1
|
Thomas X. Promising Drugs Targeting Specific Mechanisms of Deregulation in T Cell Lineage Acute Lymphoblastic Leukemia. Oncol Ther 2025:10.1007/s40487-025-00339-1. [PMID: 40249557 DOI: 10.1007/s40487-025-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/03/2025] [Indexed: 04/19/2025] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) is a class of hematological malignancies predominantly affecting children, adolescents, and young adults, marked by aggressive behavior and poor clinical response, especially in relapsing cases. Advances in molecular biology for the last decade have led to the identification of potential targetable alterations, which should lead to the development of new therapies. T oncogenesis involves not only overexpression of some oncogenes, but also deregulation of some signaling pathways, epigenetic mechanisms, and apoptosis. The present review presents the promising therapeutic agents targeting these specific alterations involved in the development of T-ALL.
Collapse
Affiliation(s)
- Xavier Thomas
- Service d'hématologie Clinique, Bâtiment 1G, Department of Clinical Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, 165 Chemin du Grand Revoyet, 69495, Pierre-Bénite, France.
| |
Collapse
|
2
|
Koduru P, Chen W, Fuda F, Pacheco M, Garcia R. MYC-r with a non-IG partner concurrently with a cryptic t(12;21) in B-lymphoblastic leukemia: A case and prognostic significance. Cancer Genet 2025; 292-293:85-91. [PMID: 39983666 DOI: 10.1016/j.cancergen.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
B-lymphoblastic leukemia (B-ALL) in children is characterized by recurrent chromosomal rearrangements that mostly have prognostic value. MYC rearrangements (MYC-r), typically associated with Burkitt lymphoma or mature B-cell neoplasms are infrequent in B-ALL. We report here a unique case of childhood B-ALL with concurrent MYC-r with a non-IG partner and a cryptic t(12;21). Leukemic cells had lymphoblastic morphology. Immunophenotypically, leukemic blasts were CD10 (+, slightly bright), CD15 (few +), CD19 (+), CD20 (+, partial), CD22 (+), CD34 (-), CD38 (+, slightly variably), CD45 (+, partial), cytoplasmic CD79a (+), HLA-DR (+), surface Ig (-), MPO (-), and TdT (+, partially). This immunophenotype was consistent with B-ALL. Cytogenetically, the karyotype was complex including a t(4;8)(q31;q24), and FISH analysis showed MYC-r, ETV6::RUNX1 and loss of ETV6 allele. The patient has been in complete remission for 11 years following the diagnosis. We reviewed cases of B-ALL with double leukemogenic alterations and MYC-r with non-IG partners to understand the clinical outcome in these rare patients.
Collapse
Affiliation(s)
- Prasad Koduru
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Weina Chen
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Franklin Fuda
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Martha Pacheco
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA; Current address: St. Lukes Children's Cancer Institute, Boise, ID, USA
| | - Rolando Garcia
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Jepsen VH, Hanel A, Picard D, Bhave R, Hasselmann R, Mehtonen J, Schliehe‐Diecks J, Kath C, Suppiyar V, Prasad Y, Schaal K, Tu J, Rüchel N, Kameri E, Qin N, Wang H, Zhuang Z, Wagener R, Blümel L, Lautwein T, Hein D, Koppstein D, Kögler G, Remke M, Bhatia S, Heinäniemi M, Borkhardt A, Fischer U. H1-0 is a specific mediator of the repressive ETV6::RUNX1 transcriptional landscape in preleukemia and B cell acute lymphoblastic leukemia. Hemasphere 2025; 9:e70116. [PMID: 40177616 PMCID: PMC11962653 DOI: 10.1002/hem3.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
ETV6::RUNX1, the most common oncogenic fusion in pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL), induces a clinically silent preleukemic state that can persist in carriers for over a decade and may progress to overt leukemia upon acquisition of secondary lesions. The mechanisms contributing to quiescence of ETV6::RUNX1+ preleukemic cells still remain elusive. In this study, we identify linker histone H1-0 as a critical mediator of the ETV6::RUNX1+ preleukemic state by employing human -induced pluripotent stem cell (hiPSC) models engineered by using CRISPR/Cas9 gene editing. Global gene expression analysis revealed upregulation of H1-0 in ETV6::RUNX1+ hiPSCs that was preserved upon hematopoietic differentiation. Moreover, whole transcriptome data of 1,727 leukemia patient samples showed significantly elevated H1-0 levels in ETV6::RUNX1+ BCP-ALL compared to other leukemia entities. Using dual-luciferase promoter assays, we show that ETV6::RUNX1 induces H1-0 promoter activity. We further demonstrate that depletion of H1-0 specifically inhibits ETV6::RUNX1 signature genes, including RAG1 and EPOR. Single-cell sequencing showed that H1-0 is highly expressed in quiescent hematopoietic cells. Importantly, H1-0 protein levels correspond to susceptibility of BCP-ALL cells towards histone deacetylase inhibitors (HDACis) and combinatorial treatment using the H1-0-inducing HDACi Quisinostat showed promising synergism with established chemotherapeutic drugs. Taken together, our data identify H1-0 as a key regulator of the ETV6::RUNX1+ transcriptome and indicate that the addition of Quisinostat may be beneficial to target non-responsive or relapsing ETV6::RUNX1+ BCP-ALL.
Collapse
Affiliation(s)
- Vera H. Jepsen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Andrea Hanel
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Daniel Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
| | - Rigveda Bhave
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich Heine UniversityDüsseldorfGermany
| | - Rebecca Hasselmann
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Juha Mehtonen
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Julian Schliehe‐Diecks
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Carla‐Johanna Kath
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich Heine UniversityDüsseldorfGermany
| | - Vithusan Suppiyar
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Yash Prasad
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Katerina Schaal
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Jia‐Wey Tu
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Nadine Rüchel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Nan Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
- Spatial and Functional Screening Core facility (SFS‐CF), Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Herui Wang
- Neuro‐Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Zhengping Zhuang
- Neuro‐Oncology Branch, Center for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Rabea Wagener
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Lena Blümel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Tobias Lautwein
- Genomics Transcriptomics Laboratory, Biomedical Research CenterHeinrich Heine UniversityDüsseldorfGermany
| | - Daniel Hein
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - David Koppstein
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Gesine Kögler
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich Heine UniversityDüsseldorfGermany
| | - Marc Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
- Medical Faculty, Institute of NeuropathologyHeinrich Heine UniversityDüsseldorfGermany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Merja Heinäniemi
- Institute of Biomedicine, School of MedicineUniversity of Eastern FinlandKuopioFinland
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
- German Cancer Consortium (DKTK), Partner Site Essen/DüsseldorfDüsseldorfGermany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD)BonnGermany
| |
Collapse
|
4
|
Benítez L, Fischer U, Crispi F, Castro-Barquero S, Crovetto F, Larroya M, Youssef L, Kameri E, Castillo H, Bueno C, Casas R, Borras R, Vieta E, Estruch R, Menéndez P, Borkhardt A, Gratacós E. Modulation of the ETV6::RUNX1 Gene Fusion Prevalence in Newborns by Corticosteroid Use During Pregnancy. Int J Mol Sci 2025; 26:2971. [PMID: 40243620 PMCID: PMC11988504 DOI: 10.3390/ijms26072971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/18/2025] Open
Abstract
ETV6::RUNX1-positive pediatric acute lymphoblastic leukemia frequently has a prenatal origin and follows a two-hit model: a first somatic alteration leads to the formation of the oncogenic fusion gene ETV6::RUNX1 and the generation of a preleukemic clone in utero. Secondary hits after birth are necessary to convert the preleukemic clone into clinically overt leukemia. However, prenatal factors triggering the first hit have not yet been determined. Here, we explore the influence of maternal factors during pregnancy on the prevalence of the ETV6::RUNX1 fusion. To this end, we employed a nested interventional cohort study (IMPACT-BCN trial), including 1221 pregnancies (randomized into usual care, a Mediterranean diet, or mindfulness-based stress reduction) and determined the prevalence of the fusion gene in the DNA of cord blood samples at delivery (n = 741) using the state-of-the-art GIPFEL (genomic inverse PCR for exploration of ligated breakpoints) technique. A total of 6.5% (n = 48 of 741) of healthy newborns tested positive for ETV6::RUNX1. Our multiple regression analyses showed a trend toward lower ETV6::RUNX1 prevalence in offspring of the high-adherence intervention groups. Strikingly, corticosteroid use for lung maturation during pregnancy was significantly associated with ETV6::RUNX1 (adjusted OR 3.9, 95% CI 1.6-9.8) in 39 neonates, particularly if applied before 26 weeks of gestation (OR 7.7, 95% CI 1.08-50) or if betamethasone (OR 4.0, 95% CI 1.4-11.3) was used. Prenatal exposure to corticosteroids within a critical time window may therefore increase the risk of developing ETV6::RUNX1+ preleukemic clones and potentially leukemia after birth. Taken together, this study indicates that ETV6::RUNX1 preleukemia prevalence may be modulated and potentially prevented.
Collapse
Affiliation(s)
- Leticia Benítez
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (U.F.); (E.K.)
- German Cancer Consortium, Partner Site Essen-Düsseldorf, 40225 Düsseldorf, Germany
- Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Fàtima Crispi
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Sara Castro-Barquero
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Red Española de Terapias Avanzadas—Instituto de Salud Carlos III (ISCII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer(CIBER-ONC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Francesca Crovetto
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Marta Larroya
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Lina Youssef
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain; (C.B.); (P.M.)
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (U.F.); (E.K.)
- Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Helena Castillo
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain; (C.B.); (P.M.)
- Department of Biomedicine, School of Medicine, University of Barcelona, 08014 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Rosa Casas
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain;
- Institut de Recerca en Nutrició i Seguretat Alimentaria, University of Barcelona, 08014 Barcelona, Spain
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, 08014 Barcelona, Spain;
| | - Roger Borras
- Department of Internal Medicine, Hospital Clinic, University of Barcelona, 08014 Barcelona, Spain;
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red y Salud Mental, CIBERSAM, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Psychiatry and Psychology, Hospital Clinic, Neuroscience Institute, IDIBAPS, University of Barcelona, CIBERSAM, 08014 Barcelona, Spain
| | - Ramon Estruch
- Department of Biomedicine, School of Medicine, University of Barcelona, 08014 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain;
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, 08916 Barcelona, Spain; (C.B.); (P.M.)
