1
|
Ye Z, Zhu Z, Yu L, Zhang Z, Li X. Enhanced Porcine Reproductive and Respiratory Syndrome Virus Replication in Nsp4- or Nsp2-Overexpressed Marc-145 Cell Lines. Vet Sci 2025; 12:52. [PMID: 39852927 PMCID: PMC11768971 DOI: 10.3390/vetsci12010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses to the swine industry. The killed PRRSV vaccine has been reported to be safe and could elicit humoral responses. The killed PRRSV vaccine with a high viral antigen load combined with robust adjuvants could provide good protection against the infection. However, the high virus titer of PRRSV on the successive production cell lines is the prerequisite for this strategy. In this study, we explored PRRSV production in two recombinant Marc-145 cell lines expressing Nsp2 or Nsp4 through a lentivirus system. The results demonstrated that either Nsp2 or Nsp4 expressing Marc-145 cells did not affect cell morphology and growth kinetics but significantly enhanced PRRSV replication. Overall, our exploration may enable the production of high-yield PRRSV and offer a potential tool for developing safer and more effective PRRSV vaccines.
Collapse
Affiliation(s)
- Zhengqin Ye
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Zhendong Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China; (Z.Y.); (Z.Z.); (L.Y.); (Z.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
2
|
Zhu HY, Wang HJ, Liu P. Versatile roles for neutrophil proteinase 3 in hematopoiesis and inflammation. Immunol Res 2024; 73:1. [PMID: 39658724 DOI: 10.1007/s12026-024-09578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/16/2024] [Indexed: 12/12/2024]
Abstract
Neutrophil proteinase 3 (PR3), cathepsin G, elastase, and neutrophil serine protease 4 constitute the neutrophil serine protease family. These four members share varying sequence homology and functional similarities with each other. However, PR3 stands out as a unique autoantigen, serving as a primary autoantigen in anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Numerous studies have documented or reviewed the molecular pathogenesis or diagnostic utility of PR3 in ANCA-associated vasculitis. Nevertheless, the role of PR3 in other areas, particularly within the hematopoietic system, appears to have been overlooked. Indeed, beyond its involvement in vasculitis, PR3 contributes to cell apoptosis, hematopoietic abnormalities, diabetic ketoacidosis, and various other inflammatory diseases. In this study, we aim to summarize the research on the function of neutrophil PR3 in hematopoiesis and to elucidate its potential role in neutrophil aging and inflammatory diseases.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Hai-Juan Wang
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China
| | - Peng Liu
- Clinical Laboratory Center, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, 264200, PR China.
| |
Collapse
|
3
|
Chitsamankhun C, Siritongtaworn N, Fournier BPJ, Sriwattanapong K, Theerapanon T, Samaranayake L, Porntaveetus T. Cathepsin C in health and disease: from structural insights to therapeutic prospects. J Transl Med 2024; 22:777. [PMID: 39164687 PMCID: PMC11337848 DOI: 10.1186/s12967-024-05589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Cathepsin C (CTSC) is a lysosomal cysteine protease constitutively expressed at high levels in the lung, kidney, liver, and spleen. It plays a key role in the activation of serine proteases in cytotoxic T cells, natural killer cells (granzymes A and B), mast cells (chymase and tryptase) and neutrophils (cathepsin G, neutrophil elastase, proteinase 3) underscoring its pivotal significance in immune and inflammatory defenses. Here, we comprehensively review the structural attributes, synthesis, and function of CTSC, with a focus on its variants implicated in the etiopathology of several syndromes associated with neutrophil serine proteases, including Papillon-Lefevre syndrome (PLS), Haim-Munk Syndrome (HMS), and aggressive periodontitis (AP). These syndromes are characterized by palmoplantar hyperkeratosis, and early-onset periodontitis (severe gum disease) resulting in premature tooth loss. Due to the critical role played by CTSC in these and several other conditions it is being explored as a potential therapeutic target for autoimmune and inflammatory disorders. The review also discusses in depth the gene variants of CTSC, and in particular their postulated association with chronic obstructive pulmonary disease (COPD), COVID-19, various cancers, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, sudden cardiac death (SCD), atherosclerotic vascular disease, and neuroinflammatory disease. Finally, the therapeutic potential of CTSC across a range of human diseases is discussed.
Collapse
Affiliation(s)
- Chakriya Chitsamankhun
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nutwara Siritongtaworn
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - B P J Fournier
- Dental Faculty, Oral Biology Department, Reference Center of Oral and Dental Rare Diseases, Rothschild Hospital, Université Paris Cité, Paris, France
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lakshman Samaranayake
- Faculty of Dentistry, University of Hong Kong, Hospital Road, Hong Kong, Hong Kong
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Wang T, Rathee A, Pemberton PA, Lood C. Exogenous serpin B1 restricts immune complex-mediated NET formation via inhibition of a chymotrypsin-like protease and enhances microbial phagocytosis. J Biol Chem 2024; 300:107533. [PMID: 38971315 PMCID: PMC11327461 DOI: 10.1016/j.jbc.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024] Open
Abstract
Immune complex (IC)-driven formation of neutrophil extracellular traps (NETs) is a major contributing factor to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Exogenous recombinant human serpin B1 (rhsB1) can regulate NET formation; however, its mechanism(s) of action is currently unknown as is its ability to regulate IC-mediated NET formation and other neutrophil effector functions. To investigate this, we engineered or post-translationally modified rhsB1 proteins that possessed specific neutrophil protease inhibitory activities and pretreated isolated neutrophils with them prior to inducing NET formation with ICs derived from patients with SLE, PMA, or the calcium ionophore A23187. Neutrophil activation and phagocytosis assays were also performed with rhsB1 pretreated and IC-activated neutrophils. rhsB1 dose-dependently inhibited NET formation by all three agents in a process dependent on its chymotrypsin-like inhibitory activity, most likely cathepsin G. Only one variant (rhsB1 C344A) increased surface levels of neutrophil adhesion/activation markers on IC-activated neutrophils and boosted intracellular ROS production. Further, rhsB1 enhanced complement-mediated neutrophil phagocytosis of opsonized bacteria but not ICs. In conclusion, we have identified a novel mechanism of action by which exogenously administered rhsB1 inhibits IC, PMA, and A2138-mediated NET formation. Cathepsin G is a well-known contributor to autoimmune disease but to our knowledge, this is the first report implicating it as a potential driver of NET formation. We identified the rhsB1 C334A variant as a candidate protein that can suppress IC-mediated NET formation, boost microbial phagocytosis, and potentially impact additional neutrophil effector functions including ROS-mediated microbial killing in phagolysosomes.
Collapse
Affiliation(s)
- Ting Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Arpit Rathee
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
5
|
Kruk ME, Mehta S, Murray K, Higgins L, Do K, Johnson JE, Wagner R, Wendt CH, O’Connor JB, Harris JK, Laguna TA, Jagtap PD, Griffin TJ. An integrated metaproteomics workflow for studying host-microbe dynamics in bronchoalveolar lavage samples applied to cystic fibrosis disease. mSystems 2024; 9:e0092923. [PMID: 38934598 PMCID: PMC11264604 DOI: 10.1128/msystems.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.
Collapse
Affiliation(s)
- Monica E. Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katherine Do
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reid Wagner
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chris H. Wendt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - John B. O’Connor
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Theresa A. Laguna
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Birk D, Siepmann E, Simon S, Sommerhoff CP. Human Neutrophil Elastase: Characterization of Intra- vs. Extracellular Inhibition. Int J Mol Sci 2024; 25:7917. [PMID: 39063160 PMCID: PMC11276905 DOI: 10.3390/ijms25147917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Neutrophil elastase (HNE), like other members of the so-called GASPIDs (Granule-Associated Serine Peptidases of Immune Defense), is activated during protein biosynthesis in myeloid precursors and stored enzymatically active in cytoplasmic granules of resting neutrophils until secreted at sites of host defense and inflammation. Inhibitors thus could bind to the fully formed active site of the protease intracellularly in immature progenitors, in circulating neutrophils, or to HNE secreted into the extracellular space. Here, we have compared the ability of a panel of diverse inhibitors to inhibit HNE in the U937 progenitor cell line, in human blood-derived neutrophils, and in solution. Most synthetic inhibitors and, surprisingly, even a small naturally occurring proteinaceous inhibitor inhibit HNE intracellularly, but the extent and dynamics differ markedly from classical enzyme kinetics describing extracellular inhibition. Intracellular inhibition of HNE potentially affects neutrophil functions and has side effects, but it avoids competition of inhibitors with extracellular substrates that limit its efficacy. As both intra- and extracellular inhibition have advantages and disadvantages, the quantification of intracellular inhibition, in addition to classical enzyme kinetics, will aid the design of novel, clinically applicable HNE inhibitors with targeted sites of action.
