1
|
Cao J, Sha Y, Sun M, Yang L, Lv R, Cao L, Zhong Z, Meng F. Sustained codelivery of heat shock protein peptide and rapamycin via nano-in-hydrogel induces immune tolerance in rheumatoid arthritis. J Control Release 2025; 383:113842. [PMID: 40368190 DOI: 10.1016/j.jconrel.2025.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/07/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Co-delivery of autoantigens with immunomodulators via nanovaccines presents a promising strategy for inducing tolerogenic immune responses in rheumatoid arthritis (RA). Conventional subcutaneous administration often results in rapid systemic dissemination, limiting efficacy in targeting lymphatic tissues. Here, we developed a tolerogenic nanovaccine-in-hydrogel delivery system comprising heat shock protein peptide-coated, rapamycin-encapsulated polymeric vesicles (HRV@gel) designed for sustained exposure to lymph nodes. This system aims to promote the differentiation of tolerant dendritic cells (tolDCs) and activation of regulatory T cells (Tregs), thereby reestablishing immune tolerance to combat RA. The nanovaccines revealed an average size of 66 nm and demonstrated sustained release from the hydrogel matrix. In vitro studies confirmed the efficient internalization of HRV by dendritic cells (DCs), where HSP peptides underwent cleavage by intracellular enzymes and presented on the DCs surface. Notably, HRV effectively inhibited DCs activation, downregulated MHC II expression, and reduced pro-inflammatory cytokine secretion. In vivo analysis showed that subcutaneous injection of HRV@gel achieved prolonged exposure compared to HRV alone. In CIA mouse models, two injections of HRV@gel significantly alleviated inflammation, promoted durable local and peripheral immune tolerance, and protected joint tissues. This HRV@gel nano-in-hydrogel strategy showcases a compelling tolerogenic therapy for potent and long-lasting immunological intervention in RA.
Collapse
Affiliation(s)
- Jun Cao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Miao Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Liang Yang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Runkai Lv
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Li Cao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
2
|
Borges TJ, Lee CAA, Mucciarone K, Lima K, Lape IT, Lima-Filho M, Ayoama B, Kollar B, Gassen RB, Bonorino C, Talbot SG, Pomahac B, Lian CG, Murphy GF, Riella LV. Human type 1 conventional dendritic cells contribute to skin transplant rejection. Am J Transplant 2025:S1600-6135(25)00221-7. [PMID: 40286910 DOI: 10.1016/j.ajt.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The skin is the most immunogenic tissue in transplantation and the most difficult tissue in which to induce immune modulation. Batf3-dependent type 1 conventional dendritic cells (cDC1s) are important in initiating rejection in murine skin transplantation. In humans, the CD141+ cDC1 subset is the functional counterpart of the murine Batf3-dependent cDC1s. However, their contribution to the rejection of human skin allografts remains unknown. Using samples from human face and upper extremity transplant recipients, we demonstrated that CD141+ cDC1s are increased and more activated in human skin grafts than native skin tissue from the same individual. Moreover, circulating and tissue CD141+ cDC1s were elevated at rejection time points. Local modulation of graft CD141+ cDC1s decreased HLA-DR expression and increased regulatory T cells, which correlated with a decreased presence of skin allogeneic T cells in a humanized transplantation model. Thus, CD141+ cDC1s play an important role in rejecting human skin allografts, and their local modulation is a promising therapeutic approach.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Catherine A A Lee
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyla Mucciarone
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Isadora T Lape
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mauricio Lima-Filho
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruno Ayoama
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Branislav Kollar
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Rodrigo B Gassen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cristina Bonorino
- Immunotherapy Laboratory - (LAIT) - Department of Basic Health Sciences of Federal University of Health Sciences of Porto Alegre, UFCSPA, Porto Alegre, Brazil
| | - Simon G Talbot
- Division of Plastic and Reconstructive Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christine G Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George F Murphy
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Buckner JH. Antigen-specific immunotherapies for autoimmune disease. Nat Rev Rheumatol 2025; 21:88-97. [PMID: 39681709 DOI: 10.1038/s41584-024-01201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Antigen-specific therapies have a long history in the treatment of allergy but have not been successful in autoimmunity. However, in the past 20 years, advances in the definition of the self-antigens that promote autoimmunity and the growing understanding of the mechanisms that maintain tolerance in health but fail in autoimmunity have led to antigen-specific approaches being considered for the treatment of autoimmune diseases. The core goal of each antigen-specific treatment approach is to remove the immune response that promotes autoimmunity whilst sparing protective responses. Approaches to antigen-specific therapy range from targeted deletion of autoreactive lymphocytes to tolerization of autoreactive T cells and active inhibition of autoimmune responses. Technologies such as vaccines, nanoparticles, cell-based therapies and gene editing are being harnessed to achieve these goals. Remaining challenges include the selection of the best antigen to target, modality and timing of administration of these therapies and the disease in which the therapies are used; overcoming these challenges will be vital to move antigen-specific therapies forward. Once established, antigen-specific therapy has the potential to be applied broadly in the area of autoimmunity.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
4
|
Xing C, Cui H, Li G, Liu X, Liu K, Wen Q, Huang X, Wang R, Song L. Hspa13 Deficiency Impaired Marginal Zone B Cells Regulatory Function and Contributed to Lupus Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413144. [PMID: 39737854 PMCID: PMC11848637 DOI: 10.1002/advs.202413144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Indexed: 01/01/2025]
Abstract
Dysregulated IL-10 producing regulatory B cells (Bregs) are associated with the progression of systemic lupus erythematosus. An immunomodulatory role of heat shock proteins (HSPs) is implicated in autoimmune diseases. However, the molecular basis underlying the role of Hspa13 in regulating Bregs function and lupus pathogenesis remains unclear. In this study, Bregs display higher Hspa13 expression than IL-10- B cells. Induction of IL-10 production is weakened in B cells with Hspa13 knockdown or knockout. Hspa13 binds to the IL-10 promoter via the TATA or CAAT box and activates IL-10 transcription in the nucleus. Furthermore, Hspa13 positive cells are enriched in marginal zone (MZ) B cells to regulate IL-10 production. Stimulated B220+ B or MZ B cells from CD19creHspa13fl/fl mice for Breg induction show an impaired capacity to promote CD4+Foxp3+ regulatory T cells (Treg) differentiation. In lupus MRL/lpr mice, a decline in Treg differentiation is accompanied by decreased Hspa13 expression in both Bregs and MZ B cells. Moreover, adoptive transfusion of Bregs and MZ B cells from CD19creHspa13fl/fl mice fails to increase the frequency of Tregs, attenuate renal pathology, or decrease anti-dsDNA antibody levels. These results explain the unique role of Hspa13 in determining MZ regulatory function and affecting lupus pathogenesis.
Collapse
MESH Headings
- Animals
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/pathology
- Mice
- B-Lymphocytes, Regulatory/immunology
- B-Lymphocytes, Regulatory/metabolism
- Interleukin-10/metabolism
- Interleukin-10/genetics
- Mice, Inbred MRL lpr
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- HSP70 Heat-Shock Proteins/deficiency
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Mice, Knockout
- Female
- Disease Models, Animal
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Chen Xing
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Haoran Cui
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Ge Li
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Xiaoling Liu
- Department of DermatologyFirst Medical Centre of ChinesePLA General HospitalBeijing100853China
| | - Kun Liu
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Qing Wen
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Xin Huang
- Beijing Institute of Basic Medical SciencesBeijing100850China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and TechnologyCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100069China
| | - Lun Song
- Beijing Institute of Basic Medical SciencesBeijing100850China
| |
Collapse
|
5
|
Stoppelenburg AJ, Schreibelt G, Koeneman B, Welsing P, Breman EJ, Lammers L, de Goede A, Duiveman-de Boer T, van Eden W, Leufkens P, de Vries IJM, Broere F, van Laar JM. Design of TOLERANT: phase I/II safety assessment of intranodal administration of HSP70/mB29a self-peptide antigen-loaded autologous tolerogenic dendritic cells in patients with rheumatoid arthritis. BMJ Open 2024; 14:e078231. [PMID: 39266308 PMCID: PMC11409275 DOI: 10.1136/bmjopen-2023-078231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION In rheumatoid arthritis (RA), immunosuppressive therapies may achieve symptomatic relief, but do not induce long-term, drug-free remission. Meanwhile, the lifelong use of immunosuppressive drugs confers increased risk for malignancy and infections. As such, there is an unmet need for novel treatments that selectively target the pathogenic immune response in RA by inducing tolerance to autoantigens. Autologous cell therapy using antigen-loaded tolerogenic dendritic cells (tolDCs) aims to reinstate autoantigen-specific immunological tolerance in RA and could potentially meet this need. METHODS AND ANALYSIS We report here the design of the phase I/II, investigator-initiated, open-label, dose-escalation trial TOLERANT. In this study, we will evaluate the intranodal administration of tolDCs in patients with RA that are in remission under immunosuppressive therapy. The tolDCs in this trial are loaded with the heat shock protein 70-derived peptide mB29a, which is an effective surrogate autoantigen in animal models of arthritis. Within this study, three dose-escalation cohorts (two intranodal injections of 5×106, 10×106 and 15×106 tolDCs), each consisting of three patients, are evaluated to identify the highest safe dose (recommended dose), and an extension cohort of nine patients will be treated with the recommended dose. The (co-)primary endpoints of this study are safety and feasibility, which we assess by the number of AEs and the successful production of tolDCs. The secondary endpoints include the immunological effects of the treatment, which we assess with a variety of high-dimensional and antigen-specific immunological assays. Clinical effects are exploratory outcomes. ETHICS AND DISSEMINATION Ethical approval for this study has been obtained from the Netherlands Central Committee on Research Involving Human Subjects. The outcomes of the trial will be disseminated through publications in open-access, peer-reviewed scientific journals, scientific conferences and to patient associations. TRIAL REGISTRATION NUMBERS NCT05251870; 2019-003620-20 (EudraCT); NL71296.000.20 (CCMO register).
