1
|
Consalvo KM, Rijal R, Beruvides SL, Mitchell R, Beauchemin K, Collins D, Scoggin J, Scott J, Gomer RH. PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway. J Cell Sci 2024; 137:jcs262054. [PMID: 38940195 PMCID: PMC11317092 DOI: 10.1242/jcs.262054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Little is known about eukaryotic chemorepulsion. The enzymes phosphatase and tensin homolog (PTEN) and CnrN dephosphorylate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Dictyostelium discoideum cells require both PTEN and CnrN to induce chemorepulsion of cells away from the secreted chemorepellent protein AprA. How D. discoideum cells utilize two proteins with redundant phosphatase activities in response to AprA is unclear. Here, we show that D. discoideum cells require both PTEN and CnrN to locally inhibit Ras activation, decrease basal levels of PI(3,4,5)P3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P2 levels, decrease PI(3,4,5)P3 levels, inhibit proliferation, decrease myosin II phosphorylation and increase filopod sizes. PTEN, but not CnrN, decreases basal levels of PI(4,5)P2, and AprA requires PTEN, but not CnrN, to induce cell roundness. Together, our results suggest that CnrN and PTEN play unique roles in AprA-induced chemorepulsion.
Collapse
Affiliation(s)
- Kristen M. Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Steven L. Beruvides
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ryan Mitchell
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Karissa Beauchemin
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Danni Collins
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jack Scoggin
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Jerome Scott
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
2
|
Consalvo KM, Rijal R, Beruvides SL, Mitchell R, Beauchemin K, Collins D, Scoggin J, Scott J, Gomer RH. PTEN and the PTEN-like phosphatase CnrN have both distinct and overlapping roles in a Dictyostelium chemorepulsion pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581751. [PMID: 38464111 PMCID: PMC10925239 DOI: 10.1101/2024.02.23.581751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The directed movement of eukaryotic cells is crucial for processes such as embryogenesis and immune cell trafficking. The enzyme Phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P 3 ] to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ]. Dictyostelium discoideum cells require both PTEN and the PTEN-like phosphatase CnrN to locally inhibit Ras activation to induce biased movement of cells away from the secreted chemorepellent protein AprA. Both PTEN and CnrN decrease basal levels of PI(3,4,5)P 3 and increase basal numbers of macropinosomes, and AprA prevents this increase. AprA requires both PTEN and CnrN to increase PI(4,5)P 2 levels, decrease PI(3,4,5)P 3 levels, inhibit proliferation, decrease myosin II phosphorylation, and increase filopod sizes. AprA causes PTEN, similar to CnrN, to localize to the side of the cell towards AprA in an AprA gradient. However, PTEN and CnrN also have distinct roles in some signaling pathways. PTEN, but not CnrN, decreases basal levels of PI(4,5)P 2 , AprA requires PTEN, but not CnrN, to induce cell roundness, and CnrN and PTEN have different effects on the number of filopods and pseudopods, and the sizes of filopods. Together, our results suggest that CnrN and PTEN play unique roles in D. discoideum signaling pathways, and possibly dephosphorylate PI(3,4,5)P 3 in different membrane domains, to mediate chemorepulsion away from AprA.
Collapse
|
3
|
Structured foraging of soil predators unveils functional responses to bacterial defenses. Proc Natl Acad Sci U S A 2022; 119:e2210995119. [PMID: 36538486 PMCID: PMC9907142 DOI: 10.1073/pnas.2210995119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Predators and their foraging strategies often determine ecosystem structure and function. Yet, the role of protozoan predators in microbial soil ecosystems remains elusive despite the importance of these ecosystems to global biogeochemical cycles. In particular, amoebae-the most abundant soil protozoan predator of bacteria-remineralize soil nutrients and shape the bacterial community. However, their foraging strategies and their role as microbial ecosystem engineers remain unknown. Here, we present a multiscale approach, connecting microscopic single-cell analysis and macroscopic whole ecosystem dynamics, to expose a phylogenetically widespread foraging strategy, in which an amoeba population spontaneously partitions between cells with fast, polarized movement and cells with slow, unpolarized movement. Such differentiated motion gives rise to efficient colony expansion and consumption of the bacterial substrate. From these insights, we construct a theoretical model that predicts how disturbances to amoeba growth rate and movement disrupt their predation efficiency. These disturbances correspond to distinct classes of bacterial defenses, which allows us to experimentally validate our predictions. All considered, our characterization of amoeba foraging identifies amoeba mobility, and not amoeba growth, as the core determinant of predation efficiency and a key target for bacterial defense systems.
Collapse
|
4
|
Rijal R, Kirolos SA, Rahman RJ, Gomer RH. Dictyostelium discoideum cells retain nutrients when the cells are about to overgrow their food source. J Cell Sci 2022; 135:276454. [PMID: 36017702 PMCID: PMC9592050 DOI: 10.1242/jcs.260107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum is a unicellular eukaryote that eats bacteria, and eventually outgrows the bacteria. D. discoideum cells accumulate extracellular polyphosphate (polyP), and the polyP concentration increases as the local cell density increases. At high cell densities, the correspondingly high extracellular polyP concentrations allow cells to sense that they are about to outgrow their food supply and starve, causing the D. discoideum cells to inhibit their proliferation. In this report, we show that high extracellular polyP inhibits exocytosis of undigested or partially digested nutrients. PolyP decreases plasma membrane recycling and apparent cell membrane fluidity, and this requires the G protein-coupled polyP receptor GrlD, the polyphosphate kinase Ppk1 and the inositol hexakisphosphate kinase I6kA. PolyP alters protein contents in detergent-insoluble crude cytoskeletons, but does not significantly affect random cell motility, cell speed or F-actin levels. Together, these data suggest that D. discoideum cells use polyP as a signal to sense their local cell density and reduce cell membrane fluidity and membrane recycling, perhaps as a mechanism to retain ingested food when the cells are about to starve. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Ryan J Rahman
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
5
|
Consalvo KM, Kirolos SA, Sestak CE, Gomer RH. Sex-Based Differences in Human Neutrophil Chemorepulsion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:354-367. [PMID: 35793910 PMCID: PMC9283293 DOI: 10.4049/jimmunol.2101103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/02/2022] [Indexed: 05/25/2023]
Abstract
A considerable amount is known about how eukaryotic cells move toward an attractant, and the mechanisms are conserved from Dictyostelium discoideum to human neutrophils. Relatively little is known about chemorepulsion, where cells move away from a repellent signal. We previously identified pathways mediating chemorepulsion in Dictyostelium, and here we show that these pathways, including Ras, Rac, protein kinase C, PTEN, and ERK1 and 2, are required for human neutrophil chemorepulsion, and, as with Dictyostelium chemorepulsion, PI3K and phospholipase C are not necessary, suggesting that eukaryotic chemorepulsion mechanisms are conserved. Surprisingly, there were differences between male and female neutrophils. Inhibition of Rho-associated kinases or Cdc42 caused male neutrophils to be more repelled by a chemorepellent and female neutrophils to be attracted to the chemorepellent. In the presence of a chemorepellent, compared with male neutrophils, female neutrophils showed a reduced percentage of repelled neutrophils, greater persistence of movement, more adhesion, less accumulation of PI(3,4,5)P3, and less polymerization of actin. Five proteins associated with chemorepulsion pathways are differentially abundant, with three of the five showing sex dimorphism in protein localization in unstimulated male and female neutrophils. Together, this indicates a fundamental difference in a motility mechanism in the innate immune system in men and women.