- Department of Biomedicine, School of Medicine, University of Barcelona, 08014 Barcelona, Spain;
- Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany; (U.F.); (E.K.)
- German Cancer Consortium, Partner Site Essen-Düsseldorf, 40225 Düsseldorf, Germany
| | - Eduard Gratacós
- BCNatal|Fetal Medicine Research Center, Hospital Clínic and Hospital Sant Joan de Deu, University of Barcelona, 08950 Barcelona, Spain; (F.C.); (S.C.-B.); (F.C.); (M.L.); (L.Y.); (H.C.); (E.G.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| |
Collapse
|
5
|
Vrobelova K, Jakl L, Skorvaga M, Kosik P, Durdik M, Markova E, Jakubikova J, Holop M, Kubes M, Cermak M, Puskacova J, Kolenova A, Belyaev I. Genetic instability in HSPC subpopulations of umbilical cord blood from patients with childhood acute lymphoblastic leukemia. Sci Rep 2025; 15:8953. [PMID: 40089517 PMCID: PMC11910527 DOI: 10.1038/s41598-025-88204-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/24/2025] [Indexed: 03/17/2025] Open
Abstract
Preleukemic stem cells (PSC) containing preleukemic fusion genes (PFG) arise prenatally and represent the initial stage of acute lymphoblastic leukemia (ALL) development. Despite widespread efforts, the cell of origin of PFG is still unclear. For the first time, in order to identify the immunophenotype of the PSCs, different subpopulations of hematopoietic stem and progenitor cells (HSPC) of umbilical cord blood (UCB) from ALL pediatric patients and control healthy children were sorted and analyzed for the presence of diagnostically-relevant PFGs by fluorescent in situ hybridization (FISH). Representative FISH results were confirmed by RT-qPCR and validated by sequencing of the products. Not only did we identify likely subpopulations of TEL/AML1+ PSC to be CD34+ CD38+ and CD34+ CD38- cells, but we also found markedly increased instability of often associated with ALL genes in UCB HSPC subpopulations of ALL pediatric patients. Our data show that CD34+ CD38+ as well as CD34+ CD38- cells are prone to genetic instability and most likely represent the target for malignant transformation in the development of ALL. Overall, together with confirming the prenatal origin of PFGs, this study provides further insight into the preleukemic stage of ALL and shows that ALL is a potentially screen able disease.
Collapse
Affiliation(s)
- Katarina Vrobelova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia
| | - Lukas Jakl
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia
| | - Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia
| | - Matus Durdik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia
| | - Eva Markova
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia
| | - Jana Jakubikova
- Department of Tumor Immunology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Holop
- Stem Cell Lab, BIOM-R, Ltd., Bratislava, Slovakia
| | | | - Martin Cermak
- Department of Genetics, National Cancer Institute, Bratislava, Slovakia
| | - Judita Puskacova
- Department of Pediatric Hematology and Oncology, National Institute of Children´S Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, National Institute of Children´S Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
6
|
Oliver TRW, Behjati S. Developmental Dysregulation of Childhood Cancer. Cold Spring Harb Perspect Med 2024; 14:a041580. [PMID: 38692740 PMCID: PMC11529852 DOI: 10.1101/cshperspect.a041580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Most childhood cancers possess distinct clinicopathological profiles from those seen in adulthood, reflecting their divergent mechanisms of carcinogenesis. Rather than depending on the decades-long, stepwise accumulation of changes within a mature cell that defines adult carcinomas, many pediatric malignancies emerge rapidly as the consequence of random errors during development. These errors-whether they be genetic, epigenetic, or microenvironmental-characteristically block maturation, resulting in phenotypically primitive neoplasms. Only an event that falls within a narrow set of spatiotemporal parameters will forge a malignant clone; if it occurs too soon then the event might be lethal, or negatively selected against, while if it is too late or in an incorrectly primed precursor cell then the necessary intracellular conditions for transformation will not be met. The precise characterization of these changes, through the study of normal tissues and tumors from patients and model systems, will be essential if we are to develop new strategies to diagnose, treat, and perhaps even prevent childhood cancer.
Collapse
Affiliation(s)
- Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1RQ, United Kingdom
- Department of Paediatrics, University of Cambridge, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
- Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire CB2 0QQ, United Kingdom
| |
Collapse
|
7
|
Farrokhi A, Atre T, Salitra S, Aletaha M, Márquez AC, Gynn M, Fidanza M, Jo S, Rolf N, Simmons K, Duque-Afonso J, Cleary ML, Seif AE, Kollmann T, Gantt S, Reid GSD. Early-life infection depletes preleukemic cells in a mouse model of hyperdiploid B-cell acute lymphoblastic leukemia. Blood 2024; 144:809-821. [PMID: 38875504 PMCID: PMC11375503 DOI: 10.1182/blood.2024025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT Epidemiological studies report opposing influences of infection on childhood B-cell acute lymphoblastic leukemia (B-ALL). Although infections in the first year of life appear to exert the largest impact on leukemia risk, the effect of early pathogen exposure on the fetal preleukemia cells (PLC) that lead to B-ALL has yet to be reported. Using cytomegalovirus (CMV) infection as a model early-life infection, we show that virus exposure within 1 week of birth induces profound depletion of transplanted E2A-PBX1 and hyperdiploid B-ALL cells in wild-type recipients and in situ-generated PLC in Eμ-ret mice. The age-dependent depletion of PLC results from an elevated STAT4-mediated cytokine response in neonates, with high levels of interleukin (IL)-12p40-driven interferon (IFN)-γ production inducing PLC death. Similar PLC depletion can be achieved in adult mice by impairing viral clearance. These findings provide mechanistic support for potential inhibitory effects of early-life infection on B-ALL progression and could inform novel therapeutic or preventive strategies.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Maryam Aletaha
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Ana Citlali Márquez
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Matthew Gynn
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Division of Infectious Diseases, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| | - Jesus Duque-Afonso
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Alix E. Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA
| | - Tobias Kollmann
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Soren Gantt
- Department of Microbiology, Infection, and Immunology, Université de Montreal, Montreal, QC, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Oncology, Hematology and Bone Marrow Transplant, Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Miyauchi J. The hematopoietic microenvironment of the fetal liver and transient abnormal myelopoiesis associated with Down syndrome: A review. Crit Rev Oncol Hematol 2024; 199:104382. [PMID: 38723838 DOI: 10.1016/j.critrevonc.2024.104382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome is a distinct form of leukemia or preleukemia that mirrors the hematological features of acute megakaryoblastic leukemia. However, it typically resolves spontaneously in the early stages. TAM originates from fetal liver (FL) hematopoietic precursor cells and emerges due to somatic mutations in GATA1 in utero. In TAM, progenitor cells proliferate and differentiate into mature megakaryocytes and granulocytes. This process occurs both in vitro, aided by hematopoietic growth factors (HGFs) produced in the FL, and in vivo, particularly in specific anatomical sites like the FL and blood vessels. The FL's hematopoietic microenvironment plays a crucial role in TAM's pathogenesis and may contribute to its spontaneous regression. This review presents an overview of current knowledge regarding the unique features of TAM in relation to the FL hematopoietic microenvironment, focusing on the functions of HGFs and the pathological features of TAM.
Collapse
Affiliation(s)
- Jun Miyauchi
- Department of Diagnostic Pathology, Saitama City Hospital, Saitama, Saitama-ken, Japan.
| |
Collapse
|
9
|
Benítez L, Castro-Barquero S, Crispi F, Youssef L, Crovetto F, Fischer U, Kameri E, Bueno C, Camos M, Menéndez P, Heinäniemi M, Borkhardt A, Gratacós E. Maternal Lifestyle and Prenatal Risk Factors for Childhood Leukemia: A Review of the Existing Evidence. Fetal Diagn Ther 2024; 51:395-410. [PMID: 38710162 DOI: 10.1159/000539141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Acute leukemia is the most common pediatric cancer, with an incidence peak at 2-5 years of age. Despite the medical advances improving survival rates, children suffer from significant side effects of treatments as well as its high social and economic impact. The frequent prenatal origin of this developmental disease follows the two-hit carcinogenesis model established in the 70s: a first hit in prenatal life with the creation of genetic fusion lesions or aneuploidy in hematopoietic progenitor/stem cells, and usually a second hit in the pediatric age that converts the preleukemic clone into clinical leukemia. Previous research has mostly focused on postnatal environmental factors triggering the second hit. SUMMARY There is scarce evidence on prenatal risk factors associated with the first hit. Mainly retrospective case-control studies suggested several environmental and lifestyle determinants as risk factors. If these associations could be confirmed, interventions focused on modifying prenatal factors might influence the subsequent risk of leukemia during childhood and reveal unexplored research avenues for the future. In this review, we aim to comprehensively summarize the currently available evidence on prenatal risk factors for the development of childhood leukemia. According to the findings of this review, parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Other factors such as socioeconomic status, consumption of caffeinated beverages, and smoking consumption have been suggested with inconclusive evidence. Additionally, investigating the association between prenatal factors and genetic lesions associated with childhood leukemia at birth is crucial. Prospective studies evaluating the link between lifestyle factors and genetic alterations could provide indirect evidence supporting new research avenues for leukemia prevention. Maternal diet and lifestyle factors are modifiable determinants associated with adverse perinatal outcomes that could be also related to preleukemic lesions. KEY MESSAGES Parental age, ethnicity, maternal diet, folate intake, alcohol consumption, X-ray exposure, pesticides, perinatal infections, and fetal growth may have a significant role in the appearance of preleukemic lesions during fetal life. Dedicating efforts to studying maternal lifestyle during pregnancy and its association with genetic lesions leading to childhood leukemia could lead to novel prevention strategies.