Collapse
Affiliation(s)
- Arie Jan Stoppelenburg
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Biomolecular Health Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Gerty Schreibelt
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bouke Koeneman
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Paco Welsing
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Evert-Jan Breman
- Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Laureen Lammers
- Department of Clinical Pharmacy, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anna de Goede
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Willem van Eden
- Department of Biomolecular Health Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
- Trajectum Pharma B.V, Utrecht, The Netherlands
| | | | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Utrecht University Faculty of Veterinary Medicine, Utrecht, The Netherlands
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Tukaj S. Dual role of autoantibodies to heat shock proteins in autoimmune diseases. Front Immunol 2024; 15:1421528. [PMID: 38903496 PMCID: PMC11187000 DOI: 10.3389/fimmu.2024.1421528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Autoimmune diseases are characterized by the recognition of self-antigens (autoantigens) by immune system cells. Loss of immunological tolerance may lead to the generation of autoantibodies and, consequently, tissue damage. It has already been proven that highly immunogenic bacterial and autologous extracellular heat shock proteins (eHsps) interact with immune cells of the innate and adaptive arms of the immune system. The latter interactions may stimulate a humoral (auto)immune response and lead to the generation of anti-Hsps (auto)antibodies. Although circulating levels of anti-Hsps autoantibodies are often elevated in patients suffering from multiple inflammatory and autoimmune diseases, their role in the development of pathological conditions is not fully established. This mini-review presents the dual role of anti-Hsps autoantibodies - protective or pathogenic - in the context of the development of selected autoimmune diseases.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
7
|
Hall C, Pleasance J, Hickman O, Kirkham B, Panayi GS, Eggleton P, Corrigall VM. The Biologic IRL201805 Alters Immune Tolerance Leading to Prolonged Pharmacodynamics and Efficacy in Rheumatoid Arthritis Patients. Int J Mol Sci 2024; 25:4394. [PMID: 38673979 PMCID: PMC11049849 DOI: 10.3390/ijms25084394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
A homologue of binding immunoglobulin protein/BiP-IRL201805 alters the function of immune cells in pre-clinical in vivo and in vitro studies. The aim of the study was to select biomarkers that clearly delineate between RA patients who respond to IRL201805 and placebo patients and reveal the immunological mode of action of IRL201805 driving the extended pharmacodynamics observed in responding patients. Biomarkers that distinguished between responding patients and placebo patients included downregulation of serum interferon-γ and IL-1β; upregulation of anti-inflammatory mediators, serum soluble CTLA-4, and intracellular monocyte expression of IDO; and sustained increased CD39 expression on CD3+CD4+CD25hi CD127lo regulatory T cells. In the responding patients, selected biomarkers verified that the therapeutic effect could be continuous for at least 12 weeks post-infusion. In secondary co-culture, pre-infusion PBMCs cultured 1:1 with autologous PBMCs, isolated at later time-points during the trial, showed significantly inhibited IL-6 and IL-1β production upon anti-CD3/CD28 stimulation demonstrating IRL201805 alters the function of immune cells leading to prolonged pharmacodynamics confirmed by biomarker differences. IRL201805 may be the first of a new class of biologic drug providing long-term drug-free therapy in RA.
Collapse
Affiliation(s)
- Christopher Hall
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Jill Pleasance
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Oliver Hickman
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Bruce Kirkham
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | - Gabriel S. Panayi
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
| | | | - Valerie M. Corrigall
- Academic Department of Rheumatology, Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London Faculty of Life Sciences and Medicine, Guy’s Hospital Campus, London SE1 1UL, UK
- Revolo Biotherapeutics, London SE1 9AP, UK
| |
Collapse
|
8
|
Zimmerman DH, Szekanecz Z, Markovics A, Rosenthal KS, Carambula RE, Mikecz K. Current status of immunological therapies for rheumatoid arthritis with a focus on antigen-specific therapeutic vaccines. Front Immunol 2024; 15:1334281. [PMID: 38510240 PMCID: PMC10951376 DOI: 10.3389/fimmu.2024.1334281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is recognized as an autoimmune joint disease driven by T cell responses to self (or modified self or microbial mimic) antigens that trigger and aggravate the inflammatory condition. Newer treatments of RA employ monoclonal antibodies or recombinant receptors against cytokines or immune cell receptors as well as small-molecule Janus kinase (JAK) inhibitors to systemically ablate the cytokine or cellular responses that fuel inflammation. Unlike these treatments, a therapeutic vaccine, such as CEL-4000, helps balance adaptive immune homeostasis by promoting antigen-specific regulatory rather than inflammatory responses, and hence modulates the immunopathological course of RA. In this review, we discuss the current and proposed therapeutic products for RA, with an emphasis on antigen-specific therapeutic vaccine approaches to the treatment of the disease. As an example, we describe published results of the beneficial effects of CEL-4000 vaccine on animal models of RA. We also make a recommendation for the design of appropriate clinical studies for these newest therapeutic approaches, using the CEL-4000 vaccine as an example. Unlike vaccines that create or boost a new immune response, the clinical success of an immunomodulatory therapeutic vaccine for RA lies in its ability to redirect autoreactive pro-inflammatory memory T cells towards rebalancing the "runaway" immune/inflammatory responses that characterize the disease. Human trials of such a therapy will require alternative approaches in clinical trial design and implementation for determining safety, toxicity, and efficacy. These approaches include adaptive design (such as the Bayesian optimal design (BOIN), currently employed in oncological clinical studies), and the use of disease-related biomarkers as indicators of treatment success.
Collapse
Affiliation(s)
| | - Zoltan Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Adrienn Markovics
- Department of Orthopedic Surgery and Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Kenneth S. Rosenthal
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA, United States
| | | | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
10
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
De Groot AS, Roberts BJ, Mattei A, Lelias S, Boyle C, Martin WD. Immunogenicity risk assessment of synthetic peptide drugs and their impurities. Drug Discov Today 2023; 28:103714. [PMID: 37467878 DOI: 10.1016/j.drudis.2023.103714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Peptide drugs play an important part in medicine owing to their many therapeutic applications. Of the 80 peptide drugs approved for use in humans, at least five are now off-patent and are consequently being developed as generic alternatives to the originator products. To accelerate access to generic products, the FDA has proposed new regulatory pathways that do not require direct comparisons of generics to originators in clinical trials. The 'Abbreviated New Drug Application' (ANDA) pathway recommends that sponsors provide information on any new impurities in the generic drug, compared with the originator product, because the impurities can have potential to elicit unwanted immune responses owing to the introduction of T-cell epitopes. This review describes how peptide drug impurities can elicit unexpected immunogenicity and describes a framework for performing immunogenicity risk assessment of all types of bioactive peptide products. Although this report primarily focuses on generic peptides and their impurities, the approach might also be of interest for developers of novel peptide drugs who are preparing their products for an initial regulatory review.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA; University of Georgia, Center for Vaccines and Immunology, Athens, GA USA.
| | | | - Aimee Mattei
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA
| | - Sandra Lelias
- EpiVax, 188 Valley Street, Suite 424, Providence, RI, USA
| | | | | |
Collapse
|
12
|
Borges TJ, Murshid A, Theriault J, Calderwood SK. Molecular Chaperone Receptors: An Update. Methods Mol Biol 2023; 2693:193-208. [PMID: 37540436 DOI: 10.1007/978-1-0716-3342-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by surface receptors expressed on a wide range of cell types, including immune cells. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach, we have discovered that mammalian and eukaryotic Hsp70 binds avidly to at least three classes of receptor including: (1) c-type lectin receptors (CLR), (2) scavenger receptors (SR) and (3) lectins. However, the structural nature of the receptor-ligand interactions is not currently clear. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD), to the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains as well. In this chapter, we will discuss: (1) methods for the discovery of HSP receptors, (2) approaches to the study of individual receptors in cells that contain multiple such receptors and (3) methods for investigating HSP receptor function in vivo.
Collapse
Affiliation(s)
- Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jimmy Theriault
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Ravaei A, Zimmer-Bensch G, Govoni M, Rubini M. lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:103-119. [PMID: 36126801 DOI: 10.1016/j.pbiomolbio.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a regulatory class of noncoding RNAs with a wide range of activities such as transcriptional and post-transcriptional regulations. Emerging evidence has demonstrated that various lncRNAs contribute to the initiation and progression of Rheumatoid Arthritis (RA) through distinctive mechanisms. The present study reviews the recent findings on lncRNA role in RA development. It focuses on the involvement of different lncRNAs in the main steps of RA pathogenesis including T cell activation, cytokine dysregulation, fibroblast-like synoviocyte (FLS) activation and joint destruction. Besides, it discusses the current findings on RA diagnosis and the potential of lncRNAs as diagnostic, prognostic and predictive biomarkers in Rheumatology clinic.