Collapse
Affiliation(s)
| | - Sara A Kirolos
- Department of Biology, Texas A&M University, College Station, TX
| | - Chelsea E Sestak
- Department of Biology, Texas A&M University, College Station, TX
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
Kirolos SA, Procaccia S, Groover KE, Das R, Rijal R, Gomer RH. Identification of novel proteins in the Dictyostelium discoideum chemorepulsion pathway using REMI. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000557. [PMID: 35622529 PMCID: PMC9073555 DOI: 10.17912/micropub.biology.000557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/06/2022]
Abstract
Chemorepulsion, the biased migration of a cell away from a signal, is essential for many biological processes and the ability to manipulate chemorepulsion could lead to new therapeutics for a variety of diseases. However, little is known about eukaryotic cell chemorepulsion. Utilizing the model organism Dictyostelium discoideum, we previously identified an endogenous chemorepellent protein secreted by D. discoideum cells called AprA, and proteins involved in the AprA-induced chemorepulsion pathway including the G protein-coupled receptor GrlH, G beta and G protein alpha 8 protein subunits, protein kinase A, components of the mammalian target of rapamycin complex 2 (mTORC2), phospholipase A, PTEN and a PTEN-like phosphatase (CnrN), a retinoblastoma orthologue (RblA), extracellular signal-regulated kinase 1 (Erk1), p-21 activated protein kinase D (PakD), and the Ras proteins RasC and RasG. In this report, we used a genetic screen to identify 17 additional proteins involved in the AprA-induced chemorepulsion pathway .
Collapse
Affiliation(s)
| | - Shiri Procaccia
- Department of Biology, Texas A&M University
,
Faculty of Biology, Technion - Israel Institute of Technology
| | | | | | | | - Richard H Gomer
- Department of Biology, Texas A&M University
,
Correspondence to: Richard H Gomer (
)
| |
Collapse
|
7
|
Boak EN, Kirolos S, Pan H, Pierson LS, Pierson EA. The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Front Microbiol 2022; 13:843092. [PMID: 35464916 PMCID: PMC9022076 DOI: 10.3389/fmicb.2022.843092] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 01/15/2023] Open
Abstract
Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.
Collapse
Affiliation(s)
- Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Kirolos
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Insall RH, Paschke P, Tweedy L. Steering yourself by the bootstraps: how cells create their own gradients for chemotaxis. Trends Cell Biol 2022; 32:585-596. [DOI: 10.1016/j.tcb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
9
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
10
|
Kirolos SA, Gomer RH. A chemorepellent inhibits local Ras activation to inhibit pseudopod formation to bias cell movement away from the chemorepellent. Mol Biol Cell 2021; 33:ar9. [PMID: 34788129 PMCID: PMC8886819 DOI: 10.1091/mbc.e20-10-0656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of cells to sense chemical gradients is essential during development, morphogenesis, and immune responses. Although much is known about chemoattraction, chemorepulsion remains poorly understood. Proliferating Dictyostelium cells secrete a chemorepellent protein called AprA. AprA prevents pseudopod formation at the region of the cell closest to the source of AprA, causing the random movement of cells to be biased away from the AprA. Activation of Ras proteins in a localized sector of a cell cortex helps to induce pseudopod formation, and Ras proteins are needed for AprA chemorepulsion. Here we show that AprA locally inhibits Ras cortical activation through the G protein–coupled receptor GrlH, the G protein subunits Gβ and Gα8, Ras protein RasG, protein kinase B, the p21-activated kinase PakD, and the extracellular signal–regulated kinase Erk1. Diffusion calculations and experiments indicate that in a colony of cells, high extracellular concentrations of AprA in the center can globally inhibit Ras activation, while a gradient of AprA that naturally forms at the edge of the colony allows cells to activate Ras at sectors of the cell other than the sector of the cell closest to the center of the colony, effectively inducing both repulsion from the colony and cell differentiation. Together, these results suggest that a pathway that inhibits local Ras activation can mediate chemorepulsion.
