1
|
Lin YY, Noghabi HS, Volik S, Bell R, Sar F, Haegert A, Chung HC, Fazli L, Oo HZ, Daugaard M, Kuo MH, Hsu SC, Imeda EL, Zanettini C, Queiroz L, Schlotmann B, Gheybi K, Cooper C, Kote-Jarai Z, Eeles R, Kung HJ, Marchionni L, Weischenfeldt J, Miller KD, Rabinowitz A, Wang Y, Zhang HF, Sorensen PH, Carey MS, Gleave M, Hayes VM, Gibson WT, Collins CC. Identifying Rare Germline Variants Associated with Metastatic Prostate Cancer Through an Extreme Phenotype Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.28.25326584. [PMID: 40343042 PMCID: PMC12060958 DOI: 10.1101/2025.04.28.25326584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Background Studies of germline variants in prostate cancer (PCa) have largely focused on their connections to cancer predisposition. However, an understanding of how heritable factors contribute to cancer progression and metastasis remain limited. Objective To identify low frequency to rare germline nonsynonymous variants associated with increased risk for metastatic PCa (mPCa), while providing functional validation. Design We assembled an extreme phenotype cohort (EPC) of 52 patients diagnosed with predominantly high-grade (Gleason Score (GS) ≥ 8) PCa and > 7 years of follow-up for which localized treatment naïve tumor tissues were available. In half of the cases, the tumor had metastasized to bone, providing an even distribution of bone mPCa and non mPCa cases. Tumor and matched distant benign DNA samples were exome sequenced and analyzed for germline variants with population-wide minor allelic frequencies ≤ 2%. Findings were validated using two independent PCa germline cohorts, including a closely matched Australian study biased to aggressive disease (n = 53) and Pan Prostate Cancer Group (PPCG, n = 976). Two mPCa-promoting candidate variants in KDM6B and BRCA2 were engineered into cell lines and functionalized. Results Germline nonsynonymous rare variants (gnsRVs) identified in 25 DNA Damage Repair (DDR) genes were significantly enriched in the mPCa patients (p=4.57e-06). Conversely, the prevalence of synonymous variants at minor allele frequencies of ≤ 2% were similar between the mPCa and non mPCa patients. The predictive power of variants in 53 non-DDR genes was validated in the Australian cohort (p=0.028) and correlated with high-risk PCa in PPCG (p=0.03). KDM6B K973Q showed functional significance despite being annotated as benign in ClinVar, while BRCA2 I1962T showed sensitivity to Olaparib. In total, six EPC variants related to DNA repair or epigenetics were found to alter enzymatic activity. Conclusions EPCs coupled with low frequency/rare variant analyses may advance understanding of interactions between the germline and tumor in PCa. We identified a series of germline variants that were enriched among mPCa patients. Moreover, we showed that one of these variants confers a metastatic phenotype. Our findings suggest that germline testing at diagnosis may improve treatment stratification in PCa. Patient summary The presence of specific genetic variants among men with PCa may elevate the risk of mPCa once PCa develops. Knowledge of the variant burden at time of diagnosis may enable accurate stratification of some patients for aggressive therapeutic interventions.
Collapse
Affiliation(s)
- Yen-Yi Lin
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- These authors are joint first authors
| | - Hamideh Sharifi Noghabi
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- These authors are joint first authors
| | - Stanislav Volik
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Robert Bell
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Funda Sar
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Anne Haegert
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Hee Chul Chung
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Htoo Zarni Oo
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ming-Han Kuo
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Chieh Hsu
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Eddie L Imeda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Claudio Zanettini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Lucio Queiroz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Balthasar Schlotmann
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Kazzem Gheybi
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Colin Cooper
- The Institute of Cancer Research, London, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Rosalind Eeles
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Hsing-Jien Kung
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Joachim Weischenfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Alan Rabinowitz
- Rural Coordination Center of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- St. Paul's Hospital, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark S Carey
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Vanessa M Hayes
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- These authors are joint last authors
| | - Colin C Collins
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- These authors are joint last authors
| |
Collapse
|
2
|
Malomane D, Williams MP, Huber C, Mangul S, Abedalthagafi M, Chiang CWK. Patterns of population structure and genetic variation within the Saudi Arabian population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632500. [PMID: 39868174 PMCID: PMC11761371 DOI: 10.1101/2025.01.10.632500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Arabian Peninsula is considered the initial site of historic human migration out of Africa. The modern-day indigenous Arabians are believed to be the descendants who remained from the ancient split of the migrants into Eurasia. Here, we investigated how the population history and cultural practices such as endogamy have shaped the genetic variation of the Saudi Arabians. We genotyped 3,352 individuals and identified twelve genetic sub-clusters that corresponded to the geographical distribution of different tribal regions, differentiated by distinct components of ancestry based on comparisons to modern and ancient DNA references. These sub-clusters also showed variation across ranges of the genome covered in runs of homozygosity, as well as differences in population size changes over time. Using 25,488,981 variants found in whole genome sequencing data (WGS) from 302 individuals, we found that the Saudi tend to show proportionally more deleterious alleles than neutral alleles when compared to Africans/African Americans from gnomAD (e.g. a 13% increase of deleterious alleles annotated by AlphaMissense between 0.5 - 5% frequency in Saudi, compared to 7% decrease of the benign alleles; P < 0.001). Saudi sub-clusters with greater inbreeding and lower effective population sizes showed greater enrichment of deleterious alleles as well. Additionally, we found that approximately 10% of the variants discovered in our WGS data are not observed in gnomAD; these variants are also enriched with deleterious annotations. To accelerate studying the population-enriched deleterious alleles and their health consequences in this population, we made available the allele frequency estimates of 25,488,981 variants discovered in our samples. Taken together, our results suggest that Saudi's population history impacts its pattern of genetic variation with potential consequences to the population health. It further highlights the need to sequence diverse and unique populations so to provide a foundation on which to interpret medical- and pharmaco- genomic findings from these populations.
