1
|
Tajer BJ, Kalu G, Jay S, Wynn E, Decaux A, Gilbert P, Singer HD, Kidd MD, Nelson JA, Harake N, Lopez NJ, Souchet NR, Luong AG, Savage AM, Min S, Karabacak A, Böhm S, Kim RT, Froitzheim T, Sousounis K, Courtemanche K, Han J, Payzin-Dogru D, Blair SJ, Roy S, Fei JF, Tanaka EM, Whited JL. Optimized toolkit for the manipulation of immortalized axolotl fibroblasts. Methods 2025; 240:21-34. [PMID: 40187387 DOI: 10.1016/j.ymeth.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
The axolotl salamander model has broad utility for regeneration studies, but this model is limited by a lack of efficient cell-culture-based tools. The Axolotl Limb-1 (AL-1) fibroblast line, the only available immortalized axolotl cell line, was first published over 20 years ago, but many established molecular biology techniques, such as lipofectamine transfection, CRISPR-Cas9 mutagenesis, and antibiotic selection, work poorly or remain untested in AL-1 cells. Innovating technologies to manipulate AL-1 cells in culture and study their behavior following transplantation into the axolotl will complement in-vivo studies, decrease the number of animals used, and enable the faster, more streamlined investigation of regenerative biology questions. Here, we establish transfection, mutagenesis, antibiotic selection, and in-vivo transplantation techniques in axolotl AL-1 cells. These techniques will enable efficient culture with AL-1 cells and guide future tool development for the culture and manipulation of other salamander cell lines.
Collapse
Affiliation(s)
- Benjamin J Tajer
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Glory Kalu
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sarah Jay
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Eric Wynn
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Antoine Decaux
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69342 Lyon Cedex 07, France
| | - Paul Gilbert
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Hani D Singer
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Maddeline D Kidd
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Jeffery A Nelson
- Bauer Core Facility, Harvard University, Northwest Building, Room B239, 52 Oxford St., Cambridge, MA 02138, USA
| | - Noora Harake
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Noah J Lopez
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Nathan R Souchet
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Anna G Luong
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Aaron M Savage
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sangwon Min
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Alparslan Karabacak
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Sebastian Böhm
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Ryan T Kim
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Tim Froitzheim
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Konstantinos Sousounis
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Katherine Courtemanche
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Jihee Han
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Duygu Payzin-Dogru
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Steven J Blair
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Elly M Tanaka
- Institute of Molecular Biotechnology, Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr.-Bohr-Gasse 3, 1030 Vienna, Austria
| | - Jessica L Whited
- Departmet of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave., Cambridge, MA 02318, USA; Broad Institute, 415 Main St., Cambridge, MA 02142, USA; Department of Orthopedic Surgery, Brigham & Women's Hospital, Mass General Brigham, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
2
|
Lust K, Tanaka EM. Adeno-associated viruses for efficient gene expression in the axolotl nervous system. Proc Natl Acad Sci U S A 2025; 122:e2421373122. [PMID: 40042904 PMCID: PMC11912378 DOI: 10.1073/pnas.2421373122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Axolotls are amphibian models for studying nervous system evolution, development, and regeneration. Tools to visualize and manipulate cells of the axolotl nervous system with high-efficiency, spatial and temporal precision are therefore greatly required. Recombinant adeno-associated viruses (AAVs) are frequently used for in vivo gene transfer of the nervous system but virus-mediated gene delivery to the axolotl nervous system has not yet been described. Here, we demonstrate the use of AAVs for efficient gene transfer within the axolotl brain, the spinal cord, and the retina. We show that serotypes AAV8, AAV9, and AAVPHP.eB are suitable viral vectors to infect both excitatory and inhibitory neuronal populations of the axolotl brain. We further use AAV9 to trace retrograde and anterograde projections between the retina and the brain and identify a cell population projecting from the brain to the retina. Together, our work establishes AAVs as a powerful tool to interrogate neuronal organization in the axolotl.
Collapse
Affiliation(s)
- Katharina Lust
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna1030, Austria
| | - Elly M. Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna1030, Austria
| |
Collapse
|
3
|
Matsubara H, Kawasumi-Kita A, Nara S, Yokoyama H, Hayashi T, Takeuchi T, Yokoyama H. Appendage-restricted gene induction using a heated agarose gel for studying regeneration in metamorphosed Xenopus laevis and Pleurodeles waltl. Dev Growth Differ 2023; 65:86-93. [PMID: 36680534 DOI: 10.1111/dgd.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/27/2022] [Accepted: 11/16/2022] [Indexed: 01/22/2023]
Abstract
Amphibians and fish often regenerate lost parts of their appendages (tail, limb, and fin) after amputation. Limb regeneration in adult amphibians provides an excellent model for appendage (limb) regeneration through 3D morphogenesis along the proximodistal, dorsoventral, and anteroposterior axes in mammals, because the limb is a homologous organ among amphibians and mammals. However, manipulating gene expression in specific appendages of adult amphibians remains difficult; this in turn hinders elucidation of the molecular mechanisms underlying appendage regeneration. To address this problem, we devised a system for appendage-specific gene induction using a simplified protocol named the "agarose-embedded heat shock (AeHS) method" involving the combination of a heat-shock-inducible system and insertion of an appendage in a temperature-controlled agarose gel. Gene expression was then induced specifically and ubiquitously in the regenerating limbs of metamorphosed amphibians, including a frog (Xenopus laevis) and newt (Pleurodeles waltl). We also induced gene expression in the regenerating tail of a metamorphosed P. waltl newt using the same method. This method can be applied to adult amphibians with large body sizes. Furthermore, this method enables simultaneous induction of gene expression in multiple individuals; further, the data are obtained in a reproducible manner, enabling the analysis of gene functions in limb and tail regeneration. Therefore, this method will facilitate elucidation of the molecular mechanisms underlying appendage regeneration in amphibians, which can support the development of regenerative therapies for organs, such as the limbs and spinal cord.
