1
|
Gu T, Raval R, Bashkin Z, Zhou C, Ko S, Kong N, Hong S, Bhaskara A, Shah S, Joshi A, Thellakal S, Rim K, Marimuthu A, Venkatesan S, Wang E, Li S, Jayabalan A, Tao A, Fang Y, Xia L, Chui A, Shu E, Zhang T, Chen Z, Njoo E. Synthesis, antiproliferative activity, and biological profiling of C-19 trityl and silyl ether andrographolide analogs in colon cancer and breast cancer cells. Bioorg Med Chem Lett 2025; 121:130163. [PMID: 40043819 DOI: 10.1016/j.bmcl.2025.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Andrographolide, a labdane diterpenoid isolated from Andrographis paniculata, putatively functions through covalent inhibition of NF-κB, a transcription factor that modulates tumor survival and metastasis. Previous studies have found that functionalization of the C-19 hydroxyl alters the primary mode of action from inhibition of NF-κB to the modulation of the Wnt1/β-catenin signaling pathway. Here, we synthesized a series of twelve C-19 trityl and silyl ether analogs, including three novel substituted trityl analogs and four novel substituted silyl analogs of andrographolide. MTT assays revealed cell line selectivity between colorectal and breast cancer cells, which is consistent with known mechanisms of β-catenin-driven cell proliferation in colorectal cancer cell lines. Most compounds exhibited cell line specific antiproliferative activity in HCT-116 and HT-29 colorectal cancer cell lines. Specifically, within 24 h, C-19 analogs of andrographolide exhibit far more limited antiproliferative activity in MCF-7 breast cancer cells compared to HCT-116, HT-29, and MDA-MB-231 cells. Through in vitro TNF-α-dependent NF-κB reporter and Wnt1-dependent luciferase reporter assays, we observed that several analogs generally exhibit greater inhibitory activity compared to andrographolide. Fluorescence imaging demonstrated that cells treated with andrographolide and its C-19 analogs retained similar distributions of active β-catenin, but notable differences in antiproliferative potency upon co-delivery with GSK-3β inhibitor CHIR99021 indicate that several lead compounds exhibit attenuated biological activity selectively in HT-29 cells. Collectively, this work indicates that modest structural modifications at C-19 of andrographolide can have profound implications for its biological activity in mechanisms connected to its anticancer activity.
Collapse
Affiliation(s)
- Tiffany Gu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Rushika Raval
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Zachary Bashkin
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Carina Zhou
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Sanghyuk Ko
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Natalie Kong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Seoyeon Hong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aditya Bhaskara
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samarth Shah
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Aditi Joshi
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samahith Thellakal
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Kaitlyn Rim
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Anushree Marimuthu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Srishti Venkatesan
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Emma Wang
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Sophia Li
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Aditi Jayabalan
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Alice Tao
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Yilin Fang
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Lorelei Xia
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aidan Chui
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Emily Shu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Tracy Zhang
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Zhan Chen
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Edward Njoo
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA.
| |
Collapse
|
2
|
Lakhani M, Kwan AT, Mihalache A, Popovic MM, Nanji K, Xie JS, Feo A, Rabinovitch D, Shor R, Sadda S, Sarraf D, Hurley B, Margolin EA, Kertes PJ, Chaudhary V, Muni RH. Association of Glucagon-like Peptide-1 Receptor Agonists with Optic Nerve and Retinal Adverse Events: A Population-Based Observational Study Across 180 Countries. Am J Ophthalmol 2025:S0002-9394(25)00239-9. [PMID: 40383360 DOI: 10.1016/j.ajo.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
PURPOSE Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are important therapeutic options for type 2 diabetes and obesity; however, concerns about ophthalmic safety persist. This study examined associations between GLP-1 RAs and ocular adverse events (AEs). DESIGN Global observational pharmacovigilance study. METHODS We searched the US FAERS database (via OpenVigil 2.1) and WHO's VigiBase (via VigiAccess) for optic nerve and retinal AEs associated with semaglutide and tirzepatide, covering the period from their respective approval dates-December 2017 for semaglutide and May 2022 for tirzepatide-through September 2024. In FAERS, all other drugs were compared, while in VigiBase, metformin, empagliflozin, dulaglutide, and insulin served as controls. Disproportionality metrics included reporting odds ratios (RORs) with 95% confidence intervals. RESULTS Semaglutide and tirzepatide accounted for 76,444 cases (0.59%) in FAERS (n=12,936,341) and 118,639 cases (0.34%) in VigiBase (n>35,000,000). Semaglutide showed significantly higher odds of ischemic optic neuropathy (ION) (FAERS: ROR=11.12, 95%CI=8.15-15.16; VigiBase: ROR=68.58, 95%CI=16.75-280.67), diabetic retinopathy (DR) (FAERS: ROR=17.28, 95%CI=13.62-21.91; VigiBase: ROR=7.81, 95%CI=5.60-10.90), as well as retinal/vitreous detachment, retinal/vitreous hemorrhage, and retinal tear (FAERS: ROR=2.44-5.89, 95%CI=1.70-8.97, all p<0.001, IC025=0.49, compared to all other drugs. VigiBase: ROR=5.49-20.91, 95%CI=2.71-90.11, all p≤0.0001, IC025≥0.53, compared to metformin). Unique to VigiBase were macular edema (ROR=3.87, 95%CI=1.89-7.92), macular hole (ROR=20.90, 95%CI=2.65-165.01), and papilledema (ROR=6.97, 95%CI=2.53-19.17) (all p≤0.004, IC025≥0.27, compared to metformin). Sensitivity analyses using empagliflozin and dulaglutide revealed significant associations with ION and DR, while vitreous detachment and hemorrhage were significant when compared to dulaglutide. Additionally, when insulin was used as a comparator, semaglutide showed a higher ROR for ION (ROR=9.84, 95%CI=4.25-22.81, P<0.0001, IC025=0.42). However, tirzepatide was only significantly associated with DR in FAERS. CONCLUSIONS Given the widespread use of semaglutide, its association with ocular AEs highlight the need for global pharmacovigilance and post-marketing surveillance.
Collapse
Affiliation(s)
- Moiz Lakhani
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The University of Ottawa Eye Institute, Ottawa, Ontario, Canada.
| | - Angela Th Kwan
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; The University of Ottawa Eye Institute, Ottawa, Ontario, Canada.
| | - Andrew Mihalache
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Marko M Popovic
- Department of Ophthalmology, David Geffen School of Medicine at University of California - Los Angeles (UCLA), Los Angeles, California, United States; Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Keean Nanji
- Department of Surgery, Division of Ophthalmology, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada.
| | - Jim S Xie
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Alessandro Feo
- Department of Ophthalmology, David Geffen School of Medicine at University of California - Los Angeles (UCLA), Los Angeles, California, United States.
| | | | - Reut Shor
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada.
| | - SriniVas Sadda
- Department of Ophthalmology, David Geffen School of Medicine at University of California - Los Angeles (UCLA), Los Angeles, California, United States; Doheny Eye Institute, University of California - Los Angeles (UCLA), Pasadena, California, United States.
| | - David Sarraf
- Department of Ophthalmology, David Geffen School of Medicine at University of California - Los Angeles (UCLA), Los Angeles, California, United States; Stein Eye Institute, University of California - Los Angeles (UCLA), Los Angeles, California, United States.
| | - Bernard Hurley
- The University of Ottawa Eye Institute, Ottawa, Ontario, Canada.
| | - Edward A Margolin
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Peter J Kertes
- Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada; John and Liz Tory Eye Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Varun Chaudhary
- Department of Surgery, Division of Ophthalmology, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada; Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada.
| | - Rajeev H Muni
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology and Visual Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Ophthalmology, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada; Kensington Eye Institute, Kensington Vision and Research Centre, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Wang Y, Chen D, Pu Y, Shi J, Yi C, Chen J, Yang G, Cui Y, Nie Y, Zhang L, Wei X, Yu Q. Downregulated DKK2 may serve as a molecular mechanism of high-fat diet-induced myocardial injury via Wnt/β-catenin pathway. Life Sci 2025; 361:123306. [PMID: 39667489 DOI: 10.1016/j.lfs.2024.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE High-fat diet could induce structural and functional disorders of the heart, but the underlying mechanism remains elusive. This study aimed to explore related mechanism of obesity cardiomyopathy. METHODS Obesity model was established by feeding rats with a high-fat diet, and H9c2 cells were stimulated with palmitic acid to mimic high-fat stimulation. Whole transcriptome analysis results showed that the expression of Dickkopf-2 (DKK2) in obesity cardiomyopathy group was significantly lower than that in control group and simple obesity group. Overexpression and knockdown of DKK2 was achieved by infection with lentivirus. Weight, blood glucose, lipids, blood pressure, and insulin, HE staining, Sirius red staining and echocardiography results were analyzed in rats at 8 and 16 weeks after various interventions. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. RESULTS High-fat diet-induced obese rats presented with changes in serum lipid, insulin, and increases in myocardial inflammation and fibrosis. Protein and mRNA expression levels of DKK2 were significantly decreased in the obesity cardiomyopathy group compared with the obesity and control group. In vitro, knockdown of DKK2 activated β-catenin/Wnt3a pathway, while overexpress of DKK2 inhibited β-catenin/Wnt3a expression. CONCLUSION Activating DKK2 may serve as a novel therapeutic intervention option for obesity cardiomyopathy and obesity-related metabolic disorders, and future studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Di Chen
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Ye Pu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Jiahao Shi
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Congxiang Yi
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Jie Chen
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian Medical University, Dalian 116044, China
| | - Guangxiang Yang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yang Cui
- Dalian Medical University, Dalian 116044, China; Department of Cardiology, Affiliated Xinhua Hospital of Dalian University, Dalian 116023, China
| | - Yu Nie
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian Medical University, Dalian 116044, China
| | - Liyuan Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian Medical University, Dalian 116044, China
| | - Xiaowei Wei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qin Yu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| |
Collapse
|
4
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
5
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
6
|
He S, Wang Y, Luo Y, Xue M, Wu M, Tan H, Peng Y, Wang K, Fang M. Integrated analysis strategy of genome-wide functional gene mining reveals DKK2 gene underlying meat quality in Shaziling synthesized pigs. BMC Genomics 2024; 25:30. [PMID: 38178019 PMCID: PMC10765619 DOI: 10.1186/s12864-023-09925-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Shaziling pig is a well-known indigenous breed in China who has superior meat quality traits. However, the genetic mechanism and genomic evidence underlying meat quality characteristics of Shaziling pigs are still unclear. To explore and investigate the germplasm characteristics of Shaziling pigs, we totally analyzed 67 individual's whole genome sequencing data for the first time (20 Shaziling pigs [S], 20 Dabasha pigs [DBS], 11 Yorkshire pigs [Y], 10 Berkshire pigs [BKX], 5 Basha pigs [BS] and 1 Warthog). RESULTS A total of 2,538,577 SNPs with high quality were detected and 9 candidate genes which was specifically selected in S and shared in S to DBS were precisely mined and screened using an integrated analysis strategy of identity-by-descent (IBD) and selective sweep. Of them, dickkopf WNT signaling pathway inhibitor 2 (DKK2), the antagonist of Wnt signaling pathway, was the most promising candidate gene which was not only identified an association of palmitic acid and palmitoleic acid quantitative trait locus in PigQTLdb, but also specifically selected in S compared to other 48 Chinese local pigs of 12 populations and 39 foreign pigs of 4 populations. Subsequently, a mutation at 12,726-bp of DKK2 intron 1 (g.114874954 A > C) was identified associated with intramuscular fat content using method of PCR-RFLP in 21 different pig populations. We observed DKK2 specifically expressed in adipose tissues. Overexpression of DKK2 decreased the content of triglyceride, fatty acid synthase and expression of relevant genes of adipogenic and Wnt signaling pathway, while interference of DKK2 got contrary effect during adipogenesis differentiation of porcine preadipocytes and 3T3-L1 cells. CONCLUSIONS Our findings provide an analysis strategy for mining functional genes of important economic traits and provide fundamental data and molecular evidence for improving pig meat quality traits and molecular breeding.