Collapse
Affiliation(s)
- Amin Ravaei
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| | - Geraldine Zimmer-Bensch
- Division of Neuroepigenetics, Institute of Zoology (Biology II), RWTH Aachen University, Aachen, Germany.
| | - Marcello Govoni
- Department of Medical Science, Section of Rheumatology, University of Ferrara, Ferrara, Italy.
| | - Michele Rubini
- Department of Neurosciences and Rehabilitation, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
14
|
Shuai Z, Zheng S, Wang K, Wang J, Leung PSC, Xu B. Reestablish immune tolerance in rheumatoid arthritis. Front Immunol 2022; 13:1012868. [PMID: 36248797 PMCID: PMC9561630 DOI: 10.3389/fimmu.2022.1012868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease. Despite the wide use of conventional synthetic, targeted and biologic disease modifying anti-rheumatic drugs (DMARDs) to control its radiological progress, nearly all DMARDs are immunologically non-selective and do not address the underlying immunological mechanisms of RA. Patients with RA often need to take various DMARDs long-term or even lifelong and thus, face increased risks of infection, tumor and other adverse reactions. It is logical to modulate the immune disorders and restore immune balance in patients with RA by restoring immune tolerance. Indeed, approaches based on stem cell transplantation, tolerogenic dendritic cells (tolDCs), and antigen-based tolerogenic vaccination are under active investigation, and some have already transformed from wet bench research to clinical investigation during the last decade. Among them, clinical trials on stem cell therapy, especially mesenchymal stem cells (MSCs) transplantation are most investigated and followed by tolDCs in RA patients. On the other hand, despite active laboratory investigations on the use of RA-specific peptide-/protein-based tolerogenic vaccines for T cell, clinical studies on RA patients are much limited. Overall, the preliminary results of these clinical studies are promising and encouraging, demonstrating their safety and effectiveness in the rebalancing of T cell subsets; particular, the recovery of RA-specific Treg with increasing anti-inflammatory cytokines and reduced proinflammatory cytokines. Future studies should focus on the optimization of transplanted stem cells, the preparation of tolDCs, and tolerogenic vaccines with RA-specific protein or peptide, including their dosage, course, and route of administration with well-coordinated multi-center randomized clinical control researches. With the progress of experimental and clinical studies, generating and restoring RA-specific immune tolerance may bring revolutionary changes to the clinical management of RA in the near future.
Collapse
Affiliation(s)
- Ziqiang Shuai
- Department of Sports Injury and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Zheng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kang Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Bin Xu, ; Patrick S. C. Leung, ; Jian Wang,
| | - Patrick S. C. Leung
- Division of Rheumatology/Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: Bin Xu, ; Patrick S. C. Leung, ; Jian Wang,
| | - Bin Xu
- Department of Sports Injury and Arthroscopic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Bin Xu, ; Patrick S. C. Leung, ; Jian Wang,
| |
Collapse
|
15
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
16
|
Tukaj S, Sitko K. Heat Shock Protein 90 (Hsp90) and Hsp70 as Potential Therapeutic Targets in Autoimmune Skin Diseases. Biomolecules 2022; 12:biom12081153. [PMID: 36009046 PMCID: PMC9405624 DOI: 10.3390/biom12081153] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 12/22/2022] Open
Abstract
Over a hundred different autoimmune diseases have been described to date, which can affect every organ in the body, including the largest one, the skin. In fact, up to one-fifth of the world's population suffers from chronic, noninfectious inflammatory skin diseases, the development of which is significantly influenced by an autoimmune response. One of the hallmarks of autoimmune diseases is the loss of immune tolerance, which leads to the formation of autoreactive lymphocytes or autoantibodies and, consequently, to chronic inflammation and tissue damage. The treatment of autoimmune skin diseases mainly focuses on immunosuppression (using, e.g., corticosteroids) but almost never leads to the development of permanent mechanisms of immune tolerance. In addition, current therapies and their long-term administration may cause serious adverse effects. Hence, safer and more effective therapies that bring sustained balance between pro- and anti-inflammatory responses are still desired. Both intra- and extracellular heat shock proteins (Hsps), specifically well-characterized inducible Hsp90 and Hsp70 chaperones, have been highlighted as therapeutic targets for autoimmune diseases. This review presents preclinical data on the involvement of Hsp90 and Hsp70 in modulating the immune response, specifically in the context of the treatment of selected autoimmune skin diseases with emphasis on autoimmune bullous skin diseases and psoriasis.
Collapse
|
17
|
From vaccines to nanovaccines: A promising strategy to revolutionize rheumatoid arthritis treatment. J Control Release 2022; 350:107-121. [PMID: 35977582 DOI: 10.1016/j.jconrel.2022.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Rheumatoid arthritis (RA) is a joint-related autoimmune disease that is difficult to cure. Most therapeutics act to alleviate the symptoms but not correct the causes of RA. Novel strategies that specifically target the causes are highly needed for RA management. Currently, early interruption of RA is increasingly suggested but the corresponding therapeutics are not available. Vaccines that have shown great success to combat infection, cancer, degenerative diseases, autoimmune diseases, etc. are ideal candidates for a new generation of anti-RA therapeutics to correct the causes and prevent RA or interrupt RA in early phases. Anti-RA vaccines can be divided into two major categories. One is to induce neutralizing antibodies and the other is to induce antigen-specific immune tolerance. The vaccines are inherently linked to nanotechnology because they usually need a biomacromolecule or carrier to provoke sufficient immune responses. In the past decade, designed nanocarriers such as nanoparticles, liposomes, nanoemulsion, etc., have been applied to optimize the vaccines for autoimmune disease treatment. Nanotechnology endows vaccines with a higher biostability, tunable in vivo behavior, better targeting, co-delivery with stimulatory agents, regulatory effects on immune responses, etc. In this review, unmet medical needs for RA treatment and anti-RA vaccinology are first introduced. The development of anti-RA therapies from vaccines to nanovaccines are then reviewed and perspectives on how nanotechnology promotes vaccine development and advancement are finally provided. In addition, challenges for anti-RA vaccine development are summarized and advantages of nanovaccines are analyzed. In conclusion, nanovaccines will be a promising strategy to revolutionize the treatment of RA by correcting the causes in an early phase of RA.
Collapse
|
18
|
Rezaei Kahmini F, Shahgaldi S, Azimi M, Mansourabadi AH. Emerging therapeutic potential of regulatory T (Treg) cells for rheumatoid arthritis: New insights and challenges. Int Immunopharmacol 2022; 108:108858. [PMID: 35597122 DOI: 10.1016/j.intimp.2022.108858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune-related disorder characterized by chronic inflammation. Although the etiopathogenesis of RA still remains to be clarified, it is supposed that the breakdown of immune self-tolerance may contribute to the development of RA. Thus, restoring of immune tolerance at the site of inflammation is the ultimate goal of RA treatment. Regulatory T cells (Treg cells) are the main suppressive cells that maintain tolerance and inhibit immunity against auto-antigen. Of note, recent studies demonstrated the efficacy of adoptive transfer of Treg cells in the modulation of the unwanted immune response, which makes them an ideal candidate to maintain immune homeostasis and restore antigen-specific tolerance in the case of RA and other autoimmune diseases. This review intends to submit recent finding of Treg cells-based therapies in RA with a focus on strategies applied to improve the therapeutic value of Treg cells to restore immune tolerance.
Collapse
Affiliation(s)
- Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran; Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
19
|
Tukaj S, Mantej J, Sitko K, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Pathological Relevance of Anti-Hsp70 IgG Autoantibodies in Epidermolysis Bullosa Acquisita. Front Immunol 2022; 13:877958. [PMID: 35514963 PMCID: PMC9065281 DOI: 10.3389/fimmu.2022.877958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Stress-induced heat shock protein 70 (Hsp70) is a key intra- and extracellular molecular chaperone implicated in autoimmune processes. Highly immunogenic extracellular Hsp70 can activate innate and acquired (adaptive) immune responses driving the generation of anti-Hsp70 autoantibodies that are frequently observed in inflammatory/autoimmune disorders. We recently described the direct pathological role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated autoimmune blistering skin disease. Here, we determined the role of anti-Hsp70 autoantibodies in EBA. We observed that circulating anti-Hsp70 IgG autoantibodies were significantly elevated in EBA patients compared to healthy individuals and positively correlated with serum levels of pro-inflammatory interferon gamma (IFN-γ). The pathophysiological relevance of anti-Hsp70 IgG autoantibodies was demonstrated in an antibody transfer-induced EBA mouse model in which elevated serum levels of anti-Hsp70 IgG were found. In addition, anti-Hsp70 IgG-treated animals had a more intense clinical and histological disease activity, as well as upregulated nuclear factor kappa B (NF-κB) activation in skin biopsies compared to isotype-treated animals. Our results suggest that autoantibodies to Hsp70 may contribute to EBA development via enhanced neutrophil infiltration to the skin and activation of the NF-κB signaling pathway in an IFN-γ-associated manner.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
20
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
21
|
Gomez CR. Role of heat shock proteins in aging and chronic inflammatory diseases. GeroScience 2021; 43:2515-2532. [PMID: 34241808 PMCID: PMC8599533 DOI: 10.1007/s11357-021-00394-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Advanced age is associated with a decline in response to stress. This contributes to the establishment of chronic inflammation, one of the hallmarks of aging and age-related disease. Heat shock proteins (HSP) are determinants of life span, and their progressive malfunction leads to age-related pathology. To discuss the function of HSP on age-related chronic inflammation and illness. An updated review of literature and discussion of relevant work on the topic of HSP in normal aging and chronic inflammatory pathology was performed. HSP contribute to inflamm-aging. They also play a key role in age-associated pathology linked to chronic inflammation such as autoimmune disorders, neurological disease, cardiovascular disorder, and cancer. HSP may be targeted for control of their effects related to age and chronic inflammation. Research on HSP functions in age-linked chronic inflammatory disorders provides an opportunity to improve health span and delay age-related chronic disorders.
Collapse
Affiliation(s)
- Christian R Gomez
- Department of Pathology, University of Mississippi Medical Cent, er, 2500 N. State St, Jackson, MS, 39216, USA.
