite synapse. Phys Rev E 2023; 107:024415. [PMID: 36932559 DOI: 10.1103/physreve.107.024415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Neuronal up and down states have long been known to exist both in vitro and in vivo. A variety of functions and mechanisms have been proposed for their generation, but there has not been a clear connection between the functions and mechanisms. We explore the potential contribution of cellular-level biochemistry to the network-level mechanisms thought to underlie the generation of up and down states. We develop a neurochemical model of a single tripartite synapse, assumed to be within a network of similar tripartite synapses, to investigate possible function-mechanism links for the appearance of up and down states. We characterize the behavior of our model in different regions of parameter space and show that resource limitation at the tripartite synapse affects its ability to faithfully transmit input signals, leading to extinction-down states. Recovery of resources allows for "reignition" into up states. The tripartite synapse exhibits distinctive "regimes" of operation depending on whether ATP, neurotransmitter (glutamate), both, or neither, is limiting. Our model qualitatively matches the behavior of six disparate experimental systems, including both in vitro and in vivo models, without changing any model parameters except those related to the experimental conditions. We also explore the effects of varying different critical parameters within the model. Here we show that availability of energy, represented by ATP, and glutamate for neurotransmission at the cellular level are intimately related, and are capable of promoting state transitions at the network level as ignition and extinction phenomena. Our model is complementary to existing models of neuronal up and down states in that it focuses on cellular-level dynamics while still retaining essential network-level processes. Our model predicts the existence of a "final common pathway" of behavior at the tripartite synapse arising from scarcity of resources and may explain use dependence in the phenomenon of "local sleep." Ultimately, sleeplike behavior may be a fundamental property of networks of tripartite synapses.
Collapse
Affiliation(s)
- Shubhada N Joshi
- National Center for Adaptive Neurotechnologies (NCAN), David Axelrod Institute, Wadsworth Center, New York State Department of Health, 120 New Scotland Ave., Albany, New York 12208, USA
| | - Aditya N Joshi
- Stanford University School of Medicine, 300 Pasteur Dr., Stanford, California 94305, USA
| | - Narendra D Joshi
- General Electric Global Research, 1 Research Circle, Niskayuna, New York 12309, USA
| |
Collapse
|
38
|
Manzella FM, Cabrera OH, Wilkey D, Fine-Raquet B, Klawitter J, Krishnan K, Covey DF, Jevtovic-Todorovic V, Todorovic SM. Sex-specific hypnotic effects of the neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile are mediated by peripheral metabolism into an active hypnotic steroid. Br J Anaesth 2023; 130:154-164. [PMID: 36428160 PMCID: PMC10080470 DOI: 10.1016/j.bja.2022.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/01/2022] [Accepted: 09/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The novel synthetic neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3β-OH) blocks T-type calcium channels but does not directly modulate neuronal γ-aminobutyric acid type A (GABAA) currents like other anaesthetic neurosteroids. As 3β-OH has sex-specific hypnotic effects in adult rats, we studied the mechanism contributing to sex differences in its effects. METHODS We used a combination of behavioural loss of righting reflex, neuroendocrine, pharmacokinetic, in vitro patch-clamp electrophysiology, and in vivo electrophysiological approaches in wild-type mice and in genetic knockouts of the CaV3.1 T-type calcium channel isoform to study the mechanisms by which 3β-OH and its metabolite produces sex-specific hypnotic effects. RESULTS Adult male mice were less sensitive to the hypnotic effects of 3β-OH compared with female mice, and these differences appeared during development. Adult males had higher 3β-OH brain concentrations despite being less sensitive to its hypnotic effects. Females metabolised 3β-OH into the active GABAA receptor positive allosteric modulator (3α,5β,17β)-3-hydroxyandrostane-17-carbonitrile (3α-OH) to a greater extent than males. The 3α-OH metabolite has T-channel blocking properties with sex-specific hypnotic and pharmacokinetic effects. Sex-dependent suppression of the cortical electroencephalogram is more pronounced with 3α-OH compared with 3β-OH. CONCLUSIONS The sex-specific differences in the hypnotic effect of 3β-OH in mice are attributable to differences in its peripheral metabolism into the more potent hypnotic metabolite 3α-OH.