Collapse
Affiliation(s)
- Shuaihan He
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yabiao Luo
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingming Xue
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Maisheng Wu
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product, Xiangtan, 411102, China
| | - Hong Tan
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product, Xiangtan, 411102, China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Meiying Fang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
7
|
Shree Harini K, Ezhilarasan D. Wnt/beta-catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary Pancreat Dis Int 2023; 22:333-345. [PMID: 36448560 DOI: 10.1016/j.hbpd.2022.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global health concern associated with significant morbidity and mortality. NAFLD is a spectrum of diseases originating from simple steatosis, progressing through nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis that may lead to hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is mediated by the triglyceride accumulation followed by proinflammatory cytokines expression leading to inflammation, oxidative stress, and mitochondrial dysfunction denoted as "two-hit hypothesis", advancing with a "third hit" of insufficient hepatocyte proliferation, leading to the increase in hepatic progenitor cells contributing to fibrosis and HCC. Wnt/β-catenin signaling is responsible for normal liver development, regeneration, hepatic metabolic zonation, ammonia and drug detoxification, hepatobiliary development, etc., maintaining the overall liver homeostasis. The key regulators of canonical Wnt signaling such as LRP6, Wnt1, Wnt3a, β-catenin, GSK-3β, and APC are abnormally regulated in NAFLD. Many experimental studies have shown the aberrated Wnt/β-catenin signaling during the NAFLD progression and NASH to hepatic fibrosis and HCC. Therefore, in this review, we have emphasized the role of Wnt/β-catenin signaling and its modulators that can potentially aid in the inhibition of NAFLD.
Collapse
Affiliation(s)
- Karthik Shree Harini
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
8
|
Ramakrishna K, Nalla LV, Naresh D, Venkateswarlu K, Viswanadh MK, Nalluri BN, Chakravarthy G, Duguluri S, Singh P, Rai SN, Kumar A, Singh V, Singh SK. WNT-β Catenin Signaling as a Potential Therapeutic Target for Neurodegenerative Diseases: Current Status and Future Perspective. Diseases 2023; 11:89. [PMID: 37489441 PMCID: PMC10366863 DOI: 10.3390/diseases11030089] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Wnt/β-catenin (WβC) signaling pathway is an important signaling pathway for the maintenance of cellular homeostasis from the embryonic developmental stages to adulthood. The canonical pathway of WβC signaling is essential for neurogenesis, cell proliferation, and neurogenesis, whereas the noncanonical pathway (WNT/Ca2+ and WNT/PCP) is responsible for cell polarity, calcium maintenance, and cell migration. Abnormal regulation of WβC signaling is involved in the pathogenesis of several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and spinal muscular atrophy (SMA). Hence, the alteration of WβC signaling is considered a potential therapeutic target for the treatment of neurodegenerative disease. In the present review, we have used the bibliographical information from PubMed, Google Scholar, and Scopus to address the current prospects of WβC signaling role in the abovementioned neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakarla Ramakrishna
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Lakshmi Vineela Nalla
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Dumala Naresh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Kojja Venkateswarlu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, IIT BHU, Varanasi 221005, India
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Buchi N Nalluri
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Guntupalli Chakravarthy
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation Deemed to be University (KLU), Green Fields, Vaddeswaram, Guntur 522502, India
| | - Sajusha Duguluri
- Department of Biotechnology, Bharathi Institute of Higher Education and Research, Chennai 600073, India
| | - Payal Singh
- Department of Zoology, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Kumar
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Veer Singh
- ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
9
|
Nagahisa T, Kosugi S, Yamaguchi S. Interactions between Intestinal Homeostasis and NAD + Biology in Regulating Incretin Production and Postprandial Glucose Metabolism. Nutrients 2023; 15:nu15061494. [PMID: 36986224 PMCID: PMC10052115 DOI: 10.3390/nu15061494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The intestine has garnered attention as a target organ for developing new therapies for impaired glucose tolerance. The intestine, which produces incretin hormones, is the central regulator of glucose metabolism. Glucagon-like peptide-1 (GLP-1) production, which determines postprandial glucose levels, is regulated by intestinal homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT)-mediated nicotinamide adenine dinucleotide (NAD+) biosynthesis in major metabolic organs such as the liver, adipose tissue, and skeletal muscle plays a crucial role in obesity- and aging-associated organ derangements. Furthermore, NAMPT-mediated NAD+ biosynthesis in the intestines and its upstream and downstream mediators, adenosine monophosphate-activated protein kinase (AMPK) and NAD+-dependent deacetylase sirtuins (SIRTs), respectively, are critical for intestinal homeostasis, including gut microbiota composition and bile acid metabolism, and GLP-1 production. Thus, boosting the intestinal AMPK-NAMPT-NAD+-SIRT pathway to improve intestinal homeostasis, GLP-1 production, and postprandial glucose metabolism has gained significant attention as a novel strategy to improve impaired glucose tolerance. Herein, we aimed to review in detail the regulatory mechanisms and importance of intestinal NAMPT-mediated NAD+ biosynthesis in regulating intestinal homeostasis and GLP-1 secretion in obesity and aging. Furthermore, dietary and molecular factors regulating intestinal NAMPT-mediated NAD+ biosynthesis were critically explored to facilitate the development of new therapeutic strategies for postprandial glucose dysregulation.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Gherardelli C, Cisternas P, Inestrosa NC. Lithium Enhances Hippocampal Glucose Metabolism in an In Vitro Mice Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:8733. [PMID: 35955868 PMCID: PMC9368914 DOI: 10.3390/ijms23158733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Impaired cerebral glucose metabolism is an early event that contributes to the pathogenesis of Alzheimer's disease (AD). Importantly, restoring glucose availability by pharmacological agents or genetic manipulation has been shown to protect against Aβ toxicity, ameliorate AD pathology, and increase lifespan. Lithium, a therapeutic agent widely used as a treatment for mood disorders, has been shown to attenuate AD pathology and promote glucose metabolism in skeletal muscle. However, despite its widespread use in neuropsychiatric disorders, lithium's effects on the brain have been poorly characterized. Here we evaluated the effect of lithium on glucose metabolism in hippocampal neurons from wild-type (WT) and APPSwe/PS1ΔE9 (APP/PS1) mice. Our results showed that lithium significantly stimulates glucose uptake and replenishes ATP levels by preferential oxidation of glucose through glycolysis in neurons from WT mice. This increase was also accompanied by a strong increase in glucose transporter 3 (Glut3), the major carrier responsible for glucose uptake in neurons. Similarly, using hippocampal slices from APP-PS1 mice, we demonstrate that lithium increases glucose uptake, glycolytic rate, and the ATP:ADP ratio in a process that also involves the activation of AMPK. Together, our findings indicate that lithium stimulates glucose metabolism and can act as a potential therapeutic agent in AD.
