1
|
Kosumi D, Kusumoto T, Hashimoto H. Decoding the excited-state dynamics of carbonyl-containing carotenoids: Insights from the Ind series. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159598. [PMID: 39884382 DOI: 10.1016/j.bbalip.2025.159598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Carotenoids are naturally occurring pigments essential for both light-harvesting and photoprotection in photosynthetic processes. Among these, carbonyl-containing carotenoids exhibit distinctive excited state properties due to the presence of intramolecular charge transfer (ICT) in their excited states. In this study, we synthesized a novel family of carotenoid analogs with varying numbers of conjugated double bonds, denoted as the Ind series, and conducted femtosecond pump-probe spectroscopy on these molecules in both acetone and n-hexane. The objective was to elucidate how the excited-state dynamics depend on the conjugation length. The spectroscopic characterization of the Ind series revealed several unique features: the observation of stimulated emission from the 1Ag-/ICT state, the emergence of the 1nπ∗ state, triplet state formation mediated by the 1nπ∗ state, and an anomalous solvent dependence of the 1Ag-/ICT state lifetimes. The relationship between conjugation length and excited state dynamics, as well as the ICT character of the Ind series, are thoroughly discussed.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Toshiyuki Kusumoto
- Photonics for Material Processing, Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| |
Collapse
|
2
|
Ángeles R, Carvalho J, Hernández-Martínez I, Morales-Ibarría M, Fradinho JC, Reis MAM, Lebrero R. Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology. N Biotechnol 2025; 85:84-102. [PMID: 39788285 DOI: 10.1016/j.nbt.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects. This review first provides an overview of current advances in photosynthetic pigment synthesis and the latest strategies to increase pigment content in cyanobacteria, microalgae, and APB. It then delves into the pigment production process, covering biosynthetic pathways, critical environmental parameters, and extraction methods. Finally, the potential marketability of photosynthetic pigments together with current limitations are discussed.
Collapse
Affiliation(s)
- Roxana Ángeles
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal.
| | - João Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Ingrid Hernández-Martínez
- Doctorate in Natural Sciences and Engineering, Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Marcia Morales-Ibarría
- Department of Processes and Technology. Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Joana C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain.
| |
Collapse
|
3
|
Hou P, Liu S, Hu D, Zhang J, Liang J, Liu H, Zhang J, Zhang G. Predicting biomass conversion and COD removal in wastewater treatment by phototrophic bacteria with interpretable machine learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124282. [PMID: 39862816 DOI: 10.1016/j.jenvman.2025.124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets. Interpretable machine learning methods were employed to identify key features and establish their workable ranges, which included dissolved oxygen (0.3-2.8 mg L⁻1), illuminance (2995.3-6000.0 lux), and light energy (20.0-40.0 kWh) for COD removal efficiency; organic loading rate (OLR, 5.7-7.5 g COD L⁻1 d⁻1), hydraulic retention time (HRT, 0.2-3.2 d), and COD concentration (5.3-10.1 g L⁻1) for biomass productivity; COD/N ratio (609.0-800.0), OLR (0.1-2.4 g COD L⁻1 d⁻1), and illuminance (2661-6000 lux) for biomass yield; and pH (6.5-7.9) and HRT (1.2-2.6 d) for energy yield. The two-dimensional partial dependence plots revealed that optimal interactions between two key input features resulted in COD removal efficiency >72%, biomass productivity >28 g L⁻1 d⁻1, biomass yield> 0.96 g CODbiomass g CODremoved⁻1, energy yield> 0.49 g kWh⁻1. This work advances the understanding of PSB optimization in wastewater treatment through a combination of advanced machine learning and interpretability analysis, offering potential for more efficient resource recovery and process optimization.
Collapse
Affiliation(s)
- Pengfei Hou
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiqi Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Duofei Hu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jie Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jinsong Liang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Huize Liu
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jizheng Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
4
|
Šímová I, Chrupková P, Gardiner AT, Koblížek M, Kloz M, Polívka T. Femtosecond Stimulated Raman Spectroscopy of Linear Carotenoids. J Phys Chem Lett 2024; 15:7466-7472. [PMID: 39008850 DOI: 10.1021/acs.jpclett.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption data measured in a single experiment are used to determine the vibronic properties of the S1 state of linear carotenoids with different conjugation lengths. The Raman band corresponding to the C═C stretching mode in the S1 state peaks at 1799 cm-1 (neurosporene), 1802 cm-1 (spheroidene), and 1791 cm-1 (lycopene). Contrary to the ground state C═C mode, variation of the C═C stretching mode in the S1 state is small and does not follow a linear dependence on N. The lifetime of the Raman band matches the S1 decays obtained from transient absorption, confirming its S1 state origin. Direct comparison of transient absorption and FSRS signals allowed us to assign Raman signatures of nonrelaxed S1 and S0 states. For lycopene, FSRS data identified a component associated with a downshifted ground state C═C mode, which matches the dynamics of the S* signal observed in transient absorption data.
Collapse
Affiliation(s)
- Ivana Šímová
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Petra Chrupková
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany 252 41, Czech Republic
| | - Tomáš Polívka
- Department of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
5
|
Scales BS, Hassenrück C, Moldaenke L, Hassa J, Rückert-Reed C, Rummel C, Völkner C, Rynek R, Busche T, Kalinowski J, Jahnke A, Schmitt-Jansen M, Wendt-Potthoff K, Oberbeckmann S. Hunting for pigments in bacterial settlers of the Great Pacific Garbage Patch. Environ Microbiol 2024; 26:e16639. [PMID: 38899733 DOI: 10.1111/1462-2920.16639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024]
Abstract
The Great Pacific Garbage Patch, a significant collection of plastic introduced by human activities, provides an ideal environment to study bacterial lifestyles on plastic substrates. We proposed that bacteria colonizing the floating plastic debris would develop strategies to deal with the ultraviolet-exposed substrate, such as the production of antioxidant pigments. We observed a variety of pigmentation in 67 strains that were directly cultivated from plastic pieces sampled from the Garbage Patch. The genomic analysis of four representative strains, each distinct in taxonomy, revealed multiple pathways for carotenoid production. These pathways include those that produce less common carotenoids and a cluster of photosynthetic genes. This cluster appears to originate from a potentially new species of the Rhodobacteraceae family. This represents the first report of an aerobic anoxygenic photoheterotrophic bacterium from plastic biofilms. Spectral analysis showed that the bacteria actively produce carotenoids, such as beta-carotene and beta-cryptoxanthin, and bacteriochlorophyll a. Furthermore, we discovered that the genetic ability to synthesize carotenoids is more common in plastic biofilms than in the surrounding water communities. Our findings suggest that plastic biofilms could be an overlooked source of bacteria-produced carotenoids, including rare forms. It also suggests that photoreactive molecules might play a crucial role in bacterial biofilm communities in surface water.
Collapse
Affiliation(s)
- Brittan S Scales
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Christiane Hassenrück
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Lynn Moldaenke
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | | | - Christoph Rummel
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Corinna Völkner
- Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Robby Rynek
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Annika Jahnke
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Research, RWTH Aachen University, Aachen, Germany
| | | | | | - Sonja Oberbeckmann
- Department of Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
6
|
Hao JF, Qi CH, Yu BY, Wang HY, Gao RY, Yamano N, Ma F, Wang P, Xin YY, Zhang CF, Yu LJ, Zhang JP. Light-Quality-Adapted Carotenoid Photoprotection in the Photosystem of Roseiflexus castenholzii. J Phys Chem Lett 2024:3470-3477. [PMID: 38512331 DOI: 10.1021/acs.jpclett.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Hao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Chen-Hui Qi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Bu-Yang Yu
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
| | - Hao-Yi Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Rong-Yao Gao
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Nami Yamano
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Fei Ma
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Peng Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| | - Yue-Yong Xin
- Hangzhou Normal University, 2318 Yuhangtang Road, Cangqian, Yuhang District, Hangzhou 311121, Zhejiang, China
| | - Chun-Feng Zhang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, P. R. China
| | - Jian-Ping Zhang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China
| |
Collapse
|
7
|
Huang X, Vasilev C, Swainsbury D, Hunter C. Excitation energy transfer in proteoliposomes reconstituted with LH2 and RC-LH1 complexes from Rhodobacter sphaeroides. Biosci Rep 2024; 44:BSR20231302. [PMID: 38227291 PMCID: PMC10876425 DOI: 10.1042/bsr20231302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/30/2023] [Accepted: 01/16/2024] [Indexed: 01/17/2024] Open
Abstract
Light-harvesting 2 (LH2) and reaction-centre light-harvesting 1 (RC-LH1) complexes purified from the photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were reconstituted into proteoliposomes either separately, or together at three different LH2:RC-LH1 ratios, for excitation energy transfer studies. Atomic force microscopy (AFM) was used to investigate the distribution and association of the complexes within the proteoliposome membranes. Absorption and fluorescence emission spectra were similar for LH2 complexes in detergent and liposomes, indicating that reconstitution retains the structural and optical properties of the LH2 complexes. Analysis of fluorescence emission shows that when LH2 forms an extensive series of contacts with other such complexes, fluorescence is quenched by 52.6 ± 1.4%. In mixed proteoliposomes, specific excitation of carotenoids in LH2 donor complexes resulted in emission of fluorescence from acceptor RC-LH1 complexes engineered to assemble with no carotenoids. Extents of energy transfer were measured by fluorescence lifetime microscopy; the 0.72 ± 0.08 ns lifetime in LH2-only membranes decreases to 0.43 ± 0.04 ns with a ratio of 2:1 LH2 to RC-LH1, and to 0.35 ± 0.05 ns for a 1:1 ratio, corresponding to energy transfer efficiencies of 40 ± 14% and 51 ± 18%, respectively. No further improvement is seen with a 0.5:1 LH2 to RC-LH1 ratio. Thus, LH2 and RC-LH1 complexes perform their light harvesting and energy transfer roles when reconstituted into proteoliposomes, providing a way to integrate native, non-native, engineered and de novo designed light-harvesting complexes into functional photosynthetic systems.