Collapse
Affiliation(s)
- Denise Birk
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 80336 Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Erika Siepmann
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Stefan Simon
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Christian P. Sommerhoff
- Institute of Laboratory Medicine, University Hospital, LMU Munich, 80336 Munich, Germany
- Institute of Medical Education, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
7
|
Nasri M, Ritter MU, Mir P, Dannenmann B, Kaufmann MM, Arreba-Tutusaus P, Xu Y, Borbaran-Bravo N, Klimiankou M, Lengerke C, Zeidler C, Cathomen T, Welte K, Skokowa J. CRISPR-Cas9n-mediated ELANE promoter editing for gene therapy of severe congenital neutropenia. Mol Ther 2024; 32:1628-1642. [PMID: 38556793 PMCID: PMC11184331 DOI: 10.1016/j.ymthe.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Severe congenital neutropenia (CN) is an inherited pre-leukemia bone marrow failure syndrome commonly caused by autosomal-dominant ELANE mutations (ELANE-CN). ELANE-CN patients are treated with daily injections of recombinant human granulocyte colony-stimulating factor (rhG-CSF). However, some patients do not respond to rhG-CSF, and approximately 15% of ELANE-CN patients develop myelodysplasia or acute myeloid leukemia. Here, we report the development of a curative therapy for ELANE-CN through inhibition of ELANE mRNA expression by introducing two single-strand DNA breaks at the opposing DNA strands of the ELANE promoter TATA box using CRISPR-Cas9D10A nickases-termed MILESTONE. This editing effectively restored defective neutrophil differentiation of ELANE-CN CD34+ hematopoietic stem and progenitor cells (HSPCs) in vitro and in vivo, without affecting the functions of the edited neutrophils. CRISPResso analysis of the edited ELANE-CN CD34+ HSPCs revealed on-target efficiencies of over 90%. Simultaneously, GUIDE-seq, CAST-Seq, and rhAmpSeq indicated a safe off-target profile with no off-target sites or chromosomal translocations. Taken together, ex vivo gene editing of ELANE-CN HSPCs using MILESTONE in the setting of autologous stem cell transplantation could be a universal, safe, and efficient gene therapy approach for ELANE-CN patients.
Collapse
Affiliation(s)
- Masoud Nasri
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Malte U Ritter
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Perihan Mir
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Masako M Kaufmann
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Patricia Arreba-Tutusaus
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Yun Xu
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Natalia Borbaran-Bravo
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Maksim Klimiankou
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Claudia Lengerke
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Pediatric Hematology and Oncology, Hannover Medical School, 30625 Hannover, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, 79106 Freiburg, Germany; Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karl Welte
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Children`s Hospital, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Gene and RNA Therapy Center (GRTC), University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
9
|
Torzyk-Jurowska K, Ciekot J, Winiarski L. Targeted Library of Phosphonic-Type Inhibitors of Human Neutrophil Elastase. Molecules 2024; 29:1120. [PMID: 38474630 DOI: 10.3390/molecules29051120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Despite many years of research, human neutrophil elastase (HNE) still remains an area of interest for many researchers. This multifunctional representative of neutrophil serine proteases is one of the most destructive enzymes found in the human body which can degrade most of the extracellular matrix. Overexpression or dysregulation of HNE may lead to the development of several inflammatory diseases. Previously, we presented the HNE inhibitor with kinact/KI value over 2,000,000 [M-1s-1]. In order to optimize its structure, over 100 novel tripeptidyl derivatives of α-aminoalkylphosphonate diaryl esters were synthesized, and their activity toward HNE was checked. To confirm the selectivity of the resultant compounds, several of the most active were additionally checked against the two other neutrophil proteases: proteinase 3 and cathepsin G. The developed modifications allowed us to obtain a compound with significantly increased inhibitory activity against human neutrophil elastase with high selectivity toward cathepsin G, but none toward proteinase 3.
Collapse
Affiliation(s)
- Karolina Torzyk-Jurowska
- Division of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jaroslaw Ciekot
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Lukasz Winiarski
- Division of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
10
|
Alekhmimi NK, Cialla-May D, Ramadan Q, Eissa S, Popp J, Al-Kattan K, Zourob M. Biosensing Platform for the Detection of Biomarkers for ALI/ARDS in Bronchoalveolar Lavage Fluid of LPS Mice Model. BIOSENSORS 2023; 13:676. [PMID: 37504075 PMCID: PMC10376962 DOI: 10.3390/bios13070676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/29/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a worldwide health concern. The pathophysiological features of ALI/ARDS include a pulmonary immunological response. The development of a rapid and low-cost biosensing platform for the detection of ARDS is urgently needed. In this study, we report the development of a paper-based multiplexed sensing platform to detect human NE, PR3 and MMP-2 proteases. Through monitoring the three proteases in infected mice after the intra-nasal administration of LPS, we showed that these proteases played an essential role in ALI/ARDS. The paper-based sensor utilized a colorimetric detection approach based on the cleavage of peptide-magnetic nanoparticle conjugates, which led to a change in the gold nanoparticle-modified paper sensor. The multiplexing of human NE, PR3 and MMP-2 proteases was tested and compared after 30 min, 2 h, 4 h and 24 h of LPS administration. The multiplexing platform of the three analytes led to relatively marked peptide cleavage occurring only after 30 min and 24 h. The results demonstrated that MMP-2, PR3 and human NE can provide a promising biosensing platform for ALI/ARDS in infected mice at different stages. MMP-2 was detected at all stages (30 min-24 h); however, the detection of human NE and PR3 can be useful for early- (30 min) and late-stage (24 h) detection of ALI/ARDS. Further studies are necessary to apply these potential diagnostic biosensing platforms to detect ARDS in patients.
Collapse
Affiliation(s)
- Nuha Khalid Alekhmimi
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Qasem Ramadan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Shimaa Eissa
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, AlTakhassusi Rd, Riyadh 11533, Saudi Arabia
| |
Collapse
|
11
|
Barresi V, Di Bella V, Lo Nigro L, Privitera AP, Bonaccorso P, Scuderi C, Condorelli DF. Temporary serine protease inhibition and the role of SPINK2 in human bone marrow. iScience 2023; 26:106949. [PMID: 37378330 PMCID: PMC10291479 DOI: 10.1016/j.isci.2023.106949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/23/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Protease temporary inhibitors are true substrates that bind the catalytic site with high affinity but are slowly degraded, thus acting as inhibitor for a defined time window. Serine peptidase inhibitor Kazal type (SPINK) family is endowed with such functional property whose physiological meaning is poorly explored. High expression of SPINK2 in some hematopoietic malignancies prompted us to investigate its role in adult human bone marrow. We report here the physiological expression of SPINK2 in hematopoietic stem and progenitor cells (HSPCs) and mobilized cluster differentiation 34 (CD34)+ cells. We determined the SPINK2 degradation constant and derived a mathematical relationship predicting the zone of inhibited target protease activity surrounding the SPINK2-secreting HSPCs. Analysis of putative target proteases for SPINK2 revealed the expression of PRSS2 and PRSS57 in HSPCs. Our combined results suggest that SPINK2 and its target serine proteases might play a role in the intercellular communication within the hematopoietic stem cell niche.
Collapse
Affiliation(s)
- Vincenza Barresi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Virginia Di Bella
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Luca Lo Nigro
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy
- Center of Pediatric Hematology-Oncology, Azienda Policlinico – San Marco, 95123 Catania, Italy
| | - Anna Provvidenza Privitera
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Paola Bonaccorso
- Cytogenetic-Cytofluorimetric-Molecular Biology Lab, 95123 Catania, Italy
- Center of Pediatric Hematology-Oncology, Azienda Policlinico – San Marco, 95123 Catania, Italy
| | - Chiara Scuderi
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| | - Daniele Filippo Condorelli
- Department of Biomedical and Biotechnological Sciences, Section of Medical Biochemistry, University of Catania, 95123 Catania, Italy
| |
Collapse
|
12
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
13
|
Kalaiselvan P, Dutta D, Konda NV, Sharma S, Kumar N, Stapleton F, Willcox MDP. Effect of Deposition and Protease Digestion on the Ex Vivo Activity of Antimicrobial Peptide-Coated Contact Lenses. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:349. [PMID: 36678102 PMCID: PMC9863661 DOI: 10.3390/nano13020349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
A clinical study of antimicrobial contact lenses containing the cationic peptide Mel4 was conducted. The few adverse events that occurred with this lens occurred on or after 13 nights of wear. The current study examined whether the Mel4 contact lenses lost activity during wear and the mechanism of this loss. Participants wore contact lenses for up to 13 nights. Lenses were tested for their ability to reduce the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus. The amount of protein and lipid extracted from lenses was measured. The ability of trypsin to affect the antimicrobial activity of Mel4-coated contact lenses was measured. Mel4-coated contact lenses lost their antimicrobial activity at six nights of wear for both bacteria. The amount of lipids (13 ± 11 vs. 21 ± 14 μg/lens at 13 nights wear) and proteins (8 ± 4 vs. 10 ± 3 mg/lens at 13 nights of wear) extracted from lenses was not different between Mel4-coated and uncoated lenses, and was not different after three nights when antimicrobial activity was maintained and thirteen nights when they had lost activity (lipid: 25 ± 17 vs. 13 ± 11, p = 0.2; protein: 8 ± 1 vs. 8 ± 4 mg/lens, p = 0.4). Trypsin digestion eliminated the antimicrobial activity of Mel4-coated lenses. In summary, Mel4-coated contact lenses lost antibacterial activity at six nights of wear, and the most likely reason was proteolytic digestion of the peptide. Future studies will design and test proteolytically stable peptide mimics as coatings for contact lenses.
