1
|
Ji D, Wang B, Lo KW, Tsang CM, Kwok CK. Pre-Defined Stem-Loop Structure Library for the Discovery of L-RNA Aptamers that Target RNA G-Quadruplexes. Angew Chem Int Ed Engl 2025; 64:e202417247. [PMID: 39462761 DOI: 10.1002/anie.202417247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
L-RNA aptamers have been developed to target G-quadruplexes (G4s) and regulate G4-mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subject to high failure rates. By analyzing the previously reported G4-binding L-RNA aptamers, we found that the stem-loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4-SLSELEX-Seq platform specifically for G4 targets by introducing a pre-defined stem-loop structure library during the SELEX process. Using G4-SLSELEX-Seq, we identified an L-RNA aptamer, L-Apt1-12, for the Epstein-Barr nuclear antigen 1 (EBNA1) RNA G4 (rG4) in just three selection rounds. L-Apt1-12 maintained the stem-loop structure initially introduced, and possessed a unique G-triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. L-Apt1-12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards Epstein-Barr virus (EBV)-positive cancer cells, highlighting its potential for targeted therapy against EBV-associated cancers. Furthermore, we demonstrated the robustness and generality of G4-SLSELEX-Seq by selecting L-RNA aptamers for the amyloid precursor protein (APP) rG4 and the hepatitis C virus subtype 1a (HCV-1a) rG4, obtaining high-affinity aptamers in three selection rounds. These findings demonstrated G4-SLSELEX-Seq as a robust and efficient platform for the selection of rG4-targeting L-RNA aptamers.
Collapse
Grants
- 32471343, 32222089 the National Natural Science Foundation of China (NSFC) Projects
- RFS2425-1S02, CityU 11100123, CityU 11100222, CityU 11100421 Research Grants Council (RGC) of the Hong Kong Special Administra-tive Region
- 9509003 Croucher Foundation
- SCRF/0037, SCRF/0040, SCRF/0070 State Key Laboratory in Marine Pollution
- 7030001, 6000827, 9678302 City University of Hong Kong projects
- MRP/036/21X The Innovation and Technology Fund (Midstream Research Programme for Universities
- AoE/M-401/20, 14101721, 08191046 Research Grant Council, Hong Kong
- 14116124, 14113620, 14114523 Research Grants Council-General Research Fund (GRF)
- 24114922 Early Career Scheme (ECS)
- 09203176 Health and Medical Research Fund
- FIA2020/A/01 Faculty Innovation Award
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong, Hong Kong SAR, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Bo Wang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Schaal DL, Amucheazi AA, Jones SC, Nkadi EH, Scott RS. Epstein-Barr virus replication within differentiated epithelia requires pRb sequestration of activator E2F transcription factors. J Virol 2024; 98:e0099524. [PMID: 39291960 PMCID: PMC11494884 DOI: 10.1128/jvi.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Epstein-Barr virus (EBV) co-infections with human papillomavirus (HPV) have been observed in oropharyngeal squamous cell carcinoma. Modeling EBV/HPV co-infection in organotypic epithelial raft cultures revealed that HPV16 E7 inhibited EBV productive replication through the facilitated degradation of the retinoblastoma protein pRb/p105. To further understand how pRb is required for EBV productive replication, we generated CRISPR-Cas9 pRb knockout (KO) normal oral keratinocytes (NOKs) in the context of wild-type and mutant K120E p53. EBV replication was examined in organotypic rafts as a physiological correlate for epithelial differentiation. In pRb KO rafts, EBV DNA copy number was statistically decreased compared to vector controls, regardless of p53 context. Loss of pRb did not affect EBV binding or internalization of calcium-treated NOKs or early infection of rafts. Rather, the block in EBV replication correlated with impaired immediate early gene expression. An EBV infection time course in rafts with mutant p53 demonstrated that pRb-positive basal cells were initially infected with delayed replication occurring in differentiated layers. Loss of pRb showed increased S-phase progression makers and elevated activator E2F activity in raft tissues. Complementation with a panel of pRb/E2F binding mutants showed that wild type or pRb∆685 mutant capable of E2F binding reduced S-phase marker gene expression, rescued EBV DNA replication, and restored BZLF1 expression in pRb KO rafts. However, pRb KO complemented with pRb661W mutant, unable to bind E2Fs, failed to rescue EBV replication in raft culture. These findings suggest that EBV productive replication in differentiated epithelium requires pRb inhibition of activator E2Fs to restrict S-phase progression.IMPORTANCEA subset of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma is co-positive for Epstein-Barr virus (EBV). Potential oncogenic viral interactions revealed that HPV16 E7 inhibited productive EBV replication within the differentiated epithelium. As E7 mediates the degradation of pRb, we aimed to establish how pRb is involved in EBV replication. In the context of differentiated epithelium using organotypic raft culture, we evaluated how the loss of pRb affects EBV lytic replication to better comprehend EBV contributions to carcinogenesis. In this study, ablation of pRb interfered with EBV replication at the level of immediate early gene expression. Loss of pRb increased activator E2Fs and associated S-phase gene expression throughout the differentiated epithelium. Complementation studies showed that wild type and pRb mutant capable of binding to E2F rescued EBV replication, while pRb mutant lacking E2F binding did not. Altogether, these studies support that in differentiated tissues, HPV16 E7-mediated degradation of pRb inhibits EBV replication through unregulated E2F activity.
Collapse
Affiliation(s)
- Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Akajiugo A. Amucheazi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Sarah C. Jones
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
3
|
Makowska A, Weiskirchen R. Nasopharyngeal Carcinoma Cell Lines: Reliable Alternatives to Primary Nasopharyngeal Cells? Cells 2024; 13:559. [PMID: 38606998 PMCID: PMC11011377 DOI: 10.3390/cells13070559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a type of cancer that originates from the mucosal lining of the nasopharynx and can invade and spread. Although contemporary chemoradiotherapy effectively manages the disease locally, there are still challenges with locoregional recurrence and distant failure. Therefore, it is crucial to have a deeper understanding of the molecular basis of NPC cell movement in order to develop a more effective treatment and to improve patient survival rates. Cancer cell line models are invaluable in studying health and disease and it is not surprising that they play a critical role in NPC research. Consequently, scientists have established around 80 immortalized human NPC lines that are commonly used as in vitro models. However, over the years, it has been observed that many cell lines are misidentified or contaminated by other cells. This cross-contamination leads to the creation of false cell lines that no longer match the original donor. In this commentary, we discuss the impact of misidentified NPC cell lines on the scientific literature. We found 1159 articles from 2000 to 2023 that used NPC cell lines contaminated with HeLa cells. Alarmingly, the number of publications and citations using these contaminated cell lines continued to increase, even after information about the contamination was officially published. These articles were most commonly published in the fields of oncology, pharmacology, and experimental medicine research. These findings highlight the importance of science policy and support the need for journals to require authentication testing before publication.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, RWTH University Hospital Aachen, D-52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
4
|
Chai AWY, Yee SM, Lee HM, Abdul Aziz N, Yee PS, Marzuki M, Wong KW, Chiang AK, Chow LKY, Dai W, Liu TF, Tan LP, Khoo ASB, Lo KW, Lim PV, Rajadurai P, Lightfoot H, Barthorpe S, Garnett MJ, Cheong SC. Establishment and Characterization of an Epstein-Barr Virus-positive Cell Line from a Non-keratinizing Differentiated Primary Nasopharyngeal Carcinoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:645-659. [PMID: 38358347 PMCID: PMC10911800 DOI: 10.1158/2767-9764.crc-23-0341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Nasopharyngeal carcinoma (NPC), a cancer that is etiologically associated with the Epstein-Barr virus (EBV), is endemic in Southern China and Southeast Asia. The scarcity of representative NPC cell lines owing to the frequent loss of EBV episomes following prolonged propagation and compromised authenticity of previous models underscores the critical need for new EBV-positive NPC models. Herein, we describe the establishment of a new EBV-positive NPC cell line, designated NPC268 from a primary non-keratinizing, differentiated NPC tissue. NPC268 can undergo productive lytic reactivation of EBV and is highly tumorigenic in immunodeficient mice. Whole-genome sequencing revealed close similarities with the tissue of origin, including large chromosomal rearrangements, while whole-genome bisulfite sequencing and RNA sequencing demonstrated a hypomethylated genome and enrichment in immune-related pathways, respectively. Drug screening of NPC268 together with six other NPC cell lines using 339 compounds, representing the largest high-throughput drug testing in NPC, revealed biomarkers associated with specific drug classes. NPC268 represents the first and only available EBV-positive non-keratinizing differentiated NPC model, and extensive genomic, methylomic, transcriptomic, and drug response data should facilitate research in EBV and NPC, where current models are limited. SIGNIFICANCE NPC268 is the first and only EBV-positive cell line derived from a primary non-keratinizing, differentiated nasopharyngeal carcinoma, an understudied but important subtype in Southeast Asian countries. This model adds to the limited number of authentic EBV-positive lines globally that will facilitate mechanistic studies and drug development for NPC.
Collapse
Affiliation(s)
| | - Shi Mun Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Malaysia
| | - Hui Mei Lee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Malaysia
| | - Norazlin Abdul Aziz
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Ministry of Health, Malaysia
- Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Pei San Yee
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Malaysia
| | - Marini Marzuki
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Ministry of Health, Malaysia
| | - Ka Wo Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Alan K.S. Chiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Larry Ka-Yue Chow
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Wei Dai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Teng Fei Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, P.R. China
| | - Lu Ping Tan
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Ministry of Health, Malaysia
| | - Alan Soo Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Ministry of Health, Malaysia
- Institute for Research, Development and Innovation and School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | | | - Pathmanathan Rajadurai
- Subang Jaya Medical Centre, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | | | - Syd Barthorpe
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Sok Ching Cheong
- Translational Cancer Biology Research Unit, Cancer Research Malaysia, Malaysia
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Malaysia
| |
Collapse
|
5
|
Dang F, Bai L, Dong J, Hu X, Wang J, Paulo JA, Xiong Y, Liang X, Sun Y, Chen Y, Guo M, Wang X, Huang Z, Inuzuka H, Chen L, Chu C, Liu J, Zhang T, Rezaeian AH, Liu J, Kaniskan HÜ, Zhong B, Zhang J, Letko M, Jin J, Lan K, Wei W. USP2 inhibition prevents infection with ACE2-dependent coronaviruses in vitro and is protective against SARS-CoV-2 in mice. Sci Transl Med 2023; 15:eadh7668. [PMID: 38055802 PMCID: PMC10787358 DOI: 10.1126/scitranslmed.adh7668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.