Collapse
Affiliation(s)
- D.K. Malomane
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - M. P. Williams
- Department of Biology, Pennsylvania State University, University Park, PA
| | - C.D. Huber
- Department of Biology, Pennsylvania State University, University Park, PA
| | - S. Mangul
- Titus Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA
| | - M. Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - C. W. K. Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA
| |
Collapse
|
3
|
Wutich A, Nelson R, DuBois LZ, Astorino CM, Knudson K, Reynolds AW, Riley EP, Smith RWA, VanSickle C, Carroll SR, Connors CK, Jankovic-Rankovic J, Mitchell C, Roque AD, Tsosie KS. "Rigorous and Systematic Qualitative Data Analysis in Biological Anthropology". AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 186 Suppl 78:e70008. [PMID: 40071812 DOI: 10.1002/ajpa.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 04/02/2025]
Abstract
Biological anthropologists have long engaged in qualitative data analysis (QDA), though such work is not always foregrounded. In this article, we discuss the role of rigorous and systematic QDA in biological anthropology and consider how it can be understood and advanced. We first establish what kinds of qualitative data and analysis are used in biological anthropology. We then review the ways QDA has been used in six subfields of biological anthropology: primatology, human biology, paleoanthropology, dental and skeletal biology, bioarchaeology, and anthropological genetics. We follow that with an overview of how to use QDA methods: three simple QDA methods (i.e., word-based analysis, theme analysis, and coding) and three QDA approaches for model-building and model-testing (i.e., content analysis, semantic network analysis, and grounded theory). With this foundation in place, we discuss how QDA can support transformative research in biological anthropology-emphasizing the valuable role of QDA in inductive and community-based research. We discuss how QDA supports transformative research using mixed-methods research designs, participatory action research, and abolition and Black feminist research. Finally, we consider how to close a QDA project, reflecting on the logistics, ethics, and limitations of qualitative data sharing, including how researchers can use the CARE Principles (Collective Benefit, Authority to Control, Responsibility, and Ethics) to support Indigenous data sovereignty.
Collapse
Affiliation(s)
| | | | | | - Claudia M Astorino
- The City University of New York Graduate Center, New York, New York, USA
| | | | | | - Erin P Riley
- San Diego State University, San Diego, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ross P, Hilton HG, Lodwick J, Slezak T, Guethlein LA, McMurtrey CP, Han AS, Nielsen M, Yong D, Dulberger CL, Nolan KT, Roy S, Castro CD, Hildebrand WH, Zhao M, Kossiakoff A, Parham P, Adams EJ. Molecular characterization of the archaic HLA-B*73:01 allele reveals presentation of a unique peptidome and skewed engagement by KIR2DL2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625330. [PMID: 39651149 PMCID: PMC11623575 DOI: 10.1101/2024.11.25.625330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
HLA class I alleles of archaic origin may have been retained in modern humans because they provide immunity against diseases to which archaic humans had evolved resistance. According to this model, archaic introgressed alleles were somehow distinct from those that evolved in African populations. Here we show that HLA-B*73:01, a rare allotype with putative archaic origins, has a relatively rare peptide binding motif with an unusually long-tailed peptide length distribution. We also find that HLA-B*73:01 combines a restricted and unique peptidome with high-cell surface expression, characteristics that make it well-suited to combat one or a number of closely-related pathogens. Furthermore, a crystal structure of HLA-B*73:01 in complex with KIR2DL2 highlights differences from previously solved structures with HLA-C molecules. These molecular characteristics distinguish HLA-B*73:01 from other HLA class I alleles previously investigated and may have provided early modern human migrants that inherited this allele with a selective advantage as they colonized Europe and Asia.
Collapse
|
5
|
Vaulin A, Karpulevich E, Kasianov A, Morozova I. Europeans and Americans of European origin show differences between their biological pathways related to the major histocompatibility complex. Sci Rep 2024; 14:21816. [PMID: 39294244 PMCID: PMC11410964 DOI: 10.1038/s41598-024-71803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
In this study, we analysed biological pathway diversity among Europeans and Northern Americans of European origin, the groups of people that share a common genetic ancestry but live in different geographic regions. We used a novel complex approach for analysing genomic data: we studied the total effects of multiple weak selection signals, accumulated from independent SNPs within a pathway. We found significant differences between immunity-related biological pathways from the two groups. All identified pathways included genes belonging to the major histocompatibility complex (MHC) system, which plays an important role in adaptive immune responses. We suggest that the ways of evolution were different for the MHC-I and MHC-II gene groups at least in Europeans and Americans of European origin. We hypothesise that the observed variability between the two populations was triggered by selection pressures due to the different pathogen landscapes and pathogen loads on the two continents. Our findings can be important for epidemic prevention and control, as well as for analysing processes related to allergies, organ transplantation, and autoimmune diseases.
Collapse
Affiliation(s)
- Andrey Vaulin
- Nanyang Technological University, Singapore, Singapore
| | - Evgeny Karpulevich
- Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS), Moscow, Russia
| | - Artem Kasianov
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal.
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Irina Morozova
- Institute for Globally Distributed Open Research and Education (IGDORE), Moscow, Russia.
| |
Collapse
|
6
|
Nuñez JG, Paulose J, Möbius W, Beller DA. Range expansions across landscapes with quenched noise. Proc Natl Acad Sci U S A 2024; 121:e2411487121. [PMID: 39136984 PMCID: PMC11348022 DOI: 10.1073/pnas.2411487121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
When biological populations expand into new territory, the evolutionary outcomes can be strongly influenced by genetic drift, the random fluctuations in allele frequencies. Meanwhile, spatial variability in the environment can also significantly influence the competition between subpopulations vying for space. Little is known about the interplay of these intrinsic and extrinsic sources of noise in population dynamics: When does environmental heterogeneity dominate over genetic drift or vice versa, and what distinguishes their population genetics signatures? Here, in the context of neutral evolution, we examine the interplay between a population's intrinsic, demographic noise and an extrinsic, quenched random noise provided by a heterogeneous environment. Using a multispecies Eden model, we simulate a population expanding over a landscape with random variations in local growth rates and measure how this variability affects genealogical tree structure, and thus genetic diversity. We find that, for strong heterogeneity, the genetic makeup of the expansion front is to a great extent predetermined by the set of fastest paths through the environment. The landscape-dependent statistics of these optimal paths then supersede those of the population's intrinsic noise as the main determinant of evolutionary dynamics. Remarkably, the statistics for coalescence of genealogical lineages, derived from those deterministic paths, strongly resemble the statistics emerging from demographic noise alone in uniform landscapes. This cautions interpretations of coalescence statistics and raises new challenges for inferring past population dynamics.
Collapse
Affiliation(s)
- Jimmy Gonzalez Nuñez
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| | - Jayson Paulose
- Department of Physics, Institute for Fundamental Science, University of Oregon, Eugene, OR97403
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, ExeterEX4 4QH, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, ExeterEX4 4QL, United Kingdom
| | - Daniel A. Beller
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
7
|
Burt CH. Polygenic Indices (a.k.a. Polygenic Scores) in Social Science: A Guide for Interpretation and Evaluation. SOCIOLOGICAL METHODOLOGY 2024; 54:300-350. [PMID: 39091537 PMCID: PMC11293310 DOI: 10.1177/00811750241236482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Polygenic indices (PGI)-the new recommended label for polygenic scores (PGS) in social science-are genetic summary scales often used to represent an individual's liability for a disease, trait, or behavior based on the additive effects of measured genetic variants. Enthusiasm for linking genetic data with social outcomes and the inclusion of premade PGIs in social science datasets have facilitated increased uptake of PGIs in social science research-a trend that will likely continue. Yet, most social scientists lack the expertise to interpret and evaluate PGIs in social science research. Here, we provide a primer on PGIs for social scientists focusing on key concepts, unique statistical genetic considerations, and best practices in calculation, estimation, reporting, and interpretation. We summarize our recommended best practices as a checklist to aid social scientists in evaluating and interpreting studies with PGIs. We conclude by discussing the similarities between PGIs and standard social science scales and unique interpretative considerations.