Collapse
Affiliation(s)
- Sara A Kirolos
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, 301 Old Main Drive, College Station, Texas, 77843-3474 USA
| |
Collapse
|
11
|
Kirolos SA, Rijal R, Consalvo KM, Gomer RH. Using Dictyostelium to Develop Therapeutics for Acute Respiratory Distress Syndrome. Front Cell Dev Biol 2021; 9:710005. [PMID: 34350188 PMCID: PMC8326840 DOI: 10.3389/fcell.2021.710005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) involves damage to lungs causing an influx of neutrophils from the blood into the lung airspaces, and the neutrophils causing further damage, which attracts more neutrophils in a vicious cycle. There are ∼190,000 cases of ARDS per year in the US, and because of the lack of therapeutics, the mortality rate is ∼40%. Repelling neutrophils out of the lung airspaces, or simply preventing neutrophil entry, is a potential therapeutic. In this minireview, we discuss how our lab noticed that a protein called AprA secreted by growing Dictyostelium cells functions as a repellent for Dictyostelium cells, causing cells to move away from a source of AprA. We then found that AprA has structural similarity to a human secreted protein called dipeptidyl peptidase IV (DPPIV), and that DPPIV is a repellent for human neutrophils. In animal models of ARDS, inhalation of DPPIV or DPPIV mimetics blocks neutrophil influx into the lungs. To move DPPIV or DPPIV mimetics into the clinic, we need to know how this repulsion works to understand possible drug interactions and side effects. Combining biochemistry and genetics in Dictyostelium to elucidate the AprA signal transduction pathway, followed by drug studies in human neutrophils to determine similarities and differences between neutrophil and Dictyostelium chemorepulsion, will hopefully lead to the safe use of DPPIV or DPPIV mimetics in the clinic.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
McCullough J, Fey P, Rahman RJ, Wallace M, Morey S, Sahlberg K, McGonagle E, Hess D, Hatfield C, Sarmiento MR, Velasquez J, Gomer RH. Annotating Putative D. discoideum Proteins Using I-TASSER. MICROPUBLICATION BIOLOGY 2021; 2021. [PMID: 34278246 PMCID: PMC8280847 DOI: 10.17912/micropub.biology.000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
Using Gene Ontology annotation in any aspect or using any evidence code, we found that approximately 14% percent of predicted D. discoideum proteins have no GO annotations and no obvious similarity to any annotated protein across diverse organisms. We have been systematically examining these unannotated protein sequences using software that predicts a protein structure and then compares the predicted structure to known structures.
Collapse
Affiliation(s)
| | - Petra Fey
- Center for Genetic Medicine, Northwestern University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
14
|
Durocher AF, Gagné-Thivierge C, Charette SJ. Various dictyostelids from the environment can produce multilamellar bodies. Can J Microbiol 2020; 66:679-688. [PMID: 32735763 DOI: 10.1139/cjm-2020-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multilamellar bodies (MLBs), structures composed of concentric membrane layers, are known to be produced by different protozoa, including species of ciliates, free-living amoebae, and Dictyostelium discoideum social amoebae. Initially believed to be metabolic waste, potential roles like cell communication and food storage have been suggested for D. discoideum MLBs, which could be useful for the multicellular development of social amoebae and as a food source. However, among dictyostelids, this phenomenon has only been observed with D. discoideum, and mainly with laboratory strains grown in axenic conditions. It was thought that other social amoebae may also produce MLBs. Four environmental social amoeba isolates were characterized. All strains belong to the Dictyostelium genus, including some likely to be Dictyostelium giganteum. They have distinctive phenotypes comprising their growth rate on Klebsiella aerogenes lawns and the morphology of their fruiting bodies. They all produce MLBs like those produced by a D. discoideum laboratory strain when grown on K. aerogenes lawns, as revealed by analysis using the H36 antibody in epifluorescence microscopy as well as by transmission electron microscopy. Consequently, this study shows that MLBs are produced by various dictyostelid species, which further supports a role for MLBs in the lifestyle of amoebae.
Collapse
Affiliation(s)
- Alicia F Durocher
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médicine, Québec, QC G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, chemin Sainte-Foy, Québec, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045, avenue de la Médicine, Québec, QC G1V 0A6, Canada
| | - Cynthia Gagné-Thivierge
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médicine, Québec, QC G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, chemin Sainte-Foy, Québec, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045, avenue de la Médicine, Québec, QC G1V 0A6, Canada
| | - Steve J Charette
- Institut de Biologie Intégrative et des Systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médicine, Québec, QC G1V 0A6, Canada.,Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, 2725, chemin Sainte-Foy, Québec, QC G1V 4G5, Canada.,Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, 1045, avenue de la Médicine, Québec, QC G1V 0A6, Canada
| |
Collapse
|
15
|
Consalvo KM, Rijal R, Tang Y, Kirolos SA, Smith MR, Gomer RH. Extracellular signaling in Dictyostelium. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:395-405. [PMID: 31840778 DOI: 10.1387/ijdb.190259rg] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few decades, we have learned a considerable amount about how eukaryotic cells communicate with each other, and what it is the cells are telling each other. The simplicity of Dictyostelium discoideum, and the wide variety of available tools to study this organism, makes it the equivalent of a hydrogen atom for cell and developmental biology. Studies using Dictyostelium have pioneered a good deal of our understanding of eukaryotic cell communication. In this review, we will present a brief overview of how Dictyostelium cells use extracellular signals to attract each other, repel each other, sense their local cell density, sense whether the nearby cells are starving or stressed, count themselves to organize the formation of structures containing a regulated number of cells, sense the volume they are in, and organize their multicellular development. Although we are probably just beginning to learn what the cells are telling each other, the elucidation of Dictyostelium extracellular signals has already led to the development of possible therapeutics for human diseases.
Collapse
Affiliation(s)
- Kristen M Consalvo
- Department of Biology, Texas A∧M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gomer RH. The Use of Diffusion Calculations and Monte Carlo Simulations to Understand the Behavior of Cells in Dictyostelium Communities. Comput Struct Biotechnol J 2019; 17:684-688. [PMID: 31303972 PMCID: PMC6603294 DOI: 10.1016/j.csbj.2019.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 11/01/2022] Open
Abstract
Microbial communities are the simplest possible model of multicellular tissues, allowing studies of cell-cell interactions to be done with as few extraneous factors as possible. For instance, the eukaryotic microbe Dictyostelium discoideum proliferates as single cells, and when starved, the cells aggregate together and form structures of ~20,000 cells. The cells use a variety of signals to direct their movement, inform each other of their local cell density and whether they are starving, and organize themselves into groups of ~20,000 cells. Mathematical models and computational approaches have been a key check on, and guide of, the experimental work. In this minireview, I will discuss diffusion calculations and Monte Carlo simulations that were used for Dictyostelium studies that offer general paradigms for several aspects of cell-cell communication. For instance, computational work showed that diffusible secreted cell-density sensing (quorum) factors can diffuse away so quickly from a single cell that the local concentration will not build up to incorrectly cause the cell to sense that it is in the presence of a high density of other cells secreting that signal. In another example, computation correctly predicted a mechanism that allows a group of cells to break up into subgroups. These are thus some examples of the power and necessity of computational work in biology.