Collapse
Affiliation(s)
- Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiazhen Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joao A. Paulo
- Department of Cell Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaowei Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yishuang Sun
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yuncai Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ming Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiang Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Chen Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Husnu Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Zhong
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jinfang Zhang
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99163 USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
6
|
Studstill CJ, Mac M, Moody CA. Interplay between the DNA damage response and the life cycle of DNA tumor viruses. Tumour Virus Res 2023; 16:200272. [PMID: 37918513 PMCID: PMC10685005 DOI: 10.1016/j.tvr.2023.200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Approximately 20 % of human cancers are associated with virus infection. DNA tumor viruses can induce tumor formation in host cells by disrupting the cell's DNA replication and repair mechanisms. Specifically, these viruses interfere with the host cell's DNA damage response (DDR), which is a complex network of signaling pathways that is essential for maintaining the integrity of the genome. DNA tumor viruses can disrupt these pathways by expressing oncoproteins that mimic or inhibit various DDR components, thereby promoting genomic instability and tumorigenesis. Recent studies have highlighted the molecular mechanisms by which DNA tumor viruses interact with DDR components, as well as the ways in which these interactions contribute to viral replication and tumorigenesis. Understanding the interplay between DNA tumor viruses and the DDR pathway is critical for developing effective strategies to prevent and treat virally associated cancers. In this review, we discuss the current state of knowledge regarding the mechanisms by which human papillomavirus (HPV), merkel cell polyomavirus (MCPyV), Kaposi's sarcoma-associated herpesvirus (KSHV), and Epstein-Barr virus (EBV) interfere with DDR pathways to facilitate their respective life cycles, and the consequences of such interference on genomic stability and cancer development.
Collapse
Affiliation(s)
- Caleb J Studstill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Cary A Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
7
|
Low YH, Loh CJL, Peh DYY, Chu AJM, Han S, Toh HC. Pathogenesis and therapeutic implications of EBV-associated epithelial cancers. Front Oncol 2023; 13:1202117. [PMID: 37901329 PMCID: PMC10600384 DOI: 10.3389/fonc.2023.1202117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Epstein-Barr virus (EBV), one of the most common human viruses, has been associated with both lymphoid and epithelial cancers. Undifferentiated nasopharyngeal carcinoma (NPC), EBV associated gastric cancer (EBVaGC) and lymphoepithelioma-like carcinoma (LELC) are amongst the few common epithelial cancers that EBV has been associated with. The pathogenesis of EBV-associated NPC has been well described, however, the same cannot be said for primary pulmonary LELC (PPLELC) owing to the rarity of the cancer. In this review, we outline the pathogenesis of EBV-associated NPC and EBVaGCs and their recent advances. By drawing on similarities between NPC and PPLELC, we then also postulated the pathogenesis of PPLELC. A deeper understanding about the pathogenesis of EBV enables us to postulate the pathogenesis of other EBV associated cancers such as PPLELC.
Collapse
Affiliation(s)
- Yi Hua Low
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Daniel Yang Yao Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Axel Jun Ming Chu
- Singapore Health Services Internal Medicine Residency Programme, Singapore, Singapore
| | - Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Smirnova KV, Lubenskaya AK, Senyuta NB, Dushenkina TE, Gurtsevitch VE. [Epstein-Barr virus (Herpesviridae: Lymphocryptovirus) types 1 and 2 and other viral markers in patients with nasopharyngeal carcinoma in two geographically and ethnically distinct regions of Russia]. Vopr Virusol 2023; 68:291-301. [PMID: 38156586 DOI: 10.36233/0507-4088-181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION The discovery of two types of Epstein-Barr virus (EBV) (EBV-1 and EBV-2) that have different biological properties stimulated the search for neoplasms associated with each type of the virus. The aim of the work is to study the nature of the association of nasopharyngeal cancer (NPC) with EBV-1 and EBV-2, serological activity for each viral type and the concentration of EBV DNA in the blood plasma of two gender, age and ethnic groups of NPC patients that represent geographically and climatically different regions of Russia,. MATERIALS AND METHODS In the blood plasma of patients with NPC and other non- EBV associated tumors of oral cavity (OTOCEBV-) from the North Caucasian (NCFD) and Central (CFD) Federal Districts of Russia, the types of EBV and the concentration of viral DNA were determined using respectively «nested» and real time PCR; titers of IgG and IgA antibodies to viral capsid antigen (VCA) were measured in indirect immunofluorescence assay. RESULTS The blood plasma samples testing showed that NPC and OTOCEBV- patients were infected with both types of EBV in approximately equal proportions. In two groups of NPC patients infected with one of the virus types only, EBV-1 or EBV-2, respectively, no statistically significant differences were found between the geometric mean values of IgG and IgA anti-EBV antibody titers and viral DNA concentrations in blood plasma. The distribution of virus types was not affected by either patient gender or ethnogeographic origin. The difference was found only between age groups: EBV-2 dominated in NPC patients up to 60 years, and EBV-1 was prevalent in patients over 60 years. CONCLUSION The lack of the predominance of one of EBV types in NPC patients that are the representatives of different ethnic groups from geographically and climatically different regions, suggests that none of these factors play an important role in the NPC carcinogenesis. Evidently, each type of EBV, EBV-1 or EBV-2, if the necessary conditions arise, are able to exhibit its oncogenic potential to initiate tumor development.
Collapse
Affiliation(s)
- K V Smirnova
- N.N. Blokhin National Medical Research Center of Oncology
- Peoples' Friendship University of Russia named after Patrice Lumumba
- N.I. Pirogov National Research Medical University
| | - A K Lubenskaya
- N.N. Blokhin National Medical Research Center of Oncology
| | - N B Senyuta
- N.N. Blokhin National Medical Research Center of Oncology
| | - T E Dushenkina
- N.N. Blokhin National Medical Research Center of Oncology
| | | |
Collapse
|
9
|
Myers JE, Schaal DL, Nkadi EH, Ward BJH, Bienkowska-Haba M, Sapp M, Bodily JM, Scott RS. Retinoblastoma Protein Is Required for Epstein-Barr Virus Replication in Differentiated Epithelia. J Virol 2023; 97:e0103222. [PMID: 36719239 PMCID: PMC9972952 DOI: 10.1128/jvi.01032-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 02/01/2023] Open
Abstract
Coinfection of human papillomavirus (HPV) and Epstein-Barr virus (EBV) has been detected in oropharyngeal squamous cell carcinoma. Although HPV and EBV replicate in differentiated epithelial cells, we previously reported that HPV epithelial immortalization reduces EBV replication within organotypic raft culture and that the HPV16 oncoprotein E7 was sufficient to inhibit EBV replication. A well-established function of HPV E7 is the degradation of the retinoblastoma (Rb) family of pocket proteins (pRb, p107, and p130). Here, we show that pRb knockdown in differentiated epithelia and EBV-positive Burkitt lymphoma (BL) reduces EBV lytic replication following de novo infection and reactivation, respectively. In differentiated epithelia, EBV immediate early (IE) transactivators were expressed, but loss of pRb blocked expression of the early gene product, EA-D. Although no alterations were observed in markers of epithelial differentiation, DNA damage, and p16, increased markers of S-phase progression and altered p107 and p130 levels were observed in suprabasal keratinocytes after pRb knockdown. In contrast, pRb interference in Akata BX1 Burkitt lymphoma cells showed a distinct phenotype from differentiated epithelia with no significant effect on EBV IE or EA-D expression. Instead, pRb knockdown reduced the levels of the plasmablast differentiation marker PRDM1/Blimp1 and increased the abundance of c-Myc protein in reactivated Akata BL with pRb knockdown. c-Myc RNA levels also increased following the loss of pRb in epithelial rafts. These results suggest that pRb is required to suppress c-Myc for efficient EBV replication in BL cells and identifies a mechanism for how HPV immortalization, through degradation of the retinoblastoma pocket proteins, interferes with EBV replication in coinfected epithelia. IMPORTANCE Terminally differentiated epithelium is known to support EBV genome amplification and virion morphogenesis following infection. The contribution of the cell cycle in differentiated tissues to efficient EBV replication is not understood. Using organotypic epithelial raft cultures and genetic interference, we can identify factors required for EBV replication in quiescent cells. Here, we phenocopied HPV16 E7 inhibition of EBV replication through knockdown of pRb. Loss of pRb was found to reduce EBV early gene expression and viral replication. Interruption of the viral life cycle was accompanied by increased S-phase gene expression in postmitotic keratinocytes, a process also observed in E7-positive epithelia, and deregulation of other pocket proteins. Together, these findings provide evidence of a global requirement for pRb in EBV lytic replication and provide a mechanistic framework for how HPV E7 may facilitate a latent EBV infection through its mediated degradation of pRb in copositive epithelia.
Collapse
Affiliation(s)
- Julia E. Myers
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Danielle L. Schaal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Ebubechukwu H. Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - B. J. H. Ward
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Malgorzata Bienkowska-Haba
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Martin Sapp
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Jason M. Bodily
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| | - Rona S. Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
10
|
Su ZY, Siak PY, Leong CO, Cheah SC. The role of Epstein-Barr virus in nasopharyngeal carcinoma. Front Microbiol 2023; 14:1116143. [PMID: 36846758 PMCID: PMC9947861 DOI: 10.3389/fmicb.2023.1116143] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a metastasis-prone malignancy closely associated with the Epstein-Barr virus (EBV). Despite ubiquitous infection of EBV worldwide, NPC incidences displayed predominance in certain ethnic groups and endemic regions. The majority of NPC patients are diagnosed with advanced-stage disease, as a result of anatomical isolation and non-specific clinical manifestation. Over the decades, researchers have gained insights into the molecular mechanisms underlying NPC pathogenesis as a result of the interplay of EBV infection with several environmental and genetic factors. EBV-associated biomarkers were also used for mass population screening for the early detection of NPC. EBV and its encoded products also serve as potential targets for the development of therapeutic strategies and tumour-specific drug delivery. This review will discuss the pathogenic role of EBV in NPC and efforts in exploiting the potential of EBV-associated molecules as biomarkers and therapeutic targets. The current knowledge on the role of EBV and its associated products in NPC tumorigenesis, development and progression will offer a new outlook and potential intervention strategy against this EBV-associated malignancy.