Collapse
Affiliation(s)
- Leticia Benítez
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain,
| | - Sara Castro-Barquero
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Fàtima Crispi
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Lina Youssef
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Ersen Kameri
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Mireia Camos
- Department of Pediatric Oncology and Hematology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukemia Research Institute, Barcelona, Spain
- RICORS-TERAV Network, ISCIII, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
- Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Finland, Kuopio, Finland
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany
| | - Eduard Gratacós
- BCNatal Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Monovich AC, Gurumurthy A, Ryan RJH. The Diverse Roles of ETV6 Alterations in B-Lymphoblastic Leukemia and Other Hematopoietic Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:291-320. [PMID: 39017849 DOI: 10.1007/978-3-031-62731-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Genetic alterations of the repressive ETS family transcription factor gene ETV6 are recurrent in several categories of hematopoietic malignancy, including subsets of B-cell and T-cell acute lymphoblastic leukemias (B-ALL and T-ALL), myeloid neoplasms, and mature B-cell lymphomas. ETV6 is essential for adult hematopoietic stem cells (HSCs), contributes to specific functions of some mature immune cells, and plays a key role in thrombopoiesis as demonstrated by familial ETV6 mutations associated with thrombocytopenia and predisposition to hematopoietic cancers, particularly B-ALL. ETV6 appears to have a tumor suppressor role in several hematopoietic lineages, as demonstrated by recurrent somatic loss-of-function (LoF) and putative dominant-negative alterations in leukemias and lymphomas. ETV6 rearrangements contribute to recurrent fusion oncogenes such as the B-ALL-associated transcription factor (TF) fusions ETV6::RUNX1 and PAX5::ETV6, rare drivers such as ETV6::NCOA6, and a spectrum of tyrosine kinase gene fusions encoding hyperactive signaling proteins that self-associate via the ETV6 N-terminal pointed domain. Another subset of recurrent rearrangements involving the ETV6 gene locus appear to function primarily to drive overexpression of the partner gene. This review surveys what is known about the biochemical and genome regulatory properties of ETV6 as well as our current understanding of how alterations in these functions contribute to hematopoietic and nonhematopoietic cancers.
Collapse
Affiliation(s)
- Alexander C Monovich
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Russell J H Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Zapilko V, Moisio S, Parikka M, Heinäniemi M, Lohi O. Generation of a Zebrafish Knock-In Model Recapitulating Childhood ETV6::RUNX1-Positive B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:5821. [PMID: 38136366 PMCID: PMC10871125 DOI: 10.3390/cancers15245821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Approximately 25% of children with B-cell precursor acute lymphoblastic leukemia (pB-ALL) harbor the t(12;21)(p13;q22) translocation, leading to the ETV6::RUNX1 (E::R) fusion gene. This translocation occurs in utero, but the disease is much less common than the prevalence of the fusion in newborns, suggesting that secondary mutations are required for overt leukemia. The role of these secondary mutations remains unclear and may contribute to treatment resistance and disease recurrence. We developed a zebrafish model for E::R leukemia using CRISPR/Cas9 to introduce the human RUNX1 gene into zebrafish etv6 intron 5, resulting in E::R fusion gene expression controlled by the endogenous etv6 promoter. As seen by GFP fluorescence at a single-cell level, the model correctly expressed the fusion protein in the right places in zebrafish embryos. The E::R fusion expression induced an expansion of the progenitor cell pool and led to a low 2% frequency of leukemia. The introduction of targeted pax5 and cdkn2a/b gene mutations, mimicking secondary mutations, in the E::R line significantly increased the incidence in leukemia. Transcriptomics revealed that the E::R;pax5mut leukemias exclusively represented B-lineage disease. This novel E::R zebrafish model faithfully recapitulates human disease and offers a valuable tool for a more detailed analysis of disease biology in this subtype.
Collapse
Affiliation(s)
- Veronika Zapilko
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Sanni Moisio
- The Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (S.M.); (M.H.)
| | - Mataleena Parikka
- Laboratory of Infection Biology, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
| | - Merja Heinäniemi
- The Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (S.M.); (M.H.)
| | - Olli Lohi
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland;
- Department of Pediatrics and Tays Cancer Center, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| |
Collapse
|
12
|
Atre T, Farrokhi A, Jo S, Salitra S, Duque-Afonso J, Cleary ML, Rolf N, Reid GSD. Age and ligand specificity influence the outcome of pathogen engagement on preleukemic and leukemic B-cell precursor populations. Blood Adv 2023; 7:7087-7099. [PMID: 37824841 PMCID: PMC10694525 DOI: 10.1182/bloodadvances.2023010782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Common infections have long been proposed to play a role in the development of pediatric B-cell acute lymphoblastic leukemia (B-ALL). However, epidemiologic studies report contradictory effects of infection exposure on subsequent B-ALL risk, and no specific pathogen has been definitively linked to the disease. A unifying mechanism to explain the divergent outcomes could inform disease prevention strategies. We previously reported that the pattern recognition receptor (PRR) ligand Poly(I:C) exerted effects on B-ALL cells that were distinct from those observed with other nucleic acid-based PRR ligands. Here, using multiple double-stranded RNA (dsRNA) moieties, we show that the overall outcome of exposure to Poly(I:C) reflects the balance of opposing responses induced by its ligation to endosomal and cytoplasmic receptors. This PRR response biology is shared between mouse and human B-ALL and can increase leukemia-initiating cell burden in vivo during the preleukemia phase of B-ALL, primarily through tumor necrosis factor α signaling. The age of the responding immune system further influences the impact of dsRNA exposure on B-ALL cells in both mouse and human settings. Overall, our study demonstrates that potentially proleukemic and antileukemic effects can each be generated by the stimulation of pathogen recognition pathways and indicates a mechanistic explanation for the contrasting epidemiologic associations reported for infection exposure and B-ALL.
Collapse
Affiliation(s)
- Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jesus Duque-Afonso
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Michael L. Cleary
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Gregor S. D. Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
13
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
14
|
Mansur MB, deSouza NM, Natrajan R, Abegglen LM, Schiffman JD, Greaves M. Evolutionary determinants of curability in cancer. Nat Ecol Evol 2023; 7:1761-1770. [PMID: 37620552 DOI: 10.1038/s41559-023-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023]
Abstract
The emergence of drug-resistant cells, most of which have a mutated TP53 gene, prevents curative treatment in most advanced and common metastatic cancers of adults. Yet, a few, rarer malignancies, all of which are TP53 wild type, have high cure rates. In this Perspective, we discuss how common features of curable cancers offer insights into the evolutionary and developmental determinants of drug resistance. Acquired loss of TP53 protein function is the most common genetic change in cancer. This probably reflects positive selection in the context of strong ecosystem pressures including microenvironmental hypoxia. Loss of TP53's functions results in multiple fitness benefits and enhanced evolvability of cancer cells. TP53-null cells survive apoptosis, and tolerate potent oncogenic signalling, DNA damage and genetic instability. In addition, critically, they provide an expanded pool of self-renewing, or stem, cells, the primary units of evolutionary selection in cancer, making subsequent adaptation to therapeutic challenge by drug resistance highly probable. The exceptional malignancies that are curable, including the common genetic subtype of childhood acute lymphoblastic leukaemia and testicular seminoma, differ from the common adult cancers in originating prenatally from embryonic or fetal cells that are developmentally primed for TP53-dependent apoptosis. Plus, they have other genetic and phenotypic features that enable dissemination without exposure to selective pressures for TP53 loss, retaining their intrinsic drug hypersensitivity.
Collapse
Affiliation(s)
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
15
|
Casado-García A, Isidro-Hernández M, Alemán-Arteaga S, Ruiz-Corzo B, Riesco S, Prieto-Matos P, Sánchez L, Sánchez-García I, Vicente-Dueñas C. Lessons from mouse models in the impact of risk factors on the genesis of childhood B-cell leukemia. Front Immunol 2023; 14:1285743. [PMID: 37901253 PMCID: PMC10602728 DOI: 10.3389/fimmu.2023.1285743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL) stands as the primary contributor to childhood cancer-related mortality on a global scale. The development of the most conventional forms of this disease has been proposed to be conducted by two different steps influenced by different types of risk factors. The first step is led by a genetic insult that is presumably acquired before birth that transforms a healthy cell into a preleukemic one, which is maintained untransformed until the second step takes place. This necessary next step to leukemia development will be triggered by different risk factors to which children are exposed after birth. Murine models that recap the stepwise progression of B-ALL have been instrumental in identifying environmental and genetic factors that contribute to disease risk. Recent evidence from these models has demonstrated that specific environmental risk factors, such as common infections or gut microbiome dysbiosis, induce immune stress, driving the transformation of preleukemic cells, and harboring genetic alterations, into fully transformed leukemic cells. Such models serve as valuable tools for investigating the mechanisms underlying preleukemic events and can aid in the development of preventive approaches for leukemia in child. Here, we discuss the existing knowledge, learned from mouse models, of the impact of genetic and environmental risk factors on childhood B-ALL evolution and how B-ALL prevention could be reached by interfering with preleukemic cells.
Collapse
Affiliation(s)
- Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Belén Ruiz-Corzo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Susana Riesco
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Prieto-Matos
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Sánchez
- School of Law, University of Salamanca, Salamanca, Spain
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Carolina Vicente-Dueñas
- Department of Pediatrics, Hospital Universitario de Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
16
|
Fumero-Velázquez M, Hagstrom M, Dhillon S, Olivares S, Jennings LJ, Dittman D, Sukhanova M, Arva NC, Goldstein SD, Theos A, Pavlidakey P, Carr Z, Gerami P. Agminated presentation of fusion-driven melanocytic neoplasms. J Cutan Pathol 2023; 50:913-921. [PMID: 37407520 DOI: 10.1111/cup.14482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The conventionally understood pathogenesis of agminated Spitz nevi includes a mosaic HRAS mutation followed by copy number gains in 11p. However, we have recently observed agminated presentations of fusion-driven melanocytic neoplasms. METHODS We retrieved cases from our database of benign fusion-induced melanocytic neoplasms with an agminated presentation. Both the primary lesion and the secondary lesion were sequenced. TERT-promoter mutational testing and the melanoma fluorescence in situ hybridization assay were also performed. RESULTS Three cases were included. Two had a PRKCA fusion (partners ATP2B4 and MPZL1) and one had a ZCCHC8::ROS1 fusion. None of the cases met morphologic or molecular criteria for malignancy. There was no evidence of tumor progression in secondary lesions. The same fusion was identified in the primary and secondary lesions. None of the patients developed evidence of nodal or systemic metastasis. CONCLUSIONS We present accumulating evidence that fusion-driven melanocytic neoplasms can present with an agminated presentation. The differential diagnosis of an agminated presentation versus a locally recurrent or potentially locally metastatic tumor is critical, and accurate diagnosis has significant prognostic and therapeutic consequences for the patient. As with HRAS mutations, fusion-driven melanocytic tumors may have an agminated presentation.