Collapse
Affiliation(s)
- Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2820000, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6210427, Chile
| |
Collapse
|
11
|
Mármol-Sánchez E, Cirera S, Zingaretti LM, Jacobsen MJ, Ramayo-Caldas Y, Jørgensen CB, Fredholm M, Cardoso TF, Quintanilla R, Amills M. Modeling microRNA-driven post-transcriptional regulation using exon-intron split analysis in pigs. Anim Genet 2022; 53:613-626. [PMID: 35811409 DOI: 10.1111/age.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/23/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022]
Abstract
The contribution of microRNAs (miRNAs) to mRNA post-transcriptional regulation has often been explored by the post hoc selection of downregulated genes and determining whether they harbor binding sites for miRNAs of interest. This approach, however, does not discriminate whether these mRNAs are also downregulated at the transcriptional level. Here, we have characterized the transcriptional and post-transcriptional changes in mRNA expression in two porcine tissues: gluteus medius muscle of fasted and fed Duroc gilts and adipose tissue of lean and obese Duroc-Göttingen minipigs. Exon-intron split analysis of RNA-seq data allowed us to identify downregulated mRNAs with high post-transcriptional signals in fed or obese states, and we assessed whether they harbor binding sites for upregulated miRNAs in any of these two physiological states. We found 26 downregulated mRNAs with high post-transcriptional signals in the muscle of fed gilts and 21 of these were predicted targets of miRNAs upregulated in fed pigs. For adipose tissue, 44 downregulated mRNAs in obese minipigs displayed high post-transcriptional signals, and 25 of these were predicted targets of miRNAs upregulated in the obese state. These results suggest that the contribution of miRNAs to mRNA repression is more prominent in the skeletal muscle system. Finally, we identified several genes that may play relevant roles in the energy homeostasis of the pig skeletal muscle (DKK2 and PDK4) and adipose (SESN3 and ESRRG) tissues. By differentiating transcriptional from post-transcriptional changes in mRNA expression, exon-intron split analysis provides a valuable view of the regulation of gene expression, complementary to canonical differential expression analyses.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Mette Juul Jacobsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Yuliaxis Ramayo-Caldas
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture, Barcelona, Spain
| | - Claus B Jørgensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Merete Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Tainã Figueiredo Cardoso
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Empresa Brasileira de Pesquisa Agropecuária, Embrapa Pecuária Sudeste, São Carlos, Brazil
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture, Barcelona, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Nagahisa T, Yamaguchi S, Kosugi S, Homma K, Miyashita K, Irie J, Yoshino J, Itoh H. Intestinal Epithelial NAD+ Biosynthesis Regulates GLP-1 Production and Postprandial Glucose Metabolism in Mice. Endocrinology 2022; 163:6537596. [PMID: 35218657 DOI: 10.1210/endocr/bqac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/19/2022]
Abstract
Obesity is associated with perturbations in incretin production and whole-body glucose metabolism, but the precise underlying mechanism remains unclear. Here, we tested the hypothesis that nicotinamide phosphoribosyltransferase (NAMPT), which mediates the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a key regulator of cellular energy metabolism, plays a critical role in obesity-associated intestinal pathophysiology and systemic metabolic complications. To this end, we generated a novel mouse model, namely intestinal epithelial cell-specific Nampt knockout (INKO) mice. INKO mice displayed diminished glucagon-like peptide-1 (GLP-1) production, at least partly contributing to reduced early-phase insulin secretion and postprandial hyperglycemia. Mechanistically, loss of NAMPT attenuated the Wnt signaling pathway, resulting in insufficient GLP-1 production. We also found that diet-induced obese mice had compromised intestinal NAMPT-mediated NAD+ biosynthesis and Wnt signaling pathway, associated with impaired GLP-1 production and whole-body glucose metabolism, resembling the INKO mice. Finally, administration of a key NAD+ intermediate, nicotinamide mononucleotide (NMN), restored intestinal NAD+ levels and obesity-associated metabolic derangements, manifested by a decrease in ileal Proglucagon expression and GLP-1 production as well as postprandial hyperglycemia in INKO and diet-induced obese mice. Collectively, our study provides mechanistic and therapeutic insights into intestinal NAD+ biology related to obesity-associated dysregulation of GLP-1 production and postprandial hyperglycemia.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
13
|
Ye S, Zhang Y, Wang X, Liang X, Wei M, Zong R, Liu Z, Chen Q. Autophagy positively regulates Wnt signaling in mice with diabetic retinopathy. Exp Ther Med 2021; 22:1164. [PMID: 34504609 PMCID: PMC8393590 DOI: 10.3892/etm.2021.10598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes. Aberrant Wnt signaling activation plays a pathological role in DR. However, the underlying mechanisms of aberrant Wnt signaling in DR remain unknown. Autophagy has been reported to be involved in the pathophysiology of DR. The present study aimed therefore to investigate the regulatory effects of autophagy on Wnt signaling in DR. Wnt signaling was activated in the retina of db/db mice combined with an increase in the expression of the autophagic proteins microtubule-associated protein 1A/1B-light chain 3 and beclin-1 and a decrease in the expression of the autophagic protein P62. Inhibition of autophagy by 3-methyladenin decreased Wnt signaling in diabetic retinas, indicating a potential association between Wnt signaling and autophagy. Rapamycin, an autophagy inducer, upregulated Wnt signaling in the retina of normal C57BL/6J mice. In cultured Müller cells, rapamycin induced autophagy and activated Wnt signaling, while chloroquine, an autophagy inhibitor, inhibited autophagy and downregulated Wnt signaling, suggesting that autophagy could regulate Wnt signaling in mice retina and retinal cells. In summary, this study demonstrated that autophagy may positively regulate Wnt signaling in diabetic retinas, indicating a potential mechanism of Wnt signaling upregulation in DR and a possible novel therapeutic target of DR.
Collapse
Affiliation(s)
- Sihao Ye
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yuhan Zhang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xin Wang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Xu Liang
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Mingyan Wei
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Rongrong Zong
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Zuguo Liu
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian 361100, P.R. China
| | - Qian Chen
- Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China.,Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361101, P.R. China.,Department of Ophthalmology, Xiamen University Affiliated Xiamen Eye Center, Xiamen, Fujian 361100, P.R. China
| |
Collapse
|
14
|
Dickkopf Proteins and Their Role in Cancer: A Family of Wnt Antagonists with a Dual Role. Pharmaceuticals (Basel) 2021; 14:ph14080810. [PMID: 34451907 PMCID: PMC8400703 DOI: 10.3390/ph14080810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022] Open
Abstract
The Wnt signaling pathway regulates crucial aspects such as cell fate determination, cell polarity and organogenesis during embryonic development. Wnt pathway deregulation is a hallmark of several cancers such as lung, gastric and liver cancer, and has been reported to be altered in others. Despite the general agreement reached by the scientific community on the oncogenic potential of the central components of the pathway, the role of the antagonist proteins remains less clear. Deregulation of the pathway may be caused by overexpression or downregulation of a wide range of antagonist proteins. Although there is growing information related to function and regulation of Dickkopf (DKK) proteins, their pharmacological potential as cancer therapeutics still has not been fully developed. This review provides an update on the role of DKK proteins in cancer and possible potential as therapeutic targets for the treatment of cancer; available compounds in pre-clinical or clinical trials are also reviewed.
Collapse
|
15
|
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol 2021; 2:1144-1157. [PMID: 34458828 PMCID: PMC8341040 DOI: 10.1039/d1cb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration and remodeling in adults. While aberrant Wnt signaling contributes to diseases such as cancer, activation of Wnt/β-catenin signaling is a target of interest in stem cell therapy and regenerative medicine. Recent high throughput screenings from chemical and biological libraries, combined with improved gene expression reporter assays of Wnt/β-catenin activation together with rational drug design, led to the development of a myriad of Wnt activators, with different mechanisms of actions. Among them, Wnt mimics, antibodies targeting Wnt inhibitors, glycogen-synthase-3β inhibitors, and indirubins and other natural product derivatives are emerging modalities to treat bone, neurodegenerative, eye, and metabolic disorders, as well as prevent ageing. Nevertheless, the creation of Wnt-based therapies has been hampered by challenges in developing potent and selective Wnt activators without off-target effects, such as oncogenesis. On the other hand, to avoid these risks, their use to promote ex vivo expansion during tissue engineering is a promising application.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris University, Centre de Recherche des Cordeliers, and Cornea Departement, Cochin Hospital, AP-HP F-75014 Paris France
| | - Anvi Brahmbhatt
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| | - Jie J Zheng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| |
Collapse
|
16
|
Yang J, Shi BY. Dickkopf (Dkk)-2 is a beige fat-enriched adipokine to regulate adipogenesis. Biochem Biophys Res Commun 2021; 548:211-216. [PMID: 33647798 DOI: 10.1016/j.bbrc.2021.02.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023]
Abstract
In the past decades, remarkable efforts have been made to unravel the regulation of adipose tissue metabolism, given the increasing prevalence of obesity and its huge impact on human health. Wnt signaling pathway is closely involved in this entity. As extracellular inhibitors to Wnt signaling, secreted protein Dickkopfs (Dkks) may be potential targets to combat obesity and related metabolic disorders. In this study, we showed that Dkk2 was a beige fat-enriched adipokine to regulate adipogenesis. Dkk2 was strikingly expressed in beige fat depot compared to classic white, brown, and subcutaneous fat. Dkk2 treatment inhibited adipogenesis in 3T3-L1 pre-adipocytes, C3H10T1/2 mesenchymal stem cells, and primary bone marrow mesenchymal stromal cells. Activation of the master adipogenic factor PPARγ by the synthetic Thiazolidinedione ligand rosiglitazone largely rescued the inhibition of adipogenesis by Dkk2. Furthermore, adenoviral overexpression of Dkk2 in the liver to mimic its gain-of-function showed minimal effect on whole-body metabolism. These results collectively suggest that Dkk2 is a first-in-class beige fat adipokine and functions mainly through a paracrine manner to inhibit adipogenesis rather than as an endocrine factor. Our findings aid a better understanding of beige fat function and regulation and further, provide a potential therapeutic target for treating obesity.
Collapse
Affiliation(s)
- Jing Yang
- The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Road, Xi'an, Shaanxi, 710061, PR China
| | - Bing-Yin Shi
- Department of Endocrinology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
17
|
Oliver JD, Turner EC, Halpern LR, Jia S, Schneider P, D'Souza RN. Molecular Diagnostics and In Utero Therapeutics for Orofacial Clefts. J Dent Res 2020; 99:1221-1227. [PMID: 32609569 DOI: 10.1177/0022034520936245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Orofacial clefts and their management impose a substantial burden on patients, on their families, and on the health system. Under the current standard of care, affected patients are subjected to a lifelong journey of corrective surgeries and multidisciplinary management to replace bone and soft tissues, as well as restore esthetics and physiologic functions while restoring self-esteem and psychological health. Hence, a better understanding of the dynamic interplay of molecular signaling pathways at critical phases of palate development is necessary to pioneer novel prenatal interventions. Such pathways include transforming growth factor-β (Tgfβ), sonic hedgehog (Shh), wingless-integrated site (Wnt)/β-catenin, bone morphogenetic protein (Bmp), and fibroblast growth factor (Fgf) and its associated receptors, among others. Here, we summarize commonly used surgical methods used to correct cleft defects postnatally. We also review the advances made in prenatal diagnostics of clefts through imaging and genomics and the various in utero surgical corrections that have been attempted thus far. An overview of how key mediators of signaling that drive palatogenesis are emphasized in the context of the framework and rationale for the development and testing of therapeutics in animal model systems and in humans is provided. The pros and cons of in utero therapies that can potentially restore molecular homeostasis needed for the proper growth and fusion of palatal shelves are presented. The theme advanced throughout this review is the need to develop preclinical molecular therapies that could ultimately be translated into human trials that can correct orofacial clefts at earlier stages of development.