Collapse
Affiliation(s)
- Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
17
|
d'Alessandro J, Mas L, Aubry L, Rieu JP, Rivière C, Anjard C. Collective regulation of cell motility using an accurate density-sensing system. J R Soc Interface 2019; 15:rsif.2018.0006. [PMID: 29563247 DOI: 10.1098/rsif.2018.0006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/22/2018] [Indexed: 01/31/2023] Open
Abstract
The capacity of living cells to sense their population density and to migrate accordingly is essential for the regulation of many physiological processes. However, the mechanisms used to achieve such functions are poorly known. Here, based on the analysis of multiple trajectories of vegetative Dictyostelium discoideum cells, we investigate such a system extensively. We show that the cells secrete a high-molecular-weight quorum-sensing factor (QSF) in their medium. This extracellular signal induces, in turn, a reduction of the cell movements, in particular, through the downregulation of a mode of motility with high persistence time. This response appears independent of cAMP and involves a G-protein-dependent pathway. Using a mathematical analysis of the cells' response function, we evidence a negative feedback on the QSF secretion, which unveils a powerful generic mechanism for the cells to detect when they exceed a density threshold. Altogether, our results provide a comprehensive and dynamical view of this system enabling cells in a scattered population to adapt their motion to their neighbours without physical contact.
Collapse
Affiliation(s)
- Joseph d'Alessandro
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Lauriane Mas
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Laurence Aubry
- University Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Jean-Paul Rieu
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Charlotte Rivière
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Christophe Anjard
- University Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| |
Collapse
|
18
|
Suess PM, Chinea LE, Pilling D, Gomer RH. Extracellular Polyphosphate Promotes Macrophage and Fibrocyte Differentiation, Inhibits Leukocyte Proliferation, and Acts as a Chemotactic Agent for Neutrophils. THE JOURNAL OF IMMUNOLOGY 2019; 203:493-499. [PMID: 31160533 DOI: 10.4049/jimmunol.1801559] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
Fibrocytes are monocyte-derived fibroblast like cells that participate in wound healing, but little is known about what initiates fibrocyte differentiation. Blood platelets contain 60-100-mer polymers of phosphate groups called polyphosphate, and when activated, platelets induce blood clotting (the first step in wound healing) in part by the release of polyphosphate. We find that activated platelets release a factor that promotes fibrocyte differentiation. The factor is abolished by treating the crude platelet factor with the polyphosphate-degrading enzyme polyphosphatase, and polyphosphate promotes fibrocyte differentiation. Macrophages and recruited neutrophils also potentiate wound healing, and polyphosphate also promotes macrophage differentiation and induces chemoattraction of neutrophils. In support of the hypothesis that polyphosphate is a signal that affects leukocytes, we observe saturable binding of polyphosphate to these cells. Polyphosphate also inhibits leukocyte proliferation and proteasome activity. These results suggest new roles for extracellular polyphosphate as a mediator of wound healing and inflammation and also provide a potential link between platelet activation and the progression of fibrosing diseases.
Collapse
Affiliation(s)
- Patrick M Suess
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843
| |
Collapse
|
19
|
Huber RJ, Mathavarajah S. Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cell Signal 2019; 58:79-90. [PMID: 30771446 DOI: 10.1016/j.cellsig.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/28/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, commonly known as Batten disease, is currently untreatable due to a lack of understanding of the physiological role of the protein. Recently, work in the social amoeba Dictyostelium discoideum has provided valuable new insight into the function of CLN3 in the cell. More specifically, research has linked the Dictyostelium homolog (gene: cln3, protein: Cln3) to protein secretion, adhesion, and aggregation during starvation, which initiates multicellular development. In this study, we used comparative transcriptomics to explore the mechanisms underlying the aberrant response of cln3- cells to starvation. During starvation, 1153 genes were differentially expressed in cln3- cells compared to WT. Among the differentially expressed genes were homologs of other human NCL genes including TPP1/CLN2, CLN5, CTSD/CLN10, PGRN/CLN11, and CTSF/CLN13. STRING and GO term analyses revealed an enrichment of genes linked to metabolic, biosynthetic, and catalytic processes. We then coupled the findings from the RNA-seq analysis to biochemical assays, specifically showing that loss of cln3 affects the expression and activity of lysosomal enzymes, increases endo-lysosomal pH, and alters nitric oxide homeostasis. Finally, we show that cln3- cells accumulate autofluorescent storage bodies during starvation and provide evidence linking the function of Cln3 to Tpp1 and CtsD activity. In total, this study enhances our knowledge of the molecular mechanisms underlying Cln3 function in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | |
Collapse
|
20
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
21
|
Pilling D, Chinea LE, Consalvo KM, Gomer RH. Different Isoforms of the Neuronal Guidance Molecule Slit2 Directly Cause Chemoattraction or Chemorepulsion of Human Neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:239-248. [PMID: 30510066 PMCID: PMC6310129 DOI: 10.4049/jimmunol.1800681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
The movement of neutrophils between blood and tissues appears to be regulated by chemoattractants and chemorepellents. Compared with neutrophil chemoattractants, relatively little is known about neutrophil chemorepellents. Slit proteins are endogenously cleaved into a variety of N- and C-terminal fragments, and these fragments are neuronal chemorepellents and inhibit chemoattraction of many cell types, including neutrophils. In this report, we show that the ∼140-kDa N-terminal Slit2 fragment (Slit2-N) is a chemoattractant and the ∼110-kDa N-terminal Slit2 fragment (Slit2-S) is a chemorepellent for human neutrophils. The effects of both Slit2 fragments were blocked by Abs to the Slit2 receptor Roundabout homolog 1 or the Slit2 coreceptor Syndecan-4. Slit2-N did not appear to activate Ras but increased phosphatidylinositol 3,4,5-triphosphate levels. Slit2-N-induced chemoattraction was unaffected by Ras inhibitors, reversed by PI3K inhibitors, and blocked by Cdc42 and Rac inhibitors. In contrast, Slit2-S activated Ras but did not increase phosphatidylinositol 3,4,5-triphosphate levels. Slit2-S-induced chemorepulsion was blocked by Ras and Rac inhibitors, not affected by PI3K inhibitors, and reversed by Cdc42 inhibitors. Slit2-N, but not Slit2-S, increased neutrophil adhesion, myosin L chain 2 phosphorylation, and polarized actin formation and single pseudopods at the leading edge of cells. Slit2-S induced multiple pseudopods. These data suggest that Slit2 isoforms use similar receptors but different intracellular signaling pathways and have different effects on the cytoskeleton and pseudopods to induce neutrophil chemoattraction or chemorepulsion.