Collapse
Affiliation(s)
- Zhi Yi Su
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Pui Yan Siak
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| | - Chee-Onn Leong
- AGTC Genomics Sdn Bhd, Pusat Perdagangan Bandar, Persiaran Jalil 1, Bukit Jalil, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Bandar Springhill, Negeri Sembilan, Malaysia
| |
Collapse
|
11
|
Ahmed N, Abusalah MAHA, Farzand A, Absar M, Yusof NY, Rabaan AA, AlSaihati H, Alshengeti A, Alwarthan S, Alsuwailem HS, Alrumaih ZA, Alsayyah A, Yean CY. Updates on Epstein-Barr Virus (EBV)-Associated Nasopharyngeal Carcinoma: Emphasis on the Latent Gene Products of EBV. Medicina (B Aires) 2022; 59:medicina59010002. [PMID: 36676626 PMCID: PMC9863520 DOI: 10.3390/medicina59010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an uncommon type of malignancy/cancer worldwide. However, NPC is an endemic disease in southeast Asia and southern China and the reasons behind the underlying for such changes are unclear. Even though the Epstein-Barr infection (EBV) has been suggested as an important reason for undistinguishable NPC, the EBV itself is not adequate to source this type of cancer. The risk factors, for example, genetic susceptibility, and environmental factors might be associated with EBV to undertake a part in the NPC carcinogenesis. Normal healthy people have a memory B cell pool where the EBV persists, and any disturbance of this connection leads to virus-associated B cell malignancies. Less is known about the relationship between EBV and epithelial cell tumors, especially the EBV-associated nasopharyngeal carcinoma (EBVaNPC) and EBV-associated gastric carcinoma (EBVaGC). Currently, it is believed that premalignant genetic changes in epithelial cells contribute to the aberrant establishment of viral latency in these tumors. The early and late phases of NPC patients' survival rates vary significantly. The presence of EBV in all tumor cells presents prospects for the development of innovative therapeutic and diagnostic techniques, despite the fact that the virus's exact involvement in the carcinogenic process is presently not very well known. EBV research continues to shed light on the carcinogenic process, which is important for a more comprehensive knowledge of tumor etiology and the development of targeted cancer therapeutics. In order to screen for NPC, EBV-related biomarkers have been widely used in a few high-incidence locations because of their close associations with the risks of NPC. The current review highlights the scientific importance of EBV and its possible association with NPC.
Collapse
Affiliation(s)
- Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Anam Farzand
- Department of Allied Health Science, Superior University, Lahore 54000, Pakistan
| | - Muhammad Absar
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Hajir AlSaihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Haifa S. Alsuwailem
- Department of Medicine, College of Medicine, Princess Norah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Zainb A. Alrumaih
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
12
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
13
|
Saleh T, Khasawneh AI, Himsawi N, Abu-Raideh J, Ejeilat V, Elshazly AM, Gewirtz DA. Senolytic Therapy: A Potential Approach for the Elimination of Oncogene-Induced Senescent HPV-Positive Cells. Int J Mol Sci 2022; 23:15512. [PMID: 36555154 PMCID: PMC9778669 DOI: 10.3390/ijms232415512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Senescence represents a unique cellular stress response characterized by a stable growth arrest, macromolecular alterations, and wide spectrum changes in gene expression. Classically, senescence is the end-product of progressive telomeric attrition resulting from the repetitive division of somatic cells. In addition, senescent cells accumulate in premalignant lesions, in part, as a product of oncogene hyperactivation, reflecting one element of the tumor suppressive function of senescence. Oncogenic processes that induce senescence include overexpression/hyperactivation of H-Ras, B-Raf, and cyclin E as well as inactivation of PTEN. Oncogenic viruses, such as Human Papilloma Virus (HPV), have also been shown to induce senescence. High-risk strains of HPV drive the immortalization, and hence transformation, of cervical epithelial cells via several mechanisms, but primarily via deregulation of the cell cycle, and possibly, by facilitating escape from senescence. Despite the wide and successful utilization of HPV vaccines in reducing the incidence of cervical cancer, this measure is not effective in preventing cancer development in individuals already positive for HPV. Accordingly, in this commentary, we focus on the potential contribution of oncogene and HPV-induced senescence (OIS) in cervical cancer. We further consider the potential utility of senolytic agents for the elimination of HPV-harboring senescent cells as a strategy for reducing HPV-driven transformation and the risk of cervical cancer development.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Ashraf I. Khasawneh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Nisreen Himsawi
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Jumana Abu-Raideh
- Department of Microbiology, Pathology, and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Vera Ejeilat
- Department of Anatomy and Histology, Faculty of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
14
|
Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine 2022; 86:104357. [DOI: 10.1016/j.ebiom.2022.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
|
15
|
Ward BJH, Schaal DL, Nkadi EH, Scott RS. EBV Association with Lymphomas and Carcinomas in the Oral Compartment. Viruses 2022; 14:2700. [PMID: 36560704 PMCID: PMC9783324 DOI: 10.3390/v14122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus infecting approximately 90% of the world's population. The oral cavity serves a central role in the life cycle, transmission, and pathogenesis of EBV. Transmitted to a new host via saliva, EBV circulates between cellular compartments within oral lymphoid tissues. Epithelial cells primarily support productive viral replication, while B lymphocytes support viral latency and reactivation. EBV infections are typically asymptomatic and benign; however, the latent virus is associated with multiple lymphomas and carcinomas arising in the oral cavity. EBV association with cancer is complex as histologically similar cancers often test negative for the virus. However, the presence of EBV is associated with distinct features in certain cancers. The intrinsic ability of EBV to immortalize B-lymphocytes, via manipulation of survival and growth signaling, further implicates the virus as an oncogenic cofactor. A distinct mutational profile and burden have been observed in EBV-positive compared to EBV-negative tumors, suggesting that viral infection can drive alternative pathways that converge on oncogenesis. Taken together, EBV is also an important prognostic biomarker that can direct alternative therapeutic approaches. Here, we discuss the prevalence of EBV in oral malignancies and the EBV-dependent mechanisms associated with tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Applied Immunology and Pathological Processes, Feist-Weiller Cancer Center, Louisiana State University Health-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
16
|
Bu GL, Xie C, Kang YF, Zeng MS, Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses 2022; 14:2372. [PMID: 36366470 PMCID: PMC9696472 DOI: 10.3390/v14112372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a variety of human malignancies, including Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric cancers. EBV infection is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play important roles in the process of virus entry into host cells. Current studies have shown that the main tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial cells significantly differs, relying on heterogenous glycoprotein-receptor interactions. This review focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a comprehensive overview.
Collapse
Affiliation(s)
- Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
17
|
Liu X, Deng Y, Huang Y, Ye J, Xie S, He Q, Chen Y, Lin Y, Liang R, Wei J, Li Y, Zhang J. Nasopharyngeal Carcinoma Progression: Accumulating Genomic Instability and Persistent Epstein–Barr Virus Infection. Curr Oncol 2022; 29:6035-6052. [PMID: 36135044 PMCID: PMC9498130 DOI: 10.3390/curroncol29090475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/01/2022] Open
Abstract
Genomic instability facilitates the evolution of cells, tissues, organs, and species. The progression of human malignancies can be regarded as the accumulation of genomic instability, which confers a high evolutionary potential for tumor cells to adapt to continuous changes in the tumor microenvironment. Nasopharyngeal carcinoma (NPC) is a head-and-neck squamous-cell carcinoma closely associated with Epstein–Barr virus (EBV) infection. NPC progression is driven by a combination of accumulated genomic instability and persistent EBV infection. Here, we present a review of the key characteristics of genomic instability in NPC and the profound implications of EBV infection. We further discuss the significance of profiling genomic instability for the assessment of disease progression and treatment efficacy, as well as the opportunities and challenges of targeted therapies for NPC based on its unique genomic instability.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yayan Deng
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yujuan Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Jiaxiang Ye
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Sifang Xie
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning 530021, China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Chen
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Rong Liang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, 6 Taoyuan Road, Nanning 530021, China
| | - Yongqiang Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
- Correspondence: (Y.L.); (J.Z.)
| | - Jinyan Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning 530021, China
- Correspondence: (Y.L.); (J.Z.)
| |
Collapse
|
18
|
Yang T, You C, Meng S, Lai Z, Ai W, Zhang J. EBV Infection and Its Regulated Metabolic Reprogramming in Nasopharyngeal Tumorigenesis. Front Cell Infect Microbiol 2022; 12:935205. [PMID: 35846746 PMCID: PMC9283984 DOI: 10.3389/fcimb.2022.935205] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/31/2022] [Indexed: 01/05/2023] Open
Abstract
Viral oncogenes may drive cellular metabolic reprogramming to modulate the normal epithelia cell malignant transformation. Understanding the viral oncogene-mediated signaling transduction dysregulation that involves in metabolic reprogramming may provide new therapeutic targets for virus-associated cancer treatment. Latent EBV infection and expression of viral oncogenes, including latent membrane proteins 1 and 2 (LMP1/2), and EBV-encoded BamH I-A rightward transcripts (BART) microRNAs (miR-BARTs), have been demonstrated to play fundamental roles in altering host cell metabolism to support nasopharyngeal carcinoma (NPC) pathogenesis. Yet, how do EBV infection and its encoded oncogenes facilitated the metabolic shifting and their roles in NPC carcinogenesis remains unclear. In this review, we will focus on delineating how EBV infection and its encoded oncoproteins altered the metabolic reprograming of infected cells to support their malignances. Furthermore, based on the understanding of the host's metabolic signaling alterations induced by EBV, we will provide a new perspective on the interplay between EBV infection and these metabolic pathways and offering a potential therapeutic intervention strategy in the treatment of EBV-associated malignant diseases.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Chanping You
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shuhui Meng
- Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, Shenzhen People’s Hospital, Shenzhen, China
| | - Zhengquan Lai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Weipeng Ai
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Jun Zhang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
19
|
McKeon MG, Gallant JN, Kim YJ, Das SR. It Takes Two to Tango: A Review of Oncogenic Virus and Host Microbiome Associated Inflammation in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14133120. [PMID: 35804891 PMCID: PMC9265087 DOI: 10.3390/cancers14133120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Certain viruses, specifically, human papillomavirus (HPV) and Epstein–Barr virus (EBV), have been linked with the development of head and neck cancer. In this study, we review the mechanisms by which (these) viruses lead to cellular transformation and a chronic inflammatory state. Given that the head and neck host a rich microbiome (which itself is intrinsically linked to inflammation), we scrutinize the literature to highlight the interplay between viruses, cellular transformation, inflammation, and the local host microbiome in head and neck cancer. Abstract While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)—a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC—suggesting that additional cofactors or coinfections may be required. Epstein–Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions—leading to tumor growth.