Collapse
Affiliation(s)
- Haruka Matsubara
- School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Aiko Kawasumi-Kita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Saki Nara
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Hibiki Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| | - Toshinori Hayashi
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Takeuchi
- School of Life Science, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
| |
Collapse
|
4
|
Fu S, Peng C, Zeng YY, Qiu Y, Liu Y, Fei JF. Establishing an Efficient Electroporation-Based Method to Manipulate Target Gene Expression in the Axolotl Brain. Cell Transplant 2023; 32:9636897231200059. [PMID: 37724837 PMCID: PMC10510365 DOI: 10.1177/09636897231200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.
Collapse
Affiliation(s)
- Sulei Fu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Peng
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yan-Yun Zeng
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuanhui Qiu
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yanmei Liu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Murawala P, Oliveira CR, Okulski H, Yun MH, Tanaka EM. Baculovirus Production and Infection in Axolotls. Methods Mol Biol 2023; 2562:369-387. [PMID: 36272088 PMCID: PMC9665047 DOI: 10.1007/978-1-0716-2659-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salamanders have served as an excellent model for developmental and tissue regeneration studies. While transgenic approaches are available for various salamander species, their long generation time and expensive maintenance have driven the development of alternative gene delivery methods for functional studies. We have previously developed pseudotyped baculovirus (BV) as a tool for gene delivery in the axolotl (Oliveira et al. Dev Biol 433(2):262-275, 2018). Since its initial conception, we have refined our protocol of BV production and usage in salamander models. In this chapter, we describe a detailed and versatile protocol for BV-mediated transduction in urodeles.
Collapse
Affiliation(s)
- Prayag Murawala
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, ME, USA.
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany.
| | - Catarina R Oliveira
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | - Helena Okulski
- Research - Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Maximina H Yun
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Research - Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
6
|
Bölük A, Yavuz M, Demircan T. Axolotl: A resourceful vertebrate model for regeneration and beyond. Dev Dyn 2022; 251:1914-1933. [PMID: 35906989 DOI: 10.1002/dvdy.520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 01/30/2023] Open
Abstract
The regenerative capacity varies significantly among the animal kingdom. Successful regeneration program in some animals results in the functional restoration of tissues and lost structures. Among the highly regenerative animals, axolotl provides multiple experimental advantages with its many extraordinary characteristics. It has been positioned as a regeneration model organism due to its exceptional renewal capacity, including the internal organs, central nervous system, and appendages, in a scar-free manner. In addition to this unique regeneration ability, the observed low cancer incidence, its resistance to carcinogens, and the reversing effect of its cell extract on neoplasms strongly suggest its usability in cancer research. Axolotl's longevity and efficient utilization of several anti-aging mechanisms underline its potential to be employed in aging studies.
Collapse
Affiliation(s)
- Aydın Bölük
- School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mervenur Yavuz
- Institute of Health Sciences, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Turan Demircan
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
| |
Collapse
|
7
|
Tilley L, Papadopoulos SC, Pende M, Fei JF, Murawala P. The use of transgenics in the laboratory axolotl. Dev Dyn 2022; 251:942-956. [PMID: 33949035 PMCID: PMC8568732 DOI: 10.1002/dvdy.357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
The ability to generate transgenic animals sparked a wave of research committed to implementing such technology in a wide variety of model organisms. Building a solid base of ubiquitous and tissue-specific reporter lines has set the stage for later interrogations of individual cells or genetic elements. Compared to other widely used model organisms such as mice, zebrafish and fruit flies, there are only a few transgenic lines available in the laboratory axolotl (Ambystoma mexicanum), although their number is steadily expanding. In this review, we discuss a brief history of the transgenic methodologies in axolotl and their advantages and disadvantages. Next, we discuss available transgenic lines and insights we have been able to glean from them. Finally, we list challenges when developing transgenic axolotl, and where further work is needed in order to improve their standing as both a developmental and regenerative model.
Collapse
Affiliation(s)
- Lydia Tilley
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
| | - Sofia-Christina Papadopoulos
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| | - Marko Pende
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
| | - Ji-Feng Fei
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Prayag Murawala
- Mount Desert Island Biological Laboratory (MDIBL), Salisbury Cove, Maine
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Abstract
The salamander Ambystoma mexicanum, commonly called "the axolotl" has a long, illustrious history as a model organism, perhaps with one of the longest track records as a laboratory-bred vertebrate, yet it also holds a prominent place among the emerging model organisms. Or rather it is by now an "emerged" model organism, boasting a full cohort molecular genetic tools that allows an expanding community of researchers in the field to explore the remarkable traits of this animal including regeneration, at cellular and molecular precision-which had been a dream for researchers over the years. This chapter describes the journey to this status, that could be helpful for those developing their respective animal or plant models.
Collapse
Affiliation(s)
- Karen Echeverri
- Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Jifeng Fei
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
9
|
Sasidharan V, Sánchez Alvarado A. The Diverse Manifestations of Regeneration and Why We Need to Study Them. Cold Spring Harb Perspect Biol 2021; 14:a040931. [PMID: 34750171 PMCID: PMC9438785 DOI: 10.1101/cshperspect.a040931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
For hundreds of years, the question of why some organisms can regenerate missing body parts while others cannot has remained poorly understood. This has been due in great part to the inability to genetically, molecularly, and cellularly dissect this problem for most of the history of the field. It has only been in the past 20-30 years that important mechanistic advances have been made in methodologies that introduce loss and gain of gene function in animals that can regenerate. However, we still have a very incomplete understanding of how broadly regenerative abilities may be dispersed across species and whether or not such properties share a common evolutionary origin, which may have emerged independently or both. Understanding regeneration, therefore, will require rigorously practiced fundamental, curiosity-driven, discovery research. Expanding the number of research organisms used to study regeneration allows us to uncover aspects of this problem we may not yet know exist and simultaneously increases our chances of solving this long-standing problem of biology.