Collapse
Affiliation(s)
- Darrell Pilling
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
22
|
Rijal R, Consalvo KM, Lindsey CK, Gomer RH. An endogenous chemorepellent directs cell movement by inhibiting pseudopods at one side of cells. Mol Biol Cell 2018; 30:242-255. [PMID: 30462573 PMCID: PMC6589559 DOI: 10.1091/mbc.e18-09-0562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein-coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | - Kristen M Consalvo
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474
| |
Collapse
|
23
|
An Autocrine Proliferation Repressor Regulates Dictyostelium discoideum Proliferation and Chemorepulsion Using the G Protein-Coupled Receptor GrlH. mBio 2018; 9:mBio.02443-17. [PMID: 29440579 PMCID: PMC5821085 DOI: 10.1128/mbio.02443-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In eukaryotic microbes, little is known about signals that inhibit the proliferation of the cells that secrete the signal, and little is known about signals (chemorepellents) that cause cells to move away from the source of the signal. Autocrine proliferation repressor protein A (AprA) is a protein secreted by the eukaryotic microbe Dictyostelium discoideum. AprA is a chemorepellent for and inhibits the proliferation of D. discoideum. We previously found that cells sense AprA using G proteins, suggesting the existence of a G protein-coupled AprA receptor. To identify the AprA receptor, we screened mutants lacking putative G protein-coupled receptors. We found that, compared to the wild-type strain, cells lacking putative receptor GrlH (grlH¯ cells) show rapid proliferation, do not have large numbers of cells moving away from the edges of colonies, are insensitive to AprA-induced proliferation inhibition and chemorepulsion, and have decreased AprA binding. Expression of GrlH in grlH¯ cells (grlH¯/grlHOE) rescues the phenotypes described above. These data indicate that AprA signaling may be mediated by GrlH in D. discoideum. Little is known about how eukaryotic cells can count themselves and thus regulate the size of a tissue or density of cells. In addition, little is known about how eukaryotic cells can sense a repellant signal and move away from the source of the repellant, for instance, to organize the movement of cells in a developing embryo or to move immune cells out of a tissue. In this study, we found that a eukaryotic microbe uses G protein-coupled receptors to mediate both cell density sensing and chemorepulsion.
Collapse
|
24
|
White MJV, Chinea LE, Pilling D, Gomer RH. Protease activated-receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin, tryptase, or dipeptidyl peptidase IV. J Leukoc Biol 2017; 103:119-128. [PMID: 29345066 DOI: 10.1002/jlb.3a0717-308r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Compared to neutrophil chemoattractants, relatively little is known about the mechanism neutrophils use to respond to chemorepellents. We previously found that the soluble extracellular protein dipeptidyl peptidase IV (DPPIV) is a neutrophil chemorepellent. In this report, we show that an inhibitor of the protease activated receptor 2 (PAR2) blocks DPPIV-induced human neutrophil chemorepulsion, and that PAR2 agonists such as trypsin, tryptase, 2f-LIGRL, SLIGKV, and AC55541 induce human neutrophil chemorepulsion. Several PAR2 agonists in turn block the ability of the chemoattractant fMLP to attract neutrophils. Compared to neutrophils from male and female C57BL/6 mice, neutrophils from male and female mice lacking PAR2 are insensitive to the chemorepulsive effects of DPPIV or PAR2 agonists. Acute respiratory distress syndrome (ARDS) involves an insult-mediated influx of neutrophils into the lungs. In a mouse model of ARDS, aspiration of PAR2 agonists starting 24 h after an insult reduce neutrophil numbers in the bronchoalveolar lavage (BAL) fluid, as well as the post-BAL lung tissue. Together, these results indicate that the PAR2 receptor mediates DPPIV-induced chemorepulsion, and that PAR2 agonists might be useful to induce neutrophil chemorepulsion.
Collapse
Affiliation(s)
- Michael J V White
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Luis E Chinea
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Darrell Pilling
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
25
|
The fate of multilamellar bodies produced and secreted by Dictyostelium discoideum amoebae. Eur J Cell Biol 2017; 96:767-773. [DOI: 10.1016/j.ejcb.2017.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 11/19/2022] Open
|
26
|
Behavioral Effects of a Chemorepellent Receptor Knockout Mutation in Tetrahymena thermophila. mSphere 2017; 2:mSphere00182-17. [PMID: 28685161 PMCID: PMC5497023 DOI: 10.1128/msphere.00182-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa. A conditioned supernatant from Tetrahymena thermophila contains a powerful chemorepellent for wild-type cells, and a gene called G37 is required for this response. This is the first genomic identification of a chemorepellent receptor in any eukaryotic unicellular organism. This conditioned supernatant factor (CSF) is small (<1 kDa), and its repellent effect is resistant to boiling, protease treatment, and nuclease digestion. External BAPTA eliminated the CSF response, suggesting that Ca2+ entry is required for the classical avoiding reactions (AR) used for chemorepulsion. A macronuclear G37 gene knockout (G37-KO) mutant is both nonresponsive to the CSF and overresponsive to other repellents such as quinine, lysozyme, GTP, and high potassium concentrations. All of these mutant phenotypes were reversed by overexpression of the wild-type G37 gene in a G37 overexpression mutant. Overexpression of G37 in the wild type caused increased responsiveness to the CSF and underresponsiveness to high K+ concentrations. Behavioral adaptation (by prolonged exposure to the CSF) caused decreases in responsiveness to all of the stimuli used in the wild type and the overexpression mutant but not in the G37-KO mutant. We propose that the constant presence of the CSF causes a decreased basal excitability of the wild type due to chemosensory adaptation through G37 and that all of the G37-KO phenotypes are due to an inability to detect the CSF. Therefore, the G37 protein may be the CSF receptor. The physiological role of these G37-mediated responses may be to both moderate basal excitability and detect the CSF as an indicator of high cell density growth. IMPORTANCE Although many single-cell eukaryotes have served as classical model systems for chemosensory studies for decades, the major emphasis has been on chemoattraction and no chemorepellent receptor gene has been identified in any unicellular eukaryote. This is the first description of a gene that codes for a chemorepellent receptor in any protozoan. Integration of both depolarizing chemorepellent pathways and hyperpolarizing chemoattractant pathways is as important to chemoresponses of motile unicells as excitatory and inhibitory neurotransmitter pathways are to neurons. Therefore, both chemoattractant and chemorepellent pathways should be represented in a useful unicellular model system. Tetrahymena cells provide such a model system because simple behavioral bioassays, gene knockouts, biochemical analysis, and other approaches can be used with these eukaryotic model cells. This work can contribute to the basic understanding of unicellular sensory responses and provide insights into the evolution of chemoreceptors and possible chemorepellent approaches for preventing infections by some pathogenic protozoa.