Collapse
Affiliation(s)
- Francesca M Manzella
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Omar H Cabrera
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Davis Wilkey
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brier Fine-Raquet
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jelena Klawitter
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathiresan Krishnan
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Vesna Jevtovic-Todorovic
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Slobodan M Todorovic
- Department of Anaesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
39
|
Pinzuti E, Wollstadt P, Tüscher O, Wibral M. Information theoretic evidence for layer- and frequency-specific changes in cortical information processing under anesthesia. PLoS Comput Biol 2023; 19:e1010380. [PMID: 36701388 PMCID: PMC9904504 DOI: 10.1371/journal.pcbi.1010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/07/2023] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Nature relies on highly distributed computation for the processing of information in nervous systems across the entire animal kingdom. Such distributed computation can be more easily understood if decomposed into the three elementary components of information processing, i.e. storage, transfer and modification, and rigorous information theoretic measures for these components exist. However, the distributed computation is often also linked to neural dynamics exhibiting distinct rhythms. Thus, it would be beneficial to associate the above components of information processing with distinct rhythmic processes where possible. Here we focus on the storage of information in neural dynamics and introduce a novel spectrally-resolved measure of active information storage (AIS). Drawing on intracortical recordings of neural activity in ferrets under anesthesia before and after loss of consciousness (LOC) we show that anesthesia- related modulation of AIS is highly specific to different frequency bands and that these frequency-specific effects differ across cortical layers and brain regions. We found that in the high/low gamma band the effects of anesthesia result in AIS modulation only in the supergranular layers, while in the alpha/beta band the strongest decrease in AIS can be seen at infragranular layers. Finally, we show that the increase of spectral power at multiple frequencies, in particular at alpha and delta bands in frontal areas, that is often observed during LOC ('anteriorization') also impacts local information processing-but in a frequency specific way: Increases in isoflurane concentration induced a decrease in AIS in the alpha frequencies, while they increased AIS in the delta frequency range < 2Hz. Thus, the analysis of spectrally-resolved AIS provides valuable additional insights into changes in cortical information processing under anaesthesia.
Collapse
Affiliation(s)
- Edoardo Pinzuti
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Patricia Wollstadt
- MEG Unit, Brain Imaging Center, Goethe University, Frankfurt/Main, Germany
| | - Oliver Tüscher
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Johannes Gutenberg University of Mainz, Mainz, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Michael Wibral
- Campus Institute for Dynamics of Biological Networks, Georg August University, Göttingen, Germany
| |
Collapse
|
40
|
Chegodaev D, Gusev V, Lvova O, Pavlova P. Possible role of ketone bodies in the generation of burst suppression electroencephalographic pattern. Front Neurosci 2022; 16:1021035. [PMID: 36590288 PMCID: PMC9800049 DOI: 10.3389/fnins.2022.1021035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
|
41
|
Garg N, Garg R, Anand A, Baths V. Decoding the neural signatures of valence and arousal from portable EEG headset. Front Hum Neurosci 2022; 16:1051463. [PMID: 36561835 PMCID: PMC9764010 DOI: 10.3389/fnhum.2022.1051463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Emotion classification using electroencephalography (EEG) data and machine learning techniques have been on the rise in the recent past. However, past studies use data from medical-grade EEG setups with long set-up times and environment constraints. This paper focuses on classifying emotions on the valence-arousal plane using various feature extraction, feature selection, and machine learning techniques. We evaluate different feature extraction and selection techniques and propose the optimal set of features and electrodes for emotion recognition. The images from the OASIS image dataset were used to elicit valence and arousal emotions, and the EEG data was recorded using the Emotiv Epoc X mobile EEG headset. The analysis is carried out on publicly available datasets: DEAP and DREAMER for benchmarking. We propose a novel feature ranking technique and incremental learning approach to analyze performance dependence on the number of participants. Leave-one-subject-out cross-validation was carried out to identify subject bias in emotion elicitation patterns. The importance of different electrode locations was calculated, which could be used for designing a headset for emotion recognition. The collected dataset and pipeline are also published. Our study achieved a root mean square score (RMSE) of 0.905 on DREAMER, 1.902 on DEAP, and 2.728 on our dataset for valence label and a score of 0.749 on DREAMER, 1.769 on DEAP, and 2.3 on our proposed dataset for arousal label.