Collapse
|
10
|
Hincapie Agudelo M, Carbonell Medina BA, Arenas Gómez CM, Delgado JP. Ambystoma mexicanum, a model organism in developmental biology and regeneration: a colombian experience. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v27n1.88309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Ambystoma mexicanum is a urodele amphibian endemic to Xochimilco Lake in Mexico, it belongs to the salamander family Ambystomatidae. This species has frequently been used as model organism in developmental biology and regeneration laboratories around the world due to its broad regenerative capacities and adaptability to laboratory conditions. In this review we describe the establishment of the first colony of axolotls in Colombia to study tissue regeneration and our perspectives on the use A. mexicanum as a model organism in Colombia are discussed emphasizing its possible uses in regeneration and developmental biology
Collapse
|
11
|
Nishizaki SS, McDonald TL, Farnum GA, Holmes MJ, Drexel ML, Switzenberg JA, Boyle AP. The Inducible lac Operator-Repressor System Is Functional in Zebrafish Cells. Front Genet 2021; 12:683394. [PMID: 34220959 PMCID: PMC8249864 DOI: 10.3389/fgene.2021.683394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Zebrafish are a foundational model organism for studying the spatio-temporal activity of genes and their regulatory sequences. A variety of approaches are currently available for editing genes and modifying gene expression in zebrafish, including RNAi, Cre/lox, and CRISPR-Cas9. However, the lac operator-repressor system, an E. coli lac operon component which has been adapted for use in many other species and is a valuable, flexible tool for inducible modulation of gene expression studies, has not been previously tested in zebrafish. Results Here we demonstrate that the lac operator-repressor system robustly decreases expression of firefly luciferase in cultured zebrafish fibroblast cells. Our work establishes the lac operator-repressor system as a promising tool for the manipulation of gene expression in whole zebrafish. Conclusion Our results lay the groundwork for the development of lac-based reporter assays in zebrafish, and adds to the tools available for investigating dynamic gene expression in embryogenesis. We believe this work will catalyze the development of new reporter assay systems to investigate uncharacterized regulatory elements and their cell-type specific activities.
Collapse
Affiliation(s)
- Sierra S Nishizaki
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Torrin L McDonald
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Gregory A Farnum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Monica J Holmes
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Melissa L Drexel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Leigh ND, Sessa S, Dragalzew AC, Payzin-Dogru D, Sousa JF, Aggouras AN, Johnson K, Dunlap GS, Haas BJ, Levin M, Schneider I, Whited JL. von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evol Dev 2020; 22:297-311. [PMID: 32163674 PMCID: PMC7390686 DOI: 10.1111/ede.12332] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regenerative ability varies tremendously across species. A common feature of regeneration of appendages such as limbs, fins, antlers, and tails is the formation of a blastema—a transient structure that houses a pool of progenitor cells that can regenerate the missing tissue. We have identified the expression of von Willebrand factor D and EGF domains (vwde) as a common feature of blastemas capable of regenerating limbs and fins in a variety of highly regenerative species, including axolotl (Ambystoma mexicanum), lungfish (Lepidosiren paradoxa), and Polpyterus (Polypterus senegalus). Further, vwde expression is tightly linked to the ability to regenerate appendages in Xenopus laevis. Functional experiments demonstrate a requirement for vwde in regeneration and indicate that Vwde is a potent growth factor in the blastema. These data identify a key role for vwde in regenerating blastemas and underscore the power of an evolutionarily informed approach for identifying conserved genetic components of regeneration. vwde expression is a common feature of blastemas capable of fin and limb regeneration. vwde expression is tightly tied to regeneration‐competency. vwde is required for axolotl limb regeneration, with transient knockdown resulting in severe endpoint phenotypes.
Collapse
Affiliation(s)
- Nicholas D Leigh
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sofia Sessa
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Aline C Dragalzew
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Josane F Sousa
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Anthony N Aggouras
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Kimberly Johnson
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Garrett S Dunlap
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts
| | - Brian J Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Tufts University, Medford, Massachusetts.,Department of Biology, Tufts University, Medford, Massachusetts
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Allen Discovery Center at Tufts University, Tufts University, Medford, Massachusetts
| |
Collapse
|
13
|
Vieira WA, Wells KM, McCusker CD. Advancements to the Axolotl Model for Regeneration and Aging. Gerontology 2019; 66:212-222. [PMID: 31779024 PMCID: PMC7214127 DOI: 10.1159/000504294] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of regenerative capacity is a normal part of aging. However, some organisms, such as the Mexican axolotl, retain striking regenerative capacity throughout their lives. Moreover, the development of age-related diseases is rare in this organism. In this review, we will explore how axolotls are used as a model system to study regenerative processes, the exciting new technological advancements now available for this model, and how we can apply the lessons we learn from studying regeneration in the axolotl to understand, and potentially treat, age-related decline in humans.
Collapse
Affiliation(s)
- Warren A Vieira
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Kaylee M Wells
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | | |
Collapse
|
14
|
Fei JF, Lou WPK, Knapp D, Murawala P, Gerber T, Taniguchi Y, Nowoshilow S, Khattak S, Tanaka EM. Application and optimization of CRISPR-Cas9-mediated genome engineering in axolotl (Ambystoma mexicanum). Nat Protoc 2018; 13:2908-2943. [PMID: 30429597 DOI: 10.1038/s41596-018-0071-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic manipulation is essential to the use of model organisms to understand development, regeneration and adult physiology. The axolotl (Ambystoma mexicanum), a type of salamander, exhibits an unparalleled regenerative capability in a spectrum of complex tissues and organs, and therefore serves as a powerful animal model for dissecting mechanisms of regeneration. We describe here an optimized stepwise protocol to create genetically modified axolotls using the CRISPR-Cas9 system. The protocol, which takes 7-8 weeks to complete, describes generation of targeted gene knockouts and knock-ins and includes site-specific integration of large targeting constructs. The direct use of purified CAS9-NLS (CAS9 containing a C-terminal nuclear localization signal) protein allows the prompt formation of guide RNA (gRNA)-CAS9-NLS ribonucleoprotein (RNP) complexes, which accelerates the creation of double-strand breaks (DSBs) at targeted genomic loci in single-cell-stage axolotl eggs. With this protocol, a substantial number of F0 individuals harboring a homozygous-type frameshift mutation can be obtained, allowing phenotype analysis in this generation. In the presence of targeting constructs, insertions of exogenous genes into targeted axolotl genomic loci can be achieved at efficiencies of up to 15% in a non-homologous end joining (NHEJ) manner. Our protocol bypasses the long generation time of axolotls and allows direct functional analysis in F0 genetically manipulated axolotls. This protocol can be potentially applied to other animal models, especially to organisms with a well-characterized transcriptome but lacking a well-characterized genome.