Collapse
|
27
|
Herlihy SE, Tang Y, Phillips JE, Gomer RH. Functional similarities between the dictyostelium protein AprA and the human protein dipeptidyl-peptidase IV. Protein Sci 2017; 26:578-585. [PMID: 28028841 DOI: 10.1002/pro.3107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
Abstract
Autocrine proliferation repressor protein A (AprA) is a protein secreted by Dictyostelium discoideum cells. Although there is very little sequence similarity between AprA and any human protein, AprA has a predicted structural similarity to the human protein dipeptidyl peptidase IV (DPPIV). AprA is a chemorepellent for Dictyostelium cells, and DPPIV is a chemorepellent for neutrophils. This led us to investigate if AprA and DPPIV have additional functional similarities. We find that like AprA, DPPIV is a chemorepellent for, and inhibits the proliferation of, D. discoideum cells, and that AprA binds some DPPIV binding partners such as fibronectin. Conversely, rAprA has DPPIV-like protease activity. These results indicate a functional similarity between two eukaryotic chemorepellent proteins with very little sequence similarity, and emphasize the usefulness of using a predicted protein structure to search a protein structure database, in addition to searching for proteins with similar sequences.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Department of Biology, Texas A&M University, College Station, Texas
| | - Yu Tang
- Department of Biology, Texas A&M University, College Station, Texas
| | | | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, Texas
| |
Collapse
|
28
|
Kuburich NA, Adhikari N, Hadwiger JA. Acanthamoeba and Dictyostelium Use Different Foraging Strategies. Protist 2016; 167:511-525. [PMID: 27693864 DOI: 10.1016/j.protis.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Amoeba often use cell movement as a mechanism to find food, such as bacteria, in their environment. The chemotactic movement of the soil amoeba Dictyostelium to folate or other pterin compounds released by bacteria is a well-documented foraging mechanism. Acanthamoeba can also feed on bacteria but relatively little is known about the mechanism(s) by which this amoeba locates bacteria. Acanthamoeba movement in the presence of folate or bacteria was analyzed in above agar assays and compared to that observed for Dictyostelium. The overall mobility of Acanthamoeba was robust like that of Dictyostelium but Acanthamoeba did not display a chemotactic response to folate. In the presence of bacteria, Acanthamoeba only showed a marginal bias in directed movement whereas Dictyostelium displayed a strong chemotactic response. A comparison of genomes revealed that Acanthamoeba and Dictyostelium share some similarities in G protein signaling components but that specific G proteins used in Dictyostelium chemotactic responses were not present in current Acanthamoeba genome sequence data. The results of this study suggest that Acanthamoeba does not use chemotaxis as the primary mechanism to find bacterial food sources and that the chemotactic responses of Dictyostelium to bacteria may have co-evolved with chemotactic responses that facilitate multicellular development.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA
| | - Nirakar Adhikari
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA
| | - Jeffrey A Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Sciences East, Stillwater, OK 74078-3020, USA
| |
Collapse
|
29
|
Identification of Proteins Associated with Multilamellar Bodies Produced by Dictyostelium discoideum. PLoS One 2016; 11:e0158270. [PMID: 27340834 PMCID: PMC4920372 DOI: 10.1371/journal.pone.0158270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/13/2016] [Indexed: 02/05/2023] Open
Abstract
Dictyostelium discoideum amoebae produce and secrete multilamellar bodies (MLBs) when fed digestible bacteria. The aim of the present study was to elucidate the proteic content of MLBs. The lipid composition of MLBs is mainly amoebal in origin, suggesting that MLB formation is a protozoa-driven process that could play a significant role in amoebal physiology. We identified four major proteins on purified MLBs using mass spectrometry in order to better understand the molecular mechanisms governing MLB formation and, eventually, to elucidate the true function of MLBs. These proteins were SctA, PhoPQ, PonC and a protein containing a cytidine/deoxycytidylate deaminase (CDD) zinc-binding region. SctA is a component of pycnosomes, which are membranous materials that are continuously secreted by amoebae. The presence of SctA on MLBs was confirmed by immunofluorescence and Western blotting using a specific anti-SctA antibody. The CDD protein may be one of the proteins recognized by the H36 antibody, which was used as a MLB marker in a previous study. The function of the CDD protein is unknown. Immunofluorescence and flow cytometric analyses confirmed that the H36 antibody is a better marker of MLBs than the anti-SctA antibody. This study is an additional step to elucidate the potential role of MLBs and revealed that only a small set of proteins appeared to be present on MLBs.