Collapse
Affiliation(s)
| | - Debarun Dutta
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Optometry, Aston University, Birmingham B4 7ET, UK
| | - Nagaraju V. Konda
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
- School of Medical Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre, L. V. Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Naresh Kumar
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Shen XB, Chen X, Zhang ZY, Wu FF, Liu XH. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities. Eur J Med Chem 2021; 225:113818. [PMID: 34492551 DOI: 10.1016/j.ejmech.2021.113818] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Cathepsin C, an important lysosomal cysteine protease, mediates the maturation process of neutrophil serine proteases, and participates in the inflammation and immune regulation process associated with polymorphonuclear neutrophils. Therefore, cathepsin C is considered to be an attractive target for treating inflammatory diseases. With INS1007 (trade name: brensocatib) being granted a breakthrough drug designation by FDA for the treatment of Adult Non-cystic Fibrosis Bronchiectasis and Coronavirus Disease 2019, the development of cathepsin C inhibitor will attract attentions from medicinal chemists in the future soon. Here, we summarized the research results of cathepsin C as a therapeutic target, focusing on the development of cathepsin C inhibitor, and provided guidance and reference opinions for the upcoming development boom of cathepsin C inhibitor.
Collapse
Affiliation(s)
- Xiao Bao Shen
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China
| | - Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Fu Fang Wu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China.
| | - Xin Hua Liu
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, 236037, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
15
|
Burster T, Mustafa Z, Myrzakhmetova D, Zhanapiya A, Zimecki M. Hindrance of the Proteolytic Activity of Neutrophil-Derived Serine Proteases by Serine Protease Inhibitors as a Management of Cardiovascular Diseases and Chronic Inflammation. Front Chem 2021; 9:784003. [PMID: 34869231 PMCID: PMC8634265 DOI: 10.3389/fchem.2021.784003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
During inflammation neutrophils become activated and segregate neutrophil serine proteases (NSPs) to the surrounding environment in order to support a natural immune defense. However, an excess of proteolytic activity of NSPs can cause many complications, such as cardiovascular diseases and chronic inflammatory disorders, which will be elucidated on a biochemical and immunological level. The application of selective serine protease inhibitors is the logical consequence in the management of the indicated comorbidities and will be summarized in this briefing.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dinara Myrzakhmetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Michal Zimecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
16
|
Korkmaz B, Lamort AS, Domain R, Beauvillain C, Gieldon A, Yildirim AÖ, Stathopoulos GT, Rhimi M, Jenne DE, Kettritz R. Cathepsin C inhibition as a potential treatment strategy in cancer. Biochem Pharmacol 2021; 194:114803. [PMID: 34678221 DOI: 10.1016/j.bcp.2021.114803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological studies established an association between chronic inflammation and higher risk of cancer. Inhibition of proteolytic enzymes represents a potential treatment strategy for cancer and prevention of cancer metastasis. Cathepsin C (CatC) is a highly conserved lysosomal cysteine dipeptidyl aminopeptidase required for the activation of pro-inflammatory neutrophil serine proteases (NSPs, elastase, proteinase 3, cathepsin G and NSP-4). NSPs are locally released by activated neutrophils in response to pathogens and non-infectious danger signals. Activated neutrophils also release neutrophil extracellular traps (NETs) that are decorated with several neutrophil proteins, including NSPs. NSPs are not only NETs constituents but also play a role in NET formation and release. Although immune cells harbor large amounts of CatC, additional cell sources for this protease exists. Upregulation of CatC expression was observed in different tissues during carcinogenesis and correlated with metastasis and poor patient survival. Recent mechanistic studies indicated an important interaction of tumor-associated CatC, NSPs, and NETs in cancer development and metastasis and suggested CatC as a therapeutic target in a several cancer types. Cancer cell-derived CatC promotes neutrophil recruitment in the inflammatory tumor microenvironment. Because the clinical consequences of genetic CatC deficiency in humans resulting in the elimination of NSPs are mild, small molecule inhibitors of CatC are assumed as safe drugs to reduce the NSP burden. Brensocatib, a nitrile CatC inhibitor is currently tested in a phase 3 clinical trial as a novel anti-inflammatory therapy for patients with bronchiectasis. However, recently developed CatC inhibitors possibly have protective effects beyond inflammation. In this review, we describe the pathophysiological function of CatC and discuss molecular mechanisms substantiating pharmacological CatC inhibition as a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France.
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Roxane Domain
- INSERM UMR-1100, "Research Center for Respiratory Diseases" and University of Tours, 37032 Tours, France
| | - Céline Beauvillain
- University of Angers, University of Nantes, Angers University Hospital, INSERM UMR-1232, CRCINA, Innate Immunity and Immunotherapy, SFR ICAT, 49000 Angers, France
| | - Artur Gieldon
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Dieter E Jenne
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), Helmholtz Center Munich-German Research Center for Environmental Health (HMGU) and Ludwig-Maximilian-University (LMU), Munich, Bavaria 81377, Germany(2); Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, Charité und Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin, Germany; Nephrology and Intensive Care Medicine, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
17
|
Kretschmer D, Breitmeyer R, Gekeler C, Lebtig M, Schlatterer K, Nega M, Stahl M, Stapels D, Rooijakkers S, Peschel A. Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Front Immunol 2021; 12:701093. [PMID: 34552584 PMCID: PMC8451722 DOI: 10.3389/fimmu.2021.701093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Ricarda Breitmeyer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Marco Lebtig
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Katja Schlatterer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Mulugeta Nega
- Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany.,Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daphne Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Peschel
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
18
|
Saidi A, Wartenberg M, Madinier JB, Ilango G, Seren S, Korkmaz B, Lecaille F, Aucagne V, Lalmanach G. Monitoring Human Neutrophil Activation by a Proteinase 3 Near-Infrared Fluorescence Substrate-Based Probe. Bioconjug Chem 2021; 32:1782-1790. [PMID: 34269060 DOI: 10.1021/acs.bioconjchem.1c00267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A near-infrared fluorescent (NIRF) substrate-based probe (SBP) was conceived to monitor secreted human proteinase 3 (hPR3) activity. This probe, called pro3-SBP, is shaped by a fused peptide hairpin loop structure, which associates a hPR3 recognition domain (Val-Ala-Asp-Nva-Ala-Asp-Tyr-Gln, where Nva is norvaline) and an electrostatic zipper (consisting of complementary polyanionic (d-Glu)5 and polycationic (d-Arg)5 sequences) in close vicinity of the N- and C-terminal FRET couple (fluorescent donor, sulfoCy5.5; dark quencher, QSY21). Besides its subsequent stability, no intermolecular fluorescence quenching was detected following its complete hydrolysis by hPR3, advocating that pro3-SBP could further afford unbiased imaging. Pro3-SBP was specifically hydrolyzed by hPR3 (kcat/Km= 440 000 ± 5500 M-1·s-1) and displayed a sensitive detection threshold for hPR3 (subnanomolar concentration range), while neutrophil elastase showed a weaker potency. Conversely, pro3-SBP was not cleaved by cathepsin G. Pro3-SBP was successfully hydrolyzed by conditioned media of activated human neutrophils but not by quiescent neutrophils. Moreover, unlike unstimulated neutrophils, a strong NIRF signal was specifically detected by confocal microscopy following neutrophil ionomycin-induced degranulation. Fluorescence release was abolished in the presence of a selective hPR3 inhibitor, indicating that pro3-SBP is selectively cleaved by extracellular hPR3. Taken together, the present data support that pro3-SBP could be a convenient tool, allowing straightforward monitoring of human neutrophil activation.