Collapse
Affiliation(s)
- Mónica Fumero-Velázquez
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Hagstrom
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Soneet Dhillon
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shantel Olivares
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lawrence J Jennings
- Division of Molecular Pathology, Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - David Dittman
- Division of Molecular Pathology, Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Madina Sukhanova
- Division of Molecular Pathology, Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nicoleta C Arva
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University, Chicago, Illinois, USA
| | - Seth D Goldstein
- Department of Surgery, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Amy Theos
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Peter Pavlidakey
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachary Carr
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Pedram Gerami
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
17
|
Peppas I, Ford AM, Furness CL, Greaves MF. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat Rev Cancer 2023; 23:565-576. [PMID: 37280427 PMCID: PMC10243253 DOI: 10.1038/s41568-023-00584-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Here, we map emerging evidence suggesting that children with ALL at the time of diagnosis may have a delayed maturation of the gut microbiome compared with healthy children. This finding may be associated with early-life epidemiological factors previously identified as risk indicators for childhood ALL, including caesarean section birth, diminished breast feeding and paucity of social contacts. The consistently observed deficiency in short-chain fatty-acid-producing bacterial taxa in children with ALL has the potential to promote dysregulated immune responses and to, ultimately, increase the risk of transformation of preleukaemic clones in response to common infectious triggers. These data endorse the concept that a microbiome deficit in early life may contribute to the development of the major subtypes of childhood ALL and encourage the notion of risk-reducing microbiome-targeted intervention in the future.
Collapse
Affiliation(s)
- Ioannis Peppas
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
18
|
Streb P, Kowarz E, Benz T, Reis J, Marschalek R. How chromosomal translocations arise to cause cancer: Gene proximity, trans-splicing, and DNA end joining. iScience 2023; 26:106900. [PMID: 37378346 PMCID: PMC10291325 DOI: 10.1016/j.isci.2023.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/01/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
Chromosomal translocations (CTs) are a genetic hallmark of cancer. They could be identified as recurrent genetic aberrations in hemato-malignancies and solid tumors. More than 40% of all "cancer genes" were identified in recurrent CTs. Most of these CTs result in the production of oncofusion proteins of which many have been studied over the past decades. They influence signaling pathways and/or alter gene expression. However, a precise mechanism for how these CTs arise and occur in a nearly identical fashion in individuals remains to be elucidated. Here, we performed experiments that explain the onset of CTs: (1) proximity of genes able to produce prematurely terminated transcripts, which lead to the production of (2) trans-spliced fusion RNAs, and finally, the induction of (3) DNA double-strand breaks which are subsequently repaired via EJ repair pathways. Under these conditions, balanced chromosomal translocations could be specifically induced. The implications of these findings will be discussed.
Collapse
Affiliation(s)
- Patrick Streb
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Eric Kowarz
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Tamara Benz
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Jennifer Reis
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| | - Rolf Marschalek
- Goethe-University, Department Biochemistry, Chemistry & Pharmacy, Institute of Pharmaceutical Biology, Max-von-Laue-Street 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Toor RK, Semmes EC, Walsh KM, Permar SR, Giulino-Roth L. Does congenital cytomegalovirus infection contribute to the development of acute lymphoblastic leukemia in children? Curr Opin Virol 2023; 60:101325. [PMID: 37075577 DOI: 10.1016/j.coviro.2023.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 04/21/2023]
Abstract
Cytomegalovirus (CMV) is a ubiquitous herpesvirus that has a profound impact on the host immune system. Congenital cytomegalovirus (cCMV) infection modulates neonatal immune cell compartments, yet the full impact of in utero exposure on developing fetal immune cells remains poorly characterized. A series of recent studies have identified a potential link between cCMV infection and the development of acute lymphoblastic leukemia (ALL) in childhood. Here, we review the emerging evidence linking CMV and ALL risk, discuss what is known about the causes of childhood ALL, and propose how CMV infection in early life may confer increased ALL risk.
Collapse
|
20
|
Søegaard SH, Rostgaard K, Kamper-Jørgensen M, Schmiegelow K, Hjalgrim H. Childcare attendance and risk of childhood acute lymphoblastic leukaemia: A register study based on the Danish childcare database. Int J Cancer 2023; 152:1817-1826. [PMID: 36545888 DOI: 10.1002/ijc.34413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Childhood acute lymphoblastic leukaemia (ALL) is suggested to result from a dysregulated immune response to infections in children with a preleukaemic state. Childcare in early life supposedly may protect against childhood ALL by facilitating sufficient exposure to infections to stimulate and ensure normal maturation of the immune system. We assessed the association between childcare attendance before age 2 years and risk of childhood ALL in a register-based cohort study, including all children aged 2 to 14 years born in Denmark during 1991 to 2014 with available childcare information recorded in the Danish Childcare Database (n = 1 116 185). Cox regression was used to estimate hazard ratios (HRs) comparing children enrolled in childcare and children not enrolled before age 2 years. Further, we assessed the association according to age at enrolment, type of childcare facility and specific ALL subtypes. During 10 460 811 person-years of follow-up, 460 children developed ALL at ages 2 to 14 years. Of these, 57 (12.4%) never attended childcare before age 2 years compared with 10.6% in the total cohort. Compared with homecare, childcare attendance before age 2 years was associated with a statistically non-significantly, marginally decreased risk of childhood ALL with adjusted HR = 0.87 (95% confidence interval [CI]: 0.65-1.16). Risk estimates did neither vary statistically significantly by age at enrolment nor by type of childcare facility and also not between childhood ALL subtypes, including frequently prenatally initiated ALL subtypes. Results from this large, nationwide register-based study provided no evidence that childcare attendance in the first years of life protects against childhood ALL.
Collapse
Affiliation(s)
- Signe Holst Søegaard
- Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Klaus Rostgaard
- Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Kjeld Schmiegelow
- Department of Paediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hjalgrim
- Danish Cancer Society Research Centre, Danish Cancer Society, Copenhagen, Denmark.,Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Haematology, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
21
|
Mendoza-Castrejon J, Magee JA. Layered immunity and layered leukemogenicity: Developmentally restricted mechanisms of pediatric leukemia initiation. Immunol Rev 2023; 315:197-215. [PMID: 36588481 PMCID: PMC10301262 DOI: 10.1111/imr.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs) arise in successive waves during ontogeny, and their properties change significantly throughout life. Ontological changes in HSCs/MPPs underlie corresponding changes in mechanisms of pediatric leukemia initiation. As HSCs and MPPs progress from fetal to neonatal, juvenile and adult stages of life, they undergo transcriptional and epigenetic reprogramming that modifies immune output to meet age-specific pathogenic challenges. Some immune cells arise exclusively from fetal HSCs/MPPs. We propose that this layered immunity instructs cell fates that underlie a parallel layered leukemogenicity. Indeed, some pediatric leukemias, such as juvenile myelomonocytic leukemia, myeloid leukemia of Down syndrome, and infant pre-B-cell acute lymphoblastic leukemia, are age-restricted. They only present during infancy or early childhood. These leukemias likely arise from fetal progenitors that lose competence for transformation as they age. Other childhood leukemias, such as non-infant pre-B-cell acute lymphoblastic leukemia and acute myeloid leukemia, have mutation profiles that are common in childhood but rare in morphologically similar adult leukemias. These differences could reflect temporal changes in mechanisms of mutagenesis or changes in how progenitors respond to a given mutation at different ages. Interactions between leukemogenic mutations and normal developmental switches offer potential targets for therapy.
Collapse
Affiliation(s)
- Jonny Mendoza-Castrejon
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| | - Jeffrey A. Magee
- Department of Pediatrics, Division of Hematology and Oncology, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO 63110
| |
Collapse
|
22
|
Lin C, Schwarzbach A, Sanz J, Montesinos P, Stiff P, Parikh S, Brunstein C, Cutler C, Lindemans CA, Hanna R, Koh LP, Jagasia MH, Valcarcel D, Maziarz RT, Keating AK, Hwang WYK, Rezvani AR, Karras NA, Fernandes JF, Rocha V, Badell I, Ram R, Schiller GJ, Volodin L, Walters MC, Hamerschlak N, Cilloni D, Frankfurt O, McGuirk JP, Kurtzberg J, Sanz G, Simantov R, Horwitz ME. Multicenter Long-Term Follow-Up of Allogeneic Hematopoietic Cell Transplantation with Omidubicel: A Pooled Analysis of Five Prospective Clinical Trials. Transplant Cell Ther 2023; 29:338.e1-338.e6. [PMID: 36775201 PMCID: PMC10149622 DOI: 10.1016/j.jtct.2023.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Omidubicel is an umbilical cord blood (UCB)-derived ex vivo-expanded cellular therapy product that has demonstrated faster engraftment and fewer infections compared with unmanipulated UCB in allogeneic hematopoietic cell transplantation. Although the early benefits of omidubicel have been established, long-term outcomes remain unknown. We report on a planned pooled analysis of 5 multicenter clinical trials including 105 patients with hematologic malignancies or sickle cell hemoglobinopathy who underwent omidubicel transplantation at 26 academic transplantation centers worldwide. With a median follow-up of 22 months (range, .3 to 122 months), the 3-year estimated overall survival and disease-free survival were 62.5% and 54.0%, respectively. With up to 10 years of follow-up, omidubicel showed durable trilineage hematopoiesis. Serial quantitative assessments of CD3+, CD4+, CD8+, CD19+, CD116+CD56+, and CD123+ immune subsets revealed median counts remaining within normal ranges through up to 8 years of follow-up. Secondary graft failure occurred in 5 patients (5%) in the first year, with no late cases reported. One case of donor-derived myeloid neoplasm was reported at 40 months post-transplantation. This was also observed in a control arm patient who received only unmanipulated UCB. Overall, omidubicel demonstrated stable trilineage hematopoiesis, immune competence, and graft durability in extended follow-up.