- Department of Radiation Oncology, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Preclinical Research Unit, Center for Clinical and Translational Science, University of Mississippi, 2500 N. State St, Jackson, MS, 39216, USA.
- Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 N. State St, Jackson, MS, 39216, USA.
- Division of Lung Diseases, National Institutes of Health (NIH), National Heart, Lung and Blood Institute (NHLBI), Bethesda, MD, USA.
| |
Collapse
|
22
|
Moody R, Wilson K, Kampan NC, McNally OM, Jobling TW, Jaworowski A, Stephens AN, Plebanski M. Mapping Epitopes Recognised by Autoantibodies Shows Potential for the Diagnosis of High-Grade Serous Ovarian Cancer and Monitoring Response to Therapy for This Malignancy. Cancers (Basel) 2021; 13:cancers13164201. [PMID: 34439354 PMCID: PMC8392293 DOI: 10.3390/cancers13164201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Most women are diagnosed with high-grade serous ovarian cancer (HGSOC) at stage III, when the cancer has already spread, contributing to poor survival outcomes. However, while earlier diagnosis increases survival rates, there is a lack of early diagnosis biomarkers. Previously, autoantibodies specific for phosphorylated heat shock factor 1 (HSF1-PO4) were suggested as a potential diagnostic biomarker for early-stage HGSOC. In the present study, specific regions within HSF1 were identified, tested and confirmed as useful biomarkers, with comparable diagnostic potential to the full protein, across two separate clinical cohorts. Additionally, antibody responses to HSF1-PO4 and the corresponding peptides were found to increase following a round of standard first-line chemotherapy. Together, our data suggest that the identified short peptide sequences could be used as practical alternatives to support early diagnosis or monitor responses to chemotherapy. Abstract Autoantibodies recognising phosphorylated heat shock factor 1 (HSF1-PO4) protein are suggested as potential new diagnostic biomarkers for early-stage high-grade serous ovarian cancer (HGSOC). We predicted in silico B-cell epitopes in human and murine HSF1. Three epitope regions were synthesised as peptides. Circulating immunoglobulin A (cIgA) against the predicted peptide epitopes or HSF1-PO4 was measured using ELISA, across two small human clinical trials of HGSOC patients at diagnosis. To determine whether chemotherapy would promote changes in reactivity to either HSF1-PO4 or the HSF-1 peptide epitopes, IgA responses were further assessed in a sample of patients after a full cycle of chemotherapy. Anti-HSF1-PO4 responses correlated with antibody responses to the three selected epitope regions, regardless of phosphorylation, with substantial cross-recognition of the corresponding human and murine peptide epitope variants. Assessing reactivity to individual peptide epitopes, compared to HSF1-PO4, improved assay sensitivity. IgA responses to HSF1-PO4 further increased significantly post treatment, indicating that HSF1-PO4 is a target for immunity in response to chemotherapy. Although performed in a small cohort, these results offer potential insights into the interplay between autoimmunity and ovarian cancer and offer new peptide biomarkers for early-stage HGSOC diagnosis, to monitor responses to chemotherapy, and widely for pre-clinical HGSOC research.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur 56000, Malaysia;
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Thomas W. Jobling
- Department of Gynaecological Oncology, Monash Medical Centre, Bentleigh East, VIC 3165, Australia;
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
| | - Andrew N. Stephens
- Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (A.J.)
- Correspondence:
| |
Collapse
|
23
|
Qiu J, Wu B, Goodman SB, Berry GJ, Goronzy JJ, Weyand CM. Metabolic Control of Autoimmunity and Tissue Inflammation in Rheumatoid Arthritis. Front Immunol 2021; 12:652771. [PMID: 33868292 PMCID: PMC8050350 DOI: 10.3389/fimmu.2021.652771] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Like other autoimmune diseases, rheumatoid arthritis (RA) develops in distinct stages, with each phase of disease linked to immune cell dysfunction. HLA class II genes confer the strongest genetic risk to develop RA. They encode for molecules essential in the activation and differentiation of T cells, placing T cells upstream in the immunopathology. In Phase 1 of the RA disease process, T cells lose a fundamental function, their ability to be self-tolerant, and provide help for autoantibody-producing B cells. Phase 2 begins many years later, when mis-differentiated T cells gain tissue-invasive effector functions, enter the joint, promote non-resolving inflammation, and give rise to clinically relevant arthritis. In Phase 3 of the RA disease process, abnormal innate immune functions are added to adaptive autoimmunity, converting synovial inflammation into a tissue-destructive process that erodes cartilage and bone. Emerging data have implicated metabolic mis-regulation as a fundamental pathogenic pathway in all phases of RA. Early in their life cycle, RA T cells fail to repair mitochondrial DNA, resulting in a malfunctioning metabolic machinery. Mitochondrial insufficiency is aggravated by the mis-trafficking of the energy sensor AMPK away from the lysosomal surface. The metabolic signature of RA T cells is characterized by the shunting of glucose toward the pentose phosphate pathway and toward biosynthetic activity. During the intermediate and terminal phase of RA-imposed tissue inflammation, tissue-residing macrophages, T cells, B cells and stromal cells are chronically activated and under high metabolic stress, creating a microenvironment poor in oxygen and glucose, but rich in metabolic intermediates, such as lactate. By sensing tissue lactate, synovial T cells lose their mobility and are trapped in the tissue niche. The linkage of defective DNA repair, misbalanced metabolic pathways, autoimmunity, and tissue inflammation in RA encourages metabolic interference as a novel treatment strategy during both the early stages of tolerance breakdown and the late stages of tissue inflammation. Defining and targeting metabolic abnormalities provides a new paradigm to treat, or even prevent, the cellular defects underlying autoimmune disease.
Collapse
Affiliation(s)
- Jingtao Qiu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Bowen Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Stuart B Goodman
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Jorg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
24
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Tukaj Z, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Therapeutic Implications of Targeting Heat Shock Protein 70 by Immunization or Antibodies in Experimental Skin Inflammation. Front Immunol 2021; 12:614320. [PMID: 33708208 PMCID: PMC7940535 DOI: 10.3389/fimmu.2021.614320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Sitko K. Autologous extracellular Hsp70 exerts a dual role in rheumatoid arthritis. Cell Stress Chaperones 2020; 25:1105-1110. [PMID: 32358783 PMCID: PMC7591667 DOI: 10.1007/s12192-020-01114-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/22/2023] Open
Abstract
Extracellular heat shock proteins (Hsp) influence the adaptive immune response and may ameliorate pathogenesis of autoimmune diseases. While some preclinical observations suggest that highly conserved bacterial and/or murine Hsp70 peptides have potential utility in treatment of rheumatoid arthritis (RA) via induction of T regulatory cells (Treg), the role of extracellular inducible human Hsp70 in adaptive immune processes requires further investigation. The present study evaluated Hsp70 influence on inflammatory cytokine-mediated modulation of T cell immunophenotype in ways that influence RA onset and severity. Initial experiments in the present investigation revealed that serum levels of Hsp70 are approximately 2-fold higher in RA patients versus healthy control subjects. To explore the effect of extracellular Hsp70 on key processes underlying the adaptive immune system, the effects of a highly pure, substrate-, and endotoxin-free human Hsp70 on polarization of the T helper cell subpopulations, including CD4+IL-17+ (Th17), CD4+FoxP3+ (Treg), CD4+IFN-γ+ (Th1), and CD4+IL-4+ (Th2), were studied in naïve human peripheral blood mononuclear cell (PBMC) cultures stimulated with anti-CD3/28 mAb. Major findings included an observation that while Hsp70 treatment increased Th17 frequencies and Th17/Treg ratio, the frequency of Th1 cells and the Th1/Th2 ratio were significantly decreased in the Hsp70-treated PBMC cultures. Moreover, data shown here provides preliminary suggestion that major contributing Hsp70-mediated immunomodulation includes interleukin 6 (IL-6) influence on Th17/Treg and Th1/Th2, since expression of this inflammatory cytokine is enhanced by in vitro Hsp70 treatment. These results are nevertheless preliminary and require further investigation to validate the above model.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| |
Collapse
|
26
|
Gusmao-Silva G, Aguiar SLF, Miranda MCG, Guimarães MA, Alves JL, Vieira AT, Cara DC, Miyoshi A, Azevedo VA, Oliveira RP, Faria AMC. Hsp65-Producing Lactococcocus lactis Prevents Antigen-Induced Arthritis in Mice. Front Immunol 2020; 11:562905. [PMID: 33072101 PMCID: PMC7538670 DOI: 10.3389/fimmu.2020.562905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Oral tolerance is the physiological process that enables the immune system to differentiate between harmless dietary and microbiota antigens from pathogen derived antigens. It develops at the mucosal surfaces and can result in local and systemic regulatory and anti-inflammatory effects. Translation of these benefits to the clinical practice faces limitations involving specificity and doses of antigen as well as regimens of feeding. To circumvent these problems, we developed a recombinant Hsp65 delivered by the acid lactic bacteria Lactococcus lactis NCDO 2118 directy in the intestinal mucosa. Hsp65 is a ubiquitous protein overexpressed in inflamed tissues and capable of inducing immunoregulatory mechanisms. L. lactis has probiotic properties and is commonly and safely used in dairy products. In this study, we showed that continuous delivery of HSP65 in the gut mucosa by L. lactis is a potent tolerogenic stimulus inducing regulatory CD4+LAP+ T cells that prevented collagen-induced and methylated bovine serum albumin-induced arthritis in mice. Clinical and histological signs of arthritis were inhibited as well as levels of inflammatory cytokines such as IL-17 and IFN-γ, serum titers of anti-collagen antibodies and rheumatoid factor. Oral administration of L. lactis induced alterations in microbiota composition toward an increased abundance of anaerobic bacteria such as Bifidobacterium and Lactobacillus. Tolerance to HSP65 and arthritis prevention induced by the recombinant L. lactis was associated with increase in IL-10 production by B cells and it was dependent on LAP+ T cells, IL-10 and TLR2 signaling. Therefore, HSP65-producing treatment induced effective tolerance and prevented arthritis development suggesting it can be used as a therapeutic tool for autoimmune diseases.