Collapse
Affiliation(s)
- Mallory G. McKeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Jean-Nicolas Gallant
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
| | - Young J. Kim
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.-N.G.); (Y.J.K.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, Suite A2200, Nashville, TN 37232, USA;
- Correspondence: ; Tel.: +1-(615)-322-0322; Fax: +1-(615)-343-6160
| |
Collapse
|
20
|
Wu Y, Shrestha P, Heape NM, Yarchoan R. CDK4/6 inhibitors sensitize gammaherpesvirus-infected tumor cells to T-cell killing by enhancing expression of immune surface molecules. J Transl Med 2022; 20:217. [PMID: 35562811 PMCID: PMC9101822 DOI: 10.1186/s12967-022-03400-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The two oncogenic human gammaherpesviruses, Kaposi sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), both downregulate immune surface molecules, such as MHC-I, ICAM-1, and B7-2, enabling them to evade T-cell and natural killer cell immunity. Both also either encode for human cyclin homologues or promote cellular cyclin activity, and this has been shown to be important for proliferation and survival of gammaherpesvirus-induced tumors. CDK4/6 inhibitors, which are approved for certain breast cancers, have been shown to enhance expression of MHC-I in cell lines and murine models of breast cancer, and this was attributed to activation of interferons by endogenous retrovirus elements. However, it was not known if this would occur in gammaherpesvirus-induced tumors in which interferons are already activated. METHODS Multiple KSHV/EBV-infected cell lines were treated with CDK4/6 inhibitors. The growth of viable cells and expression of surface markers was assessed. T cell activation stimulated by the treated cells was assayed by a T-cell activation bioassay. Both viral and host gene expression was surveyed using RT-qPCR. RESULTS Three CDK4/6 inhibitors, abemaciclib, palbociclib, and ribociclib, inhibited cell growth in KSHV-induced primary effusion lymphoma (PEL) and EBV positive Burkitt's lymphoma (BL) cell lines, and KSHV-infected human umbilical vein endothelial cells (HUVECs). Moreover, CDK4/6 inhibitors increased mRNA and surface expression of MHC-I in all three and prevented downregulation of MHC-I surface expression during lytic replication in KSHV-infected cells. CDK4/6 inhibitors also variably increased mRNA and surface expression of ICAM-1 and B7-2 in the tested lines. Abemaciclib also significantly enhanced T-cell activation induced by treated PEL and BL cells. Certain gammaherpesvirus genes as well as endogenous retrovirus (ERV) 3-1 genes were enhanced by CDK4/6 inhibitors in most PEL and BL lines and this enhancement was associated with expression of gamma interferon-induced genes including MHC-I. CONCLUSIONS These observations provide evidence that CDK4/6 inhibitors can induce expression of surface immune markers MHC-I, B7-2, and ICAM-1 in gammaherpesvirus-infected cell lines and induce virus-specific immunity. They can thus thwart virus-induced immune evasion. These effects, along with their direct effects on KSHV- or EBV-induced tumors, provide a rational for the clinical testing of these drugs in these tumors.
Collapse
Affiliation(s)
- Yiquan Wu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Prabha Shrestha
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Natalie M Heape
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, Building 10, Rm. 6N106, MSC 1868, 10 Center Drive, Bethesda, MD, 20892-1868, USA.
| |
Collapse
|
21
|
Characterization of High-Risk HPV/EBV Co-Presence in Pre-Malignant Cervical Lesions and Squamous Cell Carcinomas. Microorganisms 2022; 10:microorganisms10050888. [PMID: 35630333 PMCID: PMC9144326 DOI: 10.3390/microorganisms10050888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. However, a low proportion of HR-HPV-infected women finally develop this cancer, which suggests the involvement of additional cofactors. Epstein−Barr virus (EBV) has been detected in cervical squamous cell carcinomas (SCCs) as well as in low- (LSIL) and high-grade (HSIL) squamous intraepithelial lesions, although its role is unknown. In this study, we characterized HR-HPV/EBV co-presence and viral gene expression in LSIL (n = 22), HSIL (n = 52), and SCC (n = 19) from Chilean women. Additionally, phenotypic changes were evaluated in cervical cancer cells ectopically expressing BamHI-A Rightward Frame 1 (BARF1). BARF1 is a lytic gene also expressed in EBV-positive epithelial tumors during the EBV latency program. HPV was detected in 6/22 (27.3%) LSIL, 38/52 (73.1%) HSIL, and 15/19 (78.9%) SCC cases (p < 0.001). On the other hand, EBV was detected in 16/22 (72.7%) LSIL, 27/52 (51.9%) HSIL, and 13/19 (68.4%) SCC cases (p = 0.177). HR-HPV/EBV co-presence was detected in 3/22 (13.6%) LSIL, 17/52 (32.7%) HSIL, and 11/19 (57.9%) SCC cases (p = 0.020). Additionally, BARF1 transcripts were detected in 37/55 (67.3%) of EBV positive cases and in 19/30 (63.3%) of HR-HPV/EBV positive cases. Increased proliferation, migration, and epithelial-mesenchymal transition (EMT) was observed in cervical cancer cells expressing BARF1. Thus, both EBV and BARF1 transcripts are detected in low- and high-grade cervical lesions as well as in cervical carcinomas. In addition, BARF1 can modulate the tumor behavior in cervical cancer cells, suggesting a role in increasing tumor aggressiveness.
Collapse
|
22
|
Kim J, Park C, Kim KH, Kim EH, Kim H, Woo JK, Seong JK, Nam KT, Lee YC, Cho SY. Single-cell analysis of gastric pre-cancerous and cancer lesions reveals cell lineage diversity and intratumoral heterogeneity. NPJ Precis Oncol 2022; 6:9. [PMID: 35087207 PMCID: PMC8795238 DOI: 10.1038/s41698-022-00251-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
Single-cell transcriptomic profiles analysis has proposed new insights for understanding the behavior of human gastric cancer (GC). GC offers a unique model of intratumoral heterogeneity. However, the specific classes of cells involved in carcinogenetic passage, and the tumor microenvironment of stromal cells was poorly understood. We characterized the heterogeneous cell population of precancerous lesions and gastric cancer at the single-cell resolution by RNA sequencing. We identified 10 gastric cell subtypes and showed the intestinal and diffuse-type cancer were characterized by different cell population. We found that the intestinal and diffuse-type cancer cells have the differential metaplastic cell lineages: intestinal-type cancer cells differentiated along the intestinal metaplasia lineage while diffuse-type cancer cells resemble de novo pathway. We observed an enriched CCND1 mutation in premalignant disease state and discovered cancer-associated fibroblast cells harboring pro-stemness properties. In particular, tumor cells could be categorized into previously proposed molecular subtypes and harbored specific subtype of malignant cell with high expression level of epithelial-myofibroblast transition which was correlated with poor clinical prognosis. In addition to intratumoral heterogeneity, the analysis revealed different cellular lineages were responsible for potential carcinogenetic pathways. Single-cell transcriptomes analysis of gastric pre-cancerous lesions and cancer may provide insights for understanding GC cell behavior, suggesting potential targets for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jihyun Kim
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Charny Park
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea
| | - Kwang H Kim
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eun Hye Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Hyunki Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Kyu Woo
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, Republic of Korea. .,Laboratory of Developmental Biology and Genomics, Research Institute of Veterinary Science, BK21 Program Plus for Advanced Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Yong Chan Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Department of Internal Medicine, Severance Hospital, Seoul, Republic of Korea.
| | - Soo Young Cho
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do, 10408, Republic of Korea. .,Department of Molecular and Life Science, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
23
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Manuel Lopes de Sousa H, Patrícia Costa Ribeiro J, Basílio Timóteo M. Epstein-Barr Virus-Associated Gastric Cancer: Old Entity with New Relevance. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gastric cancer (GC) represents a major public health issue worldwide, being the fifth most common cancer and one of the leading causes of death by cancer. In 2014, The Cancer Genome Atlas (TCGA) established that tumors positive for Epstein-Barr virus (EBV) are considered a specific subtype of GC (EBVaGC). Several meta-analyses have shown that EBVaGC represents almost 10% of all gastric cancer worldwide, with small differences in the geographic distribution. This tumor subtype has a high potential of being clinically relevant and studies have shown that it has specific features, a better prognosis, and increased overall survival. In this review, we summarize some of the most frequent aspects of EBVaGC, including the specific features of this GC subtype, data regarding the potential steps of EBVaGC carcinogenesis, and perspectives on treatment opportunities.
Collapse
|
25
|
Han S, Tay JK, Loh CJL, Chu AJM, Yeong JPS, Lim CM, Toh HC. Epstein–Barr Virus Epithelial Cancers—A Comprehensive Understanding to Drive Novel Therapies. Front Immunol 2021; 12:734293. [PMID: 34956172 PMCID: PMC8702733 DOI: 10.3389/fimmu.2021.734293] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Epstein–Barr virus (EBV) is a ubiquitous oncovirus associated with specific epithelial and lymphoid cancers. Among the epithelial cancers, nasopharyngeal carcinoma (NPC), lymphoepithelioma-like carcinoma (LELC), and EBV-associated gastric cancers (EBVaGC) are the most common. The role of EBV in the pathogenesis of NPC and in the modulation of its tumour immune microenvironment (TIME) has been increasingly well described. Much less is known about the pathogenesis and tumour–microenvironment interactions in other EBV-associated epithelial cancers. Despite the expression of EBV-related viral oncoproteins and a generally immune-inflamed cancer subtype, EBV-associated epithelial cancers have limited systemic therapeutic options beyond conventional chemotherapy. Immune checkpoint inhibitors are effective only in a minority of these patients and even less efficacious with molecular targeting drugs. Here, we examine the key similarities and differences of NPC, LELC, and EBVaGC and comprehensively describe the clinical, pathological, and molecular characteristics of these cancers. A deeper comparative understanding of these EBV-driven cancers can potentially uncover targets in the tumour, TIME, and stroma, which may guide future drug development and cast light on resistance to immunotherapy.