Collapse
Affiliation(s)
- Nikhil Garg
- Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, QC, Canada,Laboratoire Nanotechnologies Nanosystèmes (LN2)—CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, QC, Canada,Institute of Electronics, Microelectronics and Nanotechnology (IEMN), Université de Lille, Lille, France
| | - Rohit Garg
- Department of Computer Science and Information Systems, BITS Pilani, K K Birla Goa Campus, Goa, India,*Correspondence: Rohit Garg
| | - Apoorv Anand
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Veeky Baths
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Goa, India,Cognitive Neuroscience Lab, BITS Pilani, K K Birla Goa Campus, Goa, India,Veeky Baths
| |
Collapse
|
42
|
Fisch U, Jünger AL, Hert L, Rüegg S, Sutter R. Therapeutically induced EEG burst-suppression pattern to treat refractory status epilepticus—what is the evidence? ZEITSCHRIFT FÜR EPILEPTOLOGIE 2022. [DOI: 10.1007/s10309-022-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractCurrent guidelines advocate to treat refractory status epilepticus (RSE) with continuously administered anesthetics to induce an artificial coma if first- and second-line antiseizure drugs have failed to stop seizure activity. A common surrogate for monitoring the depth of the artificial coma is the appearance of a burst-suppression pattern (BS) in the EEG. This review summarizes the current knowledge on the origin and neurophysiology of the BS phenomenon as well as the evidence from the literature for the presumed benefit of BS as therapy in adult patients with RSE.
Collapse
|
43
|
Jung J, Kim T. General anesthesia and sleep: like and unlike. Anesth Pain Med (Seoul) 2022; 17:343-351. [DOI: 10.17085/apm.22227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
General anesthesia and sleep have long been discussed in the neurobiological context owingto their commonalities, such as unconsciousness, immobility, non-responsiveness to externalstimuli, and lack of memory upon returning to consciousness. Sleep is regulated bycomplex interactions between wake-promoting and sleep-promoting neural circuits. Anestheticsexert their effects partly by inhibiting wake-promoting neurons or activating sleep-promotingneurons. Unconscious but arousable sedation is more related to sleep-wake circuitries,whereas unconscious and unarousable anesthesia is independent of them. Generalanesthesia is notable for its ability to decrease sleep propensity. Conversely, increasedsleep propensity due to insufficient sleep potentiates anesthetic effects. Taken together, it isplausible that sleep and anesthesia are closely related phenomena but not the same ones.Further investigations on the relationship between sleep and anesthesia are warranted.
Collapse
|
44
|
Niedermeyer S, Greve T, Lamm LM, Thorsteinsdottir J, Schichor C, Tonn JC, Szelényi A. Acute Hiccups Detected by Electromyographic Recordings During Resection of a Vestibular Schwannoma. Oper Neurosurg (Hagerstown) 2022; 23:e298-e303. [PMID: 36106939 DOI: 10.1227/ons.0000000000000317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND IMPORTANCE Intraoperative neuromonitoring (IONM) is routinely used to monitor cranial nerve function during resection of vestibular schwannomas. Sudden movements in the surgical field can be a disturbing factor for the surgeon. IONM can help determine the cause of unexpected patient movements. CLINICAL PRESENTATION We report the case of a 54-year-old patient who underwent retromastoid craniotomy and resection of a vestibular schwannoma. Toward the end of dissection of the tumor from the lower cranial nerves and brainstem, the patient showed repetitive shoulder elevation. Electroencephalography showed burst suppression, confirming deep sedation and excluding voluntary movements. Free-running electromyography recorded spontaneous, simultaneous, bilateral vocal cord activity that was synchronous with upper body movement. There was simultaneous but smaller activity in the right genioglossus muscle and levator veli palatini, indicative for far-field activity. These IONM findings allowed us to classify the clinical observations as intraoperative hiccups. CONCLUSION Hiccups during general anesthesia are rare but should be considered as a differential diagnosis of sudden upper body movement. To the best of our knowledge, this is the first reported case of acute hiccups during resection of a vestibular schwannoma. IONM reliably distinguished it from an increase in intraoperative consciousness or accessory nerve activation resulting in shoulder movements.