Collapse
Affiliation(s)
- Ahlame Saidi
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Mylène Wartenberg
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Jean-Baptiste Madinier
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Guy Ilango
- IBiSA Electron Microscopy Platform, Université de Tours, Tours 37032, France
| | - Seda Seren
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Brice Korkmaz
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Fabien Lecaille
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| | - Vincent Aucagne
- Center for Molecular Biophysics (CBM), Team: "Molecular, Structural and Chemical Biology″, CNRS UPR 4301, Orléans 45071, France
| | - Gilles Lalmanach
- Université de Tours, Tours 37032, France.,UMR 1100, Research Center for Respiratory Diseases (CEPR), Team: "Proteolytic Mechanisms in Inflammation", INSERM, Tours 37032, France
| |
Collapse
|
19
|
Pokhrel S, Kraemer BR, Lee L, Samardzic K, Mochly-Rosen D. Increased elastase sensitivity and decreased intramolecular interactions in the more transmissible 501Y.V1 and 501Y.V2 SARS-CoV-2 variants' spike protein-an in silico analysis. PLoS One 2021; 16:e0251426. [PMID: 34038453 PMCID: PMC8153447 DOI: 10.1371/journal.pone.0251426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022] Open
Abstract
Two SARS-CoV-2 variants of concern showing increased transmissibility relative to the Wuhan virus have recently been identified. Although neither variant appears to cause more severe illness nor increased risk of death, the faster spread of the virus is a major threat. Using computational tools, we found that the new SARS-CoV-2 variants may acquire an increased transmissibility by increasing the propensity of its spike protein to expose the receptor binding domain via proteolysis, perhaps by neutrophil elastase and/or via reduced intramolecular interactions that contribute to the stability of the closed conformation of spike protein. This information leads to the identification of potential treatments to avert the imminent threat of these more transmittable SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Benjamin R. Kraemer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Kate Samardzic
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States of America
| |
Collapse
|
20
|
Kasperkiewicz P. Peptidyl Activity-Based Probes for Imaging Serine Proteases. Front Chem 2021; 9:639410. [PMID: 33996745 PMCID: PMC8117214 DOI: 10.3389/fchem.2021.639410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Proteases catalyze the hydrolysis of peptide bonds. Products of this breakdown mediate signaling in an enormous number of biological processes. Serine proteases constitute the most numerous group of proteases, accounting for 40%, and they are prevalent in many physiological functions, both normal and disease-related functions, making them one of the most important enzymes in humans. The activity of proteases is controlled at the expression level by posttranslational modifications and/or endogenous inhibitors. The study of serine proteases requires specific reagents not only for detecting their activity but also for their imaging. Such tools include inhibitors or substrate-related chemical molecules that allow the detection of proteolysis and visual observation of active enzymes, thus facilitating the characterization of the activity of proteases in the complex proteome. Peptidyl activity-based probes (ABPs) have been extensively studied recently, and this review describes the basic principles in the design of peptide-based imaging agents for serine proteases, provides examples of activity-based probe applications and critically discusses their strengths, weaknesses, challenges and limitations.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| |
Collapse
|
21
|
Kasperkiewicz P, Hempel A, Janiszewski T, Kołt S, Snipas SJ, Drag M, Salvesen GS. NETosis occurs independently of neutrophil serine proteases. J Biol Chem 2021; 295:17624-17631. [PMID: 33454002 DOI: 10.1074/jbc.ra120.015682] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are primary host innate immune cells defending against pathogens. One proposed mechanism by which neutrophils prevent the spread of pathogens is NETosis, the extrusion of cellular DNA resulting in neutrophil extracellular traps (NETs). The protease neutrophil elastase (NE) has been implicated in the formation of NETs through proteolysis of nuclear proteins leading to chromatin decondensation. In addition to NE, neutrophils contain three other serine proteases that could compensate if the activity of NE was neutralized. However, whether they do play such a role is unknown. Thus, we deployed recently described specific inhibitors against all four of the neutrophil serine proteases (NSPs). Using specific antibodies to the NSPs along with our labeled inhibitors, we show that catalytic activity of these enzymes is not required for the formation of NETs. Moreover, the NSPs that decorate NETs are in an inactive conformation and thus cannot participate in further catalytic events. These results indicate that NSPs play no role in either NETosis or arming NETs with proteolytic activity.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA; Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA
| | - Tomasz Janiszewski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Sonia Kołt
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Scott J Snipas
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, NCI-Designated Cancer Center, La Jolla, California, USA.
| |
Collapse
|
22
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
23
|
AhYoung AP, Eckard SC, Gogineni A, Xi H, Lin SJ, Gerhardy S, Cox C, Phung QT, Hackney JA, Katakam AK, Reichelt M, Caplazi P, Manzanillo P, Zhang J, Roose-Girma M, Tam LW, Newman RJ, Murthy A, Weimer RM, Lill JR, Lee WP, Grimbaldeston M, Kirchhofer D, van Lookeren Campagne M. Neutrophil serine protease 4 is required for mast cell-dependent vascular leakage. Commun Biol 2020; 3:687. [PMID: 33214666 PMCID: PMC7677402 DOI: 10.1038/s42003-020-01407-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Vascular leakage, or edema, is a serious complication of acute allergic reactions. Vascular leakage is triggered by the release of histamine and serotonin from granules within tissue-resident mast cells. Here, we show that expression of Neutrophil Serine Protease 4 (NSP4) during the early stages of mast cell development regulates mast cell-mediated vascular leakage. In myeloid precursors, the granulocyte-macrophage progenitors (GMPs), loss of NSP4 results in the decrease of cellular levels of histamine, serotonin and heparin/heparan sulfate. Mast cells that are derived from NSP4-deficient GMPs have abnormal secretory granule morphology and a sustained reduction in histamine and serotonin levels. Consequently, in passive cutaneous anaphylaxis and acute arthritis models, mast cell-mediated vascular leakage in the skin and joints is substantially reduced in NSP4-deficient mice. Our findings reveal that NSP4 is required for the proper storage of vasoactive amines in mast cell granules, which impacts mast cell-dependent vascular leakage in mouse models of immune complex-mediated diseases.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Sterling C Eckard
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Alvin Gogineni
- Department of Biomedical Imaging, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Hongkang Xi
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - S Jack Lin
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Christian Cox
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Qui T Phung
- Department of Microchemistry, Proteomics, Lipidomics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Mike Reichelt
- Department of Pathology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Patrick Caplazi
- Department of Pathology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Paolo Manzanillo
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
- Department of Inflammation and Oncology, Amgen Research, Amgen, 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Lucinda W Tam
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Robert J Newman
- Department of Molecular Biology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Aditya Murthy
- Department of Cancer Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Robby M Weimer
- Department of Biomedical Imaging, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jennie R Lill
- Department of Microchemistry, Proteomics, Lipidomics, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Michele Grimbaldeston
- OMNI-Biomarker Development, Genentech Inc, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, 1 DNA Way, South San Francisco, CA, 94080, USA.
| | - Menno van Lookeren Campagne
- Department of Immunology, 1 DNA Way, South San Francisco, CA, 94080, USA.
- Department of Inflammation and Oncology, Amgen Research, Amgen, 1120 Veterans Boulevard, South San Francisco, CA, 94080, USA.
| |
Collapse
|
24
|
Ahmad J, Ikram S, Hafeez AB, Durdagi S. Physics-driven identification of clinically approved and investigation drugs against human neutrophil serine protease 4 (NSP4): A virtual drug repurposing study. J Mol Graph Model 2020; 101:107744. [PMID: 33032202 DOI: 10.1016/j.jmgm.2020.107744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 01/19/2023]
Abstract
Neutrophils synthesize four immune associated serine proteases: Cathepsin G (CTSG), Elastase (ELANE), Proteinase 3 (PRTN3) and Neutrophil Serine Protease 4 (NSP4). While previously considered to be immune modulators, overexpression of neutrophil serine proteases correlates with various disease conditions. Therefore, identifying novel small molecules that can potentially control or inhibit the proteolytic activity of these proteases is crucial to revert or temper the aggravated disease phenotype. To the best of our knowledge, although there is limited data for inhibitors of other neutrophil protease members, there is no previous clinical study of a synthetic small molecule inhibitor targeting NSP4. In this study, an integrated molecular modeling algorithm was performed within a virtual drug repurposing study to identify novel inhibitors for NSP4, using clinically approved and investigation drugs library (∼8000 compounds). Based on our rigorous filtration, we found that following molecules Becatecarin, Iogulamide, Delprostenate and Iralukast are predicted to block the activity of NSP4 by interacting with core catalytic residues. The selected ligands were energetically more favorable compared to the reference molecule. The result of this study identifies promising molecules as potential lead candidates.
Collapse
Affiliation(s)
- Jamshaid Ahmad
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan.
| | - Saima Ikram
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Ahmer Bin Hafeez
- Center of Biotechnology & Microbiology, University of Peshawar, Pakistan
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
25
|
Kahler JP, Vanhoutte R, Verhelst SHL. Activity-Based Protein Profiling of Serine Proteases in Immune Cells. Arch Immunol Ther Exp (Warsz) 2020; 68:23. [DOI: 10.1007/s00005-020-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
26
|
Burgener SS, Leborgne NGF, Snipas SJ, Salvesen GS, Bird PI, Benarafa C. Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Rep 2020; 27:3646-3656.e5. [PMID: 31216481 DOI: 10.1016/j.celrep.2019.05.065] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophil granule serine proteases contribute to immune responses through cleavage of microbial toxins and structural proteins. They induce tissue damage and modulate inflammation if levels exceed their inhibitors. Here, we show that the intracellular protease inhibitors Serpinb1a and Serpinb6a contribute to monocyte and neutrophil survival in steady-state and inflammatory settings by inhibiting cathepsin G (CatG). Importantly, we found that CatG efficiently cleaved gasdermin D (GSDMD) to generate the signature N-terminal domain GSDMD-p30 known to induce pyroptosis. Yet GSDMD deletion did not rescue neutrophil survival in Sb1a.Sb6a-/- mice. Furthermore, Sb1a.Sb6a-/- mice released high levels of pro-inflammatory cytokines upon endotoxin challenge in vivo in a CatG-dependent manner. Canonical inflammasome activation in Sb1a.Sb6a-/- macrophages showed increased IL-1β release that was dependent on CatG and GSDMD. Together, our findings demonstrate that cytosolic serpins expressed in myeloid cells prevent cell death and regulate inflammatory responses by inhibiting CatG and alternative activation of GSDMD.