Collapse
Affiliation(s)
- Guilherme Gusmao-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sarah Leão Fiorini Aguiar
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Mauro Andrade Guimarães
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Lima Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Angélica Thomaz Vieira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Anderson Miyoshi
- Departamento de Genética, Evolução e Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco Ariston Azevedo
- Departamento de Genética, Evolução e Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto de Investigação em Imunologia, São Paulo, Brazil
| |
Collapse
|
27
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Peptide-Based Vaccination Therapy for Rheumatic Diseases. J Immunol Res 2020; 2020:8060375. [PMID: 32258176 PMCID: PMC7104265 DOI: 10.1155/2020/8060375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Rheumatic diseases are extremely heterogeneous diseases with substantial risks of morbidity and mortality, and there is a pressing need in developing more safe and cost-effective treatment strategies. Peptide-based vaccination is a highly desirable strategy in treating noninfection diseases, such as cancer and autoimmune diseases, and has gained increasing attentions. This review is aimed at providing a brief overview of the recent advances in peptide-based vaccination therapy for rheumatic diseases. Tremendous efforts have been made to develop effective peptide-based vaccinations against rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE), while studies in other rheumatic diseases are still limited. Peptide-based active vaccination against pathogenic cytokines such as TNF-α and interferon-α (IFN-α) is shown to be promising in treating RA or SLE. Moreover, peptide-based tolerogenic vaccinations also have encouraging results in treating RA or SLE. However, most studies available now have been mainly based on animal models, while evidence from clinical studies is still lacking. The translation of these advances from experimental studies into clinical therapy remains impeded by some obstacles such as species difference in immunity, disease heterogeneity, and lack of safe delivery carriers or adjuvants. Nevertheless, advances in high-throughput technology, bioinformatics, and nanotechnology may help overcome these impediments and facilitate the successful development of peptide-based vaccination therapy for rheumatic diseases.
Collapse
|
29
|
Molecular and Cellular Pathways Contributing to Joint Damage in Rheumatoid Arthritis. Mediators Inflamm 2020; 2020:3830212. [PMID: 32256192 PMCID: PMC7103059 DOI: 10.1155/2020/3830212] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune syndrome associated with several genetic, epigenetic, and environmental factors affecting the articular joints contributing to cartilage and bone damage. Although etiology of this disease is not clear, several immune pathways, involving immune (T cells, B cells, dendritic cells, macrophages, and neutrophils) and nonimmune (fibroblasts and chondrocytes) cells, participate in the secretion of many proinflammatory cytokines, chemokines, proteases (MMPs, ADAMTS), and other matrix lysing enzymes that could disturb the immune balance leading to cartilage and bone damage. The presence of autoantibodies preceding the clinical onset of arthritis and the induction of bone erosion early in the disease course clearly suggest that initiation events damaging the cartilage and bone start very early during the autoimmune phase of the arthritis development. During this process, several signaling molecules (RANKL-RANK, NF-κB, MAPK, NFATc1, and Src kinase) are activated in the osteoclasts, cells responsible for bone resorption. Hence, comprehensive knowledge on pathogenesis is a prerequisite for prevention and development of targeted clinical treatment for RA patients that can restore the immune balance improving clinical therapy.
Collapse
|
30
|
Spiering R, Jansen MAA, Wood MJ, Fath AA, Eltherington O, Anderson AE, Pratt AG, van Eden W, Isaacs JD, Broere F, Hilkens CMU. Targeting of tolerogenic dendritic cells to heat-shock proteins in inflammatory arthritis. J Transl Med 2019; 17:375. [PMID: 31727095 PMCID: PMC6857208 DOI: 10.1186/s12967-019-2128-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Autologous tolerogenic dendritic cells (tolDC) are a promising therapeutic strategy for inflammatory arthritis (IA) as they can regulate autoantigen-specific T cell responses. Here, we investigated two outstanding priorities for clinical development: (i) the suitability of using heat-shock proteins (HSP), abundant in inflamed synovia, as surrogate autoantigens to be presented by tolDC and (ii) identification of functional biomarkers that confirm tolDC regulatory activity. Methods Cell proliferation dye-labelled human peripheral blood mononuclear cells of IA (rheumatoid arthritis (RA) and psoriatic arthritis (PsA)) patients or healthy donors were cultured with HSP40-, HSP60- and HSP70-derived peptides or recall antigens (e.g. tuberculin purified protein derivative (PPD)) in the presence or absence of tolDC or control DC for 9 days. Functional characteristics of proliferated antigen-specific T-cells were measured using flow cytometry, gene expression profiling and cytokine secretion immunoassays. Repeated measures analysis of variance (ANOVA) with Bonferroni correction for comparisons between multiple groups and paired Student t test for comparisons between two groups were used to determine significance. Results All groups showed robust CD4+ T-cell responses towards one or more HSP-derived peptide(s) as assessed by a stimulation index > 2 (healthy donors: 78%, RA: 73%, PsA: 90%) and production of the cytokines IFNγ, IL-17A and GM-CSF. Addition of tolDC but not control DC induced a type 1 regulatory (Tr1) phenotype in the antigen-specific CD4+ T-cell population, as identified by high expression of LAG3, CD49b and secretion of IL-10. Furthermore, tolDC inhibited bystander natural killer (NK) cell activation in a TGFβ dependent manner. Conclusions HSP-specific CD4+ T-cells are detectable in the majority of RA and PsA patients and can be converted into Tr1 cells by tolDC. HSP-loaded tolDC may therefore be suitable for directing T regulatory responses to antigens in inflamed synovia of IA patients. Tr1 markers LAG3, CD49b and IL-10 are suitable biomarkers for future tolDC clinical trials.
Collapse
Affiliation(s)
- Rachel Spiering
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Manon A A Jansen
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Matthew J Wood
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Anshorulloh A Fath
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Eltherington
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Anderson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - John D Isaacs
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands.,Department of Clinical Sciences of Companion Animals, Faculty Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catharien M U Hilkens
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK. .,Research into Inflammatory Arthritis Centre Versus Arthritis, (Formerly: Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE)), Newcastle upon Tyne, UK. .,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
31
|
Jansen MAA, Klausen LH, Thanki K, Lyngsø J, Skov Pedersen J, Franzyk H, Nielsen HM, van Eden W, Dong M, Broere F, Foged C, Zeng X. Lipidoid-polymer hybrid nanoparticles loaded with TNF siRNA suppress inflammation after intra-articular administration in a murine experimental arthritis model. Eur J Pharm Biopharm 2019; 142:38-48. [PMID: 31199978 DOI: 10.1016/j.ejpb.2019.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/17/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease, which is characterized by painful chronic inflammation in the joints, and novel safe and efficacious treatments are urgently needed. RNA interference (RNAi) therapy based on small interfering RNA (siRNA) is a promising approach for silencing specific genes involved in inflammation. However, delivery of siRNA to the target site, i.e. the cytosol of immune cells, is a challenge. Here, we designed lipid-polymer hybrid nanoparticles (LPNs) composed of lipidoid and poly(DL-lactic-co-glycolic acid) loaded with a therapeutic cargo siRNA directed against the proinflammatory cytokine tumor necrosis factor (TNF), which plays a key role in the progression of RA. We compared their efficacy and safety with reference lipidoid-based stable nucleic acid lipid particles (SNALPs) in vitro and in vivo. Cryogenic transmission electron microscopy, atomic force microscopy and small-angle X-ray scattering revealed that the mode of loading of siRNA in lamellar structures differs between the two formulations. Thus, siRNA was tightly packed in LPNs, while LPNs displayed lower adhesion than SNALPs. The LPNs mediated a higher TNF silencing effect in vitro than SNALPs in the RAW 264.7 macrophage cell line activated with lipopolysaccharide. For both types of delivery systems, macropinocytosis was involved in cellular uptake. In addition, clathrin-mediated endocytosis contributed to uptake of SNALPs. LPNs loaded with TNF siRNA mediated sequence-specific suppression of inflammation in a murine experimental arthritis model upon intra-articular administration. Hence, the present study demonstrates that LPN-mediated TNF knockdown constitutes a promising approach for arthritis therapy of TNF-mediated chronic inflammatory conditions.