Collapse
Affiliation(s)
- Ji-Feng Fei
- Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| | - Wilson Pak-Kin Lou
- School of Life Sciences, South China Normal University, Guangzhou, China
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Dunja Knapp
- DFG Center for Regenerative Therapies, Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Prayag Murawala
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tobias Gerber
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Yuka Taniguchi
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sergej Nowoshilow
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Shahryar Khattak
- DFG Center for Regenerative Therapies, Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- The Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
15
|
Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration. Dev Biol 2017; 433:262-275. [PMID: 29198566 DOI: 10.1016/j.ydbio.2017.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
Axolotls can regenerate complex structures through recruitment and remodeling of cells within mature tissues. Accessing the underlying mechanisms at a molecular resolution is crucial to understand how injury triggers regeneration and how it proceeds. However, gene transformation in adult tissues can be challenging. Here we characterize the use of pseudotyped baculovirus (BV) as an effective gene transfer method both for cells within mature limb tissue and within the blastema. These cells remain competent to participate in regeneration after transduction. We further characterize the effectiveness of BV for gene overexpression studies by overexpressing Shh in the blastema, which yields a high penetrance of classic polydactyly phenotypes. Overall, our work establishes BV as a powerful tool to access gene function in axolotl limb regeneration.
Collapse
|
16
|
Bryant DM, Sousounis K, Payzin-Dogru D, Bryant S, Sandoval AGW, Martinez Fernandez J, Mariano R, Oshiro R, Wong AY, Leigh ND, Johnson K, Whited JL. Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. NPJ Regen Med 2017; 2:30. [PMID: 29302364 PMCID: PMC5677943 DOI: 10.1038/s41536-017-0034-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/22/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Axolotl salamanders are powerful models for understanding how regeneration of complex body parts can be achieved, whereas mammals are severely limited in this ability. Factors that promote normal axolotl regeneration can be examined in mammals to determine if they exhibit altered activity in this context. Furthermore, factors prohibiting axolotl regeneration can offer key insight into the mechanisms present in regeneration-incompetent species. We sought to determine if we could experimentally compromise the axolotl's ability to regenerate limbs and, if so, discover the molecular changes that might underlie their inability to regenerate. We found that repeated limb amputation severely compromised axolotls' ability to initiate limb regeneration. Using RNA-seq, we observed that a majority of differentially expressed transcripts were hyperactivated in limbs compromised by repeated amputation, suggesting that mis-regulation of these genes antagonizes regeneration. To confirm our findings, we additionally assayed the role of amphiregulin, an EGF-like ligand, which is aberrantly upregulated in compromised animals. During normal limb regeneration, amphiregulin is expressed by the early wound epidermis, and mis-expressing this factor lead to thickened wound epithelium, delayed initiation of regeneration, and severe regenerative defects. Collectively, our results suggest that repeatedly amputated limbs may undergo a persistent wound healing response, which interferes with their ability to initiate the regenerative program. These findings have important implications for human regenerative medicine.
Collapse
Affiliation(s)
- Donald M Bryant
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Konstantinos Sousounis
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA.,The Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155 USA
| | - Duygu Payzin-Dogru
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Sevara Bryant
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Aaron Gabriel W Sandoval
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Jose Martinez Fernandez
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Rachelle Mariano
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Rachel Oshiro
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Alan Y Wong
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Nicholas D Leigh
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Kimberly Johnson
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA
| | - Jessica L Whited
- Harvard Medical School, the Harvard Stem Cell Institute, and the Department of Orthopedic Surgery, Brigham and Women's Hospital, 60 Fenwood Rd., 7016D, Boston, MA 02115 USA.,The Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA 02155 USA
| |
Collapse
|
17
|
Russell JJ, Theriot JA, Sood P, Marshall WF, Landweber LF, Fritz-Laylin L, Polka JK, Oliferenko S, Gerbich T, Gladfelter A, Umen J, Bezanilla M, Lancaster MA, He S, Gibson MC, Goldstein B, Tanaka EM, Hu CK, Brunet A. Non-model model organisms. BMC Biol 2017; 15:55. [PMID: 28662661 PMCID: PMC5492503 DOI: 10.1186/s12915-017-0391-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.
Collapse
Affiliation(s)
- James J Russell
- Department of Biology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA
| | - Julie A Theriot
- Departments of Biochemistry and of Microbiology & Immunology, Howard Hughes Medical Institute Stanford University, Stanford, CA, 94305, USA.
| | - Pranidhi Sood
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry & Biophysics, University of California San Francisco, 600 16th St, San Francisco, CA, 94158, USA.