Collapse
Affiliation(s)
- Xia Huang
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China
- Jinan Guoke Medical Technology Development Co., Ltd, Jinan, Shandong 250101, China
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Cvetelin Vasilev
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - David J.K. Swainsbury
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, U.K
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
8
|
Cho WY, Lee PC. Metagenomic Analysis of Antarctic Ocean near the King Sejong Station Reveals the Diversity of Carotenoid Biosynthetic Genes. Microorganisms 2024; 12:390. [PMID: 38399795 PMCID: PMC10892129 DOI: 10.3390/microorganisms12020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Carotenoids, biotechnologically significant pigments, play crucial biological roles in marine microorganisms. While various environments have been explored to understand the diversity of carotenoids and their biosynthesis, the Antarctic Ocean remains relatively under-investigated. This study conducted a metagenomic analysis of seawater from two depths (16 and 25 m) near the King Sejong Station in the Antarctic Ocean. The analysis revealed a rich genetic diversity underlying C40 (astaxanthin, myxol, okenone, spheroidene, and spirilloxanthin), C30 (diaponeurosporene, diapolycopene, and staphyloxanthin), and C50 (C.p. 450) carotenoid biosynthesis in marine microorganisms, with notable differential gene abundances between depth locations. Exploring carotenoid pathway genes offers the potential for discovering diverse carotenoid structures of biotechnological value and better understanding their roles in individual microorganisms and broader ecosystems.
Collapse
Affiliation(s)
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University, Woncheon-dong, Yeongtong-gu, Suwon 16499, Republic of Korea;
| |
Collapse
|
9
|
Sandmann G. Genes and Pathway Reactions Related to Carotenoid Biosynthesis in Purple Bacteria. BIOLOGY 2023; 12:1346. [PMID: 37887056 PMCID: PMC10604819 DOI: 10.3390/biology12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
In purple bacteria, the genes of the carotenoid pathways are part of photosynthesis gene clusters which were distributed among different species by horizontal gene transfer. Their close organisation facilitated the first-time cloning of carotenogenic genes and promoted the molecular investigation of spheroidene and spirilloxanthin biosynthesis. This review highlights the cloning of the spheroidene and spirilloxanthin pathway genes and presents the current knowledge on the enzymes involved in the carotenoid biosynthesis of purple sulphur and non-sulphur bacteria. Mostly, spheroidene or spirilloxanthin biosynthesis exists in purple non-sulphur bacteria but both pathways operate simultaneously in Rubrivivax gelatinosus. In the following years, genes from other bacteria including purple sulphur bacteria with an okenone pathway were cloned. The individual steps were investigated by kinetic studies with heterologously expressed pathway genes which supported the establishment of the reaction mechanisms. In particular, the substrate and product specificities revealed the sequential order of the speroidene and spiriloxanthin pathways as well as their interactions. Information on the enzymes involved revealed that the phytoene desaturase determines the type of pathway by the formation of different products. By selection of mutants with amino acid exchanges in the putative substrate-binding site, the neurosporene-forming phytoene desaturase could be changed into a lycopene-producing enzyme and vice versa. Concerning the oxygen groups in neurosporene and lycopene, the tertiary alcohol group at C1 is formed from water and not by oxygenation, and the C2 or C4 keto groups are inserted differently by an oxygen-dependent or oxygen-independent ketolation reaction, respectively.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Institute for Molecular Biosciences, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, D-60438 Frankfurt, Germany
| |
Collapse
|
10
|
Thwaites O, Christianson BM, Cowan AJ, Jäckel F, Liu LN, Gardner AM. Unravelling the Roles of Integral Polypeptides in Excitation Energy Transfer of Photosynthetic RC-LH1 Supercomplexes. J Phys Chem B 2023; 127:7283-7290. [PMID: 37556839 PMCID: PMC10461223 DOI: 10.1021/acs.jpcb.3c04466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Elucidating the photosynthetic processes that occur within the reaction center-light-harvesting 1 (RC-LH1) supercomplexes from purple bacteria is crucial for uncovering the assembly and functional mechanisms of natural photosynthetic systems and underpinning the development of artificial photosynthesis. Here, we examined excitation energy transfer of various RC-LH1 supercomplexes of Rhodobacter sphaeroides using transient absorption spectroscopy, coupled with lifetime density analysis, and studied the roles of the integral transmembrane polypeptides, PufX and PufY, in energy transfer within the RC-LH1 core complex. Our results show that the absence of PufX increases both the LH1 → RC excitation energy transfer lifetime and distribution due to the role of PufX in defining the interaction and orientation of the RC within the LH1 ring. While the absence of PufY leads to the conformational shift of several LH1 subunits toward the RC, it does not result in a marked change in the excitation energy transfer lifetime.
Collapse
Affiliation(s)
- Owen Thwaites
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Bern M. Christianson
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
| | - Alexander J. Cowan
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Frank Jäckel
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Physics, University of Liverpool, Liverpool L69 7ZE, U.K.
| | - Lu-Ning Liu
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
- College
of Marine Life Sciences, and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Ocean University
of China, Qingdao 266003, China
| | - Adrian M. Gardner
- Stephenson
Institute of Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Early Career
Laser Laboratory, University of Liverpool, Liverpool L69 3BX, U.K.
| |
Collapse
|
11
|
Elvers I, Nguyen-Phan TC, Gardiner AT, Hunter CN, Cogdell RJ, Köhler J. Phasor Analysis Reveals Multicomponent Fluorescence Kinetics in the LH2 Complex from Marichromatium purpuratum. J Phys Chem B 2022; 126:10335-10346. [PMID: 36449272 DOI: 10.1021/acs.jpcb.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We investigated the fluorescence kinetics of LH2 complexes from Marichromatium purpuratum, the cryo-EM structure of which has been recently elucidated with 2.4 Å resolution. The experiments have been carried out as a function of the excitation density by varying both the excitation fluence and the repetition rate of the laser excitation. Instead of the usual multiexponential fitting procedure, we applied the less common phasor formalism for evaluating the transients because this allows for a model-free analysis of the data without a priori knowledge about the number of processes that contribute to a particular decay. For the various excitation conditions, this analysis reproduces consistently three lifetime components with decay times below 100 ps, 500 ps, and 730 ps, which were associated with the quenched state, singlet-triplet annihilation, and fluorescence decay, respectively. Moreover, it reveals that the number of decay components that contribute to the transients depends on whether the excitation wavelength is in resonance with the B800 BChl a molecules or with the carotenoids. Based on the mutual arrangement of the chromophores in their binding pockets, this leads us to conclude that the energy transfer pathways within the LH2 complex of this species differ significantly from each other for exciting either the B800 BChl molecules or the carotenoids. Finally, we speculate whether the illumination with strong laser light converts the LH2 complexes studied here into a quenched conformation that might be related to the development of the non-photochemical quenching mechanism that occurs in higher plants.
Collapse
Affiliation(s)
- Inga Elvers
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| | - Tu C Nguyen-Phan
- School of Infection and Immunity, Glasgow University, Glasgow G12 8TA, U.K
| | - Alastair T Gardiner
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Richard J Cogdell
- School of Molecular Biosciences, Glasgow University, Glasgow G12 8QQ, U.K
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany.,Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, D-95440 Bayreuth, Germany
| |
Collapse
|
12
|
Sutherland GA, Qian P, Hunter CN, Swainsbury DJ, Hitchcock A. Engineering purple bacterial carotenoid biosynthesis to study the roles of carotenoids in light-harvesting complexes. Methods Enzymol 2022; 674:137-184. [DOI: 10.1016/bs.mie.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Cryo-EM structure of the monomeric Rhodobacter sphaeroides RC-LH1 core complex at 2.5 Å. Biochem J 2021; 478:3775-3790. [PMID: 34590677 PMCID: PMC8589327 DOI: 10.1042/bcj20210631] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022]
Abstract
Reaction centre light-harvesting 1 (RC–LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC–LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Å resolution structure of one such RC–LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αβ heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11–14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion.