Collapse
Affiliation(s)
- J D Oliver
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA.,Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA
| | - E C Turner
- University of Western Australia Dental School, Perth, Western Australia
| | - L R Halpern
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA
| | - S Jia
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA
| | - P Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - R N D'Souza
- School of Medicine and School of Dentistry, University of Utah Health, Salt Lake City, UT, USA.,Department of Biomedical Engineering, College of Engineering, University of Utah, Salt Lake City, UT, USA.,University of Utah, Departments of Neurobiology and Anatomy, Pathology, and Surgery, Salt Lake City, UT, USA
| |
Collapse
|
18
|
Zhang C, Mei H, Robertson SYT, Lee HJ, Deng SX, Zheng JJ. A Small-Molecule Wnt Mimic Improves Human Limbal Stem Cell Ex Vivo Expansion. iScience 2020; 23:101075. [PMID: 32361505 PMCID: PMC7200314 DOI: 10.1016/j.isci.2020.101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022] Open
Abstract
Ex vivo cultured limbal stem/progenitor cells is an effective alternative to other surgical treatments for limbal stem cell deficiency, but a standard xenobiotic-free method for culturing the LSCs in vitro needs to be optimized. Because Wnt ligands are required for LSC expansion and preservation in vitro, to create a small-molecule Wnt mimic, we created a consolidated compound by linking a Wnt inhibitor that binds to the Wnt co-receptor Frizzled to a peptide derived from the N-terminal Dickkopf-1 that binds to Lrp (low-density lipoprotein receptor-related protein) 5/6, another Wnt co-receptor. This Wnt mimic not only enhances cellular Wnt signaling activation, but also improves the progenitor cell phenotype of in vitro cultured limbal epithelial cells. As the maintenance of stem cell characteristics in the process of culture expansion is essential for the success of ocular surface reconstruction, the small molecules generated in this study may be helpful in the development of pharmaceutical reagents for treating corneal wounds.
Collapse
Affiliation(s)
- Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Hua Mei
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | - Sarah Y T Robertson
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Ho-Jin Lee
- Department of Natural Sciences, Southwest Tennessee Community College, Memphis, TN 38134, USA
| | - Sophie X Deng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Zhao R, Xiao Q, Li M, Ren W, Xia C, Liu X, Li Y, Tan T, Wu D, Sun L. Rational design of peptides for identification of linear epitopes and generation of neutralizing monoclonal antibodies against DKK2 for cancer therapy. Antib Ther 2020; 3:63-70. [PMID: 32391516 PMCID: PMC7194219 DOI: 10.1093/abt/tbaa004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 11/26/2022] Open
Abstract
Dickkopf-related protein 2 (DKK2)is a member of the Dickkopf family in Wnt signaling pathway. Recently, we found that antibodies against DKK2 could activate natural killer (NK) and CD8+ T cells in tumors and inhibit tumor growth. In this paper, we report the rational design of peptides for identification of linear epitopes and generation of neutralizing monoclonal anti-DKK2 antibodies. To break the immune tolerance, we designed and chemically synthesized six peptides corresponding to different regions of DKK2 as immunogens and found five of them could generate mouse polyclonal antibodies that can bind to the active recombinant human DKK2 protein. Neutralizing mouse monoclonal antibodies (5F8 and 1A10) against human DKK2 were successfully developed by immunizing the mice with two different peptides (34KLNSIKSSL42 and 240KVWKDATYS248) conjugated to Keyhole limpet hemocyanin (KLH). The monoclonal antibodies not only abolish DKK2’s suppression of Wnt signaling in vitro but also inhibits tumor growth in vivo. Currently, those two mAbs are undergoing humanization as immunotherapy candidates and may offer a new drug for treatment of human cancers.
Collapse
Affiliation(s)
- Rongqing Zhao
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China.,AnyGo Technology Co., LTD, Beijing 100122, China
| | - Qian Xiao
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven 201942, USA
| | - Maohua Li
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China
| | - Wenlin Ren
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China
| | - Chenxi Xia
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China
| | - Xudong Liu
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China
| | - Yingzi Li
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China
| | - Tan Tan
- Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven 201942, USA
| | - Le Sun
- AbMax BioPharmaceuticals Co., LTD, Beijing 101111, China
| |
Collapse
|
20
|
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019; 12:104. [PMID: 31801553 PMCID: PMC6894260 DOI: 10.1186/s13041-019-0525-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.
Collapse
Affiliation(s)
- Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
21
|
Shen T, Chen Z, Qiao J, Sun X, Xiao Q. Neutralizing monoclonal antibody against Dickkopf2 impairs lung cancer progression via activating NK cells. Cell Death Discov 2019; 5:123. [PMID: 31372243 PMCID: PMC6668384 DOI: 10.1038/s41420-019-0204-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
Adenomatous polyposis coli (APC) and KRAS proto-oncogene (KRAS) mutations frequently co-occur in non-small cell lung cancer. Inactivating APC mutations in colorectal carcinoma has been well characterized, leading to the approaches targeting on dysregulated APC pathway. However, it remains undetermined whether such approaches are also applicable to non-small cell lung cancer patients harboring similar mutations of APC. Dickkopf-related protein 2 (DKK2) is a Wnt antagonist. Our previous study has proved that anti-DKK2 antibody 5F8 suppressed the growth of colorectal carcinoma with APC mutations, illustrating a new target agent of APC-mutated tumors. This study aimed to investigate the potential of applying anti-DKK2 antibody to non-small cell lung cancer with APC mutations. We found significant upregulation of Dkk2 expression in APC-mutated lung cancers. Administration of DKK2 antibody inhibited cancer growth via modulating tumor immune microenvironment in lung cancer mouse models. Our study provided strong evidence supporting APC mutations-directed applications of anti-DKK2 targeted therapy in a wide range of cancer types, including lung cancer.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
- Department of Pharmacology, School of Medicine, Yale University, 10 Amistad St, New Haven, CT USA
| | - Zhengxi Chen
- Department of Pharmacology, School of Medicine, Yale University, 10 Amistad St, New Haven, CT USA
- Department of Orthodontics, Shanghai Ninth People׳s Hospital, School of Stomatology, Shanghai key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Ju Qiao
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA USA
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi China
| | - Qian Xiao
- Department of Pharmacology, School of Medicine, Yale University, 10 Amistad St, New Haven, CT USA
| |
Collapse
|
22
|
González S, Oh D, Baclagon ER, Zheng JJ, Deng SX. Wnt Signaling Is Required for the Maintenance of Human Limbal Stem/Progenitor Cells In Vitro. Invest Ophthalmol Vis Sci 2019; 60:107-112. [PMID: 30640975 PMCID: PMC6333110 DOI: 10.1167/iovs.18-25740] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose A chemical approach to examine the role of Wnt signaling in maintaining the stemness and/or proliferation of limbal stem/progenitor cells (LSCs). Methods LSCs were isolated from human donor eyes and cultured as single cells for 12 to 14 days with the following small molecules: IIIC3, an antagonist of the Wnt signaling inhibitor Dickkopf (DKK), and IC15, a Wnt signaling inhibitor. Proliferation of LSCs in the presence of IIIC3 and IC15 was determined by the number of cells and colonies established. Maintenance of stemness was determined by p63α, cytokeratin (K)12, and K14 expression. Results Activation of Wnt, through IIIC3-mediated DKK inhibition, resulted in similar colony forming efficiency (CFE) as in the untreated LSCs, but significantly increased the number of cultivated cells 7.21% with 5 μM. Inhibition of Wnt with IC15 significantly reduced the CFE (P ≤ 0.01) and the number of cultivated cells by 16% to 29%. Percentage of cells expressing high levels of p63α (p63αbright) and quantity of small cells (≤12 μm), which contain the LSCs, increased 4.71% and 11.26% (both P < 0.05), respectively, with 5 μM IIIC3. All concentrations of IIIC3 and IC15 retained the K14 undifferentiated marker (97%), while differentiation, as detected by expression of K12, was found in up to 2% of cells in 1 μM IIIC3, 1 μM IC15, or 5 μM IIIC3. Conclusions Wnt signaling is required in LSC proliferation and maintenance of an undifferentiated state. The current study is a proof of concept that the Wnt pathway could be modulated in LSCs to enhance or decrease the efficiency of human LSC expansion.
Collapse
Affiliation(s)
- Sheyla González
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Denise Oh
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Elfren R Baclagon
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Jie J Zheng
- Stein Eye Institute, University of California, Los Angeles, California, United States
| | - Sophie X Deng
- Stein Eye Institute, University of California, Los Angeles, California, United States
| |
Collapse
|
23
|
MONTAZERI-NAJAFABADY N, DABBAGHMANESH MH, MOHAMMADIAN AMIRI R, BAKHSHAYESHKARAM M, RANJBAR OMRANI G. Influence of LRP5 (rs556442) polymorphism on insulin resistance in healthy Iranian
children and adolescents. Turk J Med Sci 2019; 49:490-496. [PMID: 30866603 PMCID: PMC7018221 DOI: 10.3906/sag-1809-107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background/aim Genetic aspects play a role in insulin resistance in children. In this study, for the first time, the association of LRP5 (rs556442) polymorphism and insulin resistance in Iranian children and adolescents was investigated. Materials and methods The study population comprises children and adolescents aged 9–18 years. Anthropometric and biochemical parameters were assessed. Insulin resistance/sensitivity was determined by the quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment-insulin resistance (HOMA-IR), insulin-to-glucose ratio, McAuley index, revised McAuley index, fasting insulin resistance index (FIRI), and Bennett’s index. LRP5 (rs566442) single nucleotide polymorphism (SNP) was identified using restriction fragment length polymorphism (RFLP). Linear regression analysis was used to determine the association between the LRP5 polymorphism (rs556442) and insulin sensitivity indexes. Results Significant differences were found between GG genotype vs. AG/AA genotypes for McAuley index (P = 0.049) and revised McAuley index (P = 0.044) when adjusted for interaction factors (age, sex, and puberty) in regression models. No significant association was found between LRP5 (rs566442) and other insulin resistance indexes. Also, LRP5 (rs566442) did not show a significant impact on biochemical parameters. Conclusion This study showed that LRP5 polymorphism (rs556442) was associated with insulin resistance in Iranian children and adolescents.