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY, 10032, USA
| | | | - Jessica K Polka
- Visiting Scholar, Whitehead Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Snezhana Oliferenko
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL, UK
| | - Therese Gerbich
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Amy Gladfelter
- 516 Fordham Hall, University of North Carolina Chapel Hill, Chapel Hill, NC, 27514, USA
| | - James Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd, St. Louis, MO, 63132, USA
| | | | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, CB2 0QH, Cambridge, UK
| | - Shuonan He
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
- Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, KS, 66160, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Abstract
Humans and other mammals are limited in their natural abilities to regenerate lost body parts. By contrast, many salamanders are highly regenerative and can spontaneously replace lost limbs even as adults. Because salamander limbs are anatomically similar to human limbs, knowing how they regenerate should provide important clues for regenerative medicine. Although interest in understanding the mechanics of this process has never wavered, until recently researchers have been vexed by seemingly impenetrable logistics of working with these creatures at a molecular level. Chief among the problems has been the very large size of salamander genomes, and not a single salamander genome has been fully sequenced to date. Recently the enormous gap in sequence information has been bridged by approaches that leverage mRNA as the starting point. Together with functional experimentation, these data are rapidly enabling researchers to finally uncover the molecular mechanisms underpinning the astonishing biological process of limb regeneration.
Collapse
Affiliation(s)
- Brian J Haas
- Broad Institute of Massachusetts Institute of Technology(MIT) and Harvard, Klarman Cell Observatory, 415 Main Street, Cambridge, MA 02142, USA.
| | - Jessica L Whited
- Harvard Medical School, Harvard Stem Cell Institute, and Brigham and Women's Hospital Department of Orthopedic Surgery, 60 Fenwood Road, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Bryant DM, Sousounis K, Farkas JE, Bryant S, Thao N, Guzikowski AR, Monaghan JR, Levin M, Whited JL. Repeated removal of developing limb buds permanently reduces appendage size in the highly-regenerative axolotl. Dev Biol 2017; 424:1-9. [PMID: 28235582 PMCID: PMC5707178 DOI: 10.1016/j.ydbio.2017.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/01/2017] [Accepted: 02/20/2017] [Indexed: 12/30/2022]
Abstract
Matching appendage size to body size is fundamental to animal function. Generating an appropriately-sized appendage is a robust process executed during development which is also critical for regeneration. When challenged, larger animals are programmed to regenerate larger limbs than smaller animals within a single species. Understanding this process has important implications for regenerative medicine. To approach this complex question, models with altered appendage size:body size ratios are required. We hypothesized that repeatedly challenging axolotls to regrow limb buds would affect their developmental program resulting in altered target morphology. We discovered that after 10 months following this experimental procedure, limbs that developed were permanently miniaturized. This altered target morphology was preserved upon amputation and regeneration. Future experiments using this platform should provide critical information about how target limb size is encoded within limb progenitors.
Collapse
Affiliation(s)
- Donald M Bryant
- Harvard Medical School, the Harvard stem Cell Institute, and the Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA 02139, USA
| | - Konstantinos Sousounis
- Harvard Medical School, the Harvard stem Cell Institute, and the Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA 02139, USA; Allen Discovery Center at Tufts, Medford, MA 02155, USA
| | - Johanna E Farkas
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Sevara Bryant
- Harvard Medical School, the Harvard stem Cell Institute, and the Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA 02139, USA
| | - Neng Thao
- Harvard Medical School, the Harvard stem Cell Institute, and the Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA 02139, USA
| | - Anna R Guzikowski
- Harvard Medical School, the Harvard stem Cell Institute, and the Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA 02139, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Michael Levin
- Allen Discovery Center at Tufts, Medford, MA 02155, USA; Tufts Center for Regenerative and Developmental Biology, Medford, MA 02155, USA
| | - Jessica L Whited
- Harvard Medical School, the Harvard stem Cell Institute, and the Department of Orthopedic Surgery, Brigham & Women's Hospital, Cambridge, MA 02139, USA; Allen Discovery Center at Tufts, Medford, MA 02155, USA.
| |
Collapse
|
20
|
Zullian C, Dodelet-Devillers A, Roy S, Vachon P. Evaluation of the anesthetic effects of MS222 in the adult Mexican axolotl ( Ambystoma mexicanum). VETERINARY MEDICINE-RESEARCH AND REPORTS 2016; 7:1-7. [PMID: 30050832 PMCID: PMC6055765 DOI: 10.2147/vmrr.s96761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Mexican axolotl (Ambystoma mexicanum) is a unique research model in several fields of medicine, where surgical and invasive procedures may be required. As yet, little is known about the efficacy of MS222 (tricaine methanesulfonate), which is the most commonly used anesthetic agent in amphibians. The main objectives of this study were to evaluate the anesthetic effects and physiological changes in adult axolotls following a 20-minute immersion bath, containing progressive MS222 concentrations starting at 0.1%. Depth of anesthesia and physiological changes were evaluated every 15 minutes post-MS222 exposure with the following parameters: righting behavior, withdrawal reflex, acetic acid test response, heart rate, and blood oxygen saturation, as well as cloacal and body surface temperatures. A 20-minute exposure in a 0.1% MS222 immersion bath (n=6 animals) had no anesthetic effects on adult axolotls after 20 minutes of exposure. With a 0.2% MS222 solution, all axolotls (n=9) were deeply anesthetized at 15 minutes, and 80% were still unresponsive at 30 minutes postexposure. Blood oxygen saturation and heart rate were slightly, but significantly, increased when compared with the baseline value and remained stable up to recovery. There was no significant increase in surface and cloaca temperatures, compared with baseline. With the 0.4% MS222 solution, the duration of anesthesia lasted for 90 minutes to at least 120 minutes (n=3 animals) and this concentration was deemed too high. In conclusion, a 20-minute immersion bath with 0.2% MS222 may be used for short procedures (15–30 minutes) requiring anesthesia of adult axolotls.