Collapse
|
8
|
He J, Kou SH, Li J, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose after the latest human out-of-Africa migration. Front Genet 2024; 15:1408952. [PMID: 38948361 PMCID: PMC11211533 DOI: 10.3389/fgene.2024.1408952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The DNA damage repair (DDR) system in human genome is pivotal in maintaining genomic integrity. Pathogenic variation (PV) in DDR genes impairs their function, leading to genome instability and increased susceptibility to diseases, especially cancer. Understanding the evolution origin and arising time of DDR PV is crucial for comprehending disease susceptibility in modern humans. Methods We used big data approach to identify the PVs in DDR genes in modern humans. We mined multiple genomic databases derived from 251,214 modern humans of African and non-Africans. We compared the DDR PVs between African and non-African. We also mined the DDR PVs in the genomic data derived from 5,031 ancient humans. We used the DDR PVs from ancient humans as the intermediate to further the DDR PVs between African and non-African. Results and discussion We identified 1,060 single-base DDR PVs across 77 DDR genes in modern humans of African and non-African. Direct comparison of the DDR PVs between African and non-African showed that 82.1% of the non-African PVs were not present in African. We further identified 397 single-base DDR PVs in 56 DDR genes in the 5,031 ancient humans dated between 45,045 and 100 years before present (BP) lived in Eurasian continent therefore the descendants of the latest out-of-Africa human migrants occurred 50,000-60,000 years ago. By referring to the ancient DDR PVs, we observed that 276 of the 397 (70.3%) ancient DDR PVs were exclusive in non-African, 106 (26.7%) were shared between non-African and African, and only 15 (3.8%) were exclusive in African. We further validated the distribution pattern by testing the PVs in BRCA and TP53, two of the important genes in genome stability maintenance, in African, non-African, and Ancient humans. Our study revealed that DDR PVs in modern humans mostly emerged after the latest out-of-Africa migration. The data provides a foundation to understand the evolutionary basis of disease susceptibility, in particular cancer, in modern humans.
Collapse
Affiliation(s)
| | | | | | | | - San Ming Wang
- Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, University of Macau, Taipa, China
| |
Collapse
|
9
|
Passmore S, Wood ALC, Barbieri C, Shilton D, Daikoku H, Atkinson QD, Savage PE. Global musical diversity is largely independent of linguistic and genetic histories. Nat Commun 2024; 15:3964. [PMID: 38729968 PMCID: PMC11087526 DOI: 10.1038/s41467-024-48113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Music is a universal yet diverse cultural trait transmitted between generations. The extent to which global musical diversity traces cultural and demographic history, however, is unresolved. Using a global musical dataset of 5242 songs from 719 societies, we identify five axes of musical diversity and show that music contains geographical and historical structures analogous to linguistic and genetic diversity. After creating a matched dataset of musical, genetic, and linguistic data spanning 121 societies containing 981 songs, 1296 individual genetic profiles, and 121 languages, we show that global musical similarities are only weakly and inconsistently related to linguistic or genetic histories, with some regional exceptions such as within Southeast Asia and sub-Saharan Africa. Our results suggest that global musical traditions are largely distinct from some non-musical aspects of human history.
Collapse
Affiliation(s)
- Sam Passmore
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan.
- Evolution of Cultural Diversity Initiative (ECDI), Australian National University, Canberra, Australia.
| | | | - Chiara Barbieri
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, 8057, Switzerland
- Centre for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, 8050, Switzerland
- Department of Life and Environmental Sciences, University of Cagliari, 09126, Cagliari, Italy
| | - Dor Shilton
- Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv, Israel
- Edelstein Centre for the History and Philosophy of Science, Technology, and Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hideo Daikoku
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| | | | - Patrick E Savage
- School of Psychology, University of Auckland, Auckland, New Zealand.
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan.
| |
Collapse
|
10
|
Roberts L. Precision ophthalmology: a call for Africa not to be left in the dark. Gene Ther 2024; 31:199-201. [PMID: 38519591 PMCID: PMC11090780 DOI: 10.1038/s41434-024-00448-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Lisa Roberts
- UCT/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
11
|
Kwiatkowski D. Modelling transmission dynamics and genomic diversity in a recombining parasite population. Wellcome Open Res 2024; 9:215. [PMID: 39554245 PMCID: PMC11569386 DOI: 10.12688/wellcomeopenres.19092.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 11/19/2024] Open
Abstract
The genomic diversity of a parasite population is shaped by its transmission dynamics but superinfection, cotranmission and recombination make this relationship complex and hard to analyse. This paper aims to simplify the problem by introducing the concept of a genomic transmission graph with three basic parameters: the effective number of hosts, the quantum of transmission and the crossing rate of transmission chains. This enables rapid simulation of coalescence times in a recombining parasite population with superinfection and cotransmission, and it also provides a mathematical framework for analysis of within-host variation. Taking malaria as an example, we use this theoretical model to examine how transmission dynamics and migration affect parasite genomic diversity, including the effective recombination rate and haplotypic metrics of recent common ancestry. We show how key transmission parameters can be inferred from deep sequencing data and as a proof of concept we estimate the Plasmodium falciparum transmission bottleneck. Finally we discuss the potential applications of this novel inferential framework in genomic surveillance for malaria control and elimination. Online tools for exploring the genomic transmission graph are available at d-kwiat.github.io/gtg.