Collapse
|
30
|
Yeh CF, Tai W, Lin CH, Juang DS, Wu CC, Chen YW, Hsu CH. Towards an Endpoint Cell Motility Assay by a Microfluidic Platform. IEEE Trans Nanobioscience 2015; 14:835-40. [DOI: 10.1109/tnb.2015.2455537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Roberts HM, Ling MR, Insall R, Kalna G, Spengler J, Grant MM, Chapple ILC. Impaired neutrophil directional chemotactic accuracy in chronic periodontitis patients. J Clin Periodontol 2015; 42:1-11. [PMID: 25360483 PMCID: PMC4340045 DOI: 10.1111/jcpe.12326] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2014] [Indexed: 12/13/2022]
Abstract
AIM To investigate the chemotactic accuracy of peripheral blood neutrophils from patients with chronic periodontitis compared with matched healthy controls, before and after non-surgical periodontal therapy. MATERIAL & METHODS Neutrophils were isolated from patients and controls (n = 18) by density centrifugation. Using the Insall chamber and video microscopy, neutrophils were analysed for directional chemotaxis towards N-formyl-methionyl-leucyl-phenylalanine [fMLP (10 nM), or CXCL8 (200 ng/ml)]. Circular statistics were utilized for the analysis of cell movement. RESULTS Prior to treatment, neutrophils from patients with chronic periodontitis had significantly reduced speed, velocity and chemotactic accuracy compared to healthy controls for both chemoattractants. Following periodontal treatment, patient neutrophils continued to display reduced speed in response to both chemoattractants. However, velocity and accuracy were normalized for the weak chemoattractant CXCL8 while they remained significantly reduced for fMLP. CONCLUSIONS Chronic periodontitis is associated with reduced neutrophil chemotaxis, and this is only partially restored by successful treatment. Dysfunctional neutrophil chemotaxis may predispose patients with periodontitis to their disease by increasing tissue transit times, thus exacerbating neutrophil-mediated collateral host tissue damage.
Collapse
Affiliation(s)
- Helen M Roberts
- Periodontal Research Group and MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Rectified directional sensing in long-range cell migration. Nat Commun 2014; 5:5367. [PMID: 25373620 PMCID: PMC4272253 DOI: 10.1038/ncomms6367] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
How spatial and temporal information are integrated to determine the direction of cell migration remains poorly understood. Here, by precise microfluidics emulation of dynamic chemoattractant waves, we demonstrate that, in Dictyostelium, directional movement as well as activation of small guanosine triphosphatase Ras at the leading edge is suppressed when the chemoattractant concentration is decreasing over time. This 'rectification' of directional sensing occurs only at an intermediate range of wave speed and does not require phosphoinositide-3-kinase or F-actin. From modelling analysis, we show that rectification arises naturally in a single-layered incoherent feedforward circuit with zero-order ultrasensitivity. The required stimulus time-window predicts ~5 s transient for directional sensing response close to Ras activation and inhibitor diffusion typical for protein in the cytosol. We suggest that the ability of Dictyostelium cells to move only in the wavefront is closely associated with rectification of adaptive response combined with local activation and global inhibition.
Collapse
|
33
|
Genetic, structural, and molecular insights into the function of ras of complex proteins domains. ACTA ACUST UNITED AC 2014; 21:809-18. [PMID: 24981771 PMCID: PMC4104024 DOI: 10.1016/j.chembiol.2014.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/13/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson’s disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.
Collapse
|
34
|
Phillips JE, Gomer RH. The p21-activated kinase (PAK) family member PakD is required for chemorepulsion and proliferation inhibition by autocrine signals in Dictyostelium discoideum. PLoS One 2014; 9:e96633. [PMID: 24797076 PMCID: PMC4010531 DOI: 10.1371/journal.pone.0096633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/09/2014] [Indexed: 11/19/2022] Open
Abstract
In Dictyostelium discoideum, the secreted proteins AprA and CfaD function as reporters of cell density and regulate cell number by inhibiting proliferation at high cell densities. AprA also functions to disperse groups of cells at high density by acting as a chemorepellent. However, the signal transduction pathways associated with AprA and CfaD are not clear, and little is known about how AprA affects the cytoskeleton to regulate cell movement. We found that the p21-activated kinase (PAK) family member PakD is required for both the proliferation-inhibiting activity of AprA and CfaD and the chemorepellent activity of AprA. Similar to cells lacking AprA or CfaD, cells lacking PakD proliferate to a higher cell density than wild-type cells. Recombinant AprA and CfaD inhibit the proliferation of wild-type cells but not cells lacking PakD. Like AprA and CfaD, PakD affects proliferation but does not significantly affect growth (the accumulation of mass) on a per-nucleus basis. In contrast to wild-type cells, cells lacking PakD are not repelled from a source of AprA, and colonies of cells lacking PakD expand at a slower rate than wild-type cells, indicating that PakD is required for AprA-mediated chemorepulsion. A PakD-GFP fusion protein localizes to an intracellular punctum that is not the nucleus or centrosome, and PakD-GFP is also occasionally observed at the rear cortex of moving cells. Vegetative cells lacking PakD show excessive actin-based filopodia-like structures, suggesting that PakD affects actin dynamics, consistent with previously characterized roles of PAK proteins in actin regulation. Together, our results implicate PakD in AprA/CfaD signaling and show that a PAK protein is required for proper chemorepulsive cell movement in Dictyostelium.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
35
|
Segota I, Boulet L, Franck D, Franck C. Spontaneous emergence of large-scale cell cycle synchronization in amoeba colonies. Phys Biol 2014; 11:036001. [PMID: 24732749 DOI: 10.1088/1478-3975/11/3/036001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Unicellular eukaryotic amoebae Dictyostelium discoideum are generally believed to grow in their vegetative state as single cells until starvation, when their collective aspect emerges and they differentiate to form a multicellular slime mold. While major efforts continue to be aimed at their starvation-induced social aspect, our understanding of population dynamics and cell cycle in the vegetative growth phase has remained incomplete. Here we show that cell populations grown on a substrate spontaneously synchronize their cell cycles within several hours. These collective population-wide cell cycle oscillations span millimeter length scales and can be completely suppressed by washing away putative cell-secreted signals, implying signaling by means of a diffusible growth factor or mitogen. These observations give strong evidence for collective proliferation behavior in the vegetative state.