Collapse
|
14
|
Sandmann G. Diversity and origin of carotenoid biosynthesis: its history of coevolution towards plant photosynthesis. THE NEW PHYTOLOGIST 2021; 232:479-493. [PMID: 34324713 DOI: 10.1111/nph.17655] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The development of photosynthesis was a highlight in the progression of bacteria. In addition to the photosystems with their structural proteins, the photosynthesis apparatus consists of different cofactors including essential carotenoids. Thus, the evolution of the carotenoid pathways in relation to the functionality of the resulting structures in photosynthesis is the focus of this review. Analysis of carotenoid pathway genes indicates early evolutionary roots in prokaryotes. The pathway complexity leading to a multitude of structures is a result of gene acquisition, including their functional modifications, emergence of novel genes and gene exchange between species. Along with the progression of photosynthesis, carotenoid pathways coevolved with photosynthesis according to their advancing functionality. Cyanobacteria, with their oxygenic photosynthesis, became a landmark for evolutionary events including carotenogenesis. Concurrent with endosymbiosis, the cyanobacterial carotenoid pathways were inherited into algal plastids. In the lineage leading to Chlorophyta and plants, carotenoids evolved to their prominent role in protection and regulation of light energy input as constituents of a highly efficient light-harvesting complex.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Institute of Molecular Biosciences, Goethe-University Frankfurt/M, Max von Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
15
|
Kosumi D, Kusumoto T, Hashimoto H. Unique ultrafast excited states dynamics of artificial short-polyene carotenoid analog 2-(all-trans-β-ionylideneetinylidene)-indan-1,3-dione. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Makhneva ZK, Bolshakov MA, Moskalenko AA. Carotenoids Do Not Protect Bacteriochlorophylls in Isolated Light-Harvesting LH2 Complexes of Photosynthetic Bacteria from Destructive Interactions with Singlet Oxygen. Molecules 2021; 26:5120. [PMID: 34500552 PMCID: PMC8434301 DOI: 10.3390/molecules26175120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
The effect of singlet oxygen on light-harvesting (LH) complexes has been studied for a number of sulfur (S+) and nonsulfur (S-) photosynthetic bacteria. The visible/near-IR absorption spectra of the standard LH2 complexes (B800-850) of Allochromatium (Alc.) vinosum (S+), Rhodobacter (Rba.) sphaeroides (S-), Rhodoblastus (Rbl.) acidophilus (S-), and Rhodopseudomonas (Rps.) palustris (S-), two types LH2/LH3 (B800-850 and B800-830) of Thiorhodospira (T.) sibirica (S+), and an unusual LH2 complex (B800-827) of Marichromatium (Mch.) purpuratum (S+) or the LH1 complex from Rhodospirillum (Rsp.) rubrum (S-) were measured in aqueous buffer suspensions in the presence of singlet oxygen generated by the illumination of the dye Rose Bengal (RB). The content of carotenoids in the samples was determined using HPLC analysis. The LH2 complex of Alc. vinosum and T. sibirica with a reduced content of carotenoids was obtained from cells grown in the presence of diphenylamine (DPA), and LH complexes were obtained from the carotenoidless mutant of Rba. sphaeroides R26.1 and Rps. rubrum G9. We found that LH2 complexes containing a complete set of carotenoids were quite resistant to the destructive action of singlet oxygen in the case of Rba. sphaeroides and Mch. purpuratum. Complexes of other bacteria were much less stable, which can be judged by a strong irreversible decrease in the bacteriochlorophyll (BChl) absorption bands (at 850 or 830 nm, respectively) for sulfur bacteria and absorption bands (at 850 and 800 nm) for nonsulfur bacteria. Simultaneously, we observe the appearance of the oxidized product 3-acetyl-chlorophyll (AcChl) absorbing near 700 nm. Moreover, a decrease in the amount of carotenoids enhanced the spectral stability to the action of singlet oxygen of the LH2 and LH3 complexes from sulfur bacteria and kept it at the same level as in the control samples for carotenoidless mutants of nonsulfur bacteria. These results are discussed in terms of the current hypothesis on the protective functions of carotenoids in bacterial photosynthesis. We suggest that the ability of carotenoids to quench singlet oxygen (well-established in vitro) is not well realized in photosynthetic bacteria. We compared the oxidation of BChl850 in LH2 complexes of sulfur bacteria under the action of singlet oxygen (in the presence of 50 μM RB) or blue light absorbed by carotenoids. These processes are very similar: {[BChl + (RB or carotenoid) + light] + O2} → AcChl. We speculate that carotenoids are capable of generating singlet oxygen when illuminated. The mechanism of this process is not yet clear.
Collapse
Affiliation(s)
| | | | - Andrey A. Moskalenko
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Russia; (Z.K.M.); (M.A.B.)
| |
Collapse
|
17
|
Nupur, Kuzma M, Hájek J, Hrouzek P, Gardiner AT, Lukeš M, Moos M, Šimek P, Koblížek M. Structure elucidation of the novel carotenoid gemmatoxanthin from the photosynthetic complex of Gemmatimonas phototrophica AP64. Sci Rep 2021; 11:15964. [PMID: 34354109 PMCID: PMC8342508 DOI: 10.1038/s41598-021-95254-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Gemmatimonas phototrophica AP64 is the first phototrophic representative of the bacterial phylum Gemmatimonadetes. The cells contain photosynthetic complexes with bacteriochlorophyll a as the main light-harvesting pigment and an unknown carotenoid with a single broad absorption band at 490 nm in methanol. The carotenoid was extracted from isolated photosynthetic complexes, and purified by liquid chromatography. A combination of nuclear magnetic resonance (1H NMR, COSY, 1H-13C HSQC, 1H-13C HMBC, J-resolved, and ROESY), high-resolution mass spectroscopy, Fourier-transformed infra-red, and Raman spectroscopy was used to determine its chemical structure. The novel linear carotenoid, that we have named gemmatoxanthin, contains 11 conjugated double bonds and is further substituted by methoxy, carboxyl and aldehyde groups. Its IUPAC-IUBMB semi-systematic name is 1'-Methoxy-19'-oxo-3',4'-didehydro-7,8,1',2'-tetrahydro- Ψ, Ψ carotene-16-oic acid. To our best knowledge, the presence of the carboxyl, methoxy and aldehyde groups on a linear C40 carotenoid backbone is reported here for the first time.
Collapse
Affiliation(s)
- Nupur
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague, Czech Republic
| | - Jan Hájek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, Czech Republic
| | - Alastair T Gardiner
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Lukeš
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic
| | - Martin Moos
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Petr Šimek
- Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, 370 05, České Budějovice, Czech Republic
| | - Michal Koblížek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, 379 81, Třeboň, Czech Republic.
| |
Collapse
|
18
|
Di Nezio F, Beney C, Roman S, Danza F, Buetti-Dinh A, Tonolla M, Storelli N. Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol Ecol 2021; 97:6123714. [PMID: 33512460 PMCID: PMC7947596 DOI: 10.1093/femsec/fiab010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Meromictic lakes are interesting ecosystems to study anaerobic microorganisms due their permanent stratification allowing the formation of a stable anoxic environment. The crenogenic meromictic Lake Cadagno harbors an important community of anoxygenic phototrophic sulfur bacteria responsible for almost half of its total productivity. Besides their ability to fix CO2 through photosynthesis, these microorganisms also showed high rates of dark carbon fixation via chemosyntesis. Here, we grew in pure cultures three populations of anoxygenic phototrophic sulfur bacteria previously isolated from the lake, accounting for 72.8% of the total microbial community and exibiting different phenotypes: (1) the motile, large-celled purple sulfur bacterium (PSB) Chromatium okenii, (2) the small-celled PSB Thiodictyon syntrophicum and (3) the green sulfur bacterium (GSB) Chlorobium phaeobacteroides. We measured their ability to fix CO2 through photo- and chemo-synthesis, both in situ in the lake and in laboratory under different incubation conditions. We also evaluated the efficiency and velocity of H2S photo-oxidation, an important reaction in the anoxygenic photosynthesis process. Our results confirm that phototrophic sulfur bacteria strongly fix CO2 in the presence of light and that oxygen increases chemosynthesis at night, in laboratory conditions. Moreover, substancial differences were displayed between the three selected populations in terms of activity and abundance.