Collapse
|
12
|
Zhao B, Li J, Sinha S, Qin Z, Kou SH, Xiao F, Lei H, Chen T, Cao W, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose in recent human history. BMC Cancer 2024; 24:415. [PMID: 38575974 PMCID: PMC10993466 DOI: 10.1186/s12885-024-12160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Genome stability is maintained by the DNA damage repair (DDR) system composed of multiple DNA repair pathways of hundreds of genes. Germline pathogenic variation (PV) in DDR genes damages function of the affected DDR genes, leading to genome instability and high risk of diseases, in particular, cancer. Knowing evolutionary origin of the PVs in human DDR genes is essential to understand the etiology of human diseases. However, answer to the issue remains largely elusive. In this study, we analyzed evolutionary origin for the PVs in human DDR genes. METHODS We identified 169 DDR genes by referring to various databases and identified PVs in the DDR genes of modern humans from ClinVar database. We performed a phylogenetic analysis to analyze the conservation of human DDR PVs in 100 vertebrates through cross-species genomic data comparison using the phyloFit program of the PHAST package and visualized the results using the GraphPad Prism software and the ggplot module. We identified DDR PVs from over 5000 ancient humans developed a database to host the DDR PVs ( https://genemutation.fhs.um.edu.mo/dbDDR-AncientHumans ). Using the PV data, we performed a molecular archeological analysis to compare the DDR PVs between modern humans and ancient humans. We analyzed evolution selection of DDR genes across 20 vertebrates using the CodeML in PAML for phylogenetic analysis. RESULTS Our phylogenic analysis ruled out cross-species conservation as the origin of human DDR PVs. Our archeological approach identified rich DDR PVs shared between modern and ancient humans, which were mostly dated within the last 5000 years. We also observed similar pattern of quantitative PV distribution between modern and ancient humans. We further detected a set of ATM, BRCA2 and CHEK2 PVs shared between human and Neanderthals. CONCLUSIONS Our study reveals that human DDR PVs mostly arose in recent human history. We propose that human high cancer risk caused by DDR PVs can be a by-product of human evolution.
Collapse
Affiliation(s)
- Bojin Zhao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Jiaheng Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Si Hoi Kou
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Fengxia Xiao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Huijun Lei
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Tianhui Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Wenming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Xiaofan Ding
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
13
|
Hünemeier T. Biogeographic Perspectives on Human Genetic Diversification. Mol Biol Evol 2024; 41:msae029. [PMID: 38349332 PMCID: PMC10917211 DOI: 10.1093/molbev/msae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/08/2024] Open
Abstract
Modern humans originated in Africa 300,000 yr ago, and before leaving their continent of origin, they underwent a process of intense diversification involving complex demographic dynamics. Upon exiting Africa, different populations emerged on the four other inhabited continents, shaped by the interplay of various evolutionary processes, such as migrations, founder effects, and natural selection. Within each region, continental populations, in turn, diversified and evolved almost independently for millennia. As a backdrop to this diversification, introgressions from archaic species contributed to establishing different patterns of genetic diversity in different geographic regions, reshaping our understanding of our species' variability. With the increasing availability of genomic data, it has become possible to delineate the subcontinental human population structure precisely. However, the bias toward the genomic research focused on populations from the global North has limited our understanding of the real diversity of our species and the processes and events that guided different human groups throughout their evolutionary history. This perspective is part of a series of articles celebrating 40 yr since our journal, Molecular Biology and Evolution, was founded (Russo et al. 2024). The perspective is accompanied by virtual issues, a selection of papers on human diversification published by Genome Biology and Evolution and Molecular Biology and Evolution.
Collapse
Affiliation(s)
- Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Population Genetics Department, Institute of Evolutionary Biology (IBE - CSIC/Universitat Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
14
|
Iyer A, Mukherjee A, Gómez-Sala B, O'Connor EM, Kenny JG, Cotter PD. The impact of live dietary microbes on health: A scoping review. J Food Sci 2024; 89:773-792. [PMID: 38174642 DOI: 10.1111/1750-3841.16893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/16/2023] [Accepted: 12/02/2023] [Indexed: 01/05/2024]
Abstract
A systematic approach to collect, peruse, and summarize the available information relating to the potential benefits of consuming dietary microbes was pursued in this scoping review. This review focused on the research endpoints, experimental designs, and microbial exposure in experimental as well as observational research work. Using a structured- set of keywords, scientific databases were systematically searched to retrieve publications reporting outcomes pertaining to the use of dietary microbes in healthy, nonpatient populations. Searches were further tailored to focus on eight different health categories, namely, "antibiotic associated diarrhoea" (AAD), "gastrointestinal health" (GIH), "immunological health" (ImH), "cardiovascular health and metabolic syndrome" (CvHMS), "cancer prevention" (CanPr), "respiratory health" (ReH), "weight management" (WtMgt), and "urogenital health" (UrGH). Quality of evidence available in each publication was assessed using the Jadad scoring system. The search yielded 228 relevant publications describing 282 experimental cases comprising 62 research endpoints overall. A microbial dose of≥ 2 × 10 9 $\ge 2\times 10^9$ CFU.day-1 was associated with non-negative reported outcomes. Older population groups with a median age of 39 years were associated with positive outcomes. More high-quality research is required investigating the role of dietary microbes in maintaining general health, particularly in the health categories of UrGH, WtMgt, and CanPr.
Collapse
Affiliation(s)
- Ajay Iyer
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Arghya Mukherjee
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Beatriz Gómez-Sala
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eibhlís M O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - John G Kenny
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| | - Paul D Cotter
- Department of Food Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk SFI Research Centre, Cork, Ireland
| |
Collapse
|
15
|
Richerson PJ, Boyd RT, Efferson C. Agentic processes in cultural evolution: relevance to Anthropocene sustainability. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220252. [PMID: 37952614 PMCID: PMC10645076 DOI: 10.1098/rstb.2022.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/11/2023] [Indexed: 11/14/2023] Open
Abstract
Humans have evolved culturally and perhaps genetically to be unsustainable. We exhibit a deep and consistent pattern of short-term resource exploitation behaviours and institutions. We distinguish agentic and naturally selective forces in cultural evolution. Agentic forces are quite important compared to the blind forces (random variation and natural selection) in cultural evolution and gene-culture coevolution. We need to use the agentic policy-making processes to evade the impact of blind natural selection. We argue that agentic forces became important during our Pleistocene history and into the Anthropocene present. Human creativity in the form of deliberate innovations and the deliberate selective diffusion of technical and social advances drove this process forward for a long time before planetary limits became a serious issue. We review models with multiple positive feedbacks that roughly fit this observed pattern. Policy changes in the case of large-scale existential threats like climate change are made by political and diplomatic agents grasping and moving levers of institutional power in order to avoid the operation of blind natural selection and agentic forces driven by narrow or short-term goals. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Peter J. Richerson
- Department of Environmental Science and Policy, University of California, Davis, 95616, CA, USA
| | - Robert T. Boyd
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, 85281, AZ, USA
| | - Charles Efferson
- Faculty of Business and Economics, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Silcocks M, Farlow A, Hermes A, Tsambos G, Patel HR, Huebner S, Baynam G, Jenkins MR, Vukcevic D, Easteal S, Leslie S. Indigenous Australian genomes show deep structure and rich novel variation. Nature 2023; 624:593-601. [PMID: 38093005 PMCID: PMC10733150 DOI: 10.1038/s41586-023-06831-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/03/2023] [Indexed: 12/20/2023]
Abstract
The Indigenous peoples of Australia have a rich linguistic and cultural history. How this relates to genetic diversity remains largely unknown because of their limited engagement with genomic studies. Here we analyse the genomes of 159 individuals from four remote Indigenous communities, including people who speak a language (Tiwi) not from the most widespread family (Pama-Nyungan). This large collection of Indigenous Australian genomes was made possible by careful community engagement and consultation. We observe exceptionally strong population structure across Australia, driven by divergence times between communities of 26,000-35,000 years ago and long-term low but stable effective population sizes. This demographic history, including early divergence from Papua New Guinean (47,000 years ago) and Eurasian groups1, has generated the highest proportion of previously undescribed genetic variation seen outside Africa and the most extended homozygosity compared with global samples. A substantial proportion of this variation is not observed in global reference panels or clinical datasets, and variation with predicted functional consequence is more likely to be homozygous than in other populations, with consequent implications for medical genomics2. Our results show that Indigenous Australians are not a single homogeneous genetic group and their genetic relationship with the peoples of New Guinea is not uniform. These patterns imply that the full breadth of Indigenous Australian genetic diversity remains uncharacterized, potentially limiting genomic medicine and equitable healthcare for Indigenous Australians.