Collapse
Affiliation(s)
- Nima MONTAZERI-NAJAFABADY
- Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, ShirazIran
| | - Mohammad Hossein DABBAGHMANESH
- Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, ShirazIran
- * To whom correspondence should be addressed. E-mail:
| | - Rajeeh MOHAMMADIAN AMIRI
- Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, ShirazIran
| | | | - Gholamhossein RANJBAR OMRANI
- Endocrinology and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, ShirazIran
| |
Collapse
|
24
|
Deng F, Zhou R, Lin C, Yang S, Wang H, Li W, Zheng K, Lin W, Li X, Yao X, Pan M, Zhao L. Tumor-secreted dickkopf2 accelerates aerobic glycolysis and promotes angiogenesis in colorectal cancer. Am J Cancer Res 2019; 9:1001-1014. [PMID: 30867812 PMCID: PMC6401398 DOI: 10.7150/thno.30056] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis is a fundamental process that involves in tumor progression and metastasis. Vascular endothelial growth factor (VEGF) family and their receptors are identified as the most prominent regulators of angiogenesis. However, the clinical efficacy of anti-VEGF/VEGFR therapy is not ideal, prompting the needs to further understand mechanisms behind tumor angiogenesis. Here, we found that Dickkopf associated protein 2 (DKK2), a secretory protein highly expressed in metastatic colorectal cancer tissues, could stimulate angiogenesis via a classic VEGF/VEGFR independent pathway. Methods: DKK2 was screened out from microarray data analyzing gene expression profiles of eight pairs of non-metastatic and metastatic human colorectal cancer (CRC) tissues. Immunofluorescence histochemical staining (IHC) was used to detect the expression of DKK2 and angiogenesis in CRC tissues. Chicken chorioallantoic membrane (CAM) assay and Human umbilical vein endothelial cells (HUVEC) tubule formation assay was used for in vitro and in vivo angiogenesis study, respectively. Lactate and glucose concentration in the culture medium was measured by enzyme-linked immunosorbent assay (ELISA). Luciferase reporter assay was used to verify the interaction between miR-493-5p and the 3'UTR of DKK2. Results: DKK2 could stimulate angiogenesis via accelerating the aerobic glycolysis of CRC cells, through which lactate is produced from glucose and accumulated in tumor microenvironment. Lactate functions as the final executor of DDK2 to stimulate tube formation of endothelial cells, and blockage of lactate secretion by lactate transporter (MCT) inhibitors dramatically neutralize the progression and metastasis of CRC both in vitro and in vivo. DKK2 could cooperate with lipoprotein receptor-related protein 6, which is required for glucose uptake, and activated the downstream mTOR signal pathway to accelerate lactate secretion. In addition, the expression of DKK2 is switched on via the demethylation of miR-493-5p, which allows the dissociated of miR-493-5p from the 3'-UTRs of DKK2 and initiates its stimulatory role on CRC progression in an autocrine or paracrine manner. Conclusion: DKK2 promotes tumor metastasis and angiogenesis through a novel VEGF-independent, but energy metabolism related pathway. DKK2 might be a potential anti-angiogenic target in clinical treatment for the advanced CRC patients.
Collapse
|
25
|
Mahmoud M, Abu-Shahba N, Azmy O, El-Badri N. Impact of Diabetes Mellitus on Human Mesenchymal Stromal Cell Biology and Functionality: Implications for Autologous Transplantation. Stem Cell Rev Rep 2019; 15:194-217. [DOI: 10.1007/s12015-018-9869-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Chen S, Liu D, He S, Yang L, Bao Q, Qin H, Liu H, Zhao Y, Zong Z. Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse model. Exp Mol Med 2018; 50:1-14. [PMID: 30518745 PMCID: PMC6281645 DOI: 10.1038/s12276-018-0186-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/27/2018] [Accepted: 09/09/2018] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. WNT/β-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to WNT/β-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated β-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of β-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower WNT/β-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase 3β (GSK3β) pathway. After β-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of WNT/β-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.
Collapse
Affiliation(s)
- Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Orthopedics, The 118th Hospital of the Chinese People's Liberation Army, 325000, Wenzhou, Zhejiang, China
| | - Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China
| | - Huayu Liu
- Department of Trauma Surgery, Daping Hospital, Army Medical University, 400042, ChongQing, China
| | - Yufeng Zhao
- Department of Trauma Surgery, Daping Hospital, Army Medical University, 400042, ChongQing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, 400038, ChongQing, China. .,Department of Emergency, Xinqiao Hospital, Army Medical University, 400037, ChongQing, China.
| |
Collapse
|
27
|
Regional Control of Hairless versus Hair-Bearing Skin by Dkk2. Cell Rep 2018; 25:2981-2991.e3. [PMID: 30509557 DOI: 10.1016/j.celrep.2018.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 09/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
Haired skin is a defining characteristic of mammals. However, some specialized skin regions, such as human palms, soles and ventral wrist, and mouse plantar foot, are entirely hairless. Using mouse plantar skin as a model system, we show that the endogenous secreted Wnt inhibitor DKK2 suppresses plantar hair follicle development and permits the formation of hairless skin. Plantar skin retains all of the mechanistic components needed for hair follicle development, as genetic deletion of Dkk2 permits formation of fully functional plantar hair follicles that give rise to external hair, contain sebaceous glands and a stem cell compartment, and undergo regenerative growth. In the absence of Dkk2, Wnt/β-catenin signaling activity is initially broadly elevated in embryonic plantar skin and gradually becomes patterned, mimicking follicular development in normally haired areas. These data provide a paradigm in which regionally restricted expression of a Wnt inhibitor underlies specification of hairless versus hairy skin.
Collapse
|
28
|
Thysiadis S, Katsamakas S, Mpousis S, Avramidis N, Efthimiopoulos S, Sarli V. Design and synthesis of gallocyanine inhibitors of DKK1/LRP6 interactions for treatment of Alzheimer's disease. Bioorg Chem 2018; 80:230-244. [PMID: 29966869 DOI: 10.1016/j.bioorg.2018.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 01/26/2023]
Abstract
Based on NCI8642, a series of gallocyanine derivatives was synthesized with modifications of the substituent groups in position 1, 2 and 4 of the phenoxazinone scaffold. The effectiveness of gallocyanines to inhibit DKK1/LRP6 interactions and Tau phosphorylation induced by prostaglandin J2 and DKK1 was elucidated by both experimental data and molecular docking simulations. Bis-alkylated with flexible alkyl ester groups on C1 and bis-benzyl gallocyanines provided the most active inhibitors, while amino derivatives on C2 of NCI8642 that have alkoxy or benzyloxy substituents on C4, were less active. Furthermore, it is shown that treating of SHSY5Y cells with NCI8642 derivatives activates Wnt signaling and increases the levels of pGSK3β kinase and β-catenin.
Collapse
Affiliation(s)
- Savvas Thysiadis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Sotirios Katsamakas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Spyros Mpousis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Nicolaos Avramidis
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece.
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece.
| |
Collapse
|
29
|
Xiao Q, Wu J, Wang WJ, Chen S, Zheng Y, Yu X, Meeth K, Sahraei M, Bothwell ALM, Chen L, Bosenberg M, Chen J, Sexl V, Sun L, Li L, Tang W, Wu D. DKK2 imparts tumor immunity evasion through β-catenin-independent suppression of cytotoxic immune-cell activation. Nat Med 2018; 24:262-270. [PMID: 29431745 PMCID: PMC5840007 DOI: 10.1038/nm.4496] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
Immunotherapy offers new options for cancer treatment, but efficacy varies across cancer types. Colorectal cancers (CRCs) are largely refractory to immune-checkpoint blockade, which suggests the presence of yet uncharacterized immune-suppressive mechanisms. Here we report that the loss of adenomatosis polyposis coli (APC) in intestinal tumor cells or of the tumor suppressor PTEN in melanoma cells upregulates the expression of Dickkopf-related protein 2 (DKK2), which, together with its receptor LRP5, provides an unconventional mechanism for tumor immune evasion. DKK2 secreted by tumor cells acts on cytotoxic lymphocytes, inhibiting STAT5 signaling by impeding STAT5 nuclear localization via LRP5, but independently of LRP6 and the Wnt-β-catenin pathway. Genetic or antibody-mediated ablation of DKK2 activates natural killer (NK) cells and CD8+ T cells in tumors, impedes tumor progression, and enhances the effects of PD-1 blockade. Thus, we have identified a previously unknown tumor immune-suppressive mechanism and immunotherapeutic targets particularly relevant for CRCs and a subset of melanomas.
Collapse
Affiliation(s)
- Qian Xiao
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Jibo Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of sciences, Shanghai 200031, China
| | - Wei-Jia Wang
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Shiyang Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingxia Zheng
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Xiaoqing Yu
- Biostatistics Department, Yale University, New Haven, CT 06520
| | - Katrina Meeth
- Departments of Dermatology and Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Mahnaz Sahraei
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Alfred L. M. Bothwell
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
| | - Marcus Bosenberg
- Departments of Dermatology and Pathology, Yale School of Medicine, New Haven, CT 06520
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Lin Li
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of sciences, Shanghai 200031, China
| | - Wenwen Tang
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
| | - Dianqing Wu
- Vascular Biology and Therapeutic Program and Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
30
|
Abstract
Chronic diseases account for approximately 45% of all deaths in developed countries and are particularly prevalent in countries with the most sophisticated and robust public health systems. Chronic metabolic diseases, specifically lifestyle-related diseases pertaining to diet and exercise, continue to be difficult to treat clinically. The most prevalent of these chronic metabolic diseases include obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiovascular disease and will be the focus of this review. Wnt proteins are highly conserved glycoproteins best known for their role in development and homeostasis of tissues. Given the importance of Wnt signalling in homeostasis, aberrant Wnt signalling likely regulates metabolic processes and may contribute to the development of chronic metabolic diseases. Expression of Wnt proteins and dysfunctional Wnt signalling has been reported in multiple chronic diseases. It is interesting to speculate about an interrelationship between the Wnt signalling pathways as a potential pathological mechanism in chronic metabolic diseases. The aim of this review is to summarize reported findings on the contrasting roles of Wnt signalling in lifestyle-related chronic metabolic diseases; specifically, the contribution of Wnt signalling to lipid accumulation, fibrosis and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Ian Ackers
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- OHF Fellow, Translational Biomedical Sciences Doctoral Program, Ohio University, Athens, OH, USA
| | - Ramiro Malgor
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Ramiro Malgor, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 202b Academic & Research Center, Athens, OH, 45701-2979 USA.
| |
Collapse
|
31
|
Kim SP, Frey JL, Li Z, Goh BC, Riddle RC. Lack of Lrp5 Signaling in Osteoblasts Sensitizes Male Mice to Diet-Induced Disturbances in Glucose Metabolism. Endocrinology 2017; 158:3805-3816. [PMID: 28938444 PMCID: PMC5695825 DOI: 10.1210/en.2017-00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/06/2017] [Indexed: 01/16/2023]
Abstract
Wnt signaling through the low-density lipoprotein-related receptor 5 (Lrp5) coreceptor regulates osteoblast maturation, matrix mineralization, and intermediary metabolism. In the mature osteoblast, signals downstream of Lrp5 are required for normal long-chain fatty acid β-oxidation. Mice rendered deficient for this coreceptor in osteoblasts and osteocytes accumulate body fat with elevated serum lipid levels but retain normal insulin sensitivity. In the present study, we challenged Lrp5-mutant mice with a high-fat diet (HFD) to determine whether they were more susceptible to diet-induced disturbances in glucose homeostasis. The HFD-fed Lrp5 mutant mice maintained a low bone mass phenotype with an increase in adipose tissue mass and hypertriglyceridemia and hypercholesterolemia. Examination of glucose metabolism revealed that Lrp5 deficiency in the osteoblast also resulted in hyperglycemia and hyperinsulinemia, with reductions in glucose tolerance, insulin sensitivity, and serum undercarboxylated osteocalcin. The results from in vivo genetic epistasis and in vitro studies suggest that this phenotype proceeds via the accumulation of diacylglycerol species and impaired insulin signaling in Lrp5-deficient osteoblasts. In turn, glucose uptake and osteocalcin production are diminished in mutant osteoblasts. Taken together, these data identify a link between Wnt-Lrp5 signaling and insulin signaling in the osteoblast that has the potential to influence energy balance and compound the detrimental effects of a HFD on whole-body metabolism.