Collapse
Affiliation(s)
- Shuting Han
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joshua K. Tay
- Department of Otolaryngology—Head & Neck Surgery, National University of Singapore, Singapore, Singapore
| | | | | | - Joe Poh Sheng Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Chwee Ming Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- *Correspondence: Han Chong Toh,
| |
Collapse
|
26
|
Saleh T, Carpenter VJ. Potential Use of Senolytics for Pharmacological Targeting of Precancerous Lesions. Mol Pharmacol 2021; 100:580-587. [PMID: 34544896 DOI: 10.1124/molpharm.121.000361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/10/2021] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cell state that contributes to several homeostatic and pathologic processes. In addition to being induced in somatic cells in response to replicative exhaustion (replicative senescence) as part of organismal aging, senescence can also be triggered prematurely by oncogene hyperactivation or tumor suppressor dysfunction [oncogene-induced senescence (OIS)]. Consequently, senescent cells comprise a major component of precancerous lesions of skin, oral mucosa, nasopharynx, prostate, gut, and lung. Unfortunately, invasive (or minimally invasive) interventions are currently the only available approach employed to eradicate premalignant lesions that carry the potential for cancer progression. Senolytics are a newly emerging drug class capable of selectively eliminating senescent cells. Although senolytics have been successfully demonstrated to mitigate a myriad of aging-related pathologies and to cull senescent cancer cells, there is a paucity of evidence for the potential use of senolytics as a novel approach to eliminate oncogene-induced senescent cells. This Emerging Concepts commentary will 1) summarize evidence in established models of OIS including B-Raf-induced nevi, transgenic lung cancer, and pancreatic adenocarcinoma models, as well as evidence from clinical precancerous lesions; 2) suggest that OIS is targetable; and 3) propose the utilization of senolytic agents as a revolutionary means to interfere with the ability of senescent premalignant cells to progress to cancer in vitro and in vivo If proven to be effective, senolytics will represent an emerging tool to pharmacologically treat precancerous lesions. SIGNIFICANCE STATEMENT: The treatment of premalignant lesions is largely based on the utilization of invasive (or minimally invasive) measures. Oncogene-induced senescence (OIS) is one form of senescence that occurs in response to oncogene overexpression in somatic cells and is present in precancerous lesions. Although the contribution of OIS to disease progression is undetermined, recent evidence suggests that senescent cells are permissive for malignant transformation. Accordingly, the pharmacological targeting of oncogene-induced senescent cells could potentially provide a novel, less invasive, means for the treatment of premalignant disease.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| | - Valerie J Carpenter
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan (T.S.); Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia (V.J.C.)
| |
Collapse
|
27
|
Yu KHO, Shi CH, Wang B, Chow SHC, Chung GTY, Lung RWM, Tan KE, Lim YY, Tsang ACM, Lo KW, Yip KY. Quantifying full-length circular RNAs in cancer. Genome Res 2021; 31:2340-2353. [PMID: 34663689 PMCID: PMC8647826 DOI: 10.1101/gr.275348.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023]
Abstract
Circular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have potentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quantify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carcinoma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between the two groups. Compared with the assumed circular isoforms derived from linear transcript annotations, some of the alternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response elements, showing the importance of quantifying full-length circRNA isoforms.
Collapse
Affiliation(s)
- Ken Hung-On Yu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christina Huan Shi
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bo Wang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Savio Ho-Chit Chow
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Grace Tin-Yun Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Raymond Wai-Ming Lung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Anna Chi-Man Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
28
|
Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. BIOLOGY 2021; 10:biology10121232. [PMID: 34943147 PMCID: PMC8698839 DOI: 10.3390/biology10121232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary A subset of carcinomas that arise in the head and neck region show a viral etiology. In fact, a subgroup of oropharyngeal cancers are caused by some types of human papillomavirus (HPV), so-called high-risk (HR)-HPVs, whereas undifferentiated nasopharyngeal carcinomas are etiologically related to Epstein–Barr virus (EBV). However, studies have reported the presence of both HR-HPV and EBV in some types of head and neck cancers. In this review, we discuss the potential contribution and role of HR-HPV/EBV coinfection in head and neck carcinogenesis, as well as the mechanisms that are potentially involved. In addition, HR-HPV/EBV interaction models are proposed. Abstract High-risk human papillomaviruses (HR-HPVs) and Epstein–Barr virus (EBV) are recognized oncogenic viruses involved in the development of a subset of head and neck cancers (HNCs). HR-HPVs are etiologically associated with a subset of oropharyngeal carcinomas (OPCs), whereas EBV is a recognized etiological agent of undifferentiated nasopharyngeal carcinomas (NPCs). In this review, we address epidemiological and mechanistic evidence regarding a potential cooperation between HR-HPV and EBV for HNC development. Considering that: (1) both HR-HPV and EBV infections require cofactors for carcinogenesis; and (2) both oropharyngeal and oral epithelium can be directly exposed to carcinogens, such as alcohol or tobacco smoke, we hypothesize possible interaction mechanisms. The epidemiological and experimental evidence suggests that HR-HPV/EBV cooperation for developing a subset of HNCs is plausible and warrants further investigation.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Diego Carrillo-Beltrán
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | | |
Collapse
|
29
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
30
|
Wong KCW, Hui EP, Lo KW, Lam WKJ, Johnson D, Li L, Tao Q, Chan KCA, To KF, King AD, Ma BBY, Chan ATC. Nasopharyngeal carcinoma: an evolving paradigm. Nat Rev Clin Oncol 2021; 18:679-695. [PMID: 34194007 DOI: 10.1038/s41571-021-00524-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
The past three decades have borne witness to many advances in the understanding of the molecular biology and treatment of nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-associated cancer endemic to southern China, southeast Asia and north Africa. In this Review, we provide a comprehensive, interdisciplinary overview of key research findings regarding NPC pathogenesis, treatment, screening and biomarker development. We describe how technological advances have led to the advent of proton therapy and other contemporary radiotherapy approaches, and emphasize the relentless efforts to identify the optimal sequencing of chemotherapy with radiotherapy through decades of clinical trials. Basic research into the pathogenic role of EBV and the genomic, epigenomic and immune landscape of NPC has laid the foundations of translational research. The latter, in turn, has led to the development of new biomarkers and therapeutic targets and of improved approaches for individualizing immunotherapy and targeted therapies for patients with NPC. We provide historical context to illustrate the effect of these advances on treatment outcomes at present. We describe current preclinical and clinical challenges and controversies in the hope of providing insights for future investigation.
Collapse
Affiliation(s)
- Kenneth C W Wong
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Wai Kei Jacky Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - David Johnson
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Lili Li
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Qian Tao
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kwan Chee Allen Chan
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ann D King
- Department of Diagnostic Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Anthony T C Chan
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
31
|
Emanuel O, Liu J, Schartinger VH, Nei WL, Chan YY, Tsang CM, Riechelmann H, Masterson L, Haybaeck J, Oppermann U, Willems SM, Ooft ML, Wollmann G, Howard D, Vanhaesebroeck B, Lund VJ, Royle G, Chua MLK, Lo KW, Busson P, Lechner M. SSTR2 in Nasopharyngeal Carcinoma: Relationship with Latent EBV Infection and Potential as a Therapeutic Target. Cancers (Basel) 2021; 13:4944. [PMID: 34638429 PMCID: PMC8508244 DOI: 10.3390/cancers13194944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor, most commonly located in the pharyngeal recess and endemic to parts of Asia. It is often detected at a late stage which is associated with poor prognosis (5-year survival rate of 63%). Treatment for this malignancy relies predominantly on radiotherapy and/or systemic chemotherapy, which can be associated with significant morbidity and impaired quality of life. In endemic regions NPC is associated with infection by Epstein-Barr virus (EBV) which was shown to upregulate the somatostatin receptor 2 (SSTR2) cell surface receptor. With recent advances in molecular techniques allowing for an improved understanding of the molecular aetiology of this disease and its relation to SSTR2 expression, we provide a comprehensive and up-to-date overview of this disease and highlight the emergence of SSTR2 as a key tumor biomarker and promising target for imaging and therapy.
Collapse
Affiliation(s)
- Oscar Emanuel
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Jacklyn Liu
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Volker H. Schartinger
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.H.S.); (H.R.)
| | - Wen Long Nei
- National Cancer Centre, Divisions of Radiation Oncology and Medical Sciences, Singapore 169610, Singapore; (W.L.N.); (M.L.K.C.)
- Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Yuk Yu Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.Y.C.); (C.M.T.); (K.W.L.)
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.Y.C.); (C.M.T.); (K.W.L.)
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (V.H.S.); (H.R.)
| | - Liam Masterson
- Department of Otolaryngology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK;
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Udo Oppermann
- Botnar Research Centre, University of Oxford, Oxford OX1 2JD, UK;
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79085 Freiburg, Germany
| | - Stefan M. Willems
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.M.W.); (M.L.O.)
- Department of Pathology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Marc L. Ooft
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (S.M.W.); (M.L.O.)
- King’s College Hospitals, NHS Foundation Trust, London SE5 9RS, UK
| | - Guido Wollmann
- Institute of Virology and Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - David Howard
- ENT Department, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London W6 9EP, UK;
- Royal National Throat, Nose and Ear Hospital, University College London Hospitals NHS Trust, London WC1E 6DG, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Valerie J. Lund
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
- Royal National Throat, Nose and Ear Hospital, University College London Hospitals NHS Trust, London WC1E 6DG, UK
| | - Gary Royle
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
| | - Melvin L. K. Chua
- National Cancer Centre, Divisions of Radiation Oncology and Medical Sciences, Singapore 169610, Singapore; (W.L.N.); (M.L.K.C.)
- Oncology Academic Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.Y.C.); (C.M.T.); (K.W.L.)
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Pierre Busson
- CNRS-UMR 9018-Metsy, Gustave Roussy and Université Paris-Saclay, 94805 Villejuif, France
| | - Matt Lechner
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; (O.E.); (J.L.); (B.V.); (V.J.L.); (G.R.)
- Rhinology & Endoscopic Skull Base Surgery, Department of Otolaryngology-H&N Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
32
|
Banko A, Miljanovic D, Lazarevic I, Cirkovic A. A Systematic Review of Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) Gene Variants in Nasopharyngeal Carcinoma. Pathogens 2021; 10:1057. [PMID: 34451521 PMCID: PMC8401687 DOI: 10.3390/pathogens10081057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an aggressive tumor with a complex etiology. Although Epstein-Barr virus (EBV) infection is known environmental factor for NPC development, the degree to which EBV naturally infects nasopharyngeal epithelium and the moment when and why the virus actively begins to affect cell transformation remains questionable. The aim of this study was to explore the association between LMP1 gene variability and potential contribution to NPC development. A systematic review was performed through searches of PubMed, Web of Science (WoS) and SCOPUS electronic databases. Additionally, meta-analysis of the difference in the frequency of seven LMP1 gene variants in NPC and control individuals was accomplished. The results from this study give a proof of concept for the association between 30 bp deletion (OR = 3.53, 95% CI = 1.48-8.43) and Xhol loss (OR = 14.17, 95% CI = 4.99-40.20) and NPC susceptibility when comparing biopsies from NPC and healthy individuals. Otherwise, 30 bp deletion from NPC biopsies could not distinguish NPC from EBV-associated non-NPC tumors (OR = 1.74, 95% CI = 0.81-3.75). However, B95-8, China1 and North Carolina variants were uncommon for NPC individuals. Much more efforts remains to be done to verify the biological significance of the differences observed, define so-called "high-risk" EBV variants and make it available for clinical application.