Collapse
Affiliation(s)
- Francesco Di Nezio
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Clarisse Beney
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Francesco Danza
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland.,Microbiology Unit, Department of Botany and Plant Biology (BIVEG), University of Geneva, Quai Ernest-Ansermet 30, 1211 Geneva 4, 1211 Geneva, Switzerland.,Alpine Biology Center Foundation, via Mirasole 22a, 6500 Bellinzona, Switzerland
| | - Nicola Storelli
- Laboratory of Applied Microbiology (LMA), Department of Environmental Constructions and Design (DACD), University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500 Bellinzona, Switzerland
| |
Collapse
|
19
|
Swainsbury DJK, Qian P, Jackson PJ, Faries KM, Niedzwiedzki DM, Martin EC, Farmer DA, Malone LA, Thompson RF, Ranson NA, Canniffe DP, Dickman MJ, Holten D, Kirmaier C, Hitchcock A, Hunter CN. Structures of Rhodopseudomonas palustris RC-LH1 complexes with open or closed quinone channels. SCIENCE ADVANCES 2021; 7:7/3/eabe2631. [PMID: 33523887 PMCID: PMC7806223 DOI: 10.1126/sciadv.abe2631] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 05/23/2023]
Abstract
The reaction-center light-harvesting complex 1 (RC-LH1) is the core photosynthetic component in purple phototrophic bacteria. We present two cryo-electron microscopy structures of RC-LH1 complexes from Rhodopseudomonas palustris A 2.65-Å resolution structure of the RC-LH114-W complex consists of an open 14-subunit LH1 ring surrounding the RC interrupted by protein-W, whereas the complex without protein-W at 2.80-Å resolution comprises an RC completely encircled by a closed, 16-subunit LH1 ring. Comparison of these structures provides insights into quinone dynamics within RC-LH1 complexes, including a previously unidentified conformational change upon quinone binding at the RC QB site, and the locations of accessory quinone binding sites that aid their delivery to the RC. The structurally unique protein-W prevents LH1 ring closure, creating a channel for accelerated quinone/quinol exchange.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Materials and Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Kaitlyn M Faries
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David A Farmer
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lorna A Malone
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Canniffe
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Christine Kirmaier
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
20
|
Papageorgiou M, Tselios C, Varotsis C. Photoreduction of carotenoids in the aerobic anoxygenic photoheterotrophs probed by real time Raman spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112069. [PMID: 33152639 DOI: 10.1016/j.jphotobiol.2020.112069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
The Aerobic anoxygenic phototrophic bacteria (AAPB) Roseobacter denitrificans and Roseobacter litoralis are widespread in the bacterioplankton community with a particular role in the marine carbon cycle. Measurements of carotenoids isolated from dark-grown cells indicated the presence of spheroidenone (SO, N = 11) and of 3,4 dihydrospheroidenone (N = 10) in the carotenoids isolated from illuminated cells. Time-dependent Raman 514 nm excitation experiments of R. denitrificans and R. litoralis cells grown under illumination demonstrated that v1 (C=C) of SO exhibits a time-dependent substantial frequency upshift relative to its frequency in the dark-grown cells, in a manner resembling shorting the conjugation length (N). We suggest that the irreversible dark-SO to light- 3,4 dihydrospheroidenone transition observed in the intact carotenoids of R. denitrificans and R. litoralis cells is an operative photoreduction strategy of SO containing AAPB that affects the energy transfer mechanism.
Collapse
Affiliation(s)
- Marios Papageorgiou
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Charalampos Tselios
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Constantinos Varotsis
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
21
|
Adaptation to Photooxidative Stress: Common and Special Strategies of the Alphaproteobacteria Rhodobacter sphaeroides and Rhodobacter capsulatus. Microorganisms 2020; 8:microorganisms8020283. [PMID: 32093084 PMCID: PMC7074977 DOI: 10.3390/microorganisms8020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Photosynthetic bacteria have to deal with the risk of photooxidative stress that occurs in presence of light and oxygen due to the photosensitizing activity of (bacterio-) chlorophylls. Facultative phototrophs of the genus Rhodobacter adapt the formation of photosynthetic complexes to oxygen and light conditions, but cannot completely avoid this stress if environmental conditions suddenly change. R. capsulatus has a stronger pigmentation and faster switches to phototrophic growth than R. sphaeroides. However, its photooxidative stress response has not been investigated. Here, we compare both species by transcriptomics and proteomics, revealing that proteins involved in oxidation-reduction processes, DNA, and protein damage repair play pivotal roles. These functions are likely universal to many phototrophs. Furthermore, the alternative sigma factors RpoE and RpoHII are induced in both species, even though the genetic localization of the rpoE gene, the RpoE protein itself, and probably its regulon, are different. Despite sharing the same habitats, our findings also suggest individual strategies. The crtIB-tspO operon, encoding proteins for biosynthesis of carotenoid precursors and a regulator of photosynthesis, and cbiX, encoding a putative ferrochelatase, are induced in R. capsulatus. This specific response might support adaptation by maintaining high carotenoid-to-bacteriochlorophyll ratios and preventing the accumulation of porphyrin-derived photosensitizers.
Collapse
|
22
|
Armistead B, Whidbey C, Iyer LM, Herrero-Foncubierta P, Quach P, Haidour A, Aravind L, Cuerva JM, Jaspan HB, Rajagopal L. The cyl Genes Reveal the Biosynthetic and Evolutionary Origins of the Group B Streptococcus Hemolytic Lipid, Granadaene. Front Microbiol 2020; 10:3123. [PMID: 32038561 PMCID: PMC6985545 DOI: 10.3389/fmicb.2019.03123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/24/2019] [Indexed: 01/31/2023] Open
Abstract
Group B Streptococcus (GBS) is a β-hemolytic, Gram-positive bacterium that commonly colonizes the female lower genital tract and is associated with fetal injury, preterm birth, spontaneous abortion, and neonatal infections. A major factor promoting GBS virulence is the β-hemolysin/cytolysin, which is cytotoxic to several host cells. We recently showed that the ornithine rhamnolipid pigment, Granadaene, produced by the gene products of the cyl operon, is hemolytic. Here, we demonstrate that heterologous expression of the GBS cyl operon conferred hemolysis, pigmentation, and cytoxicity to Lactococcus lactis, a model non-hemolytic Gram-positive bacterium. Similarly, pigment purified from L. lactis is hemolytic, cytolytic, and identical in structure to Granadaene extracted from GBS, indicating the cyl operon is sufficient for Granadaene production in a heterologous host. Using a systematic survey of phyletic patterns and contextual associations of the cyl genes, we identify homologs of the cyl operon in physiologically diverse Gram-positive bacteria and propose undescribed functions of cyl gene products. Together, these findings bring greater understanding to the biosynthesis and evolutionary foundations of a key GBS virulence factor and suggest that such potentially toxic lipids may be encoded by other bacteria.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle, WA, United States.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Christopher Whidbey
- Department of Global Health, University of Washington, Seattle, WA, United States.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
| | | | - Phoenicia Quach
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ali Haidour
- Department of Organic Chemistry, University of Granada, Granada, Spain
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, United States
| | | | - Heather B Jaspan
- Department of Global Health, University of Washington, Seattle, WA, United States.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States.,Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle, WA, United States.,Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
23
|
Kunacheva C, Soh YNA, Stuckey DC. Identification of soluble microbial products (SMPs) from the fermentation and methanogenic phases of anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134177. [PMID: 31783466 DOI: 10.1016/j.scitotenv.2019.134177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The production and transformation of Soluble Microbial Products (SMPs) in biological treatment systems is complex, and their genesis and reasons for production are still unclear. SMPs are important since they constitute the main fraction of effluent COD (both aerobic and anaerobic), and hence are the main precursors for disinfection by-products (DBPs). In addition, they are a key component of fouling in membrane bioreactors. Hence, it is important to identify the chemical composition of SMPs, determine their origin, and understand what system parameters influence their production so we can possibly develop strategies to control their production. This study focuses on the production and identification of SMPs in an anaerobic batch process being fed a synthetic feed. To further understand the origins of SMPs, and how they are produced, we analysed the processes of fermentation and methanogenesis independently which has never been done in detail before. SMP concentration, molecular weight distribution and carbohydrate analyses were used to estimate the amount of SMPs in the supernatants. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-Time-of-Flight mass spectrometry (LC-ESI-Q-ToF) were used to identify many of the SMPs which have relative masses up to 2 kDa. Our results showed that fermentation released much higher SMP concentrations compared to methanogenesis, especially in the range of 70 k-1000 k Da and 106-1500 Da. Alkanes, alkenes, alcohols, acids, and nitrogen-compounds were the major group of compounds identified in the supernatant of both fermentation and methanogenesis, and 71% of the compounds identified were found in both phases of digestion. Results from LC-ESI-Q-ToF analysis identified components of the cell membrane, such as phosphatidylglycerol, phosphatidylethanolamine and phosphatidylserine, as well as other compounds such as flavonoids, acylglycerol, terpene and terpenoids, benzenoid, glyceride, steroid and steroid derivatives.