Collapse
Affiliation(s)
- Sabrina Sofia Burgener
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Nathan Georges François Leborgne
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Scott J Snipas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Phillip Ian Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia
| | - Charaf Benarafa
- Institute of Virology and Immunology, 3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
27
|
Song Q, Zhao F, Yao J, Dai H, Hu L, Yu S. Protective effect of microRNA-134-3p on multiple sclerosis through inhibiting PRSS57 and promotion of CD34 + cell proliferation in rats. J Cell Biochem 2020; 121:4347-4363. [PMID: 32619071 DOI: 10.1002/jcb.29643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) have been extensively studied for their involvement in multiple sclerosis (MS). We investigated the involvement of miR-134-3p on MS. The MS rat model was established, and positive expression of interleukin-17 (IL-17) was detected using the immunohistochemical method while the expression of miR-134-3p and serine protease 57 (PRSS57) was determined by means of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Second, the miR-134-3p overexpression or short hairpin RNA against PRSS57 was introduced into the CD34+ cells to investigate the levels of proliferation and apoptosis-related genes by RT-qPCR and Western blot analysis. In addition, analysis of the targeting relations of miR-134-3p and PRSS57 was conducted using online software and dual-luciferase reporter gene assay. Furthermore, neuronal functions, inflammatory response, proliferation, and apoptosis of CD34+ cells were assayed by flow cytometry, enzyme-linked immunosorbent assay, and methyl thiazolyl tetrazolium. IL-17 and PRSS57 expression increased while miR-134-3p expression decreased in the spinal cord from MS rats. miR-134-3p could target PRSS57. miR-134-3p overexpression or PRSS57 silencing enhanced mitochondrial activity of neurons, mitochondrial membrane potential content, CD34+ cell proliferation, while decreasing Cyt C content, inflammatory response, and cell apoptosis. Collectively, overexpression of miR-134-3p promotes CD34+ cell proliferation via inhibition of PRSS57 in MS, which may serve as a promising target for MS intervention.
Collapse
Affiliation(s)
- Qihan Song
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Fengli Zhao
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Jingfan Yao
- Department of Neurology, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Hailin Dai
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Lei Hu
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Herdendorf TJ, Stapels DAC, Rooijakkers SHM, Geisbrecht BV. Local structural plasticity of the Staphylococcus aureus evasion protein EapH1 enables engagement with multiple neutrophil serine proteases. J Biol Chem 2020; 295:7753-7762. [PMID: 32303641 PMCID: PMC7261791 DOI: 10.1074/jbc.ra120.013601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Indexed: 01/07/2023] Open
Abstract
Members of the EAP family of Staphylococcus aureus immune evasion proteins potently inhibit the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin-G, and proteinase-3. Previously, we determined a 1.8 Å resolution crystal structure of the EAP family member EapH1 bound to neutrophil elastase. This structure revealed that EapH1 blocks access to the enzyme's active site by forming a noncovalent complex with this host protease. To determine how EapH1 inhibits other NSPs, we studied here the effects of EapH1 on cathepsin-G. We found that EapH1 inhibits cathepsin-G with a Ki of 9.8 ± 4.7 nm Although this Ki value is ∼466-fold weaker than the Ki for EapH1 inhibition of neutrophil elastase, the time dependence of inhibition was maintained. To define the physical basis for EapH1's inhibition of cathepsin-G, we crystallized EapH1 bound to this protease, solved the structure at 1.6 Å resolution, and refined the model to Rwork and Rfree values of 17.4% and 20.9%, respectively. This structure revealed a protease-binding mode for EapH1 with cathepsin-G that was globally similar to that seen in the previously determined EapH1-neutrophil elastase structure. The nature of the intermolecular interactions formed by EapH1 with cathepsin-G differed considerably from that with neutrophil elastase, however, with far greater contributions from the inhibitor backbone in the cathepsin-G-bound form. Together, these results reveal that EapH1's ability to form high-affinity interactions with multiple NSP targets is due to its remarkable level of local structural plasticity.
Collapse
Affiliation(s)
- Timothy J. Herdendorf
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Daphne A. C. Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Suzan H. M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Brian V. Geisbrecht
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, To whom correspondence should be addressed:
Dept. of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, 1711 Claflin Rd., Manhattan, KS 66506. Tel.:
785-532-3154; Fax:
785-532-7278; E-mail:
| |
Collapse
|
29
|
Harbig A, Mernberger M, Bittel L, Pleschka S, Schughart K, Steinmetzer T, Stiewe T, Nist A, Böttcher-Friebertshäuser E. Transcriptome profiling and protease inhibition experiments identify proteases that activate H3N2 influenza A and influenza B viruses in murine airways. J Biol Chem 2020; 295:11388-11407. [PMID: 32303635 DOI: 10.1074/jbc.ra120.012635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.
Collapse
Affiliation(s)
- Anne Harbig
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Member of the German Center for Lung Research, Philipps-University, 35043 Marburg, Germany
| | - Linda Bittel
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University, 35390 Giessen, Germany
| | - Klaus Schughart
- Department of Infection Genetics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany.,University of Veterinary Medicine Hannover, 30559 Hannover, Germany.,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps-University, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Member of the German Center for Lung Research, Philipps-University, 35043 Marburg, Germany.,Genomics Core Facility, Philipps-University, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, 35043 Marburg, Germany
| | | |
Collapse
|
30
|
Van AP, Álvarez de Haro N, Bron JE, Desbois AP. Chromatin extracellular trap release in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). FISH & SHELLFISH IMMUNOLOGY 2020; 99:227-238. [PMID: 31988016 DOI: 10.1016/j.fsi.2020.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 05/22/2023]
Abstract
Neutrophils release nuclear chromatin decorated with antimicrobial proteins into the extracellular milieu as an innate immune defence mechanism to counter invading microbes. These chromatin structures, called extracellular traps (ETs) and released by a process called NETosis, have been detected in mammals, certain invertebrates and some fish species, including fathead minnow, zebrafish, common carp, turbot, sole and barramundi. However, there have been no previous studies of ETs in the Salmonidae. ETs are released in response to chemical and biological stimuli, but observations from different fish species are inconsistent, particularly regarding the potency of various inducers and inhibitors. Thus, this present study aimed to describe ET release in a salmonid (rainbow trout, Oncorhynchus mykiss (Walbaum, 1792)) and uncover the inducers and inhibitors that can control this response. Highly enriched suspensions of polymorphonuclear cells (PMNs; mainly neutrophils) were prepared from head kidney tissues by a triple-layer Percoll gradient technique. ET structures were visualised in PMN-enriched suspensions through staining of the chromatin with nucleic acid-specific dyes and immunocytochemical probing of characteristic proteins expected to decorate the structure. ET release was quantified after incubation with inducers and inhibitors known to affect this response in other organisms. Structures resembling ETs stained positively with SYTOX Green (a stain specific for nucleic acid) while immunocytochemistry was used to detect neutrophil elastase, myeloperoxidase and H2A histone in the structures, which are diagnostic proteinaceous markers of ETs. Consistent with other studies on mammals and some fish species, calcium ionophore and flagellin were potent inducers of ETs, while cytochalasin D inhibited NETosis. Phorbol 12-myristate 13-acetate (PMA), used commonly to induce ETs, exerted only weak stimulatory activity, while heat-killed bacteria and lipopolysaccharide did not induce ET release. Unexpectedly, the ET-inhibitor diphenyleneiodonium chloride acted as an inducer of ET release, an observation not reported elsewhere. Taken together, these data confirm for the first time that ETs are released by salmonid PMNs and compounds useful for manipulating NETosis were identified, thus providing a platform for further studies to explore the role of this mechanism in fish immunity. This new knowledge provides a foundation for translation to farm settings, since manipulation of the innate immune response offers a potential alternative to the use of antibiotics to mitigate against microbial infections, particularly for pathogens where protection by vaccination has yet to be realised.
Collapse
Affiliation(s)
- Andre P Van
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Neila Álvarez de Haro
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - James E Bron
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom
| | - Andrew P Desbois
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| |
Collapse
|
31
|
N'Guessan K, Grzywa R, Seren S, Gabant G, Juliano MA, Moniatte M, van Dorsselaer A, Bieth JG, Kellenberger C, Gauthier F, Wysocka M, Lesner A, Sienczyk M, Cadene M, Korkmaz B. Human proteinase 3 resistance to inhibition extends to alpha-2 macroglobulin. FEBS J 2020; 287:4068-4081. [PMID: 31995266 DOI: 10.1111/febs.15229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Abstract
Polymorphonuclear neutrophils contain at least four serine endopeptidases, namely neutrophil elastase (NE), proteinase 3 (PR3), cathepsin G (CatG), and NSP4, which contribute to the regulation of infection and of inflammatory processes. In physiological conditions, endogenous inhibitors including α2-macroglobulin (α2-M), serpins [α1-proteinase inhibitor (α1-PI)], monocyte neutrophil elastase inhibitor (MNEI), α1-antichymotrypsin, and locally produced chelonianins (elafin, SLPI) control excessive proteolytic activity of neutrophilic serine proteinases. In contrast to human NE (hNE), hPR3 is weakly inhibited by α1-PI and MNEI but not by SLPI. α2-M is a large spectrum inhibitor that traps a variety of proteinases in response to cleavage(s) in its bait region. We report here that α2-M was more rapidly processed by hNE than hPR3 or hCatG. This was confirmed by the observation that the association between α2-M and hPR3 is governed by a kass in the ≤ 105 m-1 ·s-1 range. Since α2-M-trapped proteinases retain peptidase activity, we first predicted the putative cleavage sites within the α2-M bait region (residues 690-728) using kinetic and molecular modeling approaches. We then identified by mass spectrum analysis the cleavage sites of hPR3 in a synthetic peptide spanning the 39-residue bait region of α2-M (39pep-α2-M). Since the 39pep-α2-M peptide and the corresponding bait area in the whole protein do not contain sequences with a high probability of specific cleavage by hPR3 and were indeed only slowly cleaved by hPR3, it can be concluded that α2-M is a poor inhibitor of hPR3. The resistance of hPR3 to inhibition by endogenous inhibitors explains at least in part its role in tissue injury during chronic inflammatory diseases and its well-recognized function of major target autoantigen in granulomatosis with polyangiitis.