Collapse
Affiliation(s)
- Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.M.); (I.L.)
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.M.); (I.L.)
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (D.M.); (I.L.)
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
33
|
Bruce JP, To KF, Lui VWY, Chung GTY, Chan YY, Tsang CM, Yip KY, Ma BBY, Woo JKS, Hui EP, Mak MKF, Lee SD, Chow C, Velapasamy S, Or YYY, Siu PK, El Ghamrasni S, Prokopec S, Wu M, Kwan JSH, Liu Y, Chan JYK, van Hasselt CA, Young LS, Dawson CW, Paterson IC, Yap LF, Tsao SW, Liu FF, Chan ATC, Pugh TJ, Lo KW. Whole-genome profiling of nasopharyngeal carcinoma reveals viral-host co-operation in inflammatory NF-κB activation and immune escape. Nat Commun 2021; 12:4193. [PMID: 34234122 PMCID: PMC8263564 DOI: 10.1038/s41467-021-24348-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.
Collapse
Affiliation(s)
- Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ka-Fai To
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Vivian W Y Lui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Grace T Y Chung
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk-Yu Chan
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Man Tsang
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Brigette B Y Ma
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - John K S Woo
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Edwin P Hui
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Michael K F Mak
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sau-Dan Lee
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chit Chow
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sharmila Velapasamy
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yvonne Y Y Or
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pui Kei Siu
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Man Wu
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Johnny S H Kwan
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuchen Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason Y K Chan
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - C Andrew van Hasselt
- Department of Otorhinolaryngology, Head and Neck Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | - Ian C Paterson
- Department of Oral & Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee-Fah Yap
- Department of Oral & Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Sai-Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Anthony T C Chan
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Ontario Institute for Cancer Research, Toronto, ON, Canada.
| | - Kwok-Wai Lo
- Department of Anatomical and cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China. .,State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
34
|
Aguayo F, Boccardo E, Corvalán A, Calaf GM, Blanco R. Interplay between Epstein-Barr virus infection and environmental xenobiotic exposure in cancer. Infect Agent Cancer 2021; 16:50. [PMID: 34193233 PMCID: PMC8243497 DOI: 10.1186/s13027-021-00391-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a herpesvirus associated with lymphoid and epithelial malignancies. Both B cells and epithelial cells are susceptible and permissive to EBV infection. However, considering that 90% of the human population is persistently EBV-infected, with a minority of them developing cancer, additional factors are necessary for tumor development. Xenobiotics such as tobacco smoke (TS) components, pollutants, pesticides, and food chemicals have been suggested as cofactors involved in EBV-associated cancers. In this review, the suggested mechanisms by which xenobiotics cooperate with EBV for carcinogenesis are discussed. Additionally, a model is proposed in which xenobiotics, which promote oxidative stress (OS) and DNA damage, regulate EBV replication, promoting either the maintenance of viral genomes or lytic activation, ultimately leading to cancer. Interactions between EBV and xenobiotics represent an opportunity to identify mechanisms by which this virus is involved in carcinogenesis and may, in turn, suggest both prevention and control strategies for EBV-associated cancers.
Collapse
Affiliation(s)
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alejandro Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gloria M Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, 1000000, Arica, Chile.,Center for Radiological Research, Columbia University Medical Center, New York, NY, 10032, USA
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
35
|
Campion NJ, Ally M, Jank BJ, Ahmed J, Alusi G. The molecular march of primary and recurrent nasopharyngeal carcinoma. Oncogene 2021; 40:1757-1774. [PMID: 33479496 DOI: 10.1038/s41388-020-01631-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Nasopharyngeal carcinoma (NPC) results from the aberrant and uncontrolled growth of the nasopharyngeal epithelium. It is highly associated with the Epstein-Barr virus, especially in regions where it is endemic. In the last decade, significant advances in genetic sequencing techniques have allowed the discovery of many new abnormal molecular processes that undoubtedly contribute to the establishment, growth and spread of this deadly disease. In this review, we consider NPC as EBV induced. We summarise the recent discoveries and how they add to our understanding of the pathophysiology of NPC in the context of genomics first in primary and then in recurrent disease. Overall, we find key early events lead to p16 inactivation and cyclin D1 expression, allowing latent viral infection. Host and viral factors work together to affect a variety of molecular pathways, the most fundamental being activation of NF-κB. Nonetheless, much still yearns to be discovered, especially in recurrent NPC.
Collapse
Affiliation(s)
- Nicholas J Campion
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK. .,Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - Munira Ally
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Bernhard J Jank
- Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Jahangir Ahmed
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| | - Ghassan Alusi
- Department of Otorhinolaryngology and Head and Neck Surgery, Barts Health NHS Trust, The Royal London Hospital, Whitechapel Rd, Whitechapel, London, E1 1BB, UK
| |
Collapse
|
36
|
The Role of NK Cells in EBV Infection and EBV-Associated NPC. Viruses 2021; 13:v13020300. [PMID: 33671917 PMCID: PMC7918975 DOI: 10.3390/v13020300] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
A vast majority of the population worldwide are asymptomatic carriers of Epstein-Barr Virus (EBV). However, some infected individuals eventually develop EBV-related cancers, including Nasopharyngeal Carcinoma (NPC). NPC is one of the most common EBV-associated epithelial cancers, and is highly prevalent in Southern China and Southeast Asia. While NPC is highly sensitive to radiotherapy and chemotherapy, there is a lack of effective and durable treatment among the 15%–30% of patients who subsequently develop recurrent disease. Natural Killer (NK) cells are natural immune lymphocytes that are innately primed against virus-infected cells and nascent aberrant transformed cells. As EBV is found in both virally infected and cancer cells, it is of interest to examine the NK cells’ role in both EBV infection and EBV-associated NPC. Herein, we review the current understanding of how EBV-infected cells are cleared by NK cells, and how EBV can evade NK cell-mediated elimination in the context of type II latency in NPC. Next, we summarize the current literature about NPC and NK cell biology. Finally, we discuss the translational potential of NK cells in NPC. This information will deepen our understanding of host immune interactions with EBV-associated NPC and facilitate development of more effective NK-mediated therapies for NPC treatment.
Collapse
|
37
|
Núñez-Acurio D, Bravo D, Aguayo F. Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020; 9:E1059. [PMID: 33352891 PMCID: PMC7765927 DOI: 10.3390/pathogens9121059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer. Its development has been associated with diverse factors such as tobacco smoking and alcohol consumption. In addition, it has been suggested that microorganisms are risk factors for oral carcinogenesis. Epstein-Barr virus (EBV), which establishes lifelong persistent infections and is intermittently shed in the saliva, has been associated with several lymphomas and carcinomas that arise in the oral cavity. In particular, it has been detected in a subset of OSCCs. Moreover, its presence in patients with periodontitis has also been described. Porphyromonas gingivalis (P. gingivalis) is an oral bacterium in the development of periodontal diseases. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues but also to evade the host immune system and eventually affect systemic health. Persistent exposure to P. gingivalis promotes tumorigenic properties of oral epithelial cells, suggesting that chronic P. gingivalis infection is a potential risk factor for OSCC. Given that the oral cavity serves as the main site where EBV and P. gingivalis are harbored, and because of their oncogenic potential, we review here the current information about the participation of these microorganisms in oral carcinogenesis, describe the mechanisms by which EBV and P. gingivalis independently or synergistically can collaborate, and propose a model of interaction between both microorganisms.
Collapse
Affiliation(s)
- Daniela Núñez-Acurio
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
| | - Denisse Bravo
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Francisco Aguayo
- Laboratory of Oncovirology, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago 8380000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
38
|
Xue Z, Lui VWY, Li Y, Jia L, You C, Li X, Piao W, Yuan H, Khong PL, Lo KW, Cheung LWT, Lee VHF, Lee AWM, Tsao SW, Tsang CM. Therapeutic evaluation of palbociclib and its compatibility with other chemotherapies for primary and recurrent nasopharyngeal carcinoma. J Exp Clin Cancer Res 2020; 39:262. [PMID: 33243298 PMCID: PMC7690146 DOI: 10.1186/s13046-020-01763-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent genomic analyses revealed that druggable molecule targets were only detectable in approximately 6% of patients with nasopharyngeal carcinoma (NPC). However, a dependency on dysregulated CDK4/6-cyclinD1 pathway signaling is an essential event in the pathogenesis of NPC. In this study, we aimed to evaluate the therapeutic efficacy of a specific CDK4/6 inhibitor, palbociclib, and its compatibility with other chemotherapeutic drugs for the treatment of NPC by using newly established xenograft models and cell lines derived from primary, recurrent, and metastatic NPC. METHODS We evaluated the efficacies of palbociclib monotherapy and concurrent treatment with palbociclib and cisplatin or suberanilohydroxamic acid (SAHA) in NPC cell lines and xenograft models. RNA sequencing was then used to profile the drug response-related pathways. Palbociclib-resistant NPC cell lines were established to determine the potential use of cisplatin as a second-line treatment after the development of palbociclib resistance. We further examined the efficacy of palbociclib treatment against cisplatin-resistant NPC cells. RESULTS In NPC cells, palbociclib monotherapy was confirmed to induce cell cycle arrest in the G1 phase in vitro. Palbociclib monotherapy also had significant inhibitory effects in all six tested NPC tumor models in vivo, as indicated by substantial reductions in the total tumor volumes and in Ki-67 proliferation marker expression. In NPC cells, concurrent palbociclib treatment mitigated the cytotoxic effect of cisplatin in vitro. Notably, concurrent treatment with palbociclib and SAHA synergistically promoted NPC cell death both in vitro and in vivo. This combination also further inhibited tumor growth by inducing autophagy-associated cell death. NPC cell lines with induced palbociclib or cisplatin resistance remained sensitive to treatment with cisplatin or palbociclib, respectively. CONCLUSIONS Our study findings provide essential support for the use of palbociclib as an alternative therapy for NPC and increase awareness of the effective timing of palbociclib administration with other chemotherapeutic drugs. Our results provide a foundation for the design of first-in-human clinical trials of palbociclib regimens in patients with NPC.