Collapse
Affiliation(s)
- C Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore.
| | - Y N A Soh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore.
| | - D C Stuckey
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Makhneva ZK, Ashikhmin AA, Bolshakov MA, Moskalenko AA. Bacteriochlorophyll Interaction with Singlet Oxygen in Membranes of Purple Photosynthetic Bacteria: Does the Protective Function of Carotenoids Exist? DOKL BIOCHEM BIOPHYS 2019; 486:216-219. [PMID: 31367825 DOI: 10.1134/s1607672919030141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 11/23/2022]
Abstract
The direct action of singlet oxygen on the bacteriochlorophyll (BChl) of light-harvesting complexes in the membranes of four species of purple non-sulfur and sulfur photosynthesizing bacteria with and without carotenoids was studied. It was found that BChl in carotenoidless samples is generally more resistant to the action of singlet oxygen compared to the control. It is assumed that carotenoids are not required to protect BChl of bacterial light-harvesting complexes from singlet oxygen, and in the classic work by Griffith et al. [1] the apoptosis process in carotenoidless mutant cells, which involves the destruction of complexes, the appearance of monomeric BChl, and the generation of singlet oxygen caused by BChl, followed by BChl oxidation, was mistakenly attributed to the protective function of carotenoids.
Collapse
Affiliation(s)
- Z K Makhneva
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - A A Ashikhmin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia.
| | - M A Bolshakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
| | - A A Moskalenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia.
| |
Collapse
|
25
|
Khosravi SD, Bishop MM, LaFountain AM, Turner DB, Gibson GN, Frank HA, Berrah N. Addition of a Carbonyl End Group Increases the Rate of Excited-State Decay in a Carotenoid via Conjugation Extension and Symmetry Breaking. J Phys Chem B 2018; 122:10872-10879. [PMID: 30387609 DOI: 10.1021/acs.jpcb.8b06732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steady-state absorption, transient absorption, and transient grating spectroscopies were employed to elucidate the role of a conjugated carbonyl group in the photophysics of carotenoids. Spheroidenone and spheroidene have similar molecular structures and differ only in an additional carbonyl group in spheroidenone. Comparison of the optical responses of these two molecules under similar experimental conditions was used to understand the role of this carbonyl group in the structure. It was found that the carbonyl group has two main effects: first, it dramatically increases the depopulation rate of the excited states of the molecule. The lifetimes of all the excited states of spheroidenone were found to be almost half of the ones for spheroidene. Second, the presence of the carbonyl group in the chain alters the decay mechanism to the symmetry-forbidden S1 state of the molecule, so that the higher vibrational levels of the S1 state are populated much more effectively. It was also revealed that for both molecules, the S2/S x → S1(hot) → S1 decay process is not purely sequential and follows a branched model.
Collapse
Affiliation(s)
| | | | | | - Daniel B Turner
- Department of Chemistry , New York University , New York 10003 , United States
| | | | | | | |
Collapse
|
26
|
Cohen AC, Dichiara E, Jofré V, Antoniolli A, Bottini R, Piccoli P. Carotenoid profile produced by Bacillus licheniformis
Rt4M10 isolated from grapevines grown in high altitude and their antioxidant activity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana C. Cohen
- Laboratorio de Bioquímica Vegetal; Facultad de Ciencias Agrarias; Instituto de Biología Agrícola de Mendoza; Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Cuyo; Almirante Brown 500 CP 5507 Chacras de Coria Argentina
| | - Elisa Dichiara
- Laboratorio de Bioquímica Vegetal; Facultad de Ciencias Agrarias; Instituto de Biología Agrícola de Mendoza; Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Cuyo; Almirante Brown 500 CP 5507 Chacras de Coria Argentina
| | - Viviana Jofré
- Laboratorio de Aromas y Sustancias Naturales; Estación Experimental Agropecuaria Mendoza; Instituto Nacional de Tecnología Agropecuaria; San Martín 3853 CP 5507 Mayor Drummond Argentina
| | - Andrea Antoniolli
- Laboratorio de Bioquímica Vegetal; Facultad de Ciencias Agrarias; Instituto de Biología Agrícola de Mendoza; Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Cuyo; Almirante Brown 500 CP 5507 Chacras de Coria Argentina
| | - Rubén Bottini
- Laboratorio de Bioquímica Vegetal; Facultad de Ciencias Agrarias; Instituto de Biología Agrícola de Mendoza; Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Cuyo; Almirante Brown 500 CP 5507 Chacras de Coria Argentina
| | - Patricia Piccoli
- Laboratorio de Bioquímica Vegetal; Facultad de Ciencias Agrarias; Instituto de Biología Agrícola de Mendoza; Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Cuyo; Almirante Brown 500 CP 5507 Chacras de Coria Argentina
| |
Collapse
|
27
|
Sipka G, Maróti P. Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets. PHOTOSYNTHESIS RESEARCH 2018; 136:17-30. [PMID: 29064080 DOI: 10.1007/s11120-017-0434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Upon high light excitation in photosynthetic bacteria, various triplet states of pigments can accumulate leading to harmful effects. Here, the generation and lifetime of flash-induced carotenoid triplets (3Car) have been studied by observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid- and cytochrome-deficient mutants Rba. sphaeroides Ga, R-26, and cycA, respectively. The following results were obtained: (1) 3Car quenching is observed during and not exclusively after the photochemical rise of the fluorescence yield of BChl indicating that the charge separation in the reaction center (RC) and the carotenoid triplet formation are not consecutive but parallel processes. (2) The photoprotective function of 3Car is not limited to the RC only and can be described by a model in which the carotenoids are distributed in the lake of the BChl pigments. (3) The observed lifetime of 3Car in intact cells is the weighted average of the lifetimes of the carotenoids with various numbers of conjugated double bonds in the bacterial strain. (4) The lifetime of 3Car measured in the light is significantly shorter (1-2 μs) than that measured in the dark (2-10 μs). The difference reveals the importance of the dynamics of 3Car before relaxation. The results will be discussed not only in terms of energy levels of the 3Car but also in terms of the kinetics of transitions among different sublevels in the excited triplet state of the carotenoid.
Collapse
Affiliation(s)
- Gábor Sipka
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Péter Maróti
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary.
| |
Collapse
|
28
|
Šlouf V, Keşan G, Litvín R, Swainsbury DJK, Martin EC, Hunter CN, Polívka T. Carotenoid to bacteriochlorophyll energy transfer in the RC-LH1-PufX complex from Rhodobacter sphaeroides containing the extended conjugation keto-carotenoid diketospirilloxanthin. PHOTOSYNTHESIS RESEARCH 2018; 135:33-43. [PMID: 28528494 DOI: 10.1007/s11120-017-0397-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
RC-LH1-PufX complexes from a genetically modified strain of Rhodobacter sphaeroides that accumulates carotenoids with very long conjugation were studied by ultrafast transient absorption spectroscopy. The complexes predominantly bind the carotenoid diketospirilloxanthin, constituting about 75% of the total carotenoids, which has 13 conjugated C=C bonds, and the conjugation is further extended to two terminal keto groups. Excitation of diketospirilloxanthin in the RC-LH1-PufX complex demonstrates fully functional energy transfer from diketospirilloxanthin to BChl a in the LH1 antenna. As for other purple bacterial LH complexes having carotenoids with long conjugation, the main energy transfer route is via the S2-Qx pathway. However, in contrast to LH2 complexes binding diketospirilloxanthin, in RC-LH1-PufX we observe an additional, minor energy transfer pathway associated with the S1 state of diketospirilloxanthin. By comparing the spectral properties of the S1 state of diketospirilloxanthin in solution, in LH2, and in RC-LH1-PufX, we propose that the carotenoid-binding site in RC-LH1-PufX activates the ICT state of diketospirilloxanthin, resulting in the opening of a minor S1/ICT-mediated energy transfer channel.