Collapse
Affiliation(s)
- Matthew Silcocks
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- University of Melbourne, School of Biosciences, Parkville, Victoria, Australia
| | - Ashley Farlow
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia
| | - Azure Hermes
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Georgia Tsambos
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Sharon Huebner
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gareth Baynam
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Faculty of Health and Medical Sciences, Division of Paediatrics and Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital and Rare Care Centre, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Misty R Jenkins
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- University of Melbourne, Department of Medical Biology, Parkville, Victoria, Australia
| | - Damjan Vukcevic
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia
| | - Simon Easteal
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen Leslie
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
- University of Melbourne, School of Biosciences, Parkville, Victoria, Australia.
- University of Melbourne, School of Mathematics and Statistics, Parkville, Victoria, Australia.
| |
Collapse
|
17
|
Dutour O. The paleopathology and paleoepidemiology of Upper paleolithic tuberculosis: Review of evidence and hypotheses. Tuberculosis (Edinb) 2023; 143S:102348. [PMID: 38012915 DOI: 10.1016/j.tube.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 11/29/2023]
Abstract
Molecular phylogeny work has shown that tuberculosis is ancient human-adapted infection predating the Neolithic period. They also show that the Upper Paleolithic is a key period of emergence of the MTB complex strains, contemporary with the exit of modern man from Africa. Despite the richness of Upper Paleolithic sites in Eurasia and the relative abundance of human remains, the only proven case of Paleolithic tuberculosis has been described so far date from the Azilian, a culture of the European Final Paleolithic, which is more recent than the ancient Neolithic sites of the Near East, area that currently hold the record for the oldest paleopathological evidence of tuberculosis. The purpose of this review is to present evidence for the existence of tuberculosis in the Paleolithic and to list hypotheses explaining the weak demonstrative contribution of paleopathology for pre-Neolithic periods.
Collapse
Affiliation(s)
- Olivier Dutour
- Ecole Pratique des Haute Etudes, PSL University Paris, France; UMR 5199 PACEA (Université de Bordeaux-Centre National de la Recherche Scientifique), France.
| |
Collapse
|
18
|
Guevara E, Gopalan S, Massey DJ, Adegboyega M, Zhou W, Solis A, Anaya AD, Churchill SE, Feldblum J, Lawler RR. Getting it right: Teaching undergraduate biology to undermine racial essentialism. Biol Methods Protoc 2023; 8:bpad032. [PMID: 38023347 PMCID: PMC10674104 DOI: 10.1093/biomethods/bpad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
How we teach human genetics matters for social equity. The biology curriculum appears to be a crucial locus of intervention for either reinforcing or undermining students' racial essentialist views. The Mendelian genetic models dominating textbooks, particularly in combination with racially inflected language sometimes used when teaching about monogenic disorders, can increase middle and high school students' racial essentialism and opposition to policies to increase equity. These findings are of particular concern given the increasing spread of racist misinformation online and the misappropriation of human genomics research by white supremacists, who take advantage of low levels of genetics literacy in the general public. Encouragingly, however, teaching updated information about the geographical distribution of human genetic variation and the complex, multifactorial basis of most human traits, reduces students' endorsement of racial essentialism. The genetics curriculum is therefore a key tool in combating misinformation and scientific racism. Here, we describe a framework and example teaching materials for teaching students key concepts in genetics, human evolutionary history, and human phenotypic variation at the undergraduate level. This framework can be flexibly applied in biology and anthropology classes and adjusted based on time availability. Our goal is to provide undergraduate-level instructors with varying levels of expertise with a set of evidence-informed tools for teaching human genetics to combat scientific racism, including an evolving set of instructional resources, as well as learning goals and pedagogical approaches. Resources can be found at https://noto.li/YIlhZ5. Additionally, we hope to generate conversation about integrating modern genetics into the undergraduate curriculum, in light of recent findings about the risks and opportunities associated with teaching genetics.
Collapse
Affiliation(s)
- Elaine Guevara
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Shyamalika Gopalan
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Dashiell J Massey
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Mayowa Adegboyega
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Wen Zhou
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
- Department of Evolutionary Anthropology, Duke Kunshan University, Kunshan, Jiangsu 215316, China
| | - Alma Solis
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Alisha D Anaya
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Steven E Churchill
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Joseph Feldblum
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27713, United States
| | - Richard R Lawler
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia 22807, United States
| |
Collapse
|
19
|
Salazar-Tortosa DF, Huang YF, Enard D. Assessing the Presence of Recent Adaptation in the Human Genome With Mixture Density Regression. Genome Biol Evol 2023; 15:evad170. [PMID: 37713622 PMCID: PMC10563788 DOI: 10.1093/gbe/evad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
How much genome differences between species reflect neutral or adaptive evolution is a central question in evolutionary genomics. In humans and other mammals, the presence of adaptive versus neutral genomic evolution has proven particularly difficult to quantify. The difficulty notably stems from the highly heterogeneous organization of mammalian genomes at multiple levels (functional sequence density, recombination, etc.) which complicates the interpretation and distinction of adaptive versus neutral evolution signals. In this study, we introduce mixture density regressions (MDRs) for the study of the determinants of recent adaptation in the human genome. MDRs provide a flexible regression model based on multiple Gaussian distributions. We use MDRs to model the association between recent selection signals and multiple genomic factors likely to affect the occurrence/detection of positive selection, if the latter was present in the first place to generate these associations. We find that an MDR model with two Gaussian distributions provides an excellent fit to the genome-wide distribution of a common sweep summary statistic (integrated haplotype score), with one of the two distributions likely enriched in positive selection. We further find several factors associated with signals of recent adaptation, including the recombination rate, the density of regulatory elements in immune cells, GC content, gene expression in immune cells, the density of mammal-wide conserved elements, and the distance to the nearest virus-interacting gene. These results support the presence of strong positive selection in recent human evolution and highlight MDRs as a powerful tool to make sense of signals of recent genomic adaptation.