Collapse
Affiliation(s)
- Soohyun P. Kim
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julie L. Frey
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Brian C. Goh
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| |
Collapse
|
32
|
Zeng CP, Chen YC, Lin X, Greenbaum J, Chen YP, Peng C, Wang XF, Zhou R, Deng WM, Shen J, Deng HW. Increased identification of novel variants in type 2 diabetes, birth weight and their pleiotropic loci. J Diabetes 2017; 9:898-907. [PMID: 27896934 PMCID: PMC5841537 DOI: 10.1111/1753-0407.12510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/12/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical and epidemiological findings point to an association between type 2 diabetes (T2D) and low birth weight. However, the nature of the relationship is largely unknown. The aim of this study was to identify novel single nucleotide polymorphisms (SNPs) in T2D and birth weight, and their pleiotropic loci. METHODS A pleiotropy-informed conditional false discovery rate (cFDR) method was applied to two independent genome-wide association studies (GWAS) summary statistics of T2D (n = 149 821) and birth weight (n = 26 836). RESULTS A conditional Q-Q plot showed strong enrichment of genetic variants in T2D conditioned on different levels of association with birth weight. 133 T2D-associated SNPs, including 120 novel SNPs, were identified with a significance threshold of cFDR < 0.05; 13 significant birth weight-associated SNPs, including 12 novel SNPs (cFDR < 0.05) were identified. Conjunctional cFDR (ccFDR) analysis identified nine pleiotropic loci, including seven novel loci, shared by both T2D and birth weight (ccFDR < 0.05). Two novel SNPs located at the CDK5 regulatory subunit-associated protein 1-like 1 (CDKAL1; rs1012635; cFDR < 0.05) and adenylate cyclase 5 (ADCY5; rs4677887; cFDR < 0.05) genes are of note. These two genes increase the risk of T2D and low birth weight through the pathway of the "fetal insulin hypothesis." CONCLUSION Several pleiotropic loci were identified between T2D and birth weight by leveraging GWAS results. The results make it possible to explain a greater proportion of trait heritability and improve our understanding of the shared pathophysiology between T2D and birth weight.
Collapse
Affiliation(s)
- Chun-Ping Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, China
| | - Yuan-Cheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jonathan Greenbaum
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana, USA
| | - You-Ping Chen
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xia-Fang Wang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Rou Zhou
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Wei-Min Deng
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Biostatistics and Bioinformatics, Center for Bioinformatics and Genomics, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
33
|
Jia S, Zhou J, Fanelli C, Wee Y, Bonds J, Schneider P, Mues G, D'Souza RN. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero. Development 2017; 144:3819-3828. [PMID: 28893947 DOI: 10.1242/dev.157750] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/05/2017] [Indexed: 01/01/2023]
Abstract
Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9-/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2, proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9-/-Dkk1f/+;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9+/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero, while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders.
Collapse
Affiliation(s)
- Shihai Jia
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Zhou
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Yinshen Wee
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA
| | - John Bonds
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland
| | - Gabriele Mues
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Rena N D'Souza
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, USA .,Departments of Neurobiology & Anatomy, Pathology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
34
|
Li C, Lan Y, Krumlauf R, Jiang R. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice. J Dent Res 2017; 96:1273-1281. [PMID: 28692808 DOI: 10.1177/0022034517719865] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cleft palate is a common birth defect caused by disruption of palatogenesis during embryonic development. Although mutations disrupting components of the Wnt signaling pathway have been associated with cleft lip and palate in humans and mice, the mechanisms involving canonical Wnt signaling and its regulation in secondary palate development are not well understood. Here, we report that canonical Wnt signaling plays an important role in Pax9-mediated regulation of secondary palate development. We found that cleft palate pathogenesis in Pax9-deficient embryos is accompanied by significantly reduced expression of Axin2, an endogenous target of canonical Wnt signaling, in the developing palatal mesenchyme, particularly in the posterior regions of the palatal shelves. We found that expression of Dkk2, encoding a secreted Wnt antagonist, is significantly increased whereas the levels of active β-catenin protein, the essential transcriptional coactivator of canonical Wnt signaling, is significantly decreased in the posterior regions of the palatal shelves in embryonic day 13.5 Pax9-deficent embryos in comparison with control littermates. We show that small molecule-mediated inhibition of Dickkopf (DKK) activity in utero during palatal shelf morphogenesis partly rescued secondary palate development in Pax9-deficient embryos. Moreover, we found that genetic inactivation of Wise, which is expressed in the developing palatal shelves and encodes another secreted antagonist of canonical Wnt signaling, also rescued palate morphogenesis in Pax9-deficient mice. Furthermore, whereas Pax9del/del embryos exhibit defects in palatal shelf elevation/reorientation and significant reduction in accumulation of hyaluronic acid-a high molecular extracellular matrix glycosaminoglycan implicated in playing an important role in palatal shelf elevation-80% of Pax9del/del;Wise-/- double-mutant mouse embryos exhibit rescued palatal shelf elevation/reorientation, accompanied by restored hyaluronic acid accumulation in the palatal mesenchyme. Together, these data identify a crucial role for canonical Wnt signaling in acting downstream of Pax9 to regulate palate morphogenesis.
Collapse
Affiliation(s)
- C Li
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Krumlauf
- 3 Stowers Institute for Medical Research, Kansas City, MO, USA.,4 Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
35
|
Cisternas P, Inestrosa NC. Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer's disease. Neurosci Biobehav Rev 2017. [PMID: 28624434 DOI: 10.1016/j.neubiorev.2017.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The brain is an organ that has a high demand for glucose. In the brain, glucose is predominantly used in energy production, with almost 70% of the energy used by neurons. The importance of the energy requirement in neurons is clearly demonstrated by the fact that all neurodegenerative disorders exhibit a critical metabolic impairment that includes decreased glucose uptake/utilization and decreased mitochondrial activity, with a consequent diminution in ATP production. In fact, in Alzheimer's disease, the measurement of the general metabolic rate of the brain has been reported to be an accurate tool for diagnosis. Additionally, the administration of metabolic activators such as insulin/glucagon-like peptide 1 can improve memory/learning performance. Despite the importance of energy metabolism in the brain, little is known about the cellular pathways involved in the regulation of this process. Several reports postulate a role for Wnt signaling as a general metabolic regulator. Thus, in the present review, we discuss the antecedents that support the relationship between Wnt signaling and energy metabolism in the Alzheimer's disease.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes(CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
36
|
Kwon HJE, Jia S, Lan Y, Liu H, Jiang R. Activin and Bmp4 Signaling Converge on Wnt Activation during Odontogenesis. J Dent Res 2017; 96:1145-1152. [PMID: 28605600 DOI: 10.1177/0022034517713710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Previous studies show that both activin and Bmp4 act as crucial mesenchymal odontogenic signals during early tooth development. Remarkably, mice lacking activin-βA ( Inhba-/-) and mice with neural crest-specific inactivation of Bmp4 ( Bmp4ncko/ncko) both exhibit bud-stage developmental arrest of the mandibular molar tooth germs while their maxillary molar tooth germs completed morphogenesis. In this study, we found that, whereas expression of Inhba and Bmp4 in the developing tooth mesenchyme is independent of each other, Bmp4ncko/nckoInhba-/- compound mutant mice exhibit early developmental arrest of all tooth germs. Moreover, genetic inactivation of Osr2, a negative regulator of the odontogenic function of the Bmp4-Msx1 signaling pathway, rescues mandibular molar morphogenesis in Inhba-/- embryos. We recently reported that Osr2 and the Bmp4-Msx1 pathway control the bud-to-cap transition of tooth morphogenesis through antagonistic regulation of expression of secreted Wnt antagonists, including Dkk2 and Sfrp2, in the developing tooth mesenchyme. We show here that expression of Dkk2 messenger RNAs was significantly upregulated and expanded into the tooth bud mesenchyme in Inhba-/- embryos in comparison with wild-type littermates. Furthermore, in utero treatment with either lithium chloride, an agonist of canonical Wnt signaling, or the DKK inhibitor IIIC3a rescued mandibular molar tooth morphogenesis in Inhba-/- embryos. Together with our finding that the developing mandibular molar tooth bud mesenchyme expresses significantly higher levels of Dkk2 than the developing maxillary molar tooth mesenchyme, these data indicate that Bmp4 and activin signaling pathways converge on activation of the Wnt signaling pathway to promote tooth morphogenesis through the bud-to-cap transition and that the differential effects of loss of activin or Bmp4 signaling on maxillary and mandibular molar tooth morphogenesis are mainly due to the differential expression of Wnt antagonists, particularly Dkk2, in the maxillary and mandibular tooth mesenchyme.