Collapse
Affiliation(s)
- Václav Šlouf
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Gürkan Keşan
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Radek Litvín
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Tomáš Polívka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
- Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
29
|
Liguori N, Xu P, van Stokkum IHM, van Oort B, Lu Y, Karcher D, Bock R, Croce R. Different carotenoid conformations have distinct functions in light-harvesting regulation in plants. Nat Commun 2017; 8:1994. [PMID: 29222488 PMCID: PMC5722816 DOI: 10.1038/s41467-017-02239-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 11/15/2017] [Indexed: 01/25/2023] Open
Abstract
To avoid photodamage plants regulate the amount of excitation energy in the membrane at the level of the light-harvesting complexes (LHCs). It has been proposed that the energy absorbed in excess is dissipated via protein conformational changes of individual LHCs. However, the exact quenching mechanism remains unclear. Here we study the mechanism of quenching in LHCs that bind a single carotenoid species and are constitutively in a dissipative conformation. Via femtosecond spectroscopy we resolve a number of carotenoid dark states, demonstrating that the carotenoid is bound to the complex in different conformations. Some of those states act as excitation energy donors for the chlorophylls, whereas others act as quenchers. Via in silico analysis we show that structural changes of carotenoids are expected in the LHC protein domains exposed to the chloroplast lumen, where acidification triggers photoprotection in vivo. We propose that structural changes of LHCs control the conformation of the carotenoids, thus permitting access to different dark states responsible for either light harvesting or photoprotection.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Pengqi Xu
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Ivo H M van Stokkum
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Bart van Oort
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Yinghong Lu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie Wissenschaftspark Golm, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells. Nat Commun 2017; 8:988. [PMID: 29042567 PMCID: PMC5715167 DOI: 10.1038/s41467-017-01124-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 08/20/2017] [Indexed: 11/23/2022] Open
Abstract
Photosynthesis transfers energy efficiently through a series of antenna complexes to the reaction center where charge separation occurs. Energy transfer in vivo is primarily monitored by measuring fluorescence signals from the small fraction of excitations that fail to result in charge separation. Here, we use two-dimensional electronic spectroscopy to follow the entire energy transfer process in a thriving culture of the purple bacteria, Rhodobacter sphaeroides. By removing contributions from scattered light, we extract the dynamics of energy transfer through the dense network of antenna complexes and into the reaction center. Simulations demonstrate that these dynamics constrain the membrane organization into small pools of core antenna complexes that rapidly trap energy absorbed by surrounding peripheral antenna complexes. The rapid trapping and limited back transfer of these excitations lead to transfer efficiencies of 83% and a small functional light-harvesting unit. During photosynthesis, energy is transferred from photosynthetic antenna to reaction centers via ultrafast energy transfer. Here the authors track energy transfer in photosynthetic bacteria using two-dimensional electronic spectroscopy and show that these transfer dynamics constrain antenna complex organization.
Collapse
|
31
|
Swainsbury DJK, Martin EC, Vasilev C, Parkes-Loach PS, Loach PA, Neil Hunter C. Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:927-938. [PMID: 28826909 PMCID: PMC5604489 DOI: 10.1016/j.bbabio.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/02/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Abstract
The reaction centre-light harvesting 1 (RC-LH1) complex of Thermochromatium (Tch.) tepidum has a unique calcium-ion binding site that enhances thermal stability and red-shifts the absorption of LH1 from 880nm to 915nm in the presence of calcium-ions. The LH1 antenna of mesophilic species of phototrophic bacteria such as Rhodobacter (Rba.) sphaeroides does not possess such properties. We have engineered calcium-ion binding into the LH1 antenna of Rba. sphaeroides by progressively modifying the native LH1 polypeptides with sequences from Tch. tepidum. We show that acquisition of the C-terminal domains from LH1 α and β of Tch. tepidum is sufficient to activate calcium-ion binding and the extent of red-shifting increases with the proportion of Tch. tepidum sequence incorporated. However, full exchange of the LH1 polypeptides with those of Tch. tepidum results in misassembled core complexes. Isolated α and β polypeptides from our most successful mutant were reconstituted in vitro with BChl a to form an LH1-type complex, which was stabilised 3-fold by calcium-ions. Additionally, carotenoid specificity was changed from spheroidene found in Rba. sphaeroides to spirilloxanthin found in Tch. tepidum, with the latter enhancing in vitro formation of LH1. These data show that the C-terminal LH1 α/β domains of Tch. tepidum behave autonomously, and are able to transmit calcium-ion induced conformational changes to BChls bound to the rest of a foreign antenna complex. Thus, elements of foreign antenna complexes, such as calcium-ion binding and blue/red switching of absorption, can be ported into Rhodobacter sphaeroides using careful design processes.
Collapse
Affiliation(s)
- David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom.
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | - Pamela S Parkes-Loach
- Department of Molecular Biosciences, Northwestern University, Hogan 2100, 2205 Tech Drive, Evanston, IL 60208, United States
| | - Paul A Loach
- Department of Molecular Biosciences, Northwestern University, Hogan 2100, 2205 Tech Drive, Evanston, IL 60208, United States
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
32
|
Niedzwiedzki DM, Swainsbury DJK, Martin EC, Hunter CN, Blankenship RE. Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria. J Phys Chem B 2017; 121:7571-7585. [PMID: 28719215 DOI: 10.1021/acs.jpcb.7b04251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This spectroscopic study investigates the origin of the transient feature of the S* excited state of carotenoids bound in LH1 complexes from purple bacteria. The studies were performed on two RC-LH1 complexes from Rba. sphaeroides strains that bound carotenoids with different carbon-carbon double bond conjugation N, neurosporene (N = 9) and spirilloxanthin (N = 13). The S* transient spectral feature, originally associated with an elusive and optically silent excited state of spirilloxanthin in the LH1 complex, may be successfully explained and mimicked without involving any unknown electronic state. The spectral and temporal characteristics of the S* feature suggest that it is associated with triplet-triplet annihilation of carotenoid triplets formed after direct excitation of the molecule via a singlet fission mechanism. Depending on pigment homogeneity and carotenoid assembly in the LH1 complex, the spectro-temporal component associated with triplet-triplet annihilation may simply resolve a pure T-S spectrum of a carotenoid. In some cases (like spirilloxanthin), the T-S feature will also be accompanied by a carotenoid Stark spectrum and/or residual transient absorption of minor carotenoid species bound into LH1 antenna complex.
Collapse
Affiliation(s)
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
33
|
Light harvesting in phototrophic bacteria: structure and function. Biochem J 2017; 474:2107-2131. [DOI: 10.1042/bcj20160753] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment–protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.
Collapse
|
34
|
Kuznetsova V, Chábera P, Litvín R, Polívka T, Fuciman M. Effect of Isomerization on Excited-State Dynamics of Carotenoid Fucoxanthin. J Phys Chem B 2017; 121:4438-4447. [DOI: 10.1021/acs.jpcb.7b02526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Valentyna Kuznetsova
- Institute
of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| | - Pavel Chábera
- Division
of Chemical Physics, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Radek Litvín
- Institute
of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Institute
of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Tomáš Polívka
- Institute
of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
- Institute
of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute
of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czech Republic
| |
Collapse
|
35
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Martin EC, Bocian DF, Hunter CN, Holten D. New insights into the photochemistry of carotenoid spheroidenone in light-harvesting complex 2 from the purple bacterium Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2017; 131:291-304. [PMID: 27854005 PMCID: PMC5313593 DOI: 10.1007/s11120-016-0322-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, "blue" form with an S2 (11B u+ ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, "red" form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u+ ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u+ ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u+ ) → S0 (11A g- ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid-protein interactions, including the inferred hydrogen bonding.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- Photosynthetic Antenna Research Center, Washington University in St. Louis, Campus Box 1138, St. Louis, MO, 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Dewey Holten
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
36
|
Olsen JD, Martin EC, Hunter CN. The PufX quinone channel enables the light-harvesting 1 antenna to bind more carotenoids for light collection and photoprotection. FEBS Lett 2017; 591:573-580. [PMID: 28130884 PMCID: PMC5347945 DOI: 10.1002/1873-3468.12575] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 11/30/2022]
Abstract
Photosynthesis in some phototrophic bacteria requires the PufX component of the reaction centre–light‐harvesting 1–PufX (RC‐LH1‐PufX) complex, which creates a pore for quinone/quinol (Q/QH2) exchange across the LH1 barrier surrounding the RC. However, photosynthetic bacteria such as Thermochromatium (T.) tepidum do not require PufX because there are fewer carotenoid binding sites, which creates multiple pores in the LH1 ring for Q/QH2 exchange. We show that an αTrp‐24→Phe alteration of the Rhodobacter (Rba.) sphaeroides LH1 antenna impairs carotenoid binding and allows photosynthetic growth in the absence of PufX. We propose that acquisition of PufX and confining Q/QH2 traffic to a pore adjacent to the RC QB site is an evolutionary upgrade that allows increased LH1 carotenoid content for enhanced light absorption and photoprotection.
Collapse
Affiliation(s)
- John D Olsen
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| |
Collapse
|
37
|
Muzziotti D, Adessi A, Faraloni C, Torzillo G, De Philippis R. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance. Microbiol Res 2017; 197:49-55. [PMID: 28219525 DOI: 10.1016/j.micres.2017.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/30/2022]
Abstract
The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H2-producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors.