Collapse
Affiliation(s)
- Chenyu Lin
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | | | - Jaime Sanz
- Hematology Department, Hospital Universitario y Polit
| | | | - Patrick Stiff
- Division of Hematology and Oncology, Loyola University Medical Center, Chicago, Illinois
| | | | - Claudio Brunstein
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota; Department of Hematology and Oncology, Cleveland Clinic, Taussig Cancer Institute, Cleveland, Ohio
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Caroline A Lindemans
- Department of Pediatric Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rabi Hanna
- Department of Pediatric Hematology Oncology and Bone Marrow Transplantation, Cleveland Clinic, Cleveland, Ohio
| | - Liang Piu Koh
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Madan H Jagasia
- Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Valcarcel
- Department of Haematology and Haemotherapy, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Richard T Maziarz
- Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Amy K Keating
- Blood and Marrow Transplantation, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - William Y K Hwang
- Department of Haematology, National Cancer Centre Singapore, Singapore; Department of Haematology, Singapore General Hospital, Singapore; Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Andrew R Rezvani
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University School of Medicine, Stanford, California
| | - Nicole A Karras
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California
| | | | | | - Isabel Badell
- Pediatric Haematology and Stem Cell Transplantation Unit, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Ron Ram
- BMT Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gary J Schiller
- Division of Hematology/Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Leonid Volodin
- Division of Hematology and Oncology, University of Virginia, Charlottesville, Virginia
| | - Mark C Walters
- Benioff Children's Hospital, University of California San Francisco, Oakland, California
| | | | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Olga Frankfurt
- Division of Hematology and Oncology, Northwestern University, Chicago, Illinois
| | - Joseph P McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Joanne Kurtzberg
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Guillermo Sanz
- Hematology Department, Hospital Universitario y Polit; Health Reserach Institute La Fe, Valencia, Spain; CIBERONC, ISCIII, Madrid, Spain
| | | | - Mitchell E Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
23
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
24
|
Aref S, El-Ghonemy M, Shimaa H, Darwish A, Abdelmabood S, Khaled N. Significance of CEBPE Gene Promoter Polymorphism (Rs2239630 G > A ) Assessment in Childhood B-cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2023; 45:e334-e338. [PMID: 36897378 DOI: 10.1097/mph.0000000000002648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/16/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND A significant association has been reported between CEBPE gene promoter polymorphisms (rs2239630 G > A ) and the incidence of B-cell acute lymphoblastic leukemia (B-ALL). However, no previous study on this issue has been included among the Egyptian cohort of pediatric patients with B-ALL. Therefore, this study was designed to address the associations between CEBPE polymorphisms and susceptibility to B-ALL, as well as its impact on the outcome of B-ALL Egyptian patients with B-ALL. PATIENTS AND METHODS In the current study, we evaluated the rs2239630 polymorphism in 225 pediatric patients and 228 controls to assess the association of different rs2239630 genotypes with childhood susceptibility to B-ALL and the impact on the outcome of the patients. RESULTS The frequency of the A allele was significantly higher in the cases of B-ALL compared with the control group ( P = 0.004). By analyzing different genotypes for the predictive value of disease development, the GA and AA genotypes have been identified to be the highest among multivariate factors with an odds ratio of 3.330 (95% CI: 1.105-10.035). Likewise, the A allele was significantly associated with the shortest overall survival. CONCLUSIONS CEBPE gene promoter polymorphism (rs2239630 G > A ) AA is frequently associated with B-ALL; and has the worst overall survival among the 3 genotypes, followed by the GA and GG genotypes ( P < 0.001).
Collapse
Affiliation(s)
| | | | | | - Ahmad Darwish
- Pediatrics Department; Hematology and Oncology unit; Faculty of Medicine; Mansoura University, Egypt
| | - Suzy Abdelmabood
- Pediatrics Department; Hematology and Oncology unit; Faculty of Medicine; Mansoura University, Egypt
| | | |
Collapse
|
25
|
Taghi Khani A, Kumar A, Sanchez Ortiz A, Radecki KC, Aramburo S, Lee SJ, Hu Z, Damirchi B, Lorenson MY, Wu X, Gu Z, Stohl W, Sanz I, Meffre E, Müschen M, Forman SJ, Koff JL, Walker AM, Swaminathan S. Isoform-specific knockdown of long and intermediate prolactin receptors interferes with evolution of B-cell neoplasms. Commun Biol 2023; 6:295. [PMID: 36941341 PMCID: PMC10027679 DOI: 10.1038/s42003-023-04667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.
Collapse
Affiliation(s)
- Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kelly C Radecki
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Soraya Aramburo
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sung June Lee
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zunsong Hu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Behzad Damirchi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Mary Y Lorenson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Zhaohui Gu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, 30322, USA
| | - Eric Meffre
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Markus Müschen
- Center of Molecular and Cellular Oncology, Yale School of Medicine, 300 George Street, 06520, New Haven, CT, USA
| | - Stephen J Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ameae M Walker
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
26
|
Kaczmarska A, Derebas J, Pinkosz M, Niedźwiecki M, Lejman M. The Landscape of Secondary Genetic Rearrangements in Pediatric Patients with B-Cell Acute Lymphoblastic Leukemia with t(12;21). Cells 2023; 12:cells12030357. [PMID: 36766699 PMCID: PMC9913634 DOI: 10.3390/cells12030357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The most frequent chromosomal rearrangement in childhood B-cell acute lymphoblastic leukemia (B-ALL) is translocation t(12;21)(p13;q22). It results in the fusion of the ETV6::RUNX1 gene, which is active in the regulation of multiple crucial cellular pathways. Recent studies hypothesize that many translocations are influenced by RAG-initiated deletions, as well as defects in the RAS and NRAS pathways. According to a "two-hit" model for the molecular pathogenesis of pediatric ETV6::RUNX1-positive B-ALL, the t(12;21) translocation requires leukemia-causing secondary mutations. Patients with ETV6::RUNX1 express up to 60 different aberrations, which highlights the heterogeneity of this B-ALL subtype and is reflected in differences in patient response to treatment and chances of relapse. Most studies of secondary genetic changes have concentrated on deletions of the normal, non-rearranged ETV6 allele. Other predominant structural changes included deletions of chromosomes 6q and 9p, loss of entire chromosomes X, 8, and 13, duplications of chromosome 4q, or trisomy of chromosomes 21 and 16, but the impact of these changes on overall survival remains unclarified. An equally genetically diverse group is the recently identified new B-ALL subtype ETV6::RUNX1-like ALL. In our review, we provide a comprehensive description of recurrent secondary mutations in pediatric B-ALL with t(12;21) to emphasize the value of investigating detailed molecular mechanisms in ETV6::RUNX1-positive B-ALL, both for our understanding of the etiology of the disease and for future clinical advances in patient treatment and management.
Collapse
Affiliation(s)
- Agnieszka Kaczmarska
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Justyna Derebas
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Michalina Pinkosz
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
27
|
Ford AM, Colman S, Greaves M. Covert pre-leukaemic clones in healthy co-twins of patients with childhood acute lymphoblastic leukaemia. Leukemia 2023; 37:47-52. [PMID: 36536099 PMCID: PMC9883163 DOI: 10.1038/s41375-022-01756-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Susan Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
28
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|
29
|
Nuclear corepressors NCOR1/NCOR2 regulate B cell development, maintain genomic integrity and prevent transformation. Nat Immunol 2022; 23:1763-1776. [PMID: 36316474 PMCID: PMC9772092 DOI: 10.1038/s41590-022-01343-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/16/2022] [Indexed: 12/15/2022]
Abstract
The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.
Collapse
|
30
|
Yasuda T, Sanada M, Tsuzuki S, Hayakawa F. Oncogenic lesions and molecular subtypes in adults with B-cell acute lymphoblastic leukemia. Cancer Sci 2022; 114:8-15. [PMID: 36106363 PMCID: PMC9807527 DOI: 10.1111/cas.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/12/2022] [Accepted: 09/04/2022] [Indexed: 01/07/2023] Open
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a genetically heterogeneous disease, is classified into different molecular subtypes that are defined by recurrent gene rearrangements, gross chromosomal abnormalities, or specific gene mutations. Cells with these genetic alterations acquire a leukemia-initiating ability and show unique expression profiles. The distribution of B-ALL molecular subtypes is greatly dependent on age, which also affects treatment responsiveness and long-term survival, partly accounting for the inferior outcome in adolescents and young adults (AYA) and (older) adults with B-ALL. Recent advances in sequencing technology, especially RNA sequencing and the application of these technologies in large B-ALL cohorts have uncovered B-ALL molecular subtypes prevalent in AYA and adults. These new insights supply more precise estimations of prognoses and targeted therapies informed by sequencing results, as well as a deeper understanding of the genetic basis of AYA/adult B-ALL. This article provides an account of these technological advances and an overview of the recent major findings of B-ALL molecular subtypes in adults.