Collapse
Affiliation(s)
- Zhichao Xue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yongshu Li
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chanping You
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenying Piao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hui Yuan
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Guangdong Academy of Medical Sciences and Guangdong Provincial People's Hospital, Guangzhou, Guangdong, PR China
| | - Pek Lan Khong
- Department of Diagnostic Radiology, Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lydia Wai Ting Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Victor Ho Fan Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anne Wing Mui Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Chi Man Tsang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China.
- Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China.
| |
Collapse
|
39
|
Stanland LJ, Luftig MA. The Role of EBV-Induced Hypermethylation in Gastric Cancer Tumorigenesis. Viruses 2020; 12:v12111222. [PMID: 33126718 PMCID: PMC7693998 DOI: 10.3390/v12111222] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Epstein–Barr-virus-associated Gastric Cancer (EBVaGC) comprises approximately 10% of global gastric cancers and is known to be the most hypermethylated of all tumor types. EBV infection has been shown to directly induce the hypermethylation of both the host and viral genome following initial infection of gastric epithelial cells. Many studies have been completed in an attempt to identify genes that frequently become hypermethylated and therefore significant pathways that become silenced to promote tumorigenesis. It is clear that EBV-induced hypermethylation silences key tumor suppressor genes, cell cycle genes and cellular differentiation factors to promote a highly proliferative and poorly differentiated cell population. EBV infection has been shown to induce methylation in additional malignancies including Nasopharyngeal Carcinoma and Burkitt’s Lymphoma though not to the same level as in EBVaGC. Lastly, some genes silenced in EBVaGC are common to other heavily methylated tumors such as colorectal and breast tumors; however, some genes are unique to EBVaGC and can provide insights into the major pathways involved in tumorigenesis.
Collapse
|
40
|
Targeted Therapies for Epstein-Barr Virus-Associated Lymphomas. Cancers (Basel) 2020; 12:cancers12092565. [PMID: 32916819 PMCID: PMC7564798 DOI: 10.3390/cancers12092565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Epstein-Barr virus (EBV) is the first-discovered and important human tumor virus. It infects more than 90% of human population and induces various lymphomas. Development of specific targeted therapies is very critical for treatment of EBV-induced lymphomas, but it remains a great challenge. In this review, we introduced the current progress of EBV-specific therapies and the promising approaches that can be developed as novel targeted therapies, which involve protective or therapeutic strategies to target these lymphomas on different levels. This work will provide new insights into the development of new targeted therapies against EBV-associated lymphomas. Abstract The Epstein-Barr virus (EBV) is the first human tumor virus identified that can transform quiescent B lymphocytes into lymphoblastoid cell lines (LCLs) in vitro. EBV can establish asymptomatic life-long persistence and is associated with multiple human malignancies, including non-Hodgkin lymphoma and Hodgkin lymphoma, as well as infectious mononucleosis. Although EBV-associated lymphomagenesis has been investigated for over 50 years, viral-mediated transformation is not completely understood, and the development of EBV-specific therapeutic strategies to treat the associated cancers is still a major challenge. However, the rapid development of several novel therapies offers exciting possibilities to target EBV-induced lymphomas. This review highlights targeted therapies with potential for treating EBV-associated lymphomas, including small molecule inhibitors, immunotherapy, cell therapy, preventative and therapeutic vaccines, and other potent approaches, which are novel strategies for controlling, preventing, and treating these viral-induced malignances.
Collapse
|
41
|
Richardo T, Prattapong P, Ngernsombat C, Wisetyaningsih N, Iizasa H, Yoshiyama H, Janvilisri T. Epstein-Barr Virus Mediated Signaling in Nasopharyngeal Carcinoma Carcinogenesis. Cancers (Basel) 2020; 12:2441. [PMID: 32872147 PMCID: PMC7565514 DOI: 10.3390/cancers12092441] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common tumors occurring in China and Southeast Asia. Etiology of NPC seems to be complex and involves many determinants, one of which is Epstein-Barr virus (EBV) infection. Although evidence demonstrates that EBV infection plays a key role in NPC carcinogenesis, the exact relationship between EBV and dysregulation of signaling pathways in NPC needs to be clarified. This review focuses on the interplay between EBV and NPC cells and the corresponding signaling pathways, which are modulated by EBV oncoproteins and non-coding RNAs. These altered signaling pathways could be critical for the initiation and progression of NPC.
Collapse
Affiliation(s)
- Timmy Richardo
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany;
- Department of Biomedicine, Indonesia International Institute for Life Science (i3L), Jakarta 13210, Indonesia;
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Pongphol Prattapong
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.P.); (C.N.)
| | - Chawalit Ngernsombat
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (P.P.); (C.N.)
| | - Nurulfitri Wisetyaningsih
- Department of Biomedicine, Indonesia International Institute for Life Science (i3L), Jakarta 13210, Indonesia;
| | - Hisashi Iizasa
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University, Izumo 693-8501, Japan; (H.I.); (H.Y.)
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
42
|
Chen J, Longnecker R. Epithelial cell infection by Epstein-Barr virus. FEMS Microbiol Rev 2020; 43:674-683. [PMID: 31584659 DOI: 10.1093/femsre/fuz023] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr Virus (EBV) is etiologically associated with multiple human malignancies including Burkitt lymphoma and Hodgkin disease as well as nasopharyngeal and gastric carcinoma. Entry of EBV into target cells is essential for virus to cause disease and is mediated by multiple viral envelope glycoproteins and cell surface associated receptors. The target cells of EBV include B cells and epithelial cells. The nature and mechanism of EBV entry into these cell types are different, requiring different glycoprotein complexes to bind to specific receptors on the target cells. Compared to the B cell entry mechanism, the overall mechanism of EBV entry into epithelial cells is less well known. Numerous receptors have been implicated in this process and may also be involved in additional processes of EBV entry, transport, and replication. This review summarizes EBV glycoproteins, host receptors, signal molecules and transport machinery that are being used in the epithelial cell entry process and also provides a broad view for related herpesvirus entry mechanisms.
Collapse
Affiliation(s)
- Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
43
|
Huq S, Casaos J, Serra R, Peters M, Xia Y, Ding AS, Ehresman J, Kedda JN, Morales M, Gorelick NL, Zhao T, Ishida W, Perdomo-Pantoja A, Cecia A, Ji C, Suk I, Sidransky D, Brait M, Brem H, Skuli N, Tyler B. Repurposing the FDA-Approved Antiviral Drug Ribavirin as Targeted Therapy for Nasopharyngeal Carcinoma. Mol Cancer Ther 2020; 19:1797-1808. [PMID: 32606016 DOI: 10.1158/1535-7163.mct-19-0572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/09/2019] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma with a proclivity for systemic dissemination, leading many patients to present with advanced stage disease and fail available treatments. There is a notable lack of targeted therapies for NPC, despite working knowledge of multiple proteins with integral roles in NPC cancer biology. These proteins include EZH2, Snail, eIF4E, and IMPDH, which are all overexpressed in NPC and correlated with poor prognosis. These proteins are known to be modulated by ribavirin, an FDA-approved hepatitis C antiviral that has recently been repurposed as a promising therapeutic in several solid and hematologic malignancies. Here, we investigated the potential of ribavirin as a targeted anticancer agent in five human NPC cell lines. Using cellular growth assays, flow cytometry, BrdU cell proliferation assays, scratch wound assays, and invasion assays, we show in vitro that ribavirin decreases NPC cellular proliferation, migration, and invasion and promotes cell-cycle arrest and cell death. Modulation of EZH2, Snail, eIF4E, IMPDH, mTOR, and cyclin D1 were observed in Western blots and enzymatic activity assays in response to ribavirin treatment. As monotherapy, ribavirin reduced flank tumor growth in multiple NPC xenograft models in vivo Most importantly, we demonstrate that ribavirin enhanced the effects of radiotherapy, a central component of NPC treatment, both in vitro and in vivo Our work suggests that NPC responds to ribavirin-mediated EZH2, Snail, eIF4E, IMPDH, and mTOR changes and positions ribavirin for clinical evaluation as a potential addition to our NPC treatment armamentarium.
Collapse
Affiliation(s)
- Sakibul Huq
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua Casaos
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Riccardo Serra
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Peters
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yuanxuan Xia
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andy S Ding
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jayanidhi N Kedda
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Manuel Morales
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Noah L Gorelick
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tianna Zhao
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wataru Ishida
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander Perdomo-Pantoja
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arba Cecia
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chenchen Ji
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ian Suk
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariana Brait
- Head and Neck Cancer Research Laboratory, Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henry Brem
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Departments of Biomedical Engineering, Oncology, and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicolas Skuli
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betty Tyler
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
44
|
Pevzner AM, Tsyganov MM, Ibragimova MK, Litvyakov NV. [Viral co-infection with head and neck tumors]. Vestn Otorinolaringol 2020; 85:67-72. [PMID: 32476395 DOI: 10.17116/otorino20208502167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The review is devoted to assessing the prevalence of human papillomavirus (HPV) in combination with other viral agents for head and neck tumors (HNT). HPV is recognized as an etiological factor in the development of cervical cancer, but there is evidence that it may be involved in carcinogenesis in other locations, in particular the upper respiratory tract. However, HPV is not the most important factor in tumor growth and progression. Recently, many researchers have reported the presence of concomitant co-infection, affecting tumor progression. Of all the studies analyzed, only 3 studies showed the absence or low rates of co-infection in HNT: from the Czech Republic (0%), China (0.6%) and Japan (3%). Most often, HPV infection was detected together with the Epstein-Barr virus (EBV) - from 12.5 to 34.1% of cases. In Russia, the prevailing combination of viral co-infection was a combination of EBV and cytomegalovirus (9.5%) and a combination of EBV and herpes simplex virus (6.7%). Thus, the degree of incidence of HPV in HNT varies greatly, and the mechanisms of coinfection are poorly understood, which raises the question of whether HPV and concomitant infection can be involved in tumor progression. This makes further research in this direction relevant and promising.
Collapse
Affiliation(s)
- A M Pevzner
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| | - M M Tsyganov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| | - M K Ibragimova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| | - N V Litvyakov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Oncology Research Institute, Tomsk, Russia
| |
Collapse
|
45
|
Hau PM, Lung HL, Wu M, Tsang CM, Wong KL, Mak NK, Lo KW. Targeting Epstein-Barr Virus in Nasopharyngeal Carcinoma. Front Oncol 2020; 10:600. [PMID: 32528868 PMCID: PMC7247807 DOI: 10.3389/fonc.2020.00600] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.