Collapse
Affiliation(s)
- H-J E Kwon
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - S Jia
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Utah School of Dentistry, Salt Lake City, UT, USA
| | - Y Lan
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - H Liu
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - R Jiang
- 1 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,2 Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
37
|
Tups A, Benzler J, Sergi D, Ladyman SR, Williams LM. Central Regulation of Glucose Homeostasis. Compr Physiol 2017; 7:741-764. [PMID: 28333388 DOI: 10.1002/cphy.c160015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Montazeri-Najafabady N, Dabbaghmanesh MH, Omrani GR, Saki F, Bakhshayeshkaram M. Polymorphism in LRP5 (rs556442) is associated with higher TG levels in Iranian children. Ann Hum Biol 2017; 44:373-378. [PMID: 28139941 DOI: 10.1080/03014460.2017.1287953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Wnt signalling/LRP5 is involved in adipogenesis by down-regulating adipogenic transcription factors. Therefore polymorphisms in components of this pathway may lead to metabolic disorders. AIM This study tested the impact of LRP5 polymorphism on lipid profile in Iranian children. METHODS The study population was comprised of 9-18 year old children (125 boys, 137 girls). Total cholesterol (TC), High Density Lipoprotein (HDL), Low-Density Lipoprotein (LDL), Non-HDL cholesterol and Triglyceride (TG) levels were checked. Body composition was measured by the Hologic system DXA. PCR/restriction fragment length polymorphism (RFLP) was done for LRP5 (rs556442) genotyping. Multiple association analyses for TG level and genotype frequencies were assessed using logistic regression analysis, with adjustment for age, sex, BMI and puberty. RESULTS The results revealed that LRP5 (rs556442) had a significant influence on TG levels in unadjusted analysis and when adjusted for interacting factors. Higher TG levels were observed in AA/AG genotype of rs566442 in comparison to GG genotype (OR = 2.028, 95% CI = 0.997-4.127, p = 0.049). CONCLUSION It is concluded that allele A has an important impact on increasing TG level in LRP5 in the studied population.
Collapse
Affiliation(s)
- Nima Montazeri-Najafabady
- a Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Mohammad Hossein Dabbaghmanesh
- a Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Gholamhossein Ranjbar Omrani
- a Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Forough Saki
- a Shiraz Endocrine and Metabolism Research Center, Nemazee Hospital, Shiraz University of Medical Sciences , Shiraz , Iran
| | | |
Collapse
|
39
|
Sima J, Piao Y, Chen Y, Schlessinger D. Molecular dynamics of Dkk4 modulates Wnt action and regulates meibomian gland development. Development 2016; 143:4723-4735. [PMID: 27864382 DOI: 10.1242/dev.143909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/06/2016] [Indexed: 01/04/2023]
Abstract
Secreted Dickkopf (Dkk) proteins are major Wnt pathway modulators during organ development. Dkk1 has been widely studied and acts as a general Wnt inhibitor. However, the molecular function of other Dkks remains largely unknown. Here, we show that Dkk4 selectively inhibits a subset of Wnts, but is further inactivated by proteolytic cleavage. Meibomian gland (MG) formation is employed as a model where Dkk4 and its Wnt targets are expressed. Skin-specific expression of Dkk4 arrests MG growth at early germ phase, which is similar to that observed in Eda-ablated Tabby mice. Consistent with transient Dkk4 action, intact Dkk4 inhibits MG extension but the cleaved form progressively increases during MG development with a concomitant upswing in Wnt activity. Furthermore, both Dkk4 and its receptor (and Wnt co-receptor) Lrp6 are direct Eda targets during MG induction. In cell and organotypic cultures, Dkk4 inhibition is eliminated by elevation of Lrp6. Also, Lrp6 upregulation restores MG formation in Tabby mice. Thus, the dynamic state of Dkk4 itself and its interaction with Lrp6 modulates Wnt function during MG development, with a novel limitation of Dkk4 action by proteolytic cleavage.
Collapse
Affiliation(s)
- Jian Sima
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| | - Yaohui Chen
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, room 10B014, Baltimore, MD 21224, USA
| |
Collapse
|
40
|
Jia S, Kwon HJE, Lan Y, Zhou J, Liu H, Jiang R. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev Biol 2016; 420:110-119. [PMID: 27713059 DOI: 10.1016/j.ydbio.2016.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/01/2016] [Accepted: 10/02/2016] [Indexed: 01/08/2023]
Abstract
Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1-/- mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1-/- and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1-/- and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of DKKs in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of DKKs or inactivation of Sfrp2 alone was insufficient to rescue tooth morphogenesis in Msx1-/- mice, pharmacological inhibition of DKKs in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1-/- mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway and Osr2 control tooth organogenesis through antagonistic regulation of expression of secreted Wnt antagonists.
Collapse
Affiliation(s)
- Shihai Jia
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Hyuk-Jae Edward Kwon
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jing Zhou
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
41
|
Lu B, Green BA, Farr JM, Lopes FCM, Van Raay TJ. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials. Cancers (Basel) 2016; 8:cancers8090082. [PMID: 27598201 PMCID: PMC5040984 DOI: 10.3390/cancers8090082] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022] Open
Abstract
The Wnt signaling pathway is intricately involved in many aspects of development and is the root cause of an increasing number of diseases. For example, colorectal cancer is the second leading cause of death in the industrialized world and aberration of Wnt signaling within the colonic stem cell is the cause of more than 90% of these cancers. Despite our advances in successfully targeting other pathways, such as Human Epidermal Growth Factor Receptor 2 (HER2), there are no clinically relevant therapies available for Wnt-related diseases. Here, we investigated where research activities are focused with respect to Wnt signaling modulators by searching the United States Patent and Trade Office (USPTO) for patents and patent applications related to Wnt modulators and compared this to clinical trials focusing on Wnt modulation. We found that while the transition of intellectual property surrounding the Wnt ligand-receptor interface to clinical trials is robust, this is not true for specific inhibitors of β-catenin, which is constitutively active in many cancers. Considering the ubiquitous use of the synthetic T-cell Factor/Lymphoid Enhancer Factor (TCF/Lef) reporter system and its success in identifying novel modulators in vitro, we speculate that this model of drug discovery does not capture the complexity of in vivo Wnt signaling that may be required if we are to successfully target the Wnt pathway in the clinic. Notwithstanding, increasingly more complex models are being developed, which may not be high throughput, but more pragmatic in our pursuit to control Wnt signaling.
Collapse
Affiliation(s)
- Benjamin Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Brooke A Green
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacqueline M Farr
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Flávia C M Lopes
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Terence J Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
42
|
Thysiadis S, Mpousis S, Avramidis N, Katsamakas S, Balomenos A, Remelli R, Efthimiopoulos S, Sarli V. Discovery of novel phenoxazinone derivatives as DKK1/LRP6 interaction inhibitors: Synthesis, biological evaluation and structure–activity relationships. Bioorg Med Chem 2016; 24:1014-22. [DOI: 10.1016/j.bmc.2016.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
|
43
|
Mpousis S, Thysiadis S, Avramidis N, Katsamakas S, Efthimiopoulos S, Sarli V. Synthesis and evaluation of gallocyanine dyes as potential agents for the treatment of Alzheimer's disease and related neurodegenerative tauopathies. Eur J Med Chem 2016; 108:28-38. [DOI: 10.1016/j.ejmech.2015.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/27/2015] [Accepted: 11/17/2015] [Indexed: 11/16/2022]
|
44
|
Davis EL, Salisbury EA, Olmsted-Davis E, Davis AR. Anaplerotic Accumulation of Tricarboxylic Acid Cycle Intermediates as Well as Changes in Other Key Metabolites During Heterotopic Ossification. J Cell Biochem 2015; 117:1044-53. [PMID: 26627193 PMCID: PMC4784167 DOI: 10.1002/jcb.25454] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/01/2015] [Indexed: 12/23/2022]
Abstract
Heterotopic ossification (HO) is the de novo formation of bone that occurs in soft tissue, through recruitment, expansion, and differentiation of multiple cells types including transient brown adipocytes, osteoblasts, chondrocytes, mast cells, and platelets to name a few. Much evidence is accumulating that suggests changes in metabolism may be required to accomplish this bone formation. Recent work using a mouse model of heterotopic bone formation reliant on delivery of adenovirus‐transduced cells expressing low levels of BMP2 showed the immediate expansion of a unique brown adipocyte‐like cell. These cells are undergoing robust uncoupled oxidative phosphorylation to a level such that oxygen in the microenvironment is dramatically lowered creating areas of hypoxia. It is unclear how these oxygen changes ultimately affect metabolism and bone formation. To identify the processes and changes occurring over the course of bone formation, HO was established in the mice, and tissues isolated at early and late times were subjected to a global metabolomic screen. Results show that there are significant changes in both glucose levels, as well as TCA cycle intermediates. Additionally, metabolites necessary for oxidation of stored lipids were also found to be significantly elevated. The complete results of this screen are presented here, and provide a unique picture of the metabolic changes occurring during heterotopic bone formation. J. Cell. Biochem. 117: 1044–1053, 2016. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleanor L Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, 77030
| | | | - Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, 77030.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, 77030
| | - Alan R Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, 77030.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030.,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
45
|
Popov VB, Jornayvaz FR, Akgul EO, Kanda S, Jurczak MJ, Zhang D, Abudukadier A, Majumdar SK, Guigni B, Petersen KF, Manchem VP, Bhanot S, Shulman GI, Samuel VT. Second-generation antisense oligonucleotides against β-catenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral insulin resistance. FASEB J 2015; 30:1207-17. [PMID: 26644352 DOI: 10.1096/fj.15-271999] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022]
Abstract
Although mutations in the Wnt/β-catenin signaling pathway are linked with the metabolic syndrome and type 2 diabetes in humans, the mechanism is unclear. High-fat-fed male C57BL/6 mice were treated for 4 wk with a 2'-O-methoxyethyl chimeric antisense oligonucleotide (ASO) to decrease hepatic and adipose expression of β-catenin. β-Catenin mRNA decreased by ≈80% in the liver and by 70% in white adipose tissue relative to control ASO-treated mice. β-Catenin ASO improved hepatic insulin sensitivity and increased insulin-stimulated whole body glucose metabolism, as assessed during hyperinsulinemic-euglycemic clamp in awake mice. β-Catenin ASO altered hepatic lipid composition in high-fat-fed mice. There were reductions in hepatic triglyceride (44%, P < 0.05) and diacylglycerol content (60%, P < 0.01) but a 30% increase in ceramide content (P < 0.001). The altered lipid content was attributed to decreased expression of sn-1,2 diacylglycerol acyltransferase and mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase and an increase in serine palmitoyl transferase. The decrease in cellular diacyglycerol was associated with a 33% decrease in PKCε activation (P < 0.05) and 64% increase in Akt2 phosphorylation (P < 0.05). In summary, Reducing β-catenin expression decreases expression of enzymes involved in hepatic fatty acid esterification, ameliorates hepatic steatosis and lipid-induced insulin resistance.