Collapse
Affiliation(s)
- Koffi N'Guessan
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | - Renata Grzywa
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wroclaw University of Science and Technology, Poland
| | - Seda Seren
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301, CNRS, Affiliated with Université d'Orléans, Orléans, France
| | - Maria A Juliano
- Departamento de Biofísica, Escola Paulista Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marc Moniatte
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alain van Dorsselaer
- LSMBO, CNRS UMR-7178 (CNRS-UdS), ECPM, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France
| | - Joseph G Bieth
- Laboratoire d'Enzymologie, INSERM U392, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | - Francis Gauthier
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| | | | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Marcin Sienczyk
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wroclaw University of Science and Technology, Poland
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301, CNRS, Affiliated with Université d'Orléans, Orléans, France
| | - Brice Korkmaz
- INSERM UMR-1100, CEPR "Centre d'Etude des Pathologies Respiratoires", Tours, France.,Université de Tours, France
| |
Collapse
|
32
|
Potent and Broad but not Unselective Cleavage of Cytokines and Chemokines by Human Neutrophil Elastase and Proteinase 3. Int J Mol Sci 2020; 21:ijms21020651. [PMID: 31963828 PMCID: PMC7014372 DOI: 10.3390/ijms21020651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
In two recent studies we have shown that three of the most abundant human hematopoietic serine proteases—mast cell chymase, mast cell tryptase and neutrophil cathepsin G—show a highly selective cleavage of cytokines and chemokines with a strong preference for a few alarmins, including IL-18, TSLP and IL-33. To determine if this is a general pattern for many of the hematopoietic serine proteases we have analyzed the human neutrophil elastase (hNE) and human proteinase 3 (hPR-3) for their cleavage of a panel of 69 different human cytokines and chemokines. Our results showed that these two latter enzymes, in sharp contrast to the two previous, had a very potent and relatively unrestrictive cleavage on this panel of targets. Almost all of these proteins were cleaved and many of them were fully degraded. In light of the proteases abundance and their colocalization, it is likely that together they have a very potent degrading activity on almost any protein in the area of neutrophil activation and granule release, including both foreign bacterial or viral proteins as well as various self-proteins in the area of inflammation/infection. However, a few very interesting exceptions to this pattern were found indicating a high resistance to degradation of some cytokines and chemokines, including TNF-α, IL-5, M-CSF, Rantes, IL-8 and MCP-1. All of these are either important for monocyte-macrophage, neutrophil or eosinophil proliferation, recruitment and activation, suggesting that cytokines/chemokines and proteases may have coevolved to not block the recruitment of monocytes–macrophages, neutrophils and possibly eosinophils during an inflammatory response involving neutrophil activation.
Collapse
|
33
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
34
|
Maluch I, Czarna J, Drag M. Applications of Unnatural Amino Acids in Protease Probes. Chem Asian J 2019; 14:4103-4113. [PMID: 31593336 DOI: 10.1002/asia.201901152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Since proteases are involved in a wide range of physiological and disease states, the development of novel tools for imaging proteolytic enzyme activity is attracting increasing interest from scientists. Peptide substrates containing proteinogenic amino acids are often the first line of defining enzyme specificity. This Minireview outlines examples of major recent advances in probing proteases using unnatural amino acid residues, which greatly expands the possibilities for designing substrate probes and inhibitory activity-based probes. This approach already yielded innovative probes that selectively target only one active protease within the group of enzymes exhibiting similar specificity both in cellular assays and in bioimaging research.
Collapse
Affiliation(s)
- Izabela Maluch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Justyna Czarna
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
35
|
Crocetti L, Quinn MT, Schepetkin IA, Giovannoni MP. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert Opin Ther Pat 2019; 29:555-578. [PMID: 31204543 PMCID: PMC9642779 DOI: 10.1080/13543776.2019.1630379] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Human neutrophil elastase (HNE) is involved in a variety of serious chronic diseases, especially cardiopulmonary pathologies. For this reason, the regulation of HNE activity represents a promising therapeutic approach, which is evident by the development of a number of new and selective HNE inhibitors, both in the academic and pharmaceutical environments. AREAS COVERED The present review analyzes and summarizes the patent literature regarding human neutrophil elastase inhibitors for the treatment of cardiopulmonary diseases over 2014-2018. EXPERT OPINION HNE is an interesting and defined target to treat various inflammatory diseases, including a number of cardiopulmonary pathologies. The research in this field is quite active, and a number of HNE inhibitors are currently in various stages of clinical development. In addition, new opportunities for HNE inhibitor development stem from recent studies demonstrating the involvement of HNE in many other inflammatory pathologies, including rheumatoid arthritis, inflammatory bowel disease, skin diseases, and cancer. Furthermore, the development of dual HNE/proteinase 3 inhibitors is being pursued as an innovative approach for the treatment of neutrophilic inflammatory diseases. Thus, these new developments will likely stimulate new and increased interest in this important therapeutic target and for the development of novel and selective HNE inhibitors.
Collapse
Affiliation(s)
- L Crocetti
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - MT Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - IA Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - MP Giovannoni
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel) 2019; 12:ph12020086. [PMID: 31185654 PMCID: PMC6631691 DOI: 10.3390/ph12020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
This review presents current achievements in peptidyl diaryl phosphonates as covalent, specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases. Such an impact has been promoted by advantageous features that characterize the phosphonate compounds and their use. First, the synthesis is versatile and allows comprehensive structural modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules can be easily controlled by appropriate adjustments of the side chains and the leaving groups. Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates continuously increases and involves novel enzymatic targets and innovative aspects of application. For example, conjugation of the structures of specific inhibitors with reporter groups has become a convenient approach to construct activity-based molecular probes capable of monitoring location and distribution of serine proteases.
Collapse
|
37
|
AhYoung AP, Lin SJ, Gerhardy S, van Lookeren Campagne M, Kirchhofer D. An ancient mechanism of arginine-specific substrate cleavage: What's 'up' with NSP4? Biochimie 2019; 166:19-26. [PMID: 30946946 DOI: 10.1016/j.biochi.2019.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022]
Abstract
The recently discovered neutrophil serine protease 4 (NSP4) is the fourth member of the NSP family, which includes the well-studied neutrophil elastase, proteinase 3 and cathepsin G. Like the other three NSP members, NSP4 is synthesized by myeloid precursors in the bone marrow and, after cleavage of the two-amino acid activation peptide, is stored as an active protease in azurophil granules of neutrophils. Based on its primary amino acid sequence, NSP4 is predicted to have a shallow S1 specificity pocket with elastase-like substrate specificity. However, NSP4 was found to preferentially cleave after an arginine residue. Structural studies resolved this paradox by revealing an unprecedented mechanism of P1-arginine recognition. In contrast to the canonical mechanism in which the P1-arginine residue points down into a deep S1 pocket, the arginine side chain adopts a surface-exposed 'up' conformation in the NSP4 active site. This conformation is stabilized by the Phe190 residue, which serves as a hydrophobic platform for the aliphatic portion of the arginine side chain, and a network of hydrogen bonds between the arginine guanidium group and the NSP4 residues Ser192 and Ser216. This unique configuration allows NSP4 to cleave even after naturally modified arginine residues, such as citrulline and methylarginine. This non-canonical mechanism, characterized by the hallmark 'triad' Phe190-Ser192-Ser216, is largely preserved throughout evolution starting with bony fish, which appeared about 400 million years ago. Although the substrates and physiological role of NSP4 remain to be determined, its remarkable evolutionary conservation, restricted tissue expression and homology to other neutrophil serine proteases anticipate a function in immune-related processes.