Collapse
Affiliation(s)
- Pok Man Hau
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Man Wu
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nai Ki Mak
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical & Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Baloche V, Ferrand FR, Makowska A, Even C, Kontny U, Busson P. Emerging therapeutic targets for nasopharyngeal carcinoma: opportunities and challenges. Expert Opin Ther Targets 2020; 24:545-558. [PMID: 32249657 DOI: 10.1080/14728222.2020.1751820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Introduction: Nasopharyngeal carcinoma (NPC) is a major public health problem in several countries, especially those in Southeast Asia and North Africa. In its typical poorly differentiated form, the Epstein-Barr virus (EBV) genome is present in the nuclei of all malignant cells with restricted expression of a few viral genes. The malignant phenotype of NPC cells results from the influence of these viral products in combination with cellular genetic, epigenetic and functional alterations. With regard to host/tumor interactions, NPC is a remarkable example of immune escape in the context of a hot tumor.Areas covered: This article has an emphasis on emerging therapeutic targets that are considered upstream or at an early stage of clinical application. It examines targets related to cellular oncogenic alterations, latent EBV infection and tumor interactions with the immune system.Expert opinion: There is a remarkable emergence of new agents that target EBV products. The clinical application of these agents would benefit from a systematic and comprehensive molecular classification of NPCs and from easy access to pre-clinical models in public repositories. There is a strong rationale for more investigations on the potential of immune modulators, especially those related to NK cells.
Collapse
Affiliation(s)
- Valentin Baloche
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| | | | - Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Caroline Even
- Département de cancérologie cervico-faciale, Gustave Roussy and université Paris-Saclay, 39, rue Camille Desmoulins, F-94805, Villejuif, France
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pierre Busson
- CNRS, UMR 9018, Gustave Roussy and Uuniversité Paris-Saclay, 39, rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
47
|
Ren Y, Yang J, Li M, Huang N, Chen Y, Wu X, Wang X, Qiu S, Wang H, Li X. Viral IL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in nasopharyngeal carcinoma cells. Biotechnol Appl Biochem 2020; 67:929-938. [PMID: 31737947 DOI: 10.1002/bab.1856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus (EBV) is positively related to the morbidity of nasopharyngeal carcinoma (NPC) in Asia. After infection, EBV can produce several proteins, including viral interleukin-10 (vIL-10). But the mechanism by which vIL-10 contributes to NPC cell proliferation and cell cycle progression is not well understood. In this study, EBV negative and positive cell lines, and the JAK2/STAT3 signal pathway inhibitor AG490 were used to illustrate the role of vIL-10 in NPC. Cell proliferation and cell cycle were measured by CCK-8 and flow cytometry. The expression levels of related protein were measured by Western blotting. High concentrations of vIL-10 and IL-6 were found in the EBV positive patients. The expression level of IL-6 was positively related to the presence of concentration of vIL-10. vIL-10 can promote cancer cell proliferation and G1 to S phase transmission via upregulating the IL-6 protein level by activating the JAK2/STAT3 signal pathway. Furthermore, EBV can induce the formation of cytotoxic T cells, whereas vIL-10 can block the function of cytotoxic T cells. Taken together, these results suggest that vIL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in NPC.
Collapse
Affiliation(s)
- Yanxin Ren
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jie Yang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Mei Li
- Department of Pathology, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ning Huang
- Department of Pharmacology, Kunming Medical University, Kunming, People's Republic of China
| | - Yun Chen
- Department of Pathology, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xifang Wu
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xiaoli Wang
- Department of Radiation Oncology, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Shun Qiu
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Hu Wang
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xiaojiang Li
- Department of Head and Neck Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
48
|
Tsang C, Liu Z, Zhang W, You C, Jones G, Tsao S, Pang S. Integration of biochemical and topographic cues for the formation and spatial distribution of invadosomes in nasopharyngeal epithelial cells. Acta Biomater 2020; 101:168-182. [PMID: 31683015 DOI: 10.1016/j.actbio.2019.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/16/2019] [Accepted: 10/30/2019] [Indexed: 01/03/2023]
Abstract
Invadosomes are invasive protrusions generated by cells which can secrete matrix metalloproteinases for focal digestion of extracellular matrix. They also aid invasive cancer cells in their transmigration through vascular endothelium. However, how the physical and chemical cues in a three-dimensional (3D) system signal the spatial localization of invadosomes remains largely unknown. Here we study the topographic guidance of invadosome formation in invasive nasopharyngeal cells under the stimulation of an inflammatory cytokine, TGF-β1, using engineered gratings with different width and depth. We first report that TGF-β1 can act as an external signal to upregulate the formation of invadosomes with a random distribution on a plane 2D surface. When the cells were seeded on parallel 3D gratings of 5 µm width and 1 µm depth, most of the invadosomes aligned to the edges of the gratings, indicating a topographic cue to the control of invadosome localization. While the number of invadosomes per cell were not upregulated when the cells were seeded on 3D topography, guidance of invadosomes localization to edges is correlated with cell migration directionality on 1 µm deep gratings. Invadosomes preferentially form at edges when the cells move at a lower speed and are guided along narrow gratings. The invadosomes forming at 3D edges also have a longer half-life than those forming on a plane surface. These data suggest that there are integrated biochemical and 3D geometric cues underlying the spatial regulation of invasive structures so as to elicit efficient invasion or metastasis of cells. STATEMENT OF SIGNIFICANCE: Nasopharyngeal cells were integrated with the biological cues and matrix topography to govern the activity and spatial distribution of invadosomes. The biochemical induction of invadosome formation by TGF-β1 in nasopharyngeal cells was observed. When the cells were seeded on parallel 3D gratings, most of the invadosomes aligned to the edges of the gratings due to topographical induced invadosome localization. While the number of invadosomes per cell were not upregulated, guidance of invadosomes localization to edges is correlated with cell migration directionality on 1 µm deep gratings. Invadosomes preferentially form at edges with a higher stability when the cells are guided along narrow gratings. The integrated biochemical and 3D geometric cues could elicit efficient invasion or metastasis of cells.
Collapse
|
49
|
Ribeiro J, Malta M, Galaghar A, Afonso LP, Libânio D, Medeiros R, Dinis-Ribeiro M, Pimentel-Nunes P, Sousa H. Epstein-Barr virus is absent in gastric superficial neoplastic lesions. Virchows Arch 2019; 475:757-762. [PMID: 31673776 DOI: 10.1007/s00428-019-02670-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus (EBV) has been associated with about 9% of all gastric carcinomas, but its role in gastric carcinogenesis remains unclear since there is lack of evidence of EBV presence in pre-neoplastic lesions of gastric mucosa. This study intends to determine the prevalence of EBV in gastric dysplasia and superficial neoplasia to clarify whether EBV infection is an early or late event in gastric cancer development. This retrospective study included a total of 242 gastric lesions from 199 consecutive patients who were referred for endoscopic resection. The histological classification of lesions includes 137 low- and high-grade dysplasia and 105 superficial carcinomas. EBV infection was investigated by EBER-ISH. Results showed that EBV was not detected in any epithelial cells of any case with dysplasia or superficial carcinomas, although we observed the presence of a small number of EBV-infected lymphocytes in 2.1% of all lesions. These results showed that EBV is not present in gastric dysplasia neither in superficial carcinomas suggesting that EBV carcinogenesis is a late event in well/moderately differentiated gastric carcinogenesis.
Collapse
Affiliation(s)
- Joana Ribeiro
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Faculty of Medicine of Porto University, FMUP, Rua Al. Prof Hernâni Monteiro, 4200-072, Porto, Portugal.
| | - Mariana Malta
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada interior da Circunvalação 6657, 4200-172, Porto, Portugal
| | - Ana Galaghar
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Diogo Libânio
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- CINTESIS - Center for Health Technology and Services Research (Centro de Investigação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Research Department, Portuguese League Against Cancer (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), Estrada interior da Circunvalação 6657, 4200-172, Porto, Portugal
- Virology Service, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Mario Dinis-Ribeiro
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- CINTESIS - Center for Health Technology and Services Research (Centro de Investigação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro Pimentel-Nunes
- Gastroenterology Department, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- CINTESIS - Center for Health Technology and Services Research (Centro de Investigação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Hugo Sousa
- Molecular Oncology & Viral Pathology Group (CI-IPOP), Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Faculty of Medicine of Porto University, FMUP, Rua Al. Prof Hernâni Monteiro, 4200-072, Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
50
|
Tsang CM, Lui VWY, Bruce JP, Pugh TJ, Lo KW. Translational genomics of nasopharyngeal cancer. Semin Cancer Biol 2019; 61:84-100. [PMID: 31521748 DOI: 10.1016/j.semcancer.2019.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC), also named the Cantonese cancer, is a unique cancer with strong etiological association with infection of the Epstein-Barr virus (EBV). With particularly high prevalence in Southeast Asia, the involvement of EBV and genetic aberrations contributive to NPC tumorigenesis have remained unclear for decades. Recently, genomic analysis of NPC has defined it as a genetically homogeneous cancer, driven largely by NF-κB signaling caused by either somatic aberrations of NF-κB negative regulators or by overexpression of the latent membrane protein 1 (LMP1), an EBV viral oncoprotein. This represents a landmark finding of the NPC genome. Exome and RNA sequencing data from new EBV-positive NPC models also highlight the importance of PI3K pathway aberrations in NPC. We also realize for the first time that NPC mutational burden, mutational signatures, MAPK/PI3K aberrations, and MHC Class I gene aberrations, are prognostic for patient outcome. Together, these multiple genomic discoveries begin to shape the focus of NPC therapy development. Given the challenge of NF-κB targeting in human cancers, more innovative drug discovery approaches should be explored to target the unique atypical NF-κB activation feature of NPC. Our next decade of NPC research should focus on further identification of the -omic landscapes of recurrent and metastatic NPC, development of gene-based precision medicines, as well as large-scale drug screening with the newly developed and well-characterized EBV-positive NPC models. Focused preclinical and clinical investigations on these major directions may identify new and effective targeting strategies to further improve survival of NPC patients.
Collapse
Affiliation(s)
- Chi Man Tsang
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON, M5G 1L7, Canada
| | - Kwok Wai Lo
- Department of Anatomical and cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|