Collapse
Affiliation(s)
- Manon A A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lasse H Klausen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kaushik Thanki
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark; Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Clinical Sciences of Companion Animals, Faculty Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| | - Xianghui Zeng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
32
|
Tukaj S, Kaminski M. Heat shock proteins in the therapy of autoimmune diseases: too simple to be true? Cell Stress Chaperones 2019; 24:475-479. [PMID: 31073900 PMCID: PMC6527538 DOI: 10.1007/s12192-019-01000-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/07/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Autoimmune diseases are characterized by the loss of immune tolerance to self-antigens which leads to an excessive immune responses and chronic inflammation. Although much progress has been made in revealing key players in pathophysiology of various autoimmune diseases, their therapy remains challenging and consists of conventional immunosuppressive treatments, including corticosteroids and more advanced biological therapies which are targeted at molecules involved in maintaining chronic inflammation. These therapies are focused on suppressing inflammation; nevertheless, a permanent balance between protective and pathogenic immune responses is not achieved. In addition, most of currently available therapies for autoimmune diseases induce severe side effects. Consequently, more effective and safer therapies are still required to control autoimmunity. Stress-induced cell protecting heat shock proteins (HSP) have been considered as a potential treatment targets for autoimmune diseases. HSP, predominantly intracellular components, might be released from bacteria or mammalian tissues and activate immune response. This activation may lead to either production of (auto)antibodies against HSP and/or induction of immune regulatory mechanisms, including expansion of desired T regulatory (Treg) cells. Because inadequate frequency or activity of Treg is a characteristic feature of autoimmune diseases, targeting this cell population is an important focus of immunotherapy approaches in autoimmunity.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Maciej Kaminski
- Department of Anaesthesiology and Intensive Therapy, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|
33
|
Abstract
Biologicals, e.g. TNF inhibitors, have improved dramatically the efficacy of medical interventions in autoimmune diseases, such as in rheumatoid arthritis (RA). However, although progressive inflammation can be halted in this way, no drug-free remissions or lasting cures are reached. For this to become real, therapies based on induction antigen-specific immune tolerance are sought. This review describes mechanisms of tolerance and the current possibilities for induction of therapeutic tolerance through antigen-specific vaccination approaches. And despite the fact that for various diseases the search for appropriate autoantigens is ongoing, pioneering studies are now already developed that use more broadly inflammation associated antigens. Through their capacity to preferentially induce regulatory T cells, heat shock proteins are an attractive source of such broadly inflammation associated antigens.
Collapse
Affiliation(s)
- Willem van Eden
- Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| |
Collapse
|
34
|
van Eden W, Jansen MAA, Ludwig IS, Leufkens P, van der Goes MC, van Laar JM, Broere F. Heat Shock Proteins Can Be Surrogate Autoantigens for Induction of Antigen Specific Therapeutic Tolerance in Rheumatoid Arthritis. Front Immunol 2019; 10:279. [PMID: 30873163 PMCID: PMC6401592 DOI: 10.3389/fimmu.2019.00279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
Technologies that enable induction of therapeutic tolerance may revolutionize the treatment of autoimmune diseases by their supposed potential to induce drug-free and lasting disease remission. In combination with diagnostic tests that screen for individuals at risk, these approaches may offer chances to halt disease before serious damage in the tissues can occur. In fact, for healthy individuals at risk, this could lead to a preventive form of vaccination. For therapeutic tolerance to re-instate natural self-tolerance it seems essential to induce tolerance for the critical autoantigens involved in disease. However, for most autoimmune diseases such antigens are poorly defined. This is the case for both disease inciting autoantigens and antigens that become involved through epitope spreading. A possible source of surrogate auto-antigens expressed in tissues during inflammation are heat shock proteins (HSP) or stress proteins. In this mini-review we discuss unique characteristics of HSP which provide them with the capacity to inhibit inflammatory processes. Various studies have shown that epitopes of HSP60 and HSP70 molecules can function as vaccines to downregulate a variety of autoimmune inflammatory diseases. Currently, several research groups are developing cell therapies with the intention to reach therapeutic tolerance. In this review, in which we are proposing to ex vivo load tolerant dendritic cells with a Treg inducing HSP70 derived peptide called B29, we are discussing the chances to develop this as an autologous tolDC therapeutic tolerance therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Willem van Eden
- Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Manon A A Jansen
- Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Department of Infection and Immunity, Utrecht University, Utrecht, Netherlands
| | - Irene S Ludwig
- Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Department of Infection and Immunity, Utrecht University, Utrecht, Netherlands
| | - Paul Leufkens
- Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Department of Infection and Immunity, Utrecht University, Utrecht, Netherlands
| | | | | | - Femke Broere
- Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands.,Faculty of Veterinary Medicine, Department of Infection and Immunity, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
35
|
Herzog RW, Kuteyeva V, Saboungi R, Terhorst C, Biswas M. Reprogrammed CD4 + T Cells That Express FoxP3 + Control Inhibitory Antibody Formation in Hemophilia A Mice. Front Immunol 2019; 10:274. [PMID: 30842776 PMCID: PMC6391332 DOI: 10.3389/fimmu.2019.00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 01/16/2023] Open
Abstract
Coagulation Factor VIII (FVIII) replacement therapy in hemophilia A patients is complicated by the development of inhibitory antibodies, which often render the treatment ineffective. Previous studies demonstrated a strong correlation between induction of regulatory T cells (Treg) and tolerance to the therapeutic protein. We, therefore, set out to evaluate whether the adoptive transfer of FVIII-specific CD4+ Treg cells prevents inhibitor response to FVIII protein therapy. To this end, we first retrovirally transduced FoxP3+ into FVIII-specific CD4+ cells, which resulted in cells that stably express FoxP3, are phenotypically similar to peripherally induced Tregs and are antigen specific suppressors, as judged by in vitro assays. Upon transfer of the FVIII-specific CD4+ FoxP3+ cells into hemophilia A mice, development of inhibitory antibodies in response to administering FVIII protein was completely suppressed. Suppression was extended for 2 months, even after transferred cells were no longer detectable in the secondary lymphoid organs of recipient animals. Upon co-transfer of FoxP3+-transduced cells with the B cell depleting anti-CD20 into mice with pre-existing inhibitory antibodies to FVIII, the escalation of inhibitory antibody titers in response to subsequent FVIII protein therapy was dramatically reduced. We conclude that reprogramed FoxP3 expressing cells are capable of inducing the in vivo conversion of endogenous FVIII peripheral Tregs, which results in sustained suppression of FVIII inhibitors caused by replacement therapy in recipient hemophilia A animals.
Collapse
Affiliation(s)
- Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Veronica Kuteyeva
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Rania Saboungi
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Moanaro Biswas
| |
Collapse
|
36
|
Schinnerling K, Rosas C, Soto L, Thomas R, Aguillón JC. Humanized Mouse Models of Rheumatoid Arthritis for Studies on Immunopathogenesis and Preclinical Testing of Cell-Based Therapies. Front Immunol 2019; 10:203. [PMID: 30837986 PMCID: PMC6389733 DOI: 10.3389/fimmu.2019.00203] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 01/12/2023] Open
Abstract
Rodent models of rheumatoid arthritis (RA) have been used over decades to study the immunopathogenesis of the disease and to explore intervention strategies. Nevertheless, mouse models of RA reach their limit when it comes to testing of new therapeutic approaches such as cell-based therapies. Differences between the human and the murine immune system make it difficult to draw reliable conclusions about the success of immunotherapies. To overcome this issue, humanized mouse models have been established that mimic components of the human immune system in mice. Two main strategies have been pursued for humanization: the introduction of human transgenes such as human leukocyte antigen molecules or specific T cell receptors, and the generation of mouse/human chimera by transferring human cells or tissues into immunodeficient mice. Recently, both approaches have been combined to achieve more sophisticated humanized models of autoimmune diseases. This review discusses limitations of conventional mouse models of RA-like disease and provides a closer look into studies in humanized mice exploring their usefulness and necessity as preclinical models for testing of cell-based therapies in autoimmune diseases such as RA.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Carlos Rosas
- Departamento de Ciencias Morfológicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile.,Unidad de Dolor, Departamento de Medicina, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Ranjeny Thomas
- Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Juan Carlos Aguillón
- Programa Disciplinario de Inmunología, Immune Regulation and Tolerance Research Group, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
37
|
Mantej J, Polasik K, Piotrowska E, Tukaj S. Autoantibodies to heat shock proteins 60, 70, and 90 in patients with rheumatoid arthritis. Cell Stress Chaperones 2019; 24:283-287. [PMID: 30465159 PMCID: PMC6363621 DOI: 10.1007/s12192-018-0951-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSP) have been reported to impact immune responses and to be associated with rheumatoid arthritis (RA). Recently, we provided evidence for a role of autoantibodies to Hsp40 in patients with RA. In this study, we aimed at investigating the humoral autoimmune response to Hsp60, Hsp70, and Hsp90 in RA patients (n = 39). In comparison with healthy controls (n = 40), circulating IgG, IgM, and IgA autoantibodies against Hsp60, Hsp70, and Hsp90 were significantly increased in RA patients. Non-parametric statistical analysis, however, revealed no significant association between anti-HSP and disease activity or disease progression. On the other hand, positive correlations between serum levels of anti-Hsp60 IgG and IL-4 (Th2-like cytokine) or between serum levels of anti-Hsp90 IgG and IFN-ɣ (Th1-like cytokine) were found to be statistically significant in RA. In addition, a significant inverse correlation was found for serum levels of anti-Hsp70 IgM and TNF-α (Th1-like cytokine) in RA. Our results suggest a pronounced anti-Hsp60, anti-Hsp70, and anti-Hsp90 humoral autoimmune response in RA patients that seems not to be directly linked to RA pathophysiology, however, may have a potential modulatory impact on inflammatory status in this disease. Further investigations are needed to clarify the role of anti-HSP autoantibodies in RA.