Collapse
Affiliation(s)
- Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
31
|
Lessons Learned from Donor Cell-Derived Myeloid Neoplasms: Report of Three Cases and Review of the Literature. Life (Basel) 2022; 12:life12040559. [PMID: 35455050 PMCID: PMC9028156 DOI: 10.3390/life12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Donor-cell derived myeloid neoplasm (DDMN), a rare complication after allogeneic hematopoietic cell transplantation (HCT), is of interest for its potential to reveal donor-derived and host-derived factors that contribute to the pathogenesis of leukemia. The accurate diagnosis of donor-derived leukemias has been facilitated by the more frequent use of molecular techniques. In this study, we describe three additional cases of DDMN; the first reported case of donor-derived chronic myelomonocytic leukemia (CMML), one acute myeloid leukemia (AML) with t(8;21)(q22;22); RUNX1-RUNX1T1 and one donor-derived MDS with deletion 5q. A review of the cytogenetic profiles of previously reported DDMN indicates a significant contribution of therapy-related myeloid neoplasms. Cases with direct evidence of donor- or recipient-dependent factors are rare; a role of direct transfer of leukemic cells, genomic instability of the donor, abnormal gene methylation in donor cells, proleukemic potential of abnormal stromal niche, and the role of immunological surveillance after transplantation has been observed. The role of additional potential pathogenetic factors that are without clinically observed evidence are also reviewed.
Collapse
|
32
|
Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol 2022; 32:338-350. [PMID: 35144882 DOI: 10.1016/j.tcb.2022.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
Aging is a universal biological process that increases the risk of multiple diseases including cancer. Growing evidence shows that alterations in the genome and epigenome, driven by similar mechanisms, are found in both aged cells and cancer cells. In this review, we detail the genetic and epigenetic changes associated with normal aging and the mechanisms responsible for these changes. By highlighting genetic and epigenetic alterations in the context of tumorigenesis, cancer progression, and the aging tumor microenvironment, we examine the possible impacts of the normal aging process on malignant transformation. Finally, we examine the implications of age-related genetic and epigenetic alterations in both tumors and patients for the treatment of cancer.
Collapse
|
33
|
Jassinskaja M, Hansson J. The Opportunity of Proteomics to Advance the Understanding of Intra- and Extracellular Regulation of Malignant Hematopoiesis. Front Cell Dev Biol 2022; 10:824098. [PMID: 35350382 PMCID: PMC8957922 DOI: 10.3389/fcell.2022.824098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal and adult hematopoiesis are regulated by largely distinct sets of cell-intrinsic gene regulatory networks as well as extracellular cues in their respective microenvironment. These ontogeny-specific programs drive hematopoietic stem and progenitor cells (HSPCs) in fetus and adult to divergent susceptibility to initiation and progression of hematological malignancies, such as leukemia. Elucidating how leukemogenic hits disturb the intra- and extracellular programs in HSPCs along ontogeny will provide a better understanding of the causes for age-associated differences in malignant hematopoiesis and facilitate the improvement of strategies for prevention and treatment of pediatric and adult acute leukemia. Here, we review current knowledge of the intrinsic and extrinsic programs regulating normal and malignant hematopoiesis, with a particular focus on the differences between infant and adult acute leukemia. We discuss the recent advances in mass spectrometry-based proteomics and its opportunity for resolving the interplay of cell-intrinsic and niche-associated factors in regulating malignant hematopoiesis.
Collapse
Affiliation(s)
- Maria Jassinskaja
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden.,York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Jenny Hansson
- Lund Stem Cell Center, Division of Molecular Hematology, Lund University, Lund, Sweden
| |
Collapse
|
34
|
Watt SM, Hua P, Roberts I. Increasing Complexity of Molecular Landscapes in Human Hematopoietic Stem and Progenitor Cells during Development and Aging. Int J Mol Sci 2022; 23:3675. [PMID: 35409034 PMCID: PMC8999121 DOI: 10.3390/ijms23073675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The past five decades have seen significant progress in our understanding of human hematopoiesis. This has in part been due to the unprecedented development of advanced technologies, which have allowed the identification and characterization of rare subsets of human hematopoietic stem and progenitor cells and their lineage trajectories from embryonic through to adult life. Additionally, surrogate in vitro and in vivo models, although not fully recapitulating human hematopoiesis, have spurred on these scientific advances. These approaches have heightened our knowledge of hematological disorders and diseases and have led to their improved diagnosis and therapies. Here, we review human hematopoiesis at each end of the age spectrum, during embryonic and fetal development and on aging, providing exemplars of recent progress in deciphering the increasingly complex cellular and molecular hematopoietic landscapes in health and disease. This review concludes by highlighting links between chronic inflammation and metabolic and epigenetic changes associated with aging and in the development of clonal hematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9BQ, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, North Terrace, Adelaide 5005, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide 5001, Australia
| | - Peng Hua
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China;
| | - Irene Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, and NIHR Oxford Biomedical Research Centre Haematology Theme, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Department of Paediatrics and NIHR Oxford Biomedical Research Centre Haematology Theme, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
35
|
Neveu B, Richer C, Cassart P, Caron M, Jimenez-Cortes C, St-Onge P, Fuchs C, Garnier N, Gobeil S, Sinnett D. Identification of new ETV6 modulators through a high-throughput functional screening. iScience 2022; 25:103858. [PMID: 35198911 PMCID: PMC8851229 DOI: 10.1016/j.isci.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/01/2022] [Accepted: 01/28/2022] [Indexed: 12/02/2022] Open
Abstract
ETV6 transcriptional activity is critical for proper blood cell development in the bone marrow. Despite the accumulating body of evidence linking ETV6 malfunction to hematological malignancies, its regulatory network remains unclear. To uncover genes that modulate ETV6 repressive transcriptional activity, we performed a specifically designed, unbiased genome-wide shRNA screen in pre-B acute lymphoblastic leukemia cells. Following an extensive validation process, we identified 13 shRNAs inducing overexpression of ETV6 transcriptional target genes. We showed that the silencing of AKIRIN1, COMMD9, DYRK4, JUNB, and SRP72 led to an abrogation of ETV6 repressive activity. We identified critical modulators of the ETV6 function which could participate in cellular transformation through the ETV6 transcriptional network. We develop a genome-wide shRNAs screen for ETV6 modulators The screen uncovered 13 novel putative ETV6 modulator genes The modulators demonstrated a broad impact on the ETV6 transcriptional network T-ALL cells results suggest modulators are conserved in other cellular contexts
Collapse
Affiliation(s)
- Benjamin Neveu
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Chantal Richer
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Pauline Cassart
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Maxime Caron
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Camille Jimenez-Cortes
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Molecular Biology Program, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Pascal St-Onge
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Claire Fuchs
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Nicolas Garnier
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
| | - Stéphane Gobeil
- CHU de Québec-Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Corresponding author
| | - Daniel Sinnett
- Sainte-Justine University Health Center Research Center, Montreal, QC H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
- Corresponding author
| |
Collapse
|
36
|
Arnautou P, Quang VT, Konopacki J, Chevillon F, Bories D, Sloma I, Malfuson JV. Leukaemic evolution of rare donor CSF3R germline mutation after umbilical cord blood transplant. Br J Haematol 2022; 197:e65-e68. [PMID: 35178734 DOI: 10.1111/bjh.18078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Violaine Tran Quang
- Département d'hématologie et d'immunologie biologiques, Hôpital Henri Mondor, APHP, Créteil, France
| | | | | | - Dominique Bories
- Département d'hématologie et d'immunologie biologiques, Hôpital Henri Mondor, APHP, Créteil, France
| | - Ivan Sloma
- Département d'hématologie et d'immunologie biologiques, Hôpital Henri Mondor, APHP, Créteil, France
| | | |
Collapse
|
37
|
Bertuccio SN, Leardini D, Messelodi D, Anselmi L, Manente F, Ragni F, Serravalle S, Masetti R, Pession A. Are Induced Pluripotent Stem Cells a Step towards Modeling Pediatric Leukemias? Cells 2022; 11:cells11030476. [PMID: 35159287 PMCID: PMC8833985 DOI: 10.3390/cells11030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Despite enormous improvements in pre-clinical and clinical research, acute leukemia still represents an open challenge for pediatric hematologists; both for a significant relapse rate and for long term therapy-related sequelae. In this context, the use of an innovative technology, such as induced pluripotent stem cells (iPSCs), allows to finely reproduce the primary features of the malignancy and can be exploited as a model to study the onset and development of leukemia in vitro. The aim of this review is to explore the recent literature describing iPSCs as a key tool to study different types of hematological malignancies, comprising acute myeloid leukemia, non-down syndrome acute megakaryoblastic leukemia, B cell acute lymphoblastic leukemia, and juvenile myelomonocytic leukemia. This model demonstrates a positive impact on pediatric hematological diseases, especially in those affecting infants whose onsets is found in fetal hematopoiesis. This evidence highlights the importance of achieving an in vitro representation of the human embryonic hematopoietic development and timing-specific modifications, either genetic or epigenetic. Moreover, further insights into clonal evolution studies shed light in the way of a new precision medicine era, where patient-oriented decisions and therapies could further improve the outcome of pediatric cases. Nonetheless, we will also discuss here the difficulties and limitations of this model.
Collapse
Affiliation(s)
- Salvatore Nicola Bertuccio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
| | - Davide Leardini
- Specialty School of Pediatrics, University of Bologna, 40138 Bologna, Italy;
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Daria Messelodi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
- Correspondence: (D.M.); (L.A.)
| | - Laura Anselmi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
- Correspondence: (D.M.); (L.A.)
| | - Francesca Manente
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
| | - Federico Ragni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
| | - Salvatore Serravalle
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Riccardo Masetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; (S.N.B.); (F.M.); (F.R.); (R.M.)
- Pediatric Oncology and Hematology Unit “Lalla Seràgnoli,” Pediatric Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Pession
- Division of Pediatrics, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
38
|
Cardesa-Salzmann TM, Simon A, Graf N. Antibiotics in early life and childhood pre-B-ALL. Reasons to analyze a possible new piece in the puzzle. Discov Oncol 2022; 13:5. [PMID: 35201533 PMCID: PMC8777491 DOI: 10.1007/s12672-022-00465-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer with precursor B-cell ALL (pB-ALL) accounting for ~ 85% of the cases. Childhood pB-ALL development is influenced by genetic susceptibility and host immune responses. The role of the intestinal microbiome in leukemogenesis is gaining increasing attention since Vicente-Dueñas' seminal work demonstrated that the gut microbiome is distinct in mice genetically predisposed to ALL and that the alteration of this microbiome by antibiotics is able to trigger pB-ALL in Pax5 heterozygous mice in the absence of infectious stimuli. In this review we provide an overview on novel insights on the role of the microbiome in normal and preleukemic hematopoiesis, inflammation, the effect of dysbiosis on hematopoietic stem cells and the emerging importance of the innate immune responses in the conversion from preleukemic to leukemic state in childhood ALL. Since antibiotics, which represent one of the most widely used medical interventions, alter the gut microbial composition and can cause a state of dysbiosis, this raises exciting epidemiological questions regarding the implications for antibiotic use in early life, especially in infants with a a preleukemic "first hit". Sheading light through a rigorous study on this piece of the puzzle may have broad implications for clinical practice.