Collapse
Affiliation(s)
- Violeta B Popov
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Francois R Jornayvaz
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Emin O Akgul
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Shoichi Kanda
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Michael J Jurczak
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Dongyan Zhang
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Abulizi Abudukadier
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Sachin K Majumdar
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Blas Guigni
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Kitt Falk Petersen
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Vara Prasad Manchem
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Sanjay Bhanot
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Gerald I Shulman
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| | - Varman T Samuel
- *Department of Internal Medicine, Department of Cellular and Molecular Physiology, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA; West Haven Veterans Affairs Medical Center, West Haven, Connecticut, USA; and ISIS Pharmaceuticals, Carlsbad, California, USA
| |
Collapse
|
46
|
Lee HJ, Bao J, Miller A, Zhang C, Wu J, Baday YC, Guibao C, Li L, Wu D, Zheng JJ. Structure-based Discovery of Novel Small Molecule Wnt Signaling Inhibitors by Targeting the Cysteine-rich Domain of Frizzled. J Biol Chem 2015; 290:30596-606. [PMID: 26504084 PMCID: PMC4683279 DOI: 10.1074/jbc.m115.673202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Indexed: 01/14/2023] Open
Abstract
Frizzled is the earliest discovered glycosylated Wnt protein receptor and is critical for the initiation of Wnt signaling. Antagonizing Frizzled is effective in inhibiting the growth of multiple tumor types. The extracellular N terminus of Frizzled contains a conserved cysteine-rich domain that directly interacts with Wnt ligands. Structure-based virtual screening and cell-based assays were used to identify five small molecules that can inhibit canonical Wnt signaling and have low IC50 values in the micromolar range. NMR experiments confirmed that these compounds specifically bind to the Wnt binding site on the Frizzled8 cysteine-rich domain with submicromolar dissociation constants. Our study confirms the feasibility of targeting the Frizzled cysteine-rich domain as an effective way of regulating canonical Wnt signaling. These small molecules can be further optimized into more potent therapeutic agents for regulating abnormal Wnt signaling by targeting Frizzled.
Collapse
Affiliation(s)
- Ho-Jin Lee
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Ju Bao
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Ami Miller
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Chi Zhang
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, the Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Jibo Wu
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Yiressy C Baday
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Cristina Guibao
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Lin Li
- the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Dianqing Wu
- the Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Jie J Zheng
- From the Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, the Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095,
| |
Collapse
|
47
|
Cheng PW, Chen YY, Cheng WH, Lu PJ, Chen HH, Chen BR, Yeh TC, Sun GC, Hsiao M, Tseng CJ. Wnt Signaling Regulates Blood Pressure by Downregulating a GSK-3β-Mediated Pathway to Enhance Insulin Signaling in the Central Nervous System. Diabetes 2015; 64:3413-24. [PMID: 25883115 DOI: 10.2337/db14-1439] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 04/08/2015] [Indexed: 11/13/2022]
Abstract
Aberrant Wnt signaling appears to play an important role in the onset of diabetes. Moreover, the insulin signaling pathway is defective in the nucleus tractus solitarii (NTS) of spontaneously hypertensive rats (SHRs) and fructose-fed rats. Nevertheless, the relationships between Wnt signaling and the insulin pathway and the related modulation of blood pressure (BP) in the central nervous system have yet to be established. The aim of this study was to investigate the potential signaling pathways involved in Wnt-mediated BP regulation in the NTS. Pretreatment with the LDL receptor-related protein (LRP) antagonist Dickkopf-1 (DKK1) significantly attenuated the Wnt3a-induced depressor effect and nitric oxide production. Additionally, the inhibition of LRP6 activity using DKK1 significantly abolished Wnt3a-induced glycogen synthase kinase 3β (GSK-3β)(S9), extracellular signal-regulated kinases 1/2(T202/Y204), ribosomal protein S6 kinase(T359/S363), and Akt(S473) phosphorylation; and increased insulin receptor substrate 1 (IRS1)(S332) phosphorylation. GSK-3β was also found to bind directly to IRS1 and to induce the phosphorylation of IRS1 at serine 332 in the NTS. By contrast, administration of the GSK-3β inhibitor TWS119 into the brain decreased the BP of hypertensive rats by enhancing IRS1 activity. Taken together, these results suggest that the GSK-3β-IRS1 pathway may play a significant role in Wnt-mediated central BP regulation.
Collapse
Affiliation(s)
- Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Ying-Ying Chen
- Department of Ophthalmology, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Wen-Han Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Pei-Jung Lu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Republic of China
| | - Hsin-Hung Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Republic of China
| | - Bo-Rong Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Tung-Chen Yeh
- Department of Internal Medicine, Division of Cardiology, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China
| | - Gwo-Ching Sun
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Republic of China
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Republic of China
| | - Ching-Jiunn Tseng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Republic of China Institute of Clinical Medicine, National Yang-Ming University, Taipei, Republic of China Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Republic of China
| |
Collapse
|
48
|
DKK1 rescues osteogenic differentiation of mesenchymal stem cells isolated from periodontal ligaments of patients with diabetes mellitus induced periodontitis. Sci Rep 2015; 5:13142. [PMID: 26278788 PMCID: PMC4538385 DOI: 10.1038/srep13142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/21/2015] [Indexed: 12/11/2022] Open
Abstract
Multiple studies have shown that diabetes mellitus is an established risk factor for periodontitis. Recently mesenchymal stem cells derived from periodontal ligament (PDLSCs) have been utilized to reconstruct tissues destroyed by chronic inflammation. However, impact of periodontitis with diabetes mellitus on PDLSCs and mechanisms mediating effects of complex microenvironments remain poorly understood. In this study, we found multiple differentiation potential of PDLSCs from chronic periodontitis with diabetes mellitus donors (D-PDLSCs) was damaged significantly. Inhibition of NF-κB signaling could rescue osteogenic potential of PDLSCs from simple chronic periodontitis patients (P-PDLSCs), whereas did not promote D-PDLSCs osteogenesis. In addition, we found expression of DKK1 in D-PDLSCs did not respond to osteogenic signal and decreased osteogenic potential of D-PDLSCs treated with DKK1 could be reversed. To further elucidate different character between P-PDLSCs and D-PDLSCs, we treated PDLSCs with TNF-α and advanced glycation end products (AGEs), and find out AGEs which enhance effect of TNF-α in PDLSCs might mediate special personality of D-PDLSCs. The adverse effect of AGEs in PDLSCs could be reversed when PDLSCs were treated with DKK1. These results suggested DKK1 mediating WNT signaling might be a therapy target to rescue potential of PDLSCs in periodontitis with diabetes mellitus.
Collapse
|
49
|
Knosp WM, Knox SM, Lombaert IMA, Haddox CL, Patel VN, Hoffman MP. Submandibular parasympathetic gangliogenesis requires sprouty-dependent Wnt signals from epithelial progenitors. Dev Cell 2015; 32:667-77. [PMID: 25805134 DOI: 10.1016/j.devcel.2015.01.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 10/23/2022]
Abstract
Parasympathetic innervation is critical for submandibular gland (SMG) development and regeneration. Parasympathetic ganglia (PSG) are derived from Schwann cell precursors that migrate along nerves, differentiate into neurons, and coalesce within their target tissue to form ganglia. However, signals that initiate gangliogenesis after the precursors differentiate into neurons are unknown. We found that deleting negative regulators of FGF signaling, Sprouty1 and Sprouty2 (Spry1/2DKO), resulted in a striking loss of gangliogenesis, innervation, and keratin 5-positive (K5+) epithelial progenitors in the SMG. Here we identify Wnts produced by K5+ progenitors in the SMG as key mediators of gangliogenesis. Wnt signaling increases survival and proliferation of PSG neurons, and inhibiting Wnt signaling disrupts gangliogenesis and organ innervation. Activating Wnt signaling and reducing FGF gene dosage rescues gangliogenesis and innervation in both the Spry1/2DKO SMG and pancreas. Thus, K5+ progenitors produce Wnt signals to establish the PSG-epithelial communication required for organ innervation and progenitor cell maintenance.
Collapse
Affiliation(s)
- Wendy M Knosp
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sarah M Knox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA; Department of Cell and Tissue Biology, UCSF, San Francisco, CA 94143, USA
| | | | - Candace L Haddox
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Santilli F, Simeone P, Liani R, Davì G. Platelets and diabetes mellitus. Prostaglandins Other Lipid Mediat 2015; 120:28-39. [PMID: 25986598 DOI: 10.1016/j.prostaglandins.2015.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 05/05/2015] [Indexed: 01/13/2023]
Abstract
Platelet activation plays a key role in atherothrombosis in type 2 diabetes mellitus (T2DM) and increased in vivo platelet activation with enhanced thromboxane (TX) biosynthesis has been reported in patients with impairment of glucose metabolism even in the earlier stages of disease and in the preclinical phases. In this regards, platelets appear as addresses and players carrying and transducing metabolic derangement into vascular injury. The present review critically addresses key pathophysiological aspects including (i) hyperglycemia, glycemic variability and insulin resistance as determinants and predictors of platelet activation, (ii) inflammatory mediators derived from platelets, such as soluble CD40 ligand, soluble CD36, Dickkopf-1 and probably soluble receptor for advanced glycation-end-products (sRAGE), which expand the functional repertoire of platelets from players of hemostasis and thrombosis to powerful amplifiers of inflammation by promoting the release of cytokines and chemokines, cell activation, and cell-cell interactions; (iii) molecular mechanisms underpinning the less-than-expected antithrombotic protection by aspirin (ASA), despite regular antiplatelet prophylaxis at the standard dosing regimen, and (iv) stratification of patients deserving different antiplatelet strategies, based on the metabolic phenotype. Taken together, these pathophysiological aspects may contribute to the development of promising mechanism-based therapeutic strategies to reduce the progression of atherothrombosis in diabetic subjects.
Collapse
Affiliation(s)
- Francesca Santilli
- Internal Medicine and Center of Excellence on Aging, "G. D'Annunzio" University of Chieti, Italy
| | - Paola Simeone
- Internal Medicine and Center of Excellence on Aging, "G. D'Annunzio" University of Chieti, Italy
| | - Rossella Liani
- Internal Medicine and Center of Excellence on Aging, "G. D'Annunzio" University of Chieti, Italy
| | - Giovanni Davì
- Internal Medicine and Center of Excellence on Aging, "G. D'Annunzio" University of Chieti, Italy.
| |
Collapse
|