Collapse
Affiliation(s)
- Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Kinga Polasik
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
38
|
Cichoż-Lach H, Grywalska E, Michalak A, Kowalik A, Mielnik M, Roliński J. Deviations in Peripheral Blood Cell Populations are Associated with the Stage of Primary Biliary Cholangitis and Presence of Itching. Arch Immunol Ther Exp (Warsz) 2018; 66:443-452. [PMID: 29951695 PMCID: PMC6245241 DOI: 10.1007/s00005-018-0515-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/29/2018] [Indexed: 01/26/2023]
Abstract
To evaluate the role of Th17, Treg cells, activated T CD3+ and B CD19+ lymphocytes in primary biliary cholangitis (PBC) patients. 40 female patients with PBC and 20 healthy donors were enrolled in this study. The percentages and absolute counts of Th17, Treg, activated T CD3+, B CD19+, NK, NKT-like lymphocytes were measured by flow cytometry. Our research revealed significantly lower frequencies and absolute counts of CD4+CD25+FOXP3+ Treg cells (p < 0.0001), higher percentages and absolute counts of Th17 cells (IL-17A+CD3+CD4+; p < 0.0001 and p = 0.009, respectively), CD3-/CD16+CD56+ NK cells (p < 0.0001 and p = 0.039, respectively), CD3+/CD16+CD56+ NKT-like cells (p < 0.0001 and p = 0.048, respectively). There were also higher percentages and numbers of B CD19+ lymphocytes (p = 0.002 and p = 0.001, respectively) and higher percentages and absolute counts of activated B CD19+CD25+ cells (p = 0.007 and p = 0.002, respectively). Moreover, we observed a statistically significant correlation between the presence of itching and particular peripheral blood subpopulations in PBC patients. Absolute counts of both CD4+CD3+ cells (p = 0.0119) and CD3+CD25+ cells (p = 0.0329) were lower in patients with pruritus. A similar dependency was noted in reference to percentages of NKT-like cells (CD3+/CD16+CD56+; p = 0.0359) and (CD3+) T lymphocytes (p = 0.0302). Th17 and Treg cells are involved in the course of PBC. There is also the association between the pruritus and peripheral blood subpopulations.
Collapse
Affiliation(s)
- Halina Cichoż-Lach
- Department of Gastroenterology, Medical University of Lublin, Jaczewski 8, 20-954, Lublin, Poland.
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Agata Michalak
- Department of Gastroenterology, Medical University of Lublin, Jaczewski 8, 20-954, Lublin, Poland
| | - Agnieszka Kowalik
- Department of Gastroenterology, Medical University of Lublin, Jaczewski 8, 20-954, Lublin, Poland
| | - Michał Mielnik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
39
|
van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T-cell epitopes. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0531. [PMID: 29203716 DOI: 10.1098/rstb.2016.0531] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Experimental models of autoimmune diseases have revealed the disease protective role of heat shock proteins (HSPs). Both the administration of exogenous extracellular, mostly recombinant, HSP and the experimental co-induction of endogenous intracellular HSP in models have been shown to lead to production of disease protective regulatory T cells (Tregs). Similar to HSP taken up from extracellular bodily fluids, due to stress-related autophagy upregulated HSP also from intracellular sources is a major provider for the major histocompatibility class II (MHCII) ligandome; therefore, both extracellular and intracellular HSP can be prominent targets of Treg. The development of therapeutic peptide vaccines for the restoration of immune tolerance in inflammatory diseases is an area of intensive research. In this area, HSPs are a target for tolerance-inducing T-cell therapy, because of their wide expression in inflamed tissues. In humans, in whom the actual disease trigger is frequently unknown, HSP peptides offer chances for tolerance-promoting interventions through induction of HSP-specific Treg. Recently, we have shown the ability of a bacterial HSP70-derived peptide, HSP70-B29, to induce HSP-specific Tregs that suppressed arthritis by cross-recognition of their mammalian HSP70 homologues, abundantly present in the MHCII ligandome of stressed mouse and human antigen-presenting cells in inflamed tissues.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands
| |
Collapse
|
40
|
Le Poole IC, Mehrotra S. Replenishing Regulatory T Cells to Halt Depigmentation in Vitiligo. J Investig Dermatol Symp Proc 2018; 18:S38-S45. [PMID: 28941492 DOI: 10.1016/j.jisp.2016.10.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 02/07/2023]
Abstract
Vitiligo is a cutaneous autoimmune disease, especially devastating to patients with darker skin tones because of the contrast between unaffected and lesional skin. We studied immune cells infiltrating vitiligo skin and found very few regulatory T cells (Tregs). Vitiligo was not associated with a reduced frequency or function of circulating Tregs. To manipulate Treg function, we used mouse models expressing melanocyte-reactive TCRs, following changes in pelage color. We also isolated splenocytes to measure Treg function and evaluated cutaneous Treg abundance. Even small numbers of Tregs transferred into depigmenting mice could effectively interfere with depigmentation. The same holds true for treatment with rapamycin, readily translatable for use in human patients; such treatment may be well tolerated. Because vitiligo skin is relatively devoid of cells that produce the chemokine CCL22, whereas circulating Tregs express normal levels of its receptor CCR4, we overexpressed Ccl22 in the skin of vitiligo-prone mice to assess the resulting levels of depigmentation. Markedly reduced depigmentation was accompanied by Treg infiltration to the skin. With several options available to support a healthy balance between Tregs and effector T cells, the next challenge will be to render such treatment antigen specific and avoid general immunosuppression.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Pathology and Microbiology/Immunology, Oncology Research Institute, Loyola University, Chicago, Illinois, USA.
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
41
|
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol 2018; 40:201-211. [DOI: 10.1080/08923973.2018.1437625] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Arya
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ava Nasrolahi
- Molecular Medicine Department, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
van Eden W, Jansen MAA, de Wolf ACM, Ludwig IS, Leufkens P, Broere F. The Immunomodulatory Potential of tolDCs Loaded with Heat Shock Proteins. Front Immunol 2017; 8:1690. [PMID: 29250070 PMCID: PMC5717764 DOI: 10.3389/fimmu.2017.01690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023] Open
Abstract
Disease suppressive T cell regulation may depend on cognate interactions of regulatory T cells with self-antigens that are abundantly expressed in the inflamed tissues. Heat shock proteins (HSPs) are by their nature upregulated in stressed cells and therefore abundantly present as potential targets for such regulation. HSP immunizations have led to inhibition of experimentally induced inflammatory conditions in various models. However, re-establishment of tolerance in the presence of an ongoing inflammatory process has remained challenging. Since tolerogenic DCs (tolDCs) have the combined capacity of mitigating antigen-specific inflammatory responses and of endowing T cells with regulatory potential, it seems attractive to combine the anti-inflammatory qualities of tolDCs with those of HSPs.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Manon A A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - A Charlotte Mt de Wolf
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Irene S Ludwig
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
43
|
van Eden W, Jansen MAA, Ludwig I, van Kooten P, van der Zee R, Broere F. The Enigma of Heat Shock Proteins in Immune Tolerance. Front Immunol 2017; 8:1599. [PMID: 29209330 PMCID: PMC5702443 DOI: 10.3389/fimmu.2017.01599] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The fundamental problem of autoimmune diseases is the failure of the immune system to downregulate its own potentially dangerous cells, which leads to destruction of tissue expressing the relevant autoantigens. Current immunosuppressive therapies offer relief but fail to restore the basic condition of self-tolerance. They do not induce long-term physiological regulation resulting in medication-free disease remissions. Heat shock proteins (HSPs) have shown to possess the capacity of inducing lasting protective immune responses in models of experimental autoimmune diseases. Especially mycobacterial HSP60 and HSP70 were shown to induce disease inhibitory IL-10-producing regulatory T cells in many different models. This in itself may seem enigmatic, since based on earlier studies, HSPs were also coined sometimes as pro-inflammatory damage-associated molecular patterns. First clinical trials with HSPs in rheumatoid arthritis and type I diabetes have also indicated their potential to restore tolerance in autoimmune diseases. Data obtained from the models have suggested three aspects of HSP as being critical for this tolerance promoting potential: 1. evolutionary conservation, 2. most frequent cytosolic/nuclear MHC class II natural ligand source, and 3. upregulation under (inflammatory) stress. The combination of these three aspects, which are each relatively unique for HSP, may provide an explanation for the enigmatic immune tolerance promoting potential of HSP.
Collapse
Affiliation(s)
- Willem van Eden
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Manon A A Jansen
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Irene Ludwig
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Peter van Kooten
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Ruurd van der Zee
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| | - Femke Broere
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine (FVM), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
44
|
Barbera Betancourt A, Lyu Q, Broere F, Sijts A, Rutten VPMG, van Eden W. T Cell-Mediated Chronic Inflammatory Diseases Are Candidates for Therapeutic Tolerance Induction with Heat Shock Proteins. Front Immunol 2017; 8:1408. [PMID: 29123529 PMCID: PMC5662553 DOI: 10.3389/fimmu.2017.01408] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Failing immunological tolerance for critical self-antigens is the problem underlying most chronic inflammatory diseases of humans. Despite the success of novel immunosuppressive biological drugs, the so-called biologics, in the treatment of diseases such rheumatoid arthritis (RA) and type 1 diabetes, none of these approaches does lead to a permanent state of medicine free disease remission. Therefore, there is a need for therapies that restore physiological mechanisms of self-tolerance. Heat shock proteins (HSPs) have shown disease suppressive activities in many models of experimental autoimmune diseases through the induction of regulatory T cells (Tregs). Also in first clinical trials with HSP-based peptides in RA and diabetes, the induction of Tregs was noted. Due to their exceptionally high degree of evolutionary conservation, HSP protein sequences (peptides) are shared between the microbiota-associated bacterial species and the self-HSP in the tissues. Therefore, Treg mechanisms, such as those induced and maintained by gut mucosal tolerance for the microbiota, can play a role by targeting the more conserved HSP peptide sequences in the inflamed tissues. In addition, the stress upregulated presence of HSP in these tissues may well assist the targeting of the HSP induced Treg specifically to the sites of inflammation.
Collapse
Affiliation(s)
- Ariana Barbera Betancourt
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Qingkang Lyu
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Femke Broere
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Alice Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Victor P M G Rutten
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| | - Willem van Eden
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
45
|
Jansen MAA, Spiering R, Broere F, van Laar JM, Isaacs JD, van Eden W, Hilkens CMU. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases? Immunology 2017; 153:51-59. [PMID: 28804903 DOI: 10.1111/imm.12811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens.