Collapse
Affiliation(s)
- T. M. Cardesa-Salzmann
- Department of Pediatric Hematology and Oncology, Universitätsklinikum des Saarlandes, Homburg, Saarland Germany
| | - A. Simon
- Department of Pediatric Hematology and Oncology, Universitätsklinikum des Saarlandes, Homburg, Saarland Germany
| | - N. Graf
- Department of Pediatric Hematology and Oncology, Universitätsklinikum des Saarlandes, Homburg, Saarland Germany
| |
Collapse
|
39
|
Schmidt JA, Hornhardt S, Erdmann F, Sánchez-García I, Fischer U, Schüz J, Ziegelberger G. Risk Factors for Childhood Leukemia: Radiation and Beyond. Front Public Health 2021; 9:805757. [PMID: 35004601 PMCID: PMC8739478 DOI: 10.3389/fpubh.2021.805757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Childhood leukemia (CL) is undoubtedly caused by a multifactorial process with genetic as well as environmental factors playing a role. But in spite of several efforts in a variety of scientific fields, the causes of the disease and the interplay of possible risk factors are still poorly understood. To push forward the research on the causes of CL, the German Federal Office for Radiation Protection has been organizing recurring international workshops since 2008 every two to three years. In November 2019 the 6th International Workshop on the Causes of CL was held in Freising and brought together experts from diverse disciplines. The workshop was divided into two main parts focusing on genetic and environmental risk factors, respectively. Two additional special sessions addressed the influence of natural background radiation on the risk of CL and the progress in the development of mouse models used for experimental studies on acute lymphoblastic leukemia, the most common form of leukemia worldwide. The workshop presentations highlighted the role of infections as environmental risk factor for CL, specifically for acute lymphoblastic leukemia. Major support comes from two mouse models, the Pax5+/- and Sca1-ETV6-RUNX1 mouse model, one of the major achievements made in the last years. Mice of both predisposed models only develop leukemia when exposed to common infections. These results emphasize the impact of gene-environment-interactions on the development of CL and warrant further investigation of such interactions - especially because genetic predisposition is detected with increasing frequency in CL. This article summarizes the workshop presentations and discusses the results in the context of the international literature.
Collapse
Affiliation(s)
- Janine-Alison Schmidt
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Sabine Hornhardt
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Friederike Erdmann
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Salamanca, Spain
| | - Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer, World Health Organization (IARC/WHO), Lyon, France
| | - Gunde Ziegelberger
- Department of Effects and Risks of Ionizing and Non-ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| |
Collapse
|
40
|
Poincaré Maps and Aperiodic Oscillations in Leukemic Cell Proliferation Reveal Chaotic Dynamics. Cells 2021; 10:cells10123584. [PMID: 34944093 PMCID: PMC8700028 DOI: 10.3390/cells10123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
Biological systems are dynamic systems featuring two very common characteristics; Initial conditions and progression over time. Conceptualizing this on tumour models it can lead to important conclusions about disease progression, as well as the disease's "starting point". In the present study we tried to answer two questions: (a) which are the evolving properties of proliferating tumour cells that started from different initial conditions and (b) we have attempted to prove that cell proliferation follows chaotic orbits and it can be described by the use of Poincaré maps. As a model we have used the acute lymphoblastic leukemia cell line CCRF-CEM. Measurements of cell population were taken at certain time points every 24 h or 48 h. In addition to the population measurements flow cytometry studies have been conducted in order to examine the apoptotic and necrotic rate of the system and also the DNA content of the cells as they progress through. The cells exhibited a proliferation rate of nonlinear nature with aperiodic oscillatory behavior. In addition to that, the (positive) Lyapunov indices and the Poincaré representations in phase-space that we performed confirmed the presence of chaotic orbits. Several studies have dealt with the complex dynamic behaviour of animal populations, but few with cellular systems. This type of approach could prove useful towards the understanding of leukemia dynamics, with particular interest in the understanding of leukemia onset and progression.
Collapse
|
41
|
Aldoss I, Clark M, Marcucci G, Forman SJ. Donor derived leukemia in allogeneic transplantation. Leuk Lymphoma 2021; 62:2823-2830. [PMID: 34713775 DOI: 10.1080/10428194.2021.1929966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) is a curative option for the treatment of eligible patients with hematological malignancies. This modality confers a risk for life-threatening complications, including the rare and underdiagnosed complication of donor-derived leukemia (DDL). DDL differs from relapse of the original malignancy in that DDL originates from the donor stem cells and is unrelated to the original diagnosis. Because DDL may be the same lineage as the original diagnosis, it is difficult to identify these cases and many remain unrecognized. There is no consensus of how to approach the treatment of patients with DDL, and their prognosis is poor considering that patients with DDL have already been treated for their original leukemia and have undergone alloHCT. DDL occurs following transplants using any donor stem cell source (bone marrow, peripheral blood and cord blood) and any donor type (matched/unmatched, related/unrelated and haploidentical). Both donor and recipient factors contribute to the development of DDL, and a better understanding of these factors is crucial to reduce the risk for the development of DDL. In this review, we provide an overview of DDL, including the incidence, diagnosis, etiology, prognosis, and treatment.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Mary Clark
- Department of Clinical and Translational Project Development, City of Hope, Duarte, CA, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope, Duarte, CA, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| |
Collapse
|
42
|
Rechavi Y, Rechavi G, Rechavi E. Origin of childhood leukaemia: COVID-19 pandemic puts the 'delayed infection' hypothesis to the test. Intern Med J 2021; 51:1761-1762. [PMID: 34664374 PMCID: PMC8653330 DOI: 10.1111/imj.15506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Yoav Rechavi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Rechavi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Erez Rechavi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel.,The Talpiot Medical Leadership Program, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
43
|
Spitzer B, Levine RL. Toward More Complete Prognostication for Patients with Clonal Hematopoiesis. Blood Cancer Discov 2021; 2:192-194. [PMID: 34661154 DOI: 10.1158/2643-3230.bcd-21-0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
The study of clonal hematopoiesis is rapidly evolving, with the highest prevalence in aging populations and wide-ranging implications for health and disease, including an increased risk of subsequent myeloid malignancies and cardiovascular disease. In their article, Feusier and colleagues report on an expanded driver mutation list for capture of higher-risk clonal hematopoiesis mutations implicated in leukemia transformation. They also describe the prevalence of clonal hematopoiesis in several additional large studies, including, most importantly, in the pediatric context, which has not yet been extensively studied with respect to clonal hematopoiesis and clonal hematopoiesis-related sequelae. See related article by Feusier et al., p. 226.
Collapse
Affiliation(s)
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
44
|
Cobaleda C, Vicente-Dueñas C, Sanchez-Garcia I. Infectious triggers and novel therapeutic opportunities in childhood B cell leukaemia. Nat Rev Immunol 2021; 21:570-581. [PMID: 33558682 DOI: 10.1038/s41577-021-00505-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
B cell acute lymphoblastic leukaemia (B-ALL) is the most common form of childhood cancer. Although treatment has advanced remarkably in the past 50 years, it still fails in ~20% of patients. Recent studies revealed that more than 5% of healthy newborns carry preleukaemic clones that originate in utero, but only a small percentage of these carriers will progress to overt B-ALL. The drivers of progression are unclear, but B-ALL incidence seems to be increasing in parallel with the adoption of modern lifestyles. Emerging evidence shows that a major driver for the conversion from the preleukaemic state to the B-ALL state is exposure to immune stressors, such as infection. Here, we discuss our current understanding of the environmental triggers and genetic predispositions that may lead to B-ALL, highlighting lessons from epidemiology, the clinic and animal models, and identifying priority areas for future research.
Collapse
Affiliation(s)
- Cesar Cobaleda
- Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa, CSIC and Universidad Autónoma de Madrid, Madrid, Spain.