Collapse
Affiliation(s)
- Andrew P AhYoung
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - S Jack Lin
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stefan Gerhardy
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech Inc, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
38
|
PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One 2019; 14:e0211632. [PMID: 30707714 PMCID: PMC6358159 DOI: 10.1371/journal.pone.0211632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is an asymptomatic colonizer of the human nasopharynx but can also cause disease in the inner ear, meninges, lung and blood. Although various mechanisms contribute to the effective clearance of Spn, opsonophagocytosis by neutrophils is perhaps most critical. Upon phagocytosis, Spn is exposed to various degradative molecules, including a family of neutrophil serine proteases (NSPs) that are stored within intracellular granules. Despite the critical importance of NSPs in killing Spn, the bacterial proteins that are degraded by NSPs leading to Spn death are still unknown. In this report, we identify a 90kDa protein in a purified cell wall (CW) preparation, aminopeptidase N (PepN) that is degraded by the NSP neutrophil elastase (NE). Since PepN lacked a canonical signal sequence or LPxTG motif, we created a mutant expressing a FLAG tagged version of the protein and confirmed its localization to the CW compartment. We determined that not only is PepN a CW-localized protein, but also is a substrate of NE in the context of intact Spn cells. Furthermore, in comparison to wild-type TIGR4 Spn, a mutant strain lacking PepN demonstrated a significant hyper-resistance phenotype in vitro in the presence of purified NE as well as in opsonophagocytic assays with purified human neutrophils ex vivo. Taken together, this is the first study to demonstrate that PepN is a CW-localized protein and a substrate of NE that contributes to the effective killing of Spn by NSPs and human neutrophils.
Collapse
|
39
|
Fu Z, Thorpe M, Akula S, Chahal G, Hellman LT. Extended Cleavage Specificity of Human Neutrophil Elastase, Human Proteinase 3, and Their Distant Ortholog Clawed Frog PR3-Three Elastases With Similar Primary but Different Extended Specificities and Stability. Front Immunol 2018; 9:2387. [PMID: 30459762 PMCID: PMC6232827 DOI: 10.3389/fimmu.2018.02387] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/26/2018] [Indexed: 01/13/2023] Open
Abstract
Serine proteases are major granule constituents of several of the human hematopoietic cell lineages. Four proteolytically active such proteases have been identified in human neutrophils: cathepsin G (hCG), N-elastase (hNE), proteinase 3 (hPR-3), and neutrophil serine protease 4 (hNSP-4). Here we present the extended cleavage specificity of two of the most potent and most abundant of these enzymes, hNE and hPR-3. Their extended specificities were determined by phage display and by the analysis of a panel of chromogenic and recombinant substrates. hNE is an elastase with a relatively broad specificity showing a preference for regions containing several aliphatic amino acids. The protease shows self-cleaving activity, which results in the loss of activity during storage even at +4°C. Here we also present the extended cleavage specificity of hPR-3. Compared with hNE, it shows considerably lower proteolytic activity. However, it is very stable, shows no self-cleaving activity and is actually more active in the presence of SDS, possibly by enhancing the accessibility of the target substrate. This enables specific analysis of hPR-3 activity even in the presence of all the other neutrophil enzymes with addition of 1% SDS. Neutrophils are the most abundant white blood cell in humans and one of the key players in our innate immune defense. The neutrophil serine proteases are very important for the function of the neutrophils and therefore also interesting from an evolutionary perspective. In order to study the origin and functional conservation of these neutrophil proteases we have identified and cloned an amphibian ortholog, Xenopus PR-3 (xPR-3). This enzyme was found to have a specificity very similar to hPR-3 but did not show the high stability in the presence of SDS. The presence of an elastase in Xenopus closely related to hPR-3 indicates a relatively early appearance of these enzymes during vertebrate evolution.
Collapse
Affiliation(s)
- Zhirong Fu
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Gurdeep Chahal
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Lars T Hellman
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Korkmaz B, Caughey GH, Chapple I, Gauthier F, Hirschfeld J, Jenne DE, Kettritz R, Lalmanach G, Lamort AS, Lauritzen C, Łȩgowska M, Lesner A, Marchand-Adam S, McKaig SJ, Moss C, Pedersen J, Roberts H, Schreiber A, Seren S, Thakker NS. Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 2018; 190:202-236. [DOI: 10.1016/j.pharmthera.2018.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Bronze-da-Rocha E, Santos-Silva A. Neutrophil Elastase Inhibitors and Chronic Kidney Disease. Int J Biol Sci 2018; 14:1343-1360. [PMID: 30123081 PMCID: PMC6097478 DOI: 10.7150/ijbs.26111] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
End-stage renal disease (ESRD), the last stage of chronic kidney disease (CKD), is characterized by chronic inflammation and oxidative stress. Neutrophils are the front line cells that mediate an inflammatory response against microorganisms as they can migrate, produce reactive oxygen species (ROS), secrete neutrophil serine proteases (NSPs), and release neutrophil extracellular traps (NETs). Serine proteases inhibitors regulate the activity of serine proteases and reduce neutrophil accumulation at inflammatory sites. This review intends to relate the role of neutrophil elastase in CKD and the effects of neutrophil elastase inhibitors in predicting or preventing inflammation.
Collapse
Affiliation(s)
- Elsa Bronze-da-Rocha
- UCIBIO/REQUIMTE, Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | | |
Collapse
|
42
|
Giovannoni MP, Schepetkin IA, Quinn MT, Cantini N, Crocetti L, Guerrini G, Iacovone A, Paoli P, Rossi P, Bartolucci G, Menicatti M, Vergelli C. Synthesis, biological evaluation, and molecular modelling studies of potent human neutrophil elastase (HNE) inhibitors. J Enzyme Inhib Med Chem 2018; 33:1108-1124. [PMID: 29969929 PMCID: PMC6032016 DOI: 10.1080/14756366.2018.1480615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We report the synthesis and biological evaluation of a new series of 3- or 4-(substituted)phenylisoxazolones as HNE inhibitors. Due to tautomerism of the isoxazolone nucleus, two isomers were obtained as final compounds (2-NCO and 5-OCO) and the 2-NCO derivatives were the most potent with IC50 values in the nanomolar range (20–70 nM). Kinetic experiments indicated that 2-NCO 7d and 5-OCO 8d are both competitive HNE inhibitors. Molecular modelling on 7d and 8d suggests for the latter a more crowded region about the site of the nucleophilic attack, which could explain its lowered activity. In addition molecular dynamics (MD) simulations showed that the isomer 8d appears more prone to form H-bond interactions which, however, keep the reactive sites quite distant for the attack by Ser195. By contrast the amide 7d appears more mobile within the active pocket, since it makes single H-bond interactions affording a favourable orientation for the nucleophilic attack.
Collapse
Affiliation(s)
- Maria Paola Giovannoni
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Igor A Schepetkin
- b Department of Microbiology and Immunology , Montana State University , Bozeman , MT , USA
| | - Mark T Quinn
- b Department of Microbiology and Immunology , Montana State University , Bozeman , MT , USA
| | - Niccolò Cantini
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Letizia Crocetti
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Gabriella Guerrini
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Antonella Iacovone
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Paola Paoli
- c Department of Industrial Engineering , University of Florence , Florence , Italy
| | - Patrizia Rossi
- c Department of Industrial Engineering , University of Florence , Florence , Italy
| | - Gianluca Bartolucci
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Marta Menicatti
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| | - Claudia Vergelli
- a NEUROFARBA, Pharmaceutical and Nutraceutical Section , University of Florence , Sesto Fiorentino , Italy
| |
Collapse
|
43
|
Extended cleavage specificity of human neutrophil cathepsin G: A low activity protease with dual chymase and tryptase-type specificities. PLoS One 2018; 13:e0195077. [PMID: 29652924 PMCID: PMC5898719 DOI: 10.1371/journal.pone.0195077] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/22/2018] [Indexed: 01/08/2023] Open
Abstract
Human neutrophils express at least four active serine proteases, cathepsin G, N-elastase, proteinase 3 and neutrophil serine protease 4 (NSP4). They have all been extensively studied due to their importance in neutrophil biology and immunity. However, their extended cleavage specificities have never been determined in detail. Here we present a detailed cleavage specificity analysis of human cathepsin G (hCG). The specificity was determined by phage display analysis and the importance of individual amino acids in and around the cleavage site was then validated using novel recombinant substrates. To provide a broader context to this serine protease, a comparison was made to the related mast cell protease, human chymase (HC). hCG showed similar characteristics to HC including both the primary and extended specificities. As expected, Phe, Tyr, Trp and Leu were preferred in the P1 position. In addition, both proteases showed a preference for negatively charged amino acids in the P2´ position of substrates and a preference for aliphatic amino acids both upstream and downstream of the cleavage site. However, overall the catalytic activity of hCG was ~10-fold lower than HC. hCG has previously been reported to have a dual specificity consisting of chymase and tryptase-type activities. In our analysis, tryptase activity against substrates with Lys in P1 cleavage position was indeed only 2-fold less efficient as compared to optimal chymase substrates supporting strong dual-type specificity. We hope the information presented here on extended cleavage specificities of hCG and HC will assist in the search for novel in vivo substrates for these proteases as well as aid in the efforts to better understand the role of hCG in immunity and bacterial defence.