Collapse
Affiliation(s)
- Igor Segota
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
36
|
A retinoblastoma orthologue is required for the sensing of a chalone in Dictyostelium discoideum. EUKARYOTIC CELL 2014; 13:376-82. [PMID: 24390142 DOI: 10.1128/ec.00306-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retinoblastoma-like proteins regulate cell differentiation and inhibit cell proliferation. The Dictyostelium discoideum retinoblastoma orthologue RblA affects the differentiation of cells during multicellular development, but it is unclear whether RblA has a significant effect on Dictyostelium cell proliferation, which is inhibited by the secreted proteins AprA and CfaD. We found that rblA⁻ cells in shaking culture proliferate to a higher density, die faster after reaching stationary density, and, after starvation, have a lower spore viability than wild-type cells, possibly because in shaking culture, rblA⁻ cells have both increased cytokinesis and lower extracellular accumulation of CfaD. However, rblA⁻ cells have abnormally slow proliferation on bacterial lawns. Recombinant AprA inhibits the proliferation of wild-type cells but not that of rblA⁻ cells, whereas CfaD inhibits the proliferation of both wild-type cells and rblA⁻ cells. Similar to aprA⁻ cells, rblA⁻ cells have a normal mass and protein accumulation rate on a per-nucleus basis, indicating that RblA affects cell proliferation but not cell growth. AprA also functions as a chemorepellent, and RblA is required for proper AprA chemorepellent activity despite the fact that RblA does not affect cell speed. Together, our data indicate that an autocrine proliferation-inhibiting factor acts through RblA to regulate cell density in Dictyostelium, suggesting that such factors may signal through retinoblastoma-like proteins to control the sizes of structures such as developing organs or tumors.
Collapse
|
37
|
Herlihy SE, Pilling D, Maharjan AS, Gomer RH. Dipeptidyl peptidase IV is a human and murine neutrophil chemorepellent. THE JOURNAL OF IMMUNOLOGY 2013; 190:6468-77. [PMID: 23677473 DOI: 10.4049/jimmunol.1202583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In Dictyostelium discoideum, AprA is a secreted protein that inhibits proliferation and causes chemorepulsion of Dictyostelium cells, yet AprA has little sequence similarity to any human proteins. We found that a predicted structure of AprA has similarity to human dipeptidyl peptidase IV (DPPIV). DPPIV is a serine protease present in extracellular fluids that cleaves peptides with a proline or alanine in the second position. In Insall chambers, DPPIV gradients below, similar to, and above the human serum DPPIV concentration cause movement of human neutrophils away from the higher concentration of DPPIV. A 1% DPPIV concentration difference between the front and back of the cell is sufficient to cause chemorepulsion. Neutrophil speed and viability are unaffected by DPPIV. DPPIV inhibitors block DPPIV-mediated chemorepulsion. In a murine model of acute respiratory distress syndrome, aspirated bleomycin induces a significant increase in the number of neutrophils in the lungs after 3 d. Oropharyngeal aspiration of DPPIV inhibits the bleomycin-induced accumulation of mouse neutrophils. These results indicate that DPPIV functions as a chemorepellent of human and mouse neutrophils, and they suggest new mechanisms to inhibit neutrophil accumulation in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Sarah E Herlihy
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
38
|
The G alpha subunit Gα8 inhibits proliferation, promotes adhesion and regulates cell differentiation. Dev Biol 2013; 380:58-72. [PMID: 23665473 DOI: 10.1016/j.ydbio.2013.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 01/26/2023]
Abstract
Heterotrimeric G protein-mediated signal transduction plays a pivotal role in both vegetative and developmental stages in the eukaryote Dictyostelium discoideum. Here we describe novel functions of the G protein alpha subunit Gα8 during vegetative and development stages. Gα8 is expressed at low levels during vegetative growth. Loss of Gα8 promotes cell proliferation, whereas excess Gα8 expression dramatically inhibits growth and induces aberrant cytokinesis on substrates in a Gβ-dependent manner. Overexpression of Gα8 also leads to increased cell-cell cohesion and cell-substrate adhesion. We demonstrate that the increased cell-cell cohesion is mainly caused by induced CadA expression, and the induced cell-substrate adhesion is responsible for the cytokinesis defects. However, the expression of several putative constitutively active mutants of Gα8 does not augment the phenotypes caused by intact Gα8. Gα8 is strongly induced after starvation, and loss of Gα8 results in decreased expression of certain adhesion molecules including CsA and tgrC1. Interestingly, Gα8 is preferentially distributed in the upper and lower cup of the fruiting body. Lack of Gα8 decreases the expression of the specific marker of the anterior-like cells, suggesting that Gα8 is required for anterior-like cell differentiation.
Collapse
|
39
|
A Dictyostelium secreted factor requires a PTEN-like phosphatase to slow proliferation and induce chemorepulsion. PLoS One 2013; 8:e59365. [PMID: 23555023 PMCID: PMC3595242 DOI: 10.1371/journal.pone.0059365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/13/2013] [Indexed: 02/02/2023] Open
Abstract
In Dictyostelium discoideum, AprA and CfaD are secreted proteins that inhibit cell proliferation. We found that the proliferation of cells lacking CnrN, a phosphatase and tensin homolog (PTEN)-like phosphatase, is not inhibited by exogenous AprA and is increased by exogenous CfaD. The expression of CnrN in cnrN cells partially rescues these altered sensitivities, suggesting that CnrN is necessary for the ability of AprA and CfaD to inhibit proliferation. Cells lacking CnrN accumulate normal levels of AprA and CfaD. Like cells lacking AprA and CfaD, cnrN cells proliferate faster and reach a higher maximum cell density than wild type cells, tend to be multinucleate, accumulate normal levels of mass and protein per nucleus, and form less viable spores. When cnrN cells expressing myc-tagged CnrN are stimulated with a mixture of rAprA and rCfaD, levels of membrane-associated myc-CnrN increase. AprA also causes chemorepulsion of Dictyostelium cells, and CnrN is required for this process. Combined, these results suggest that CnrN functions in a signal transduction pathway downstream of AprA and CfaD mediating some, but not all, of the effects of AprA and CfaD.
Collapse
|