| | | | - Isidro Sanchez-Garcia
- Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC and Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
45
|
Mukherjee S, Detroja R, Balamurali D, Matveishina E, Medvedeva Y, Valencia A, Gorohovski A, Frenkel-Morgenstern M. Computational analysis of sense-antisense chimeric transcripts reveals their potential regulatory features and the landscape of expression in human cells. NAR Genom Bioinform 2021; 3:lqab074. [PMID: 34458728 PMCID: PMC8386243 DOI: 10.1093/nargab/lqab074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/02/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells. Subsequently, numerous SAS chimeras have been reported in the ChiTaRS-2.1 database. However, the landscape of their expression in human cells and functional aspects are still unknown. We found that longer palindromic sequences are a unique feature of SAS chimeras. Structural analysis indicates that a long hairpin-like structure formed by many consecutive Watson-Crick base pairs appears because of these long palindromic sequences, which possibly play a similar role as double-stranded RNA (dsRNA), interfering with gene expression. RNA-RNA interaction analysis suggested that SAS chimeras could significantly interact with their parental mRNAs, indicating their potential regulatory features. Here, 267 SAS chimeras were mapped in RNA-seq data from 16 healthy human tissues, revealing their expression in normal cells. Evolutionary analysis suggested the positive selection favoring sense-antisense fusions that significantly impacted the evolution of their function and structure. Overall, our study provides detailed insight into the expression landscape of SAS chimeras in human cells and identifies potential regulatory features.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Rajesh Detroja
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Deepak Balamurali
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Elena Matveishina
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russian Federation
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russian Federation
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russian Federation
- Department of Biomedical Physics, Moscow Institute of Technology, Dolgoprudny 141701, Russian Federation
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Alessandro Gorohovski
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| |
Collapse
|
46
|
Haas OA. Somatic Sex: On the Origin of Neoplasms With Chromosome Counts in Uneven Ploidy Ranges. Front Cell Dev Biol 2021; 9:631946. [PMID: 34422788 PMCID: PMC8373647 DOI: 10.3389/fcell.2021.631946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 01/09/2023] Open
Abstract
Stable aneuploid genomes with nonrandom numerical changes in uneven ploidy ranges define distinct subsets of hematologic malignancies and solid tumors. The idea put forward herein suggests that they emerge from interactions between diploid mitotic and G0/G1 cells, which can in a single step produce all combinations of mono-, di-, tri-, tetra- and pentasomic paternal/maternal homologue configurations that define such genomes. A nanotube-mediated influx of interphase cell cytoplasm into mitotic cells would thus be responsible for the critical nondisjunction and segregation errors by physically impeding the proper formation of the cell division machinery, whereas only a complete cell fusion can simultaneously generate pentasomies, uniparental trisomies as well as biclonal hypo- and hyperdiploid cell populations. The term "somatic sex" was devised to accentuate the similarities between germ cell and somatic cell fusions. A somatic cell fusion, in particular, recapitulates many processes that are also instrumental in the formation of an abnormal zygote that involves a diploid oocyte and a haploid sperm, which then may further develop into a digynic triploid embryo. Despite their somehow deceptive differences and consequences, the resemblance of these two routes may go far beyond of what has hitherto been appreciated. Based on the arguments put forward herein, I propose that embryonic malignancies of mesenchymal origin with these particular types of aneuploidies can thus be viewed as the kind of flawed somatic equivalent of a digynic triploid embryo.
Collapse
Affiliation(s)
- Oskar A Haas
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
47
|
Rodríguez-Hernández G, Casado-García A, Isidro-Hernández M, Picard D, Raboso-Gallego J, Alemán-Arteaga S, Orfao A, Blanco O, Riesco S, Prieto-Matos P, García Criado FJ, García Cenador MB, Hock H, Enver T, Sanchez-Garcia I, Vicente-Dueñas C. The Second Oncogenic Hit Determines the Cell Fate of ETV6-RUNX1 Positive Leukemia. Front Cell Dev Biol 2021; 9:704591. [PMID: 34336858 PMCID: PMC8320889 DOI: 10.3389/fcell.2021.704591] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022] Open
Abstract
ETV6-RUNX1 is almost exclusively associated with childhood B-cell acute lymphoblastic leukemia (B-ALL), but the consequences of ETV6-RUNX1 expression on cell lineage decisions during B-cell leukemogenesis are completely unknown. Clinically silent ETV6-RUNX1 preleukemic clones are frequently found in neonatal cord blood, but few carriers develop B-ALL as a result of secondary genetic alterations. The understanding of the mechanisms underlying the first transforming steps could greatly advance the development of non-toxic prophylactic interventions. Using genetic lineage tracing, we examined the capacity of ETV6-RUNX1 to instruct a malignant phenotype in the hematopoietic lineage by cell-specific Cre-mediated activation of ETV6-RUNX1 from the endogenous Etv6 gene locus. Here we show that, while ETV6-RUNX1 has the propensity to trigger both T- and B-lymphoid malignancies, it is the second hit that determines tumor cell identity. To instigate leukemia, both oncogenic hits must place early in the development of hematopoietic/precursor cells, not in already committed B-cells. Depending on the nature of the second hit, the resulting B-ALLs presented distinct entities that were clearly separable based on their gene expression profiles. Our findings give a novel mechanistic insight into the early steps of ETV6-RUNX1+ B-ALL development and might have major implications for the potential development of ETV6-RUNX1+ B-ALL prevention strategies.
Collapse
Affiliation(s)
- Guillermo Rodríguez-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Ana Casado-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Marta Isidro-Hernández
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Daniel Picard
- Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Javier Raboso-Gallego
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Silvia Alemán-Arteaga
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Servicio de Citometría, Departamento de Medicina, CIBERONC (CB16/12/00400), and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Oscar Blanco
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Departamento de Anatomía Patológica, Universidad de Salamanca, Salamanca, Spain
| | - Susana Riesco
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Pablo Prieto-Matos
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Francisco Javier García Criado
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - María Begoña García Cenador
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Departamento de Cirugía, Universidad de Salamanca, Salamanca, Spain
| | - Hanno Hock
- Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, and Harvard Stem Cell Institute, Boston, MA, United States
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Isidro Sanchez-Garcia
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain.,Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Carolina Vicente-Dueñas
- Institute for Biomedical Research of Salamanca, Salamanca, Spain.,Department of Pediatrics, Hospital Universitario de Salamanca, Salamanca, Spain
| |
Collapse
|
48
|
Xu K, Li S, Whitehead TP, Pandey P, Kang AY, Morimoto LM, Kogan SC, Metayer C, Wiemels JL, de Smith AJ. Epigenetic Biomarkers of Prenatal Tobacco Smoke Exposure Are Associated with Gene Deletions in Childhood Acute Lymphoblastic Leukemia. Cancer Epidemiol Biomarkers Prev 2021; 30:1517-1525. [PMID: 34020997 DOI: 10.1158/1055-9965.epi-21-0009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Parental smoking is implicated in the etiology of acute lymphoblastic leukemia (ALL), the most common childhood cancer. We recently reported an association between an epigenetic biomarker of early-life tobacco smoke exposure at the AHRR gene and increased frequency of somatic gene deletions among ALL cases. METHODS Here, we further assess this association using two epigenetic biomarkers for maternal smoking during pregnancy-DNA methylation at AHRR CpG cg05575921 and a recently established polyepigenetic smoking score-in an expanded set of 482 B-cell ALL (B-ALL) cases in the California Childhood Leukemia Study with available Illumina 450K or MethylationEPIC array data. Multivariable Poisson regression models were used to test the associations between the epigenetic biomarkers and gene deletion numbers. RESULTS We found an association between DNA methylation at AHRR CpG cg05575921 and deletion number among 284 childhood B-ALL cases with MethylationEPIC array data, with a ratio of means (RM) of 1.31 [95% confidence interval (CI), 1.02-1.69] for each 0.1 β value reduction in DNA methylation, an effect size similar to our previous report in an independent set of 198 B-ALL cases with 450K array data [meta-analysis summary RM (sRM) = 1.32; 95% CI, 1.10-1.57]. The polyepigenetic smoking score was positively associated with gene deletion frequency among all 482 B-ALL cases (sRM = 1.31 for each 4-unit increase in score; 95% CI, 1.09-1.57). CONCLUSIONS We provide further evidence that prenatal tobacco-smoke exposure may influence the generation of somatic copy-number deletions in childhood B-ALL. IMPACT Analyses of deletion breakpoint sequences are required to further understand the mutagenic effects of tobacco smoke in childhood ALL.
Collapse
Affiliation(s)
- Keren Xu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Shaobo Li
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Todd P Whitehead
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Priyatama Pandey
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alice Y Kang
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Libby M Morimoto
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Scott C Kogan
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California
| | - Catherine Metayer
- School of Public Health, University of California Berkeley, Berkeley, California
| | - Joseph L Wiemels
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Adam J de Smith
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California. .,Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
49
|
Donovan GH, Gatziolis D, 't Mannetje A, Weinkove R, Fyfe C, Douwes J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144627. [PMID: 33454490 DOI: 10.1016/j.scitotenv.2020.144627] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The biodiversity hypothesis posits that declining biodiversity may be responsible, at least in part, for the global increase in immune diseases. However, few studies have been able to demonstrate a link between exposure to biodiversity and specific health outcomes. We test whether exposure to plant diversity protects against childhood acute lymphoblastic leukemia (ALL) by promoting immune maturation. Our sample consisted of all children born in New Zealand from 1998 to 2013 (n = 899,126; 264 ALL cases), which we followed from birth to age five. We calculated plant-diversity metrics using the Global Biodiversity Information Facility, which contains over two million geocoded plant records in New Zealand. Consistent with previous research, children who had always lived in an urban area, or who had an older mother, were at greater risk for ALL, whereas children with older siblings were at lower risk. In addition, we found that plant-diversity metrics based on the maximum number of plant genera a child was exposed to during the first two years of life were protective of ALL. Specifically, exposure to the highest tertile of plant diversity was associated with a reduction in ALL risk of 35% (95% CI: 11%-53%). Exposure to plant diversity, and associated microbial communities, may be a viable public-health intervention to reduce the risk of ALL and possibly other immune diseases.
Collapse
Affiliation(s)
- Geoffrey H Donovan
- Center for Public Health Research, Massey University-Wellington Campus, PO Box 756, Wellington 6140, New Zealand; USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205, USA.
| | - Demetrios Gatziolis
- USDA Forest Service, PNW Research Station, 620 SW Main, Suite 502, Portland, OR 97205, USA.
| | - Andrea 't Mannetje
- Center for Public Health Research, Massey University-Wellington Campus, PO Box 756, Wellington 6140, New Zealand.
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, PO Box 7060, Wellington, New Zealand; Wellington Blood & Cancer Centre, Capital & Coast District Health Board, Private Bag 7902, Wellington, New Zealand; Department of Pathology & Molecular Medicine, University of Otago Wellington, Newtown, Wellington, New Zealand.
| | - Caroline Fyfe
- Center for Public Health Research, Massey University-Wellington Campus, PO Box 756, Wellington 6140, New Zealand.
| | - Jeroen Douwes
- Center for Public Health Research, Massey University-Wellington Campus, PO Box 756, Wellington 6140, New Zealand.
| |
Collapse
|
50
|
Greaves M, Cazzaniga V, Ford A. Can we prevent childhood Leukaemia? Leukemia 2021; 35:1258-1264. [PMID: 33833382 PMCID: PMC8102184 DOI: 10.1038/s41375-021-01211-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Valeria Cazzaniga
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Anthony Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| |
Collapse
|