Collapse
|
44
|
Popow-Stellmaszyk J, Bajorowicz B, Malankowska A, Wysocka M, Klimczuk T, Zaleska-Medynska A, Lesner A. Design, Synthesis, and Enzymatic Evaluation of Novel ZnO Quantum Dot-Based Assay for Detection of Proteinase 3 Activity. Bioconjug Chem 2018; 29:1576-1583. [DOI: 10.1021/acs.bioconjchem.8b00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | | | | | - Tomasz Klimczuk
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk 80-233, Poland
| | | | | |
Collapse
|
45
|
Abstract
The activity of proteases is tightly regulated, and dysregulation is linked to a variety of human diseases. For this reason, ABPP is a well-suited method to study protease biology and the design of protease probes has pushed the boundaries of ABPP. The development of highly selective protease probes is still a challenging task. After an introduction, the first section of this chapter discusses several strategies to enable detection of a single active protease species. These range from the usage of non-natural amino acids, combination of probes with antibodies, and engineering of the target proteases. A next section describes the different types of detection tags that facilitate the read-out possibilities including various types of imaging methods and mass spectrometry-based target identification. The power of protease ABPP is illustrated by examples for a selected number of proteases. It is expected that some protease probes that have been evaluated in animal models of human disease will find translation into clinical application in the near future.
Collapse
|
46
|
Stapels DAC, Woehl JL, Milder FJ, Tromp AT, van Batenburg AA, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of Staphylococcal innate immune evasion proteins. Protein Sci 2017; 27:509-522. [PMID: 29114958 DOI: 10.1002/pro.3342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022]
Abstract
Neutrophils contain high levels of chymotrypsin-like serine proteases (NSPs) within their azurophilic granules that have a multitude of functions within the immune system. In response, the pathogen Staphylococcus aureus has evolved three potent inhibitors (Eap, EapH1, and EapH2) that protect the bacterium as well as several of its secreted virulence factors from the degradative action of NSPs. We previously showed that these so-called EAP domain proteins represent a novel class of NSP inhibitors characterized by a non-covalent inhibitory mechanism and a distinct target specificity profile. Based upon high levels of structural homology amongst the EAP proteins and the NSPs, as well as supporting biochemical data, we predicted that the inhibited complex would be similar for all EAP/NSP pairs. However, we present here evidence that EapH1 and EapH2 bind the canonical NSP, Neutrophil Elastase (NE), in distinct orientations. We discovered that alteration of EapH1 residues at the EapH1/NE interface caused a dramatic loss of affinity and inhibition of NE, while mutation of equivalent positions in EapH2 had no effect on NE binding or inhibition. Surprisingly, mutation of residues in an altogether different region of EapH2 severely impacted both the NE binding and inhibitory properties of EapH2. Even though EapH1 and EapH2 bind and inhibit NE and a second NSP, Cathepsin G, equally well, neither of these proteins interacts with the structurally related, but non-proteolytic granule protein, azurocidin. These studies expand our understanding of EAP/NSP interactions and suggest that members of this immune evasion protein family are capable of diverse target recognition modes.
Collapse
Affiliation(s)
- Daphne A C Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Jordan L Woehl
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Fin J Milder
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Aernoud A van Batenburg
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Wilco C de Graaf
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Samuel C Broll
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Natalie M White
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, 3584, CX Utrecht, The Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
47
|
Kasperkiewicz P, Altman Y, D'Angelo M, Salvesen GS, Drag M. Toolbox of Fluorescent Probes for Parallel Imaging Reveals Uneven Location of Serine Proteases in Neutrophils. J Am Chem Soc 2017; 139:10115-10125. [PMID: 28672107 DOI: 10.1021/jacs.7b04394] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neutrophils, the front line defenders against infection, express four serine proteases (NSPs) that play roles in the control of cell-signaling pathways and defense against pathogens and whose imbalance leads to pathological conditions. Dissecting the roles of individual NSPs in humans is problematic because neutrophils are end-stage cells with a short half-life and minimal ongoing protein synthesis. To gain insight into the regulation of NSP activity we have generated a small-molecule chemical toolbox consisting of activity-based probes with different fluorophore-detecting groups with minimal wavelength overlap and highly selective natural and unnatural amino acid recognition sequences. The key feature of these activity-based probes is the ability to use them for simultaneous observation and detection of all four individual NSPs by fluorescence microscopy, a feature never achieved in previous studies. Using these probes we demonstrate uneven distribution of NSPs in neutrophil azurophil granules, such that they seem to be mutually excluded from each other, suggesting the existence of unknown granule-targeting mechanisms.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.,NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Yoav Altman
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Maximiliano D'Angelo
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Guy S Salvesen
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
48
|
Neutrophils and Immunity: From Bactericidal Action to Being Conquered. J Immunol Res 2017; 2017:9671604. [PMID: 28299345 PMCID: PMC5337389 DOI: 10.1155/2017/9671604] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/29/2017] [Indexed: 12/19/2022] Open
Abstract
The neutrophil is the major phagocyte and the final effector cell of the innate immunity, with a primary role in the clearance of extracellular pathogens. Using the broad array of cytokines, extracellular traps, and effector molecules as the humoral arm, neutrophils play a crucial role in the host defense against pathogen infections. On the other hand, the pathogen has the capacity to overcome neutrophil-mediated host defense to establish infection causing human disease. Pathogens, such as S. aureus, have the potential to thwart neutrophil chemotaxis and phagocytosis and thereby succeed in evading killing by neutrophils. Furthermore, S. aureus surviving within neutrophils promotes neutrophil cytolysis, resulting in the release of host-derived molecules that promote local inflammation. Here, we provide a detailed overview of the mechanisms by which neutrophils kill the extracellular pathogens and how pathogens evade neutrophils degradation. This review will provide insights that might be useful for the development of novel therapies against infections caused by antibiotic resistant pathogens.
Collapse
|
49
|
Taggart C, Mall MA, Lalmanach G, Cataldo D, Ludwig A, Janciauskiene S, Heath N, Meiners S, Overall CM, Schultz C, Turk B, Borensztajn KS. Protean proteases: at the cutting edge of lung diseases. Eur Respir J 2017; 49:49/2/1501200. [PMID: 28179435 DOI: 10.1183/13993003.01200-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Abstract
Proteases were traditionally viewed as mere protein-degrading enzymes with a very restricted spectrum of substrates. A major expansion in protease research has uncovered a variety of novel substrates, and it is now evident that proteases are critical pleiotropic actors orchestrating pathophysiological processes. Recent findings evidenced that the net proteolytic activity also relies upon interconnections between different protease and protease inhibitor families in the protease web.In this review, we provide an overview of these novel concepts with a particular focus on pulmonary pathophysiology. We describe the emerging roles of several protease families including cysteine and serine proteases.The complexity of the protease web is exemplified in the light of multidimensional regulation of serine protease activity by matrix metalloproteases through cognate serine protease inhibitor processing. Finally, we will highlight how deregulated protease activity during pulmonary pathogenesis may be exploited for diagnosis/prognosis purposes, and utilised as a therapeutic tool using nanotechnologies.Considering proteases as part of an integrative biology perspective may pave the way for the development of new therapeutic targets to treat pulmonary diseases related to intrinsic protease deregulation.
Collapse
Affiliation(s)
- Clifford Taggart
- Airway Innate Immunity Research group (AiiR), Centre for Experimental Medicine, Queen's University Belfast, UK
| | - Marcus A Mall
- Dept of Translational Pulmonology, University of Heidelberg, Heidelberg, Germany.,Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Gilles Lalmanach
- INSERM UMR1100 Centre d'Etude des Pathologies Respiratoires (CEPR), Equipe: Mécanismes Protéolytiques dans l'Inflammation, Université François Rabelais, Tours, France
| | - Didier Cataldo
- Laboratory of Tumors and Development and Dept of Respiratory Diseases, University of Liege, Liege, Belgium
| | - Andreas Ludwig
- Inflammation Pharmacology Research Group, Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Sabina Janciauskiene
- Dept of Respiratory Medicine, a member of The German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Nicole Heath
- Division of Pediatric Pulmonology & Allergy and Cystic Fibrosis Center, Dept of Pediatrics, University of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christopher M Overall
- Centre for Blood Research, Dept of Oral Biological and Medical Research University of British Columbia, Vancouver, BC, Canada
| | - Carsten Schultz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Boris Turk
- Dept of Biochemistry & Molecular & Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | - Keren S Borensztajn
- INSERM UMR _S933, Université Pierre et Marie Curie, Paris, France .,INSERM UMR1152 Université Paris Diderot, Faculté de Médecine - site Bichat, Paris, France
| |
Collapse
|
50
|
Kasperkiewicz P, Poreba M, Groborz K, Drag M. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases. FEBS J 2017; 284:1518-1539. [PMID: 28052575 PMCID: PMC7164106 DOI: 10.1111/febs.14001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022]
Abstract
Proteases are enzymes that hydrolyze the peptide bond of peptide substrates and proteins. Despite significant progress in recent years, one of the greatest challenges in the design and testing of substrates, inhibitors and activity‐based probes for proteolytic enzymes is achieving specificity toward only one enzyme. This specificity is particularly important if the enzyme is present with other enzymes with a similar catalytic mechanism and substrate specificity but completely different functionality. The cross‐reactivity of substrates, inhibitors and activity‐based probes with other enzymes can significantly impair or even prevent investigations of a target protease. In this review, we describe important concepts and the latest challenges, focusing mainly on peptide‐based substrate specificity techniques used to distinguish individual enzymes within major protease families.
Collapse
Affiliation(s)
- Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Poland
| |
Collapse
|