Collapse
Affiliation(s)
- Sebastian Niedermeyer
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Greve
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ludwig-Maximilian Lamm
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jun Thorsteinsdottir
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrea Szelényi
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
45
|
Kafashan M, Brian Hickman L, Labonte AK, Huels ER, Maybrier H, Guay CS, Subramanian S, Farber NB, Ching S, Hogan RE, Kelz MB, Avidan MS, Mashour GA, Palanca BJA. Quiescence during burst suppression and postictal generalized EEG suppression are distinct patterns of activity. Clin Neurophysiol 2022; 142:125-132. [PMID: 36030576 PMCID: PMC10287541 DOI: 10.1016/j.clinph.2022.07.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/15/2022] [Accepted: 07/17/2022] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Periods of low-amplitude electroencephalographic (EEG) signal (quiescence) are present during both anesthetic-induced burst suppression (BS) and postictal generalized electroencephalographic suppression (PGES). PGES following generalized seizures induced by electroconvulsive therapy (ECT) has been previously linked to antidepressant response. The commonality of quiescence during both BS and PGES motivated trials to recapitulate the antidepressant effects of ECT using high doses of anesthetics. However, there have been no direct electrographic comparisons of these quiescent periods to address whether these are distinct entities. METHODS We compared periods of EEG quiescence recorded from two human studies: BS induced in 29 healthy adult volunteers by isoflurane general anesthesia and PGES in 11 patients undergoing right unilateral ECT for treatment-resistant depression. An automated algorithm allowed detection of EEG quiescence based on a 10-microvolt amplitude threshold. Spatial, spectral, and temporal analyses compared quiescent epochs during BS and PGES. RESULTS The median (interquartile range) voltage for quiescent periods during PGES was greater than during BS (1.81 (0.22) microvolts vs 1.22 (0.33) microvolts, p < 0.001). Relative power was greater for quiescence during PGES than BS for the 1-4 Hz delta band (p < 0.001), at the expense of power in the theta (4-8 Hz, p < 0.001), beta (13-30 Hz, p = 0.04) and gamma (30-70 Hz, p = 0.006) frequency bands. Topographic analyses revealed that amplitude across the scalp was consistently higher for quiescent periods during PGES than BS, whose voltage was within the noise floor. CONCLUSIONS Quiescent epochs during PGES and BS have distinct patterns of EEG signals across voltage, frequency, and spatial domains. SIGNIFICANCE Quiescent epochs during PGES and BS, important neurophysiological markers for clinical outcomes, are shown to have distinct voltage and frequency characteristics.
Collapse
Affiliation(s)
- MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - L Brian Hickman
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Alyssa K Labonte
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Neuroscience Graduate Program, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Emma R Huels
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Hannah Maybrier
- Psychological & Brain Sciences Department, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christian S Guay
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Subha Subramanian
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - ShiNung Ching
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Ben J A Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
46
|
Schmidt D, English G, Gent TC, Yanik MF, von der Behrens W. Machine learning reveals interhemispheric somatosensory coherence as indicator of anesthetic depth. Front Neuroinform 2022; 16:971231. [PMID: 36172256 PMCID: PMC9510780 DOI: 10.3389/fninf.2022.971231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to identify features in mouse electrocorticogram recordings that indicate the depth of anesthesia as approximated by the administered anesthetic dosage. Anesthetic depth in laboratory animals must be precisely monitored and controlled. However, for the most common lab species (mice) few indicators useful for monitoring anesthetic depth have been established. We used electrocorticogram recordings in mice, coupled with peripheral stimulation, in order to identify features of brain activity modulated by isoflurane anesthesia and explored their usefulness in monitoring anesthetic depth through machine learning techniques. Using a gradient boosting regressor framework we identified interhemispheric somatosensory coherence as the most informative and reliable electrocorticogram feature for determining anesthetic depth, yielding good generalization and performance over many subjects. Knowing that interhemispheric somatosensory coherence indicates the effectively administered isoflurane concentration is an important step for establishing better anesthetic monitoring protocols and closed-loop systems for animal surgeries.