Collapse
Affiliation(s)
- Diego F Salazar-Tortosa
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology, University of Granada, Granada, Spain
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, Pennsylvania, PA 16801, USA
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
20
|
Lanchbury JS, Pederson HJ. An apparent quandary: adoption of polygenics and gene panels for personalised breast cancer risk stratification. BJC REPORTS 2023; 1:15. [PMID: 39516244 PMCID: PMC11523941 DOI: 10.1038/s44276-023-00014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 11/16/2024]
Abstract
Over the past 30 years, genetic and epidemiological advances have revolutionised the prediction of breast cancer risk in women with significant family history. By screening these women for high- and intermediate-risk pathogenic variants and by interrogating their genomes for multiple lower-risk single-nucleotide polymorphisms (SNPs), we can provide individually tailored risk profiles in carriers of Mendelian breast cancer risk variants and in non-carriers, but clinical implementation of this approach is suboptimal. Risk mitigation may involve enhanced surveillance, preventive medications or risk-reducing surgery but barriers exist to the adoption of polygenic risk score (PRS)-based models in the clinic. PRS development has suffered from both systematic biases resulting from development and validation in those of European ancestry and from the consequences of unanticipated evolutionary differences particularly with regard to those of African ancestry. PRS approaches which take into account underlying genetic diversity offer a practical solution to the misapplication of European-derived PRS to other population groups including women of multiple ancestries. All ancestry PRS technology offers net benefit regardless of potency differences. While the new science of polygenics has surged ahead and its stratification insights have been incorporated into risk modelling, training of providers and genetic counsellors lags far behind and an educational revolution is also necessary to provide optimal patient care.
Collapse
Affiliation(s)
| | - Holly J Pederson
- Medical Breast Services, Cleveland Clinic, Cleveland, OH, USA
- Department of Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| |
Collapse
|
21
|
Chian JS, Li J, Wang SM. Evolutionary Origin of Human PALB2 Germline Pathogenic Variants. Int J Mol Sci 2023; 24:11343. [PMID: 37511102 PMCID: PMC10379391 DOI: 10.3390/ijms241411343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
PALB2 (Partner and localizer of BRCA2) is crucial for repairing DNA double-stranded breaks (DSBs) through homologous recombination (HR). Germline pathogenic variation in PALB2 disrupts DNA damage repair and increases the risk of Fanconi Anemia, breast cancer, and ovarian cancer. Determination of the evolutionary origin of human PALB2 variants will promote a deeper understanding of the biological basis of PALB2 germline variation and its roles in human diseases. We tested the evolution origin for 1444 human PALB2 germline variants, including 484 pathogenic and 960 benign variants. We performed a phylogenic analysis by tracing the variants in 100 vertebrates. However, we found no evidence to show that cross-species conservation was the origin of PALB2 germline pathogenic variants, but it is indeed a rich source for PALB2 germline benign variants. We performed a paleoanthropological analysis by tracing the variants in over 5000 ancient humans. We identified 50 pathogenic in 71 ancient humans dated from 32,895 to 689 before the present, of which 90.1% were dated within the recent 10,000 years. PALB2 benign variants were also highly shared with ancient humans. Data from our study reveal that human PALB2 pathogenic variants mostly arose in recent human history.
Collapse
Affiliation(s)
- Jia Sheng Chian
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| |
Collapse
|
22
|
Ferraz Gerardi F, Tresoldi T, Coelho Aragon C, Reichert S, de Souza JG, Silva Noelli F. Lexical phylogenetics of the Tupí-Guaraní family: Language, archaeology, and the problem of chronology. PLoS One 2023; 18:e0272226. [PMID: 37319229 PMCID: PMC10270611 DOI: 10.1371/journal.pone.0272226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/14/2022] [Indexed: 06/17/2023] Open
Abstract
Tupí-Guaraní is one of the largest branches of the Tupían language family, but despite its relevance there is no consensus about its origins in terms of age, homeland, and expansion. Linguistic classifications vary significantly, with archaeological studies suggesting incompatible date ranges while ethnographic literature confirms the close similarities as a result of continuous inter-family contact. To investigate this issue, we use a linguistic database of cognate data, employing Bayesian phylogenetic methods to infer a dated tree and to build a phylogeographic expansion model. Results suggest that the branch originated around 2500 BP in the area of the upper course of the Tapajós-Xingu basins, with a split between Southern and Northern varieties beginning around 1750 BP. We analyse the difficulties in reconciling archaeological and linguistic data for this group, stressing the importance of developing an interdisciplinary unified model that incorporates evidence from both disciplines.
Collapse
Affiliation(s)
| | - Tiago Tresoldi
- Department of Linguistics and Philology, Uppsala Universitet, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
23
|
Kachuri L, Mak ACY, Hu D, Eng C, Huntsman S, Elhawary JR, Gupta N, Gabriel S, Xiao S, Keys KL, Oni-Orisan A, Rodríguez-Santana JR, LeNoir MA, Borrell LN, Zaitlen NA, Williams LK, Gignoux CR, Burchard EG, Ziv E. Gene expression in African Americans, Puerto Ricans and Mexican Americans reveals ancestry-specific patterns of genetic architecture. Nat Genet 2023; 55:952-963. [PMID: 37231098 PMCID: PMC10260401 DOI: 10.1038/s41588-023-01377-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/21/2023] [Indexed: 05/27/2023]
Abstract
We explored ancestry-related differences in the genetic architecture of whole-blood gene expression using whole-genome and RNA sequencing data from 2,733 African Americans, Puerto Ricans and Mexican Americans. We found that heritability of gene expression significantly increased with greater proportions of African genetic ancestry and decreased with higher proportions of Indigenous American ancestry, reflecting the relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the prevalence of ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30% in African ancestry and 8% for Indigenous American ancestry segments. Most anc-eQTLs (89%) were driven by population differences in allele frequency. Transcriptome-wide association analyses of multi-ancestry summary statistics for 28 traits identified 79% more gene-trait associations using transcriptome prediction models trained in our admixed population than models trained using data from the Genotype-Tissue Expression project. Our study highlights the importance of measuring gene expression across large and ancestrally diverse populations for enabling new discoveries and reducing disparities.