Collapse
Affiliation(s)
- Manon A A Jansen
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Rachel Spiering
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Femke Broere
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Jacob M van Laar
- Department of Rheumatology & Clinical Immunology, UMC Utrecht, Utrecht, the Netherlands
| | - John D Isaacs
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Willem van Eden
- Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, the Netherlands
| | - Catharien M U Hilkens
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), UK, UK.,NIHR-Newcastle Biomedical Research Centre in Ageing and Long-Term Conditions, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
46
|
Wang LC, Liao LX, Lv HN, Liu D, Dong W, Zhu J, Chen JF, Shi ML, Fu G, Song XM, Jiang Y, Zeng KW, Tu PF. Highly Selective Activation of Heat Shock Protein 70 by Allosteric Regulation Provides an Insight into Efficient Neuroinflammation Inhibition. EBioMedicine 2017; 23:160-172. [PMID: 28807514 PMCID: PMC5605382 DOI: 10.1016/j.ebiom.2017.08.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is widely involved in immune disorders, making it as an attractive drug target for inflammation diseases. Nonselective induction of Hsp70 upregulation for inflammation therapy could cause extensive interference in inflammation-unrelated protein functions, potentially resulting in side effects. Nevertheless, direct pharmacological activation of Hsp70 via targeting specific functional amino acid residue may provide an insight into precise Hsp70 function regulation and a more satisfactory treatment effect for inflammation, which has not been extensively focused. Here we show a cysteine residue (Cys306) for selective Hsp70 activation using natural small-molecule handelin. Covalent modification of Cys306 significantly elevates Hsp70 activity and shows more satisfactory anti-neuroinflammation effects. Mechanism study reveals Cys306 modification by handelin induces an allosteric regulation to facilitate adenosine triphosphate hydrolysis capacity of Hsp70, which leads to the effective blockage of subsequent inflammation signaling pathway. Collectively, our study offers some insights into direct pharmacological activation of Hsp70 by specially targeting functional cysteine residue, thus providing a powerful tool for accurately modulating neuroinflammation pathogenesis in human with fewer undesirable adverse effects. Cys306 is a druggable residue for direct pharmacological activation of Hsp70. Covalent modification of Cys306 promotes direct Hsp70 activation via allosteric effect. Pharmacological activation of Hsp70 exerts satisfactory inhibition on neuroinflammation with fewer side effects.
Accumulated evidence reveals that Hsp70, a stress response protein, is highly involved in various neuroimmunological diseases. Hsp70 herein serves as a tempting target for anti-inflammation therapy. In this work, we identified an herb-derived guaianolide dimer compound handelin as a potent activator of Hsp70 with anti-neuroinflammatory effects. Handelin covalently modified Cys306 residue of Hsp70, and then activated Hsp70 by allosteric effect. These results can provide an insight into the direct pharmacological regulation of Hsp70 function by targeting specific amino acid residue and also guide future rational drug design to treat human neuroimmunological diseases.
Collapse
Affiliation(s)
- Li-Chao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Xi Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Wei Dong
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jin-Feng Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meng-Ling Shi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ge Fu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao-Min Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Aranda-Uribe IS, Ortega E, Martínez-Cordero E. Immunization of BALB/c mice with pigeon IgY induces the production of anti-IgG autoantibodies. Autoimmunity 2017; 50:336-345. [PMID: 28699799 DOI: 10.1080/08916934.2017.1344974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The breakdown of immunological tolerance due to the activation of autoreactive B and T cells triggers physiopathological processes. An example of such conditions is the production of IgG autoantibodies specific for the Fc portion of IgG (anti-Fcγ IgG). Previous reports have shown that patients with pigeon-related hypersensitivity pneumonitis exhibit an increase in the serum levels of anti-Fcγ IgG. There is no in vivo model for the study of this condition and the immunological mechanisms of tolerance breakdown associated with sensitization by pigeon antigens are still unknown. In this work, we show that the repeated immunization of BALB/c mice with pigeon IgY during 16-weeks induces the production of anti-Fcγ IgG and keeps their high levels for seven weeks. The late appearance of anti-Fcγ IgG autoantibodies in the plasma is similar to what has been reported in other experimental autoimmune models. With the occurrence of anti-Fcγ IgG, there is a reduction in the proportion of Foxp3 + cells (regulatory T cells, Tregs) within the population of splenic CD4 + CD25 + T cells. Thus, our data showed that the immunization of BALB/c mice with IgY promotes the production of anti-Fcγ IgG along with a decrease in Tregs in the spleen. We propose that immunization of mice with pigeon antigens, like IgY can provide a model to study the immunological mechanisms involved in the development of pigeon-related hypersensitivity pneumonitis.
Collapse
Affiliation(s)
- Ivan Sammir Aranda-Uribe
- a Facultad de Medicina , Universidad Nacional Autónoma de México, Posgrado Ciencias Biológicas , México City , México.,b Laboratorio de Autoinmunidad , Unidad de Investigación INER , México City , México
| | - Enrique Ortega
- c Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , México City , México
| | | |
Collapse
|
48
|
Song J. Stem Cell-Derived Regulatory T Cells for Therapeutic Use in Arthritis. ACTA ACUST UNITED AC 2017; 2. [PMID: 28042612 PMCID: PMC5193373 DOI: 10.16966/2470-1025.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pluripotent stem cells (PSCs) can be utilized to obtain a renewable source of healthy regulatory T cells (Tregs) to treat autoimmune arthritis as they have the ability to produce almost all cell types in the body, including Tregs. However, the right conditions for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) remain unknown. An ongoing project will determine the mechanisms underlying the Ag-specific PSC-Treg treatments that aim to modulate tolerance in autoimmune arthritis. The knowledge gained from these studies will provide new insights into cell-based therapies in autoimmune arthritis, and advance the understanding of fundamental mechanisms underlying Treg differentiation.
Collapse
Affiliation(s)
- Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
49
|
Lee HW, Jie HB, Bollyky PL, Sarracino D, Kim TS, Wilson BS. Role of dendritic cell maturation factors produced by human invariant NKT cells in immune tolerance. J Leukoc Biol 2016; 101:989-1003. [PMID: 27837018 DOI: 10.1189/jlb.1a0416-164rrr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 10/04/2016] [Accepted: 10/27/2016] [Indexed: 01/12/2023] Open
Abstract
In this study, we used the culture supernatant of iNKT cells to identify human myeloid DC maturation factors produced by human CD4+ iNKT cells. S100A8 had a strong maturation effect. Notably, the recombinant S100A8 protein displayed properties of DC maturation functioning, and the induction of DC differentiation by both the purified and the recombinant protein were blocked by anti-S100A8 and anti-TLR-4 mAbs. DC differentiation induced by anti-major histocompatibility complex class II/CD1d Ab, S100A8, or both was qualitatively indistinguishable from that induced by the coculture of DCs and iNKT cells or via culture supplementation with supernatants from activated CD4+ iNKT cells. S100A8 also induced CD4+/CD25+/Foxp3+ Treg cells from naïve T cells. S100A8 may contribute to DC differentiation by elevating transcription factors or activating transcription factor-2, heat shock factor-1, or both, in mature DCs. S100A8 is a novel candidate iNKT cell-dependent DC maturation factor.
Collapse
Affiliation(s)
- Hyeong-Woo Lee
- Departments of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, Republic of Korea.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Hyun Bae Jie
- OncoMed Pharmaceuticals, Inc., Redwood City, California
| | - Paul L Bollyky
- Division of Infectious Diseases, Stanford University Medical Center, Stanford, California; and
| | - David Sarracino
- Thermo Fisher Scientific Biomarkers Research Initiatives in Mass Spectrometry (BRIMS) Center, Cambridge, Massachusetts
| | - Tong-Soo Kim
- Departments of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon, Republic of Korea;
| | - Brian S Wilson
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida;
| |
Collapse
|
50
|
Haque M, Fino K, Sandhu P, Song J. Development of Stem Cell-derived Antigen-specific Regulatory T Cells Against Autoimmunity. J Vis Exp 2016. [PMID: 27911371 DOI: 10.3791/54720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Autoimmune diseases arise due to the loss of immunological self-tolerance. Regulatory T cells (Tregs) are important mediators of immunologic self-tolerance. Tregs represent about 5 - 10% of the mature CD4+ T cell subpopulation in mice and humans, with about 1 - 2% of those Tregs circulating in the peripheral blood. Induced pluripotent stem cells (iPSCs) can be differentiated into functional Tregs, which have a potential to be used for cell-based therapies of autoimmune diseases. Here, we present a method to develop antigen (Ag)-specific Tregs from iPSCs (i.e., iPSC-Tregs). The method is based on incorporating the transcription factor FoxP3 and an Ag-specific T cell receptor (TCR) into iPSCs and then differentiating on OP9 stromal cells expressing Notch ligands delta-like (DL) 1 and DL4. Following in vitro differentiation, the iPSC-Tregs express CD4, CD8, CD3, CD25, FoxP3, and Ag-specific TCR and are able to respond to Ag stimulation. This method has been successfully applied to cell-based therapy of autoimmune arthritis in a murine model. Adoptive transfer of these Ag-specific iPSC-Tregs into Ag-induced arthritis (AIA)-bearing mice has the ability to reduce joint inflammation and swelling and to prevent bone loss.
Collapse
Affiliation(s)
- Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine
| | - Kristin Fino
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine
| | - Praneet Sandhu
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine;
| |
Collapse
|