Collapse
Affiliation(s)
- Dominik Schmidt
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Gwendolyn English
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
| | - Thomas C. Gent
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Anaesthesiology Section, Vetsuisse Faculty, Department of Clinical Diagnostics and Services, University of Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
| | - Wolfger von der Behrens
- Institute of Neuroinformatics, Department of Information Technology and Electrical Engineering (D-ITET), ETH Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Eidgenössische Technische Hochschule Zürich (ETH), University of Zurich, Zurich, Switzerland
- *Correspondence: Wolfger von der Behrens
| |
Collapse
|
47
|
Heckelmann J, Weber Y. Einfluss von Medikamenten auf das EEG: Eine
Übersicht. KLIN NEUROPHYSIOL 2022. [DOI: 10.1055/a-1875-1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
ZusammenfassungEine Vielzahl von Präparaten mit Einfluss auf das zentrale Nervensystem,
insbesondere Medikamente, die zur Standard-Therapie auf neurologischen Intensiv-
und Überwachungsstationen gehören, haben einen Einfluss auf den
elektroenzephalograhischen (EEG) Befund. Diese Effekte reichen von geringen
Einflüssen auf Grundrhythmus und EEG-Amplituden bis zur
Auslösung von epileptiformer Aktivität und Anfallsmustern.
Kenntnisse über die zu erwartenden Veränderungen sind daher
relevant, um neben krankheitsassoziierten Auffälligkeiten im Rahmen der
Differentialdiagnostik auch medikamentöse Ursachen bedenken zu
können und etwaige therapeutische Konsequenzen einzuleiten. In dem
vorliegenden Übersichtartikel werden neben Einflüssen von
Analgosedierung und antikonvulsiven Medikamenten auch Effekte von Neuroleptika,
Antidepressiva, Immunsuppressiva sowie Antibiotika auf das EEG diskutiert.
Collapse
Affiliation(s)
- Jan Heckelmann
- Sektion Epileptologie und Klinik für Neurologie, Uniklinik RWTH
Aachen, Aachen
| | - Yvonne Weber
- Sektion Epileptologie und Klinik für Neurologie, Uniklinik RWTH
Aachen, Aachen
| |
Collapse
|
48
|
Rasulo FA, Hopkins P, Lobo FA, Pandin P, Matta B, Carozzi C, Romagnoli S, Absalom A, Badenes R, Bleck T, Caricato A, Claassen J, Denault A, Honorato C, Motta S, Meyfroidt G, Radtke FM, Ricci Z, Robba C, Taccone FS, Vespa P, Nardiello I, Lamperti M. Processed Electroencephalogram-Based Monitoring to Guide Sedation in Critically Ill Adult Patients: Recommendations from an International Expert Panel-Based Consensus. Neurocrit Care 2022; 38:296-311. [PMID: 35896766 PMCID: PMC10090014 DOI: 10.1007/s12028-022-01565-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/20/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The use of processed electroencephalography (pEEG) for depth of sedation (DOS) monitoring is increasing in anesthesia; however, how to use of this type of monitoring for critical care adult patients within the intensive care unit (ICU) remains unclear. METHODS A multidisciplinary panel of international experts consisting of 21 clinicians involved in monitoring DOS in ICU patients was carefully selected on the basis of their expertise in neurocritical care and neuroanesthesiology. Panelists were assigned four domains (techniques for electroencephalography [EEG] monitoring, patient selection, use of the EEG monitors, competency, and training the principles of pEEG monitoring) from which a list of questions and statements was created to be addressed. A Delphi method based on iterative approach was used to produce the final statements. Statements were classified as highly appropriate or highly inappropriate (median rating ≥ 8), appropriate (median rating ≥ 7 but < 8), or uncertain (median rating < 7) and with a strong disagreement index (DI) (DI < 0.5) or weak DI (DI ≥ 0.5 but < 1) consensus. RESULTS According to the statements evaluated by the panel, frontal pEEG (which includes a continuous colored density spectrogram) has been considered adequate to monitor the level of sedation (strong consensus), and it is recommended by the panel that all sedated patients (paralyzed or nonparalyzed) unfit for clinical evaluation would benefit from DOS monitoring (strong consensus) after a specific training program has been performed by the ICU staff. To cover the gap between knowledge/rational and routine application, some barriers must be broken, including lack of knowledge, validation for prolonged sedation, standardization between monitors based on different EEG analysis algorithms, and economic issues. CONCLUSIONS Evidence on using DOS monitors in ICU is still scarce, and further research is required to better define the benefits of using pEEG. This consensus highlights that some critically ill patients may benefit from this type of neuromonitoring.