Collapse
Affiliation(s)
- Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Angel C Y Mak
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer R Elhawary
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Namrata Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Shujie Xiao
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, MI, USA
| | - Kevin L Keys
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, USA
| | - Akinyemi Oni-Orisan
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Luisa N Borrell
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY, USA
| | - Noah A Zaitlen
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research, Henry Ford Health System, Detroit, MI, USA
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Christopher R Gignoux
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Esteban González Burchard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Elad Ziv
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
24
|
Anderson-Trocmé L, Nelson D, Zabad S, Diaz-Papkovich A, Kryukov I, Baya N, Touvier M, Jeffery B, Dina C, Vézina H, Kelleher J, Gravel S. On the genes, genealogies, and geographies of Quebec. Science 2023; 380:849-855. [PMID: 37228217 DOI: 10.1126/science.add5300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Population genetic models only provide coarse representations of real-world ancestry. We used a pedigree compiled from 4 million parish records and genotype data from 2276 French and 20,451 French Canadian individuals to finely model and trace French Canadian ancestry through space and time. The loss of ancestral French population structure and the appearance of spatial and regional structure highlights a wide range of population expansion models. Geographic features shaped migrations, and we find enrichments for migration, genetic, and genealogical relatedness patterns within river networks across regions of Quebec. Finally, we provide a freely accessible simulated whole-genome sequence dataset with spatiotemporal metadata for 1,426,749 individuals reflecting intricate French Canadian population structure. Such realistic population-scale simulations provide opportunities to investigate population genetics at an unprecedented resolution.
Collapse
Affiliation(s)
- Luke Anderson-Trocmé
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Dominic Nelson
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Shadi Zabad
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - Alex Diaz-Papkovich
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Ivan Kryukov
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Nikolas Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, University Paris Cité (CRESS), Bobigny, France
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christian Dina
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Hélène Vézina
- BALSAC Project, Université du Québec á Chicoutimi, Chicoutimi, QC, Canada
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| |
Collapse
|
25
|
Majara L, Kalungi A, Koen N, Tsuo K, Wang Y, Gupta R, Nkambule LL, Zar H, Stein DJ, Kinyanda E, Atkinson EG, Martin AR. Low and differential polygenic score generalizability among African populations due largely to genetic diversity. HGG ADVANCES 2023; 4:100184. [PMID: 36873096 PMCID: PMC9982687 DOI: 10.1016/j.xhgg.2023.100184] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/04/2023] [Indexed: 02/15/2023] Open
Abstract
African populations are vastly underrepresented in genetic studies but have the most genetic variation and face wide-ranging environmental exposures globally. Because systematic evaluations of genetic prediction had not yet been conducted in ancestries that span African diversity, we calculated polygenic risk scores (PRSs) in simulations across Africa and in empirical data from South Africa, Uganda, and the United Kingdom to better understand the generalizability of genetic studies. PRS accuracy improves with ancestry-matched discovery cohorts more than from ancestry-mismatched studies. Within ancestrally and ethnically diverse South African individuals, we find that PRS accuracy is low for all traits but varies across groups. Differences in African ancestries contribute more to variability in PRS accuracy than other large cohort differences considered between individuals in the United Kingdom versus Uganda. We computed PRS in African ancestry populations using existing European-only versus ancestrally diverse genetic studies; the increased diversity produced the largest accuracy gains for hemoglobin concentration and white blood cell count, reflecting large-effect ancestry-enriched variants in genes known to influence sickle cell anemia and the allergic response, respectively. Differences in PRS accuracy across African ancestries originating from diverse regions are as large as across out-of-Africa continental ancestries, requiring commensurate nuance.
Collapse
Affiliation(s)
- Lerato Majara
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Allan Kalungi
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Mental Health Project, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) & London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Nastassja Koen
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Kristin Tsuo
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Ying Wang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rahul Gupta
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Lethukuthula L. Nkambule
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heather Zar
- Department of Paediatrics and Child Health, Red Cross Children’s Hospital and Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC) Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Eugene Kinyanda
- Mental Health Project, Medical Research Council/Uganda Virus Research Institute (MRC/UVRI) & London School of Hygiene and Tropical Medicine (LSHTM), Uganda Research Unit, Entebbe, Uganda
| | - Elizabeth G. Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alicia R. Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
26
|
Shi Y, Niu Y, Zhang P, Luo H, Liu S, Zhang S, Wang J, Li Y, Liu X, Song T, Xu T, He S. Characterization of genome-wide STR variation in 6487 human genomes. Nat Commun 2023; 14:2092. [PMID: 37045857 PMCID: PMC10097659 DOI: 10.1038/s41467-023-37690-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Short tandem repeats (STRs) are abundant and highly mutagenic in the human genome. Many STR loci have been associated with a range of human genetic disorders. However, most population-scale studies on STR variation in humans have focused on European ancestry cohorts or are limited by sequencing depth. Here, we depicted a comprehensive map of 366,013 polymorphic STRs (pSTRs) constructed from 6487 deeply sequenced genomes, comprising 3983 Chinese samples (~31.5x, NyuWa) and 2504 samples from the 1000 Genomes Project (~33.3x, 1KGP). We found that STR mutations were affected by motif length, chromosome context and epigenetic features. We identified 3273 and 1117 pSTRs whose repeat numbers were associated with gene expression and 3'UTR alternative polyadenylation, respectively. We also implemented population analysis, investigated population differentiated signatures, and genotyped 60 known disease-causing STRs. Overall, this study further extends the scale of STR variation in humans and propels our understanding of the semantics of STRs.
Collapse
Affiliation(s)
- Yirong Shi
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaxia Luo
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuai Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijia Zhang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajia Wang
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanyan Li
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinyue Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingrui Song
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Carlberg C. Nutrigenomics in the context of evolution. Redox Biol 2023; 62:102656. [PMID: 36933390 PMCID: PMC10036735 DOI: 10.1016/j.redox.2023.102656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Nutrigenomics describes the interaction between nutrients and our genome. Since the origin of our species most of these nutrient-gene communication pathways have not changed. However, our genome experienced over the past 50,000 years a number of evolutionary pressures, which are based on the migration to new environments concerning geography and climate, the transition from hunter-gatherers to farmers including the zoonotic transfer of many pathogenic microbes and the rather recent change of societies to a preferentially sedentary lifestyle and the dominance of Western diet. Human populations responded to these challenges not only by specific anthropometric adaptations, such as skin color and body stature, but also through diversity in dietary intake and different resistance to complex diseases like the metabolic syndrome, cancer and immune disorders. The genetic basis of this adaptation process has been investigated by whole genome genotyping and sequencing including that of DNA extracted from ancient bones. In addition to genomic changes, also the programming of epigenomes in pre- and postnatal phases of life has an important contribution to the response to environmental changes. Thus, insight into the variation of our (epi)genome in the context of our individual's risk for developing complex diseases, helps to understand the evolutionary basis how and why we become ill. This review will discuss the relation of diet, modern environment and our (epi)genome including aspects of redox biology. This has numerous implications for the interpretation of the risks for disease and their prevention.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Juliana Tuwima 10, PL-10748, Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211, Kuopio, Finland.
| |
Collapse
|
28
|
Rifkin RF, Vikram S, Alcorta J, Ramond JB, Cowan DA, Jakobsson M, Schlebusch CM, Lombard M. Rickettsia felis DNA recovered from a child who lived in southern Africa 2000 years ago. Commun Biol 2023; 6:240. [PMID: 36869137 PMCID: PMC9984395 DOI: 10.1038/s42003-023-04582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
The Stone Age record of South Africa provides some of the earliest evidence for the biological and cultural origins of Homo sapiens. While there is extensive genomic evidence for the selection of polymorphisms in response to pathogen-pressure in sub-Saharan Africa, e.g., the sickle cell trait which provides protection against malaria, there is inadequate direct human genomic evidence for ancient human-pathogen infection in the region. Here, we analysed shotgun metagenome libraries derived from the sequencing of a Later Stone Age hunter-gatherer child who lived near Ballito Bay, South Africa, c. 2000 years ago. This resulted in the identification of ancient DNA sequence reads homologous to Rickettsia felis, the causative agent of typhus-like flea-borne rickettsioses, and the reconstruction of an ancient R. felis genome.