Collapse
Affiliation(s)
- Chiara Zullian
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe,
| | - Aurore Dodelet-Devillers
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe,
| | - Stéphane Roy
- Département de Stomatologie, Faculté de Médecine Dentaire, Montréal, Québec, Canada
| | - Pascal Vachon
- Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe,
| |
Collapse
|
21
|
Kawasumi-Kita A, Hayashi T, Kobayashi T, Nagayama C, Hayashi S, Kamei Y, Morishita Y, Takeuchi T, Tamura K, Yokoyama H. Application of local gene induction by infrared laser-mediated microscope and temperature stimulator to amphibian regeneration study. Dev Growth Differ 2015; 57:601-13. [DOI: 10.1111/dgd.12241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Aiko Kawasumi-Kita
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Toshinori Hayashi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Takuya Kobayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Chikashi Nagayama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Shinichi Hayashi
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility; National Institute for Basic Biology; Myodaiji Okazaki Aichi 445-8585 Japan
- Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI); Okazaki Aichi 445-8585 Japan
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry; RIKEN Quantitative Biology Center; Kobe Hyogo 650-0047 Japan
| | - Takashi Takeuchi
- School of Life Science; Faculty of Medicine; Tottori University; Yonago Tottori 683-8503 Japan
| | - Koji Tamura
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
| | - Hitoshi Yokoyama
- Department of Developmental Biology and Neurosciences; Graduate School of Life Sciences; Tohoku University; Aramaki-Aza-Aoba 6-3, Aoba-ku Sendai Miyagi 980-8578 Japan
- Department of Biochemistry and Molecular Biology; Faculty of Agriculture and Life Science; Hirosaki University; Hirosaki Aomori 036-8561 Japan
| |
Collapse
|
22
|
Amin NM, Womble M, Ledon-Rettig C, Hull M, Dickinson A, Nascone-Yoder N. Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology. Dev Biol 2015; 405:291-303. [PMID: 26169245 PMCID: PMC4670266 DOI: 10.1016/j.ydbio.2015.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The large size and rapid development of amphibian embryos has facilitated ground-breaking discoveries in developmental biology. Here, we describe the embryogenesis of the Budgett's frog (Lepidobatrachus laevis), an unusual species with eggs that are over twice the diameter of laboratory Xenopus, and embryos that can tolerate higher temperatures to develop into a tadpole four times more rapidly. In addition to detailing their early development, we demonstrate that, like Xenopus, these embryos are amenable to explant culture assays and can express exogenous transcripts in a tissue-specific manner. Moreover, the steep developmental trajectory and large scale of Lepidobatrachus make it exceptionally well-suited for morphogenesis research. For example, the developing organs of the Budgett's frog are massive compared to those of most model species, and are composed of larger individual cells, thereby affording increased subcellular resolution of early vertebrate organogenesis. Furthermore, we found that complete limb regeneration, which typically requires months to achieve in most vertebrate models, occurs in a matter of days in the Budgett's tadpole, which substantially accelerates the pace of experimentation. Thus, the unusual combination of the greater size and speed of the Budgett's frog model provides inimitable advantages for developmental studies-and a novel inroad to address the mechanisms of spatiotemporal scaling during evolution.
Collapse
Affiliation(s)
- Nirav M Amin
- Department of Molecular Biomedical Sciences, 1060 William Moore Drive, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Mandy Womble
- Department of Molecular Biomedical Sciences, 1060 William Moore Drive, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Cristina Ledon-Rettig
- Department of Biology, Indiana University, 915 E, Third St., Bloomington, IN 47405, USA
| | - Margaret Hull
- Department of Molecular Biomedical Sciences, 1060 William Moore Drive, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Amanda Dickinson
- Biology Department, Virginia Commonwealth University, 1000W, Cary St. Richmond, VA 23284, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, 1060 William Moore Drive, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
| |
Collapse
|
23
|
Kuo TH, Kowalko JE, DiTommaso T, Nyambi M, Montoro DT, Essner JJ, Whited JL. TALEN-mediated gene editing of the thrombospondin-1 locus in axolotl. ACTA ACUST UNITED AC 2015; 2:37-43. [PMID: 27499866 PMCID: PMC4895330 DOI: 10.1002/reg2.29] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 12/26/2022]
Abstract
Loss-of-function genetics provides strong evidence for a gene's function in a wild-type context. In many model systems, this approach has been invaluable for discovering the function of genes in diverse biological processes. Axolotls are urodele amphibians (salamanders) with astonishing regenerative abilities, capable of regenerating entire limbs, portions of the tail (including spinal cord), heart, and brain into adulthood. With their relatively short generation time among salamanders, they offer an outstanding opportunity to interrogate natural mechanisms for appendage and organ regeneration provided that the tools are developed to address these long-standing questions. Here we demonstrate targeted modification of the thrombospondin-1 (tsp-1) locus using transcription-activator-like effector nucleases (TALENs) and identify a role of tsp-1 in recruitment of myeloid cells during limb regeneration. We find that while tsp-1-edited mosaic animals still regenerate limbs, they exhibit a reduced subepidermal collagen layer in limbs and an increased number of myeloid cells within blastemas. This work presents a protocol for generating and genotyping mosaic axolotls with TALEN-mediated gene edits.
Collapse
Affiliation(s)
- Tzu-Hsing Kuo
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Johanna E Kowalko
- Department of Genetics Development and Cell Biology Iowa State University Ames Iowa 50011 USA
| | - Tia DiTommaso
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Mandi Nyambi
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Daniel T Montoro
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| | - Jeffrey J Essner
- Department of Genetics Development and Cell Biology Iowa State University Ames Iowa 50011 USA
| | - Jessica L Whited
- Brigham Regenerative Medicine Center and Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Harvard Stem Cell Institute Cambridge Massachusetts 02139 USA
| |
Collapse
|
24
|
Abstract
The ability to introduce DNA elements into host cells and analyze the effects has revolutionized modern biology. Here we describe a protocol to generate Moloney murine leukemia virus (MMLV)-based, replication-incompetent pseudotyped retrovirus capable of infecting axolotls and incorporating genetic information into their genome. When pseudotyped with vesicular stomatitis virus (VSV)-G glycoprotein, the retroviruses can infect a broad range of proliferative axolotl cell types. However, if the retrovirus is pseudotyped with an avian sarcoma leukosis virus (ASLV)-A envelope protein, only axolotl cells experimentally manipulated to express the cognate tumor virus A (TVA) receptor can be targeted by infections. These strategies enable robust transgene expression over many cell divisions, cell lineage tracing, and cell subtype targeting for gene expression.