Collapse
Affiliation(s)
- Frank A Rasulo
- Department of Anesthesiology and Intensive Care, Spedali Civili Hospital, Brescia, Italy. .,Department of Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy.
| | - Philip Hopkins
- Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Francisco A Lobo
- Institute of Anesthesiology, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Pierre Pandin
- Department of Anesthesia and Intensive Care, Erasme Hospital, Universitè Libre de Bruxelles, Brussels, Belgium
| | - Basil Matta
- Department of Anaesthesia and Intensive Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Carla Carozzi
- Department of Anesthesia and Intensive Care, Istituto Neurologico C. Besta, Milan, Italy
| | - Stefano Romagnoli
- Department of Anesthesia and Intensive Care, Careggi University Hospital, Florence, Italy
| | - Anthony Absalom
- Department of Anesthesiology, University Medical Center Groningen, Groningen, Netherlands
| | - Rafael Badenes
- Department of Anesthesia and Intensive Care, University of Valencia, Valencia, Spain
| | - Thomas Bleck
- Division of Stroke and Neurocritical Care, Department of Neurology, Northwestern University, Evanston, IL, USA
| | - Anselmo Caricato
- Department of Anesthesia and Intensive Care, Gemelli University Hospital, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Jan Claassen
- Department of Neurocritical Care, Columbia University Irving Medical Center, New York, NY, USA
| | - André Denault
- Critical Care Division, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Cristina Honorato
- Department of Anesthesiology and Critical Care, Universidad de Navarra, Pamplona, Spain
| | - Saba Motta
- Scientific Library, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Geert Meyfroidt
- Department of Intensive Care, University Hospitals Leuven and Laboratory of Intensive Care Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Finn Michael Radtke
- Department of Anesthesiology IRS, Nykøbing F. Hospital, Nykøbing Falster, Denmark
| | - Zaccaria Ricci
- Department of Pediatric Anesthesia, Meyer University Hospital of Florence, University of Florence, Florence, Italy
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, Policlinico San Martino and University of Genoa, Genoa, Italy
| | - Fabio S Taccone
- Department of Anesthesia and Intensive Care, Erasme Hospital, Universitè Libre de Bruxelles, Brussels, Belgium
| | - Paul Vespa
- Department of Neurosurgery and Neurocritical Care, Los Angeles Medical Center, Ronald Reagan University of California, Los Angeles, CA, USA
| | - Ida Nardiello
- Department of Anesthesiology and Intensive Care, Spedali Civili Hospital, Brescia, Italy
| | - Massimo Lamperti
- Institute of Anesthesiology, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
49
|
Safavynia SA, Goldstein PA, Evered LA. Mitigation of perioperative neurocognitive disorders: A holistic approach. Front Aging Neurosci 2022; 14:949148. [PMID: 35966792 PMCID: PMC9363758 DOI: 10.3389/fnagi.2022.949148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
William Morton introduced the world to ether anesthesia for use during surgery in the Bullfinch Building of the Massachusetts General Hospital on October 16, 1846. For nearly two centuries, the prevailing wisdom had been that the effects of general anesthetics were rapidly and fully reversible, with no apparent long-term adverse sequelae. Despite occasional concerns of a possible association between surgery and anesthesia with dementia since 1887 (Savage, 1887), our initial belief was robustly punctured following the publication in 1998 of the International Study of Post-Operative Cognitive Dysfunction [ISPOCD 1] study by Moller et al. (1998) in The Lancet, in which they demonstrated in a prospective fashion that there were in fact persistent adverse effects on neurocognitive function up to 3 months following surgery and that these effects were common. Since the publication of that landmark study, significant strides have been made in redefining the terminology describing cognitive dysfunction, identifying those patients most at risk, and establishing the underlying etiology of the condition, particularly with respect to the relative contributions of anesthesia and surgery. In 2018, the International Nomenclature Consensus Working Group proposed new nomenclature to standardize identification of and classify perioperative cognitive changes under the umbrella of perioperative neurocognitive disorders (PND) (Evered et al., 2018a). Since then, the new nomenclature has tried to describe post-surgical cognitive derangements within a unifying framework and has brought to light the need to standardize methodology in clinical studies and motivate such studies with hypotheses of PND pathogenesis. In this narrative review, we highlight the relevant literature regarding recent key developments in PND identification and management throughout the perioperative period. We provide an overview of the new nomenclature and its implications for interpreting risk factors identified by clinical association studies. We then describe current hypotheses for PND development, using data from clinical association studies and neurophysiologic data where appropriate. Finally, we offer broad clinical guidelines for mitigating PND in the perioperative period, highlighting the role of Brain Enhanced Recovery After Surgery (Brain-ERAS) protocols.