Collapse
Affiliation(s)
- Dayana Muzziotti
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144, Florence, Italy.
| | - Alessandra Adessi
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144, Florence, Italy; Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| | - Cecilia Faraloni
- Institute of Ecosystem Study (ISE), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| | - Giuseppe Torzillo
- Institute of Ecosystem Study (ISE), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental Sciences, University of Florence, via Maragliano 77, 50144, Florence, Italy; Institute of Chemistry of Organometallic Compounds (ICCOM), CNR, Via Madonna del Piano, 10-50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
38
|
Kosumi D, Kajikawa T, Sakaguchi K, Katsumura S, Hashimoto H. Excited state properties of β-carotene analogs incorporating a lactone ring. Phys Chem Chem Phys 2017; 19:3000-3009. [PMID: 28079227 DOI: 10.1039/c6cp06828f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carotenoids possessing a carbonyl group along their polyene backbone exhibit unique excited state properties due to the occurrence of intramolecular charge transfer (ICT) in the excited state. In fact, the ICT characteristics of naturally occurring carbonyl carotenoids play an essential role in the highly efficient energy transfer that proceeds in aquatic photosynthetic antenna systems. In the present study, we synthesized two short-chain polyene carotenoids incorporating a lactone ring, denoted as BL-7 and BL-8, having seven and eight conjugated double bonds (n = 7 and 8), respectively. The excited state properties of these compounds were directly compared to those of their non-carbonyl counterparts to clarify the role of the carbonyl group in the generation of ICT. The energies of the optically allowed S2 states for BL-7 and BL-8 were found to be more than 0.3 eV (2400 cm-1) below those of non-carbonyl short β-carotene homologs. Ultrafast spectroscopic data demonstrated various solvent polarity-induced effects, including the appearance of stimulated emission in the near-IR region in the case of BL-7, and significant lifetime shortening of the lowest-lying singlet S1 excited states of both BL-7 and BL-8. These results suggest that these compounds exhibit ICT characteristics.
Collapse
Affiliation(s)
- Daisuke Kosumi
- Institute of Pulsed Power Science, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.
| | - Takayuki Kajikawa
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kazuhiko Sakaguchi
- Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Shigeo Katsumura
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen, Sanda, Hyogo 669-1337, Japan and Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hideki Hashimoto
- Department of Applied Chemistry for Environment, Faculty of Science and Technology, Kwansei Gakuin University, Japan.
| |
Collapse
|
39
|
Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre. Nat Commun 2017; 8:13972. [PMID: 28054547 PMCID: PMC5512671 DOI: 10.1038/ncomms13972] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis uses a limited range of the solar spectrum, so enhancing spectral coverage could improve the efficiency of light capture. Here, we show that a hybrid reaction centre (RC)/yellow fluorescent protein (YFP) complex accelerates photosynthetic growth in the bacterium Rhodobacter sphaeroides. The structure of the RC/YFP-light-harvesting 1 (LH1) complex shows the position of YFP attachment to the RC-H subunit, on the cytoplasmic side of the RC complex. Fluorescence lifetime microscopy of whole cells and ultrafast transient absorption spectroscopy of purified RC/YFP complexes show that the YFP–RC intermolecular distance and spectral overlap between the emission of YFP and the visible-region (QX) absorption bands of the RC allow energy transfer via a Förster mechanism, with an efficiency of 40±10%. This proof-of-principle study demonstrates the feasibility of increasing spectral coverage for harvesting light using non-native genetically-encoded light-absorbers, thereby augmenting energy transfer and trapping in photosynthesis. Photosynthesis uses only a limited range of solar radiation. Here, Grayson et al. genetically incorporated the yellow fluorescent protein (YFP) chromophore into a bacterial photosystem, and show that energy harvested by reaction centre–YFP complexes can augment photosynthesis in vivo.
Collapse
|
40
|
Šlouf V, Kuznetsova V, Fuciman M, de Carbon CB, Wilson A, Kirilovsky D, Polívka T. Ultrafast spectroscopy tracks carotenoid configurations in the orange and red carotenoid proteins from cyanobacteria. PHOTOSYNTHESIS RESEARCH 2017; 131:105-117. [PMID: 27612863 DOI: 10.1007/s11120-016-0302-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
A quenching mechanism mediated by the orange carotenoid protein (OCP) is one of the ways cyanobacteria protect themselves against photooxidative stress. Here, we present a femtosecond spectroscopic study comparing OCP and RCP (red carotenoid protein) samples binding different carotenoids. We confirmed significant changes in carotenoid configuration upon OCP activation reported by Leverenz et al. (Science 348:1463-1466. doi: 10.1126/science.aaa7234 , 2015) by comparing the transient spectra of OCP and RCP. The most important marker of these changes was the magnitude of the transient signal associated with the carotenoid intramolecular charge-transfer (ICT) state. While OCP with canthaxanthin exhibited a weak ICT signal, it increased significantly for canthaxanthin bound to RCP. On the contrary, a strong ICT signal was recorded in OCP binding echinenone excited at the red edge of the absorption spectrum. Because the carbonyl oxygen responsible for the appearance of the ICT signal is located at the end rings of both carotenoids, the magnitude of the ICT signal can be used to estimate the torsion angles of the end rings. Application of two different excitation wavelengths to study OCP demonstrated that the OCP sample contains two spectroscopically distinct populations, none of which is corresponding to the photoactivated product of OCP.
Collapse
Affiliation(s)
- Václav Šlouf
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Valentyna Kuznetsova
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
- Institut de Biologie et Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique (CEA), 91191, Gif-sur-Yvette, France
| | - Tomáš Polívka
- Institute of Physics and Biophysics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05, České Budějovice, Czech Republic.
- Institute of Plant Molecular Biology, Biological Centre, Czech Academy of Sciences, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
41
|
Niedzwiedzki DM, Hunter CN, Blankenship RE. Evaluating the Nature of So-Called S*-State Feature in Transient Absorption of Carotenoids in Light-Harvesting Complex 2 (LH2) from Purple Photosynthetic Bacteria. J Phys Chem B 2016; 120:11123-11131. [PMID: 27726397 PMCID: PMC5098231 DOI: 10.1021/acs.jpcb.6b08639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Carotenoids
are a class of natural pigments present in all phototrophic
organisms, mainly in their light-harvesting proteins in which they
play roles of accessory light absorbers and photoprotectors. Extensive
time-resolved spectroscopic studies of these pigments have revealed
unexpectedly complex photophysical properties, particularly for carotenoids
in light-harvesting LH2 complexes from purple bacteria. An ambiguous,
optically forbidden electronic excited state designated as S* has
been postulated to be involved in carotenoid excitation relaxation
and in an alternative carotenoid-to-bacteriochlorophyll energy transfer
pathway, as well as being a precursor of the carotenoid triplet state.
However, no definitive and satisfactory origin of the carotenoid S*
state in these complexes has been established, despite a wide-ranging
series of studies. Here, we resolve the ambiguous origin of the carotenoid
S* state in LH2 complex from Rba. sphaeroides by
showing that the S* feature can be seen as a combination of ground
state absorption bleaching of the carotenoid pool converted to cations
and the Stark spectrum of neighbor neutral carotenoids, induced by
temporal electric field brought by the carotenoid cation–bacteriochlorophyll
anion pair. These findings remove the need to assign an S* state,
and thereby significantly simplify the photochemistry of carotenoids
in these photosynthetic antenna complexes.
Collapse
Affiliation(s)
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
42
|
Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Hunter CN, Bocian DF, Holten D, Niedzwiedzki DM. Quenching Capabilities of Long-Chain Carotenoids in Light-Harvesting-2 Complexes from Rhodobacter sphaeroides with an Engineered Carotenoid Synthesis Pathway. J Phys Chem B 2016; 120:5429-43. [PMID: 27285777 PMCID: PMC4921951 DOI: 10.1021/acs.jpcb.6b03305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Six light-harvesting-2 complexes
(LH2) from genetically modified
strains of the purple photosynthetic bacterium Rhodobacter
(Rb.) sphaeroides were studied using static and ultrafast
optical methods and resonance Raman spectroscopy. These strains were
engineered to incorporate carotenoids for which the number of conjugated
groups (N = NC=C + NC=O) varies from 9 to 15.
The Rb. sphaeroides strains incorporate their native
carotenoids spheroidene (N = 10) and spheroidenone
(N = 11), as well as longer-chain analogues including
spirilloxanthin (N = 13) and diketospirilloxantion
(N = 15) normally found in Rhodospirillum
rubrum. Measurements of the properties of the carotenoid
first singlet excited state (S1) in antennas from the Rb. sphaeroides set show that carotenoid-bacteriochlorophyll a (BChl a) interactions are similar to
those in LH2 complexes from various other bacterial species and thus
are not significantly impacted by differences in polypeptide composition.
Instead, variations in carotenoid-to-BChl a energy
transfer are primarily regulated by the N-determined
energy of the carotenoid S1 excited state, which for long-chain
(N ≥ 13) carotenoids is not involved in energy
transfer. Furthermore, the role of the long-chain carotenoids switches
from a light-harvesting supporter (via energy transfer to BChl a) to a quencher of the BChl a S1 excited state B850*. This quenching is manifested as a substantial
(∼2-fold) reduction of the B850* lifetime and the B850* fluorescence
quantum yield for LH2 housing the longest carotenoids.