Collapse
|
25
|
Godwin J. The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays 2014; 36:861-71. [DOI: 10.1002/bies.201300144] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- James Godwin
- The Australian Regenerative Medicine Institute (ARMI); Monash University; Clayton Victoria Australia
| |
Collapse
|
26
|
Abstract
Hematopoietic stem cell (HSC)-derived cells are involved in wound healing responses throughout the body. Unfortunately for mammals, wound repair typically results in scarring and nonfunctional reparation. Among vertebrates, none display such an extensive ability for adult regeneration as urodele amphibians, including 1 of the more popular models: the axolotl. However, a lack of knowledge of axolotl hematopoiesis hinders the use of this animal for the study of hematopoietic cells in scar-free wound healing and tissue regeneration. We used white and cytomegalovirus:green fluorescent protein(+) transgenic white axolotl strains to map sites of hematopoiesis and develop hematopoietic cell transplant methodology. We also established a fluorescence-activated cell sorter enrichment technique for major blood lineages and colony-forming unit assays for hematopoietic progenitors. The liver and spleen are both active sites of hematopoiesis in adult axolotls and contain transplantable HSCs capable of long-term multilineage blood reconstitution. As in zebrafish, use of the white axolotl mutant allows direct visualization of homing, engraftment, and hematopoiesis in real time. Donor-derived hematopoiesis occurred for >2 years in recipients generating stable hematopoietic chimeras. Organ segregation, made possible by embryonic microsurgeries wherein halves of 2 differently colored embryos were joined, indicate that the spleen is the definitive site of adult hematopoiesis.
Collapse
|
27
|
Flowers GP, Timberlake AT, Mclean KC, Monaghan JR, Crews CM. Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 2014; 141:2165-71. [PMID: 24764077 PMCID: PMC4011087 DOI: 10.1242/dev.105072] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/17/2014] [Indexed: 11/20/2022]
Abstract
Among tetrapods, only urodele salamanders, such as the axolotl Ambystoma mexicanum, can completely regenerate limbs as adults. The mystery of why salamanders, but not other animals, possess this ability has for generations captivated scientists seeking to induce this phenomenon in other vertebrates. Although many recent advances in molecular biology have allowed limb regeneration and tissue repair in the axolotl to be investigated in increasing detail, the molecular toolkit for the study of this process has been limited. Here, we report that the CRISPR-Cas9 RNA-guided nuclease system can efficiently create mutations at targeted sites within the axolotl genome. We identify individual animals treated with RNA-guided nucleases that have mutation frequencies close to 100% at targeted sites. We employ this technique to completely functionally ablate EGFP expression in transgenic animals and recapitulate developmental phenotypes produced by loss of the conserved gene brachyury. Thus, this advance allows a reverse genetic approach in the axolotl and will undoubtedly provide invaluable insight into the mechanisms of salamanders' unique regenerative ability.
Collapse
Affiliation(s)
- G. Parker Flowers
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Andrew T. Timberlake
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Kaitlin C. Mclean
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - James R. Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
28
|
Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat Protoc 2014; 9:529-40. [PMID: 24504478 DOI: 10.1038/nprot.2014.040] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The axolotl (Mexican salamander, Ambystoma mexicanum) has become a very useful model organism for studying limb and spinal cord regeneration because of its high regenerative capacity. Here we present a protocol for successfully mating and breeding axolotls in the laboratory throughout the year, for metamorphosing axolotls by a single i.p. injection and for axolotl transgenesis using I-SceI meganuclease and the mini Tol2 transposon system. Tol2-mediated transgenesis provides different features and advantages compared with I-SceI-mediated transgenesis, and it can result in more than 30% of animals expressing the transgene throughout their bodies so that they can be directly used for experimentation. By using Tol2-mediated transgenesis, experiments can be performed within weeks (e.g., 5-6 weeks for obtaining 2-3-cm-long larvae) without the need to establish germline transgenic lines (which take 12-18 months). In addition, we describe here tamoxifen-induced Cre-mediated recombination in transgenic axolotls.
Collapse
|
29
|
Hayashi T, Sakamoto K, Sakuma T, Yokotani N, Inoue T, Kawaguchi E, Agata K, Yamamoto T, Takeuchi T. Transcription activator-like effector nucleases efficiently disrupt the target gene in Iberian ribbed newts (Pleurodeles waltl), an experimental model animal for regeneration. Dev Growth Differ 2013; 56:115-21. [PMID: 24329771 DOI: 10.1111/dgd.12103] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 01/25/2023]
Abstract
Regeneration of a lost tissue in an animal is an important issue. Although regenerative studies have a history of research spanning more than a century, the gene functions underlying regulation of the regeneration are mostly unclear. Analysis of knockout animals is a very powerful tool with which to elucidate gene function. Recently, transcription activator-like effector nucleases (TALENs) have been developed as an effective technique for genome editing. This technique enables gene targeting in amphibians such as newts that were previously impossible. Here we show that newts microinjected with TALEN mRNAs designed for targeting the tyrosinase gene in single-cell stage embryos revealed an albino phenotype. Sequence analysis revealed that the tyrosinase genes were effectively disrupted in these albino newts. Moreover, precise genome alteration was achieved using TALENs and single strand oligodeoxyribonucleotides. Our results suggest that TALENs are powerful tools for genome editing for regenerative research in newts.