Collapse
Affiliation(s)
- Seyed A. Safavynia
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
| | - Peter A. Goldstein
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Lisbeth A. Evered
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Feil Family Brain & Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Department of Anaesthesia and Acute Pain Medicine, St. Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Critical Care, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Lisbeth A. Evered,
| |
Collapse
|
50
|
Long MHY, Lim EHL, Balanza GA, Allen JC, Purdon PL, Bong CL. Sevoflurane requirements during electroencephalogram (EEG)-guided vs standard anesthesia Care in Children: A randomized controlled trial. J Clin Anesth 2022; 81:110913. [PMID: 35772250 DOI: 10.1016/j.jclinane.2022.110913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
STUDY OBJECTIVES Intra-operative electroencephalographic (EEG) monitoring utilizing the spectrogram allows visualization of children's brain response during anesthesia and may complement routine cardiorespiratory monitoring to facilitate titration of anesthetic doses. We aimed to determine if EEG-guided anesthesia will result in lower sevoflurane requirements, lower incidence of burst suppression and improved emergence characteristics in children undergoing routine general anesthesia, compared to standard care. DESIGN Randomized controlled trial. SETTING Tertiary pediatric hospital. PATIENTS 200 children aged 1 to 6 years, ASA 1 or 2, undergoing routine sevoflurane anesthesia for minor surgery lasting 30 to 240 min. INTERVENTIONS Children were randomized to either EEG-guided anesthesia (EEG-G) or standard care (SC). EEG-G group had sevoflurane titrated to maintain continuous slow/delta oscillations on the raw EEG and spectrogram, aiming to avoid burst suppression and, as far as possible, maintain a patient state index (PSI) between 25 and50. SC group received standard anesthesia care and the anesthesia teams were blinded to EEG waveforms. MEASUREMENTS The primary outcomes were the average end-tidal sevoflurane concentration during induction and maintenance of anesthesia. Secondary outcomes include incidence and duration of intra-operative burst suppression and Pediatric Anesthesia Emergence Delirium (PAED) scores. RESULTS The EEG-G group received lower end-tidal sevoflurane concentrations during induction [4.80% vs 5.67%, -0.88% (-1.45, -0.31) p = 0.003] and maintenance of anesthesia [2.23% vs 2.38%, -0.15% (-0.25, -0.05) p = 0.005], and had a lower incidence of burst suppression [3.1% vs 10.9%, p = 0.044] compared to the SC group. PAED scores were similar between groups. Children <2 years old required higher average end-tidal sevoflurane concentrations, regardless of group. CONCLUSIONS EEG-guided anesthesia care reduces sevoflurane requirements in children undergoing general anesthesia, possibly lowering the incidence of burst suppression, without altering emergence characteristics. EEG monitoring allows direct visualization of brain responses in real time and allows clearer appreciation of varying sevoflurane requirements in children of different ages.
Collapse
Affiliation(s)
- Melody H Y Long
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore..
| | - Evangeline H L Lim
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore..
| | - Gustavo A Balanza
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - John C Allen
- Duke-NUS Medical School, Centre for Quantitative Medicine, 169857, Singapore.
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Choon Looi Bong
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore..
| |
Collapse
|