Collapse
Affiliation(s)
| | - Qun Tang
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield , Sheffield S10 2TN, United Kingdom
| | - David F Bocian
- Department of Chemistry, University of California Riverside , Riverside, California 92521, United States
| | | | | |
Collapse
|
43
|
|
44
|
Wang CC, Ding S, Chiu KH, Liu WS, Lin TJ, Wen ZH. Extract from a mutant Rhodobacter sphaeroides as an enriched carotenoid source. Food Nutr Res 2016; 60:29580. [PMID: 27037001 PMCID: PMC4818355 DOI: 10.3402/fnr.v60.29580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background The extract Lycogen™ from the phototrophic bacterium Rhodobacter sphaeroides (WL-APD911) has attracted significant attention because of its promising potential as a bioactive mixture, attributed in part to its anti-inflammatory properties and anti-oxidative activity. Objective This study aims to investigate the components of Lycogen™ and its anti-inflammatory properties and anti-oxidative activity. Design and results The mutant strain R. sphaeroides (WL-APD911) whose carotenoid 1,2-hydratase gene has been altered by chemical mutagenesis was used for the production of a new carotenoid. The strain was grown at 30°C on Luria–Bertani (LB) agar plates. After a 4-day culture period, the mutant strain displayed a 3.5-fold increase in carotenoid content, relative to the wild type. In the DPPH test, Lycogen™ showed more potent anti-oxidative activity than lycopene from the wild-type strain. Primary skin irritation test with hamsters showed no irritation response in hamster skins after 30 days of treatment with 0.2% Lycogen™. Chemical investigations of Lycogen™ using nuclear magnetic resonance (NMR) 1H, 13C, and COSY/DQCOSY spectra have identified spheroidenone and methoxyneurosporene. Quantitative analysis of these identified compounds based on spectral intensities indicates that spheroidenone and methoxyneurosporene are major components (approximately 1:1); very small quantities of other derivatives are also present in the sample. Conclusions In this study, we identified the major carotenoid compounds contained in Lycogen™, including spheroidenone and methoxyneurosporene by high-resolution NMR spectroscopy analysis. The carotenoid content of this mutant strain of R. sphaeroides was 3.5-fold higher than that in normal strain. Furthermore, Lycogen™ from the mutant strain is more potent than lycopene from the wild-type strain and does not cause irritation in hamster skins. These findings suggest that this mutant strain has the potential to be used as an enriched carotenoid source.
Collapse
Affiliation(s)
- Chih-Chiang Wang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Shangwu Ding
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kuo-Hsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan
| | - Wen-Sheng Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department and Graduate Institute of Aquaculture, National Kaohsiung Marine University, Kaohsiung, Taiwan.,Asia-Pacific Biotech Developing, Inc., Kaohsiung, Taiwan
| | - Tai-Jung Lin
- Department of Pharmacy and Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtun County, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan;
| |
Collapse
|
45
|
Niedzwiedzki DM, Dilbeck PL, Tang Q, Mothersole DJ, Martin EC, Bocian DF, Holten D, Hunter CN. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1847:640-55. [PMID: 25871644 DOI: 10.1016/j.bbabio.2015.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 04/03/2015] [Indexed: 11/24/2022]
Abstract
Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130, USA.
| | - Preston L Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Qun Tang
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - David F Bocian
- Department of Chemistry, University of California Riverside, Riverside, CA 92521, USA
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
46
|
Ashikhmin A, Makhneva Z, Bolshakov M, Moskalenko A. Distribution of colored carotenoids between light-harvesting complexes in the process of recovering carotenoid biosynthesis in Ectothiorhodospira haloalkaliphila cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:59-66. [DOI: 10.1016/j.jphotobiol.2014.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/30/2022]
|
47
|
Chi SC, Mothersole DJ, Dilbeck P, Niedzwiedzki DM, Zhang H, Qian P, Vasilev C, Grayson KJ, Jackson PJ, Martin EC, Li Y, Holten D, Neil Hunter C. Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:189-201. [PMID: 25449968 PMCID: PMC4331045 DOI: 10.1016/j.bbabio.2014.10.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Carotenoids protect the photosynthetic apparatus against harmful radicals arising from the presence of both light and oxygen. They also act as accessory pigments for harvesting solar energy, and are required for stable assembly of many light-harvesting complexes. In the phototrophic bacterium Rhodobacter (Rba.) sphaeroides phytoene desaturase (CrtI) catalyses three sequential desaturations of the colourless carotenoid phytoene, extending the number of conjugated carbon–carbon double bonds, N, from three to nine and producing the yellow carotenoid neurosporene; subsequent modifications produce the yellow/red carotenoids spheroidene/spheroidenone (N = 10/11). Genomic crtI replacements were used to swap the native three-step Rba. sphaeroides CrtI for the four-step Pantoea agglomerans enzyme, which re-routed carotenoid biosynthesis and culminated in the production of 2,2′-diketo-spirilloxanthin under semi-aerobic conditions. The new carotenoid pathway was elucidated using a combination of HPLC and mass spectrometry. Premature termination of this new pathway by inactivating crtC or crtD produced strains with lycopene or rhodopin as major carotenoids. All of the spirilloxanthin series carotenoids are accepted by the assembly pathways for LH2 and RC–LH1–PufX complexes. The efficiency of carotenoid-to-bacteriochlorophyll energy transfer for 2,2′-diketo-spirilloxanthin (15 conjugated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>C bonds; N = 15) in LH2 complexes is low, at 35%. High energy transfer efficiencies were obtained for neurosporene (N = 9; 94%), spheroidene (N = 10; 96%) and spheroidenone (N = 11; 95%), whereas intermediate values were measured for lycopene (N = 11; 64%), rhodopin (N = 11; 62%) and spirilloxanthin (N = 13; 39%). The variety and stability of these novel Rba. sphaeroides antenna complexes make them useful experimental models for investigating the energy transfer dynamics of carotenoids in bacterial photosynthesis. The spirilloxanthin biosynthetic pathway has been constructed in Rba. sphaeroides. The new carotenoids are accepted by the photosystem assembly pathways. These pigments are efficiently integrated into LH2 and RC–LH1–PufX complexes. Carotenoid–BChl energy transfer drops with the number of conjugated CC bonds (N). The lowest efficiency, 35%, is for the N = 15 carotenoid 2,2′ diketospirilloxanthin.
Collapse
Affiliation(s)
- Shuang C Chi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Preston Dilbeck
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA
| | | | - Hao Zhang
- Photosynthetic Antenna Research Center, Washington University, St. Louis, MO 63130 USA
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katie J Grayson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, United Kingdom
| | - Elizabeth C Martin
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Ying Li
- Department of Microbiology and Immunology, China Agricultural University, Haidian District, Beijing 100193, China
| | - Dewey Holten
- Department of Chemistry, Washington University, St. Louis, MO 63130-4889, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| |
Collapse
|
48
|
Zhao C, Yue H, Cheng Q, Chen S, Yang S. What Caused the Formation of the Absorption Maximum at 421 nmin vivoSpectra ofRhodopseudomonas palustris. Photochem Photobiol 2014; 90:1287-92. [DOI: 10.1111/php.12334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chungui Zhao
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Huiying Yue
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Qianru Cheng
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics; Michigan State University; East Lansing MI
| | - Suping Yang
- Department of Bioengineering and Biotechnology; Huaqiao University; Xiamen China
| |
Collapse
|
49
|
D'Haene SE, Crouch LI, Jones MR, Frese RN. Organization in photosynthetic membranes of purple bacteria in vivo: the role of carotenoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1665-73. [PMID: 25017691 DOI: 10.1016/j.bbabio.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Photosynthesis in purple bacteria is performed by pigment-protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC-LH1 pigment-protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC-LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC-LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC-LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC-LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC-LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC-LH1 complex were very high, and in the absence of LH2, LD and ∆LD spectra from intact cells indicated an ordered arrangement of RC-LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed.
Collapse
Affiliation(s)
- Sandrine E D'Haene
- Biophysics of photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Lucy I Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Raoul N Frese
- Biophysics of photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
50
|
Kosumi D, Fujii R, Sugisaki M, Oka N, Iha M, Hashimoto H. Characterization of the intramolecular transfer state of marine carotenoid fucoxanthin by femtosecond pump-probe spectroscopy. PHOTOSYNTHESIS RESEARCH 2014; 121:61-68. [PMID: 24676808 DOI: 10.1007/s11120-014-9995-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Fucoxanthin, containing a carbonyl group in conjugation with its polyene backbone, is a naturally occurring pigment in marine organisms and is essential to the photosynthetic light-harvesting function in brown alga and diatom. Fucoxanthin exhibits optical characteristics attributed to an intramolecular charge transfer (ICT) state that arises in polar environments due to the presence of the carbonyl group. In this study, we report the spectroscopic properties of fucoxanthin in methanol (polar and protic solvent) observed by femtosecond pump-probe measurements in the near-infrared region, where transient absorption associated with the optically allowed S2 (1(1)B u (+) ) state and stimulated emission from the strongly coupled S1/ICT state were observed following one-photon excitation to the S2 state. The results showed that the amplitude of the stimulated emission of the S1/ICT state increased with decreasing excitation energy, demonstrating that the fucoxanthin form associated with the lower energy of the steady-state absorption exhibits stronger ICT character.
Collapse
Affiliation(s)
- Daisuke Kosumi
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan,
| | | | | | | | | | | |
Collapse
|