Collapse
Affiliation(s)
- Toshinori Hayashi
- Department of Biomedical Sciences, Faculty of Medicine, School of Life Science, Tottori University, Yonago, Tottori, 683-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Khattak S, Schuez M, Richter T, Knapp D, Haigo SL, Sandoval-Guzmán T, Hradlikova K, Duemmler A, Kerney R, Tanaka EM. Germline transgenic methods for tracking cells and testing gene function during regeneration in the axolotl. Stem Cell Reports 2013; 1:90-103. [PMID: 24052945 PMCID: PMC3757742 DOI: 10.1016/j.stemcr.2013.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
The salamander is the only tetrapod that regenerates complex body structures throughout life. Deciphering the underlying molecular processes of regeneration is fundamental for regenerative medicine and developmental biology, but the model organism had limited tools for molecular analysis. We describe a comprehensive set of germline transgenic strains in the laboratory-bred salamander Ambystoma mexicanum (axolotl) that open up the cellular and molecular genetic dissection of regeneration. We demonstrate tissue-dependent control of gene expression in nerve, Schwann cells, oligodendrocytes, muscle, epidermis, and cartilage. Furthermore, we demonstrate the use of tamoxifen-induced Cre/loxP-mediated recombination to indelibly mark different cell types. Finally, we inducibly overexpress the cell-cycle inhibitor p16 (INK4a) , which negatively regulates spinal cord regeneration. These tissue-specific germline axolotl lines and tightly inducible Cre drivers and LoxP reporter lines render this classical regeneration model molecularly accessible.
Collapse
Affiliation(s)
- Shahryar Khattak
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany ; Technische Universität Dresden, DFG Center for Regenerative Therapies, 01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Denis JF, Lévesque M, Tran SD, Camarda AJ, Roy S. Axolotl as a Model to Study Scarless Wound Healing in Vertebrates: Role of the Transforming Growth Factor Beta Signaling Pathway. Adv Wound Care (New Rochelle) 2013; 2:250-260. [PMID: 24527347 DOI: 10.1089/wound.2012.0371] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Indexed: 01/09/2023] Open
Abstract
SIGNIFICANCE The skin is our largest organ, with the primary role of protection against assaults from the outside world. It also suffers frequent damage, from minor scrapes to, more rarely, complete destruction such as in third-degree burns. It is therefore, by its nature, an organ that would benefit tremendously from being able to regenerate itself. RECENT ADVANCES This review highlights the axolotl, a less well-known model organism capable of scarless wound healing and regeneration. Axolotls are salamanders with unsurpassed healing and regenerative capacities. Understanding how these animals can regenerate their tissues could help identify the pathways that need to be activated or inhibited in humans to improve wound healing. CRITICAL ISSUES Presently, there are no therapies leading to skin regeneration or scarless wound healing. Various animal models have thus been developed for use in research, such as mice and pigs, to help us understand how wound healing could be improved or stimulated. However, these more common models cannot regenerate and, consequently, cannot direct us toward a solution to regenerate damaged tissues. Axolotls, on the other hand, can regenerate perfectly and therefore may offer avenues to identify molecular targets for therapeutic intervention. FUTURE DIRECTIONS Identifying signaling pathways regulating tissue regeneration in vertebrate models is important. The use of animals such as axolotls, which hold the secret of full regeneration, will likely play a significant role in helping us achieve scarless wound healing for humans.
Collapse
Affiliation(s)
| | | | - Simon D. Tran
- Department of Faculty of Dentistry, McGill University, Montreal, Canada
| | | | - Stéphane Roy
- Department of Biochemistry, McGill University, Montreal, Canada
- Department of Stomatology, University of Montreal, Montreal, Canada
| |
Collapse
|
32
|
Whited JL, Tsai SL, Beier KT, White JN, Piekarski N, Hanken J, Cepko CL, Tabin CJ. Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 2013; 140:1137-46. [PMID: 23344705 DOI: 10.1242/dev.087734] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axolotls are poised to become the premiere model system for studying vertebrate appendage regeneration. However, very few molecular tools exist for studying crucial cell lineage relationships over regeneration or for robust and sustained misexpression of genetic elements to test their function. Furthermore, targeting specific cell types will be necessary to understand how regeneration of the diverse tissues within the limb is accomplished. We report that pseudotyped, replication-incompetent retroviruses can be used in axolotls to permanently express markers or genetic elements for functional study. These viruses, when modified by changing their coat protein, can infect axolotl cells only when they have been experimentally manipulated to express the receptor for that coat protein, thus allowing for the possibility of targeting specific cell types. Using viral vectors, we have found that progenitor populations for many different cell types within the blastema are present at all stages of limb regeneration, although their relative proportions change with time.
Collapse
Affiliation(s)
- Jessica L Whited
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hayashi T, Yokotani N, Tane S, Matsumoto A, Myouga A, Okamoto M, Takeuchi T. Molecular genetic system for regenerative studies using newts. Dev Growth Differ 2013; 55:229-36. [PMID: 23305125 DOI: 10.1111/dgd.12019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022]
Abstract
Urodele newts have the remarkable capability of organ regeneration, and have been used as a unique experimental model for more than a century. However, the mechanisms underlying regulation of the regeneration are not well understood, and gene functions in particular remain largely unknown. To elucidate gene function in regeneration, molecular genetic analyses are very powerful. In particular, it is important to establish transgenic or knockout (mutant) lines, and systematically cross these lines to study the functions of the genes. In fact, such systems have been developed for other vertebrate models. However, there is currently no experimental model system using molecular genetics for newt regenerative research due to difficulties with respect to breeding newts in the laboratory. Here, we show that the Iberian ribbed newt (Pleurodeles waltl) has outstanding properties as a laboratory newt. We developed conditions under which we can obtain a sufficient number and quality of eggs throughout the year, and shortened the period required for sexual maturation from 18 months to 6 months. In addition, P. waltl newts are known for their ability, like other newts, to regenerate various tissues. We revealed that their ability to regenerate various organs is equivalent to that of Japanese common newts. We also developed a method for efficient transgenesis. These studies demonstrate that P. waltl newts are a suitable model animal for analysis of regeneration using molecular genetics. Establishment of this experimental model will enable us to perform comparable studies using these newts and other vertebrate models.
Collapse
Affiliation(s)
- Toshinori Hayashi
- School of Life Science, Faculty of Medicine, Tottori University, Yonago, 683-8503, Japan
| | | | | | | | | | | | | |
Collapse
|