Collapse
Affiliation(s)
- Riaan F Rifkin
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK.
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
- Department of Anthropology and Geography, Human Origins and Palaeoenvironmental Research Group, Oxford Brookes University, Oxford, UK
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Mattias Jakobsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Carina M Schlebusch
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa
- SciLifeLab, Uppsala, Sweden
| | - Marlize Lombard
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, South Africa.
| |
Collapse
|
29
|
Lucock MD. The evolution of human skin pigmentation: A changing medley of vitamins, genetic variability, and UV radiation during human expansion. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 180:252-271. [PMID: 36790744 PMCID: PMC10083917 DOI: 10.1002/ajpa.24564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 04/12/2023]
Abstract
This review examines putative, yet likely critical evolutionary pressures contributing to human skin pigmentation and subsequently, depigmentation phenotypes. To achieve this, it provides a synthesis of ideas that frame contemporary thinking, without limiting the narrative to pigmentation genes alone. It examines how geography and hence the quality and quantity of UV exposure, pigmentation genes, diet-related genes, vitamins, anti-oxidant nutrients, and cultural practices intersect and interact to facilitate the evolution of human skin color. The article has a strong focus on the vitamin D-folate evolutionary model, with updates on the latest biophysical research findings to support this paradigm. This model is examined within a broad canvas that takes human expansion out of Africa and genetic architecture into account. A thorough discourse on the biology of melanization is provided (includes relationship to BH4 and DNA damage repair), with the relevance of this to the UV sensitivity of folate and UV photosynthesis of vitamin D explained in detail, including the relevance of these vitamins to reproductive success. It explores whether we might be able to predict vitamin-related gene polymorphisms that pivot metabolism to the prevailing UVR exposome within the vitamin D-folate evolutionary hypothesis context. This is discussed in terms of a primary adaptive phenotype (pigmentation/depigmentation), a secondary adaptive phenotype (flexible metabolic phenotype based on vitamin-related gene polymorphism profile), and a tertiary adaptive strategy (dietary anti-oxidants to support the secondary adaptive phenotype). Finally, alternative evolutionary models for pigmentation are discussed, as are challenges to future research in this area.
Collapse
Affiliation(s)
- Mark D. Lucock
- School of Environmental & Life SciencesUniversity of NewcastleOurimbahNew South WalesAustralia
| |
Collapse
|
30
|
Martins VF, Tesio L, Simone A, Gonçalves AK, Peyré-Tartaruga LA. Determinants of age-related decline in walking speed in older women. PeerJ 2023; 11:e14728. [PMID: 36915651 PMCID: PMC10007973 DOI: 10.7717/peerj.14728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/20/2022] [Indexed: 03/09/2023] Open
Abstract
Background Walking speed is reduced with aging. However, it is not certain whether the reduced walking speed is associated with physical and coordination fitness. This study explores the physical and coordination determinants of the walking speed decline in older women. Methods One-hundred-eighty-seven active older women (72.2 ± 6.8 years) were asked to perform a 10-m walk test (self-selected and maximal walking speed) and a battery of the Senior fitness test: lower body strength, lower body flexibility, agility/dynamic balance, and aerobic endurance. Two parameters characterized the walking performance: closeness to the modeled speed minimizing the energetic cost per unit distance (locomotor rehabilitation index, LRI), and the ratio of step length to step cadence (walk ratio, WR). For dependent variables (self-selected and maximal walking speeds), a recursive partitioning algorithm (classification and regression tree) was adopted, highlighting interactions across all the independent variables. Results Participants were aged from 60 to 88 years, and their self-selected and maximal speeds declined by 22% and 26% (p < 0.05), respectively. Similarly, all physical fitness variables worsened with aging (muscle strength: 33%; flexibility: 0 to -8 cm; balance: 22%; aerobic endurance: 12%; all p < 0.050). The predictors of maximal walking speed were only WR and balance. No meaningful predictions could be made using LRI and WR as dependent variables. Discussion The results suggest that at self-selected speed, the decrease in speed itself is sufficient to compensate for the age-related decline in the motor functions tested; by contrast, lowering the WR is required at maximal speed, presumably to prevent imbalance. Therefore, any excessive lowering of LRI and WR indicates loss of homeostasis of walking mechanics and invites diagnostic investigation.
Collapse
Affiliation(s)
- Valéria Feijó Martins
- LaBiodin Biodynamics Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luigi Tesio
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Simone
- Department of Neurorehabilitation Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Andréa Kruger Gonçalves
- LaBiodin Biodynamics Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leonardo A Peyré-Tartaruga
- LaBiodin Biodynamics Laboratory, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
Schroeder L, Ackermann RR. Moving beyond the adaptationist paradigm for human evolution, and why it matters. J Hum Evol 2023; 174:103296. [PMID: 36527977 DOI: 10.1016/j.jhevol.2022.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022]
Abstract
The Journal of Human Evolution (JHE) was founded 50 years ago when much of the foundation for how we think about human evolution was in place or being put in place, providing the main framework for how we consider our origins today. Here, we will explore historical developments, including early JHE outputs, as they relate to our understanding of the relationship between phenotypic variation and evolutionary process, and use that as a springboard for considering our current understanding of these links as applied to human evolution. We will focus specifically on how the study of variation itself has shifted us away from taxonomic and adaptationist perspectives toward a richer understanding of the processes shaping human evolutionary history, using literature searches and specific test cases to highlight this. We argue that natural selection, gene exchange, genetic drift, and mutation should not be considered individually when considering the production of hominin diversity. In this context, we offer suggestions for future research directions and reflect on this more complex understanding of human evolution and its broader relevance to society. Finally, we end by considering authorship demographics and practices in the last 50 years within JHE and how a shift in these demographics has the potential to reshape the science of human evolution going forward.
Collapse
Affiliation(s)
- Lauren Schroeder
- Department of Anthropology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada; Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa.
| | - Rebecca Rogers Ackermann
- Human Evolution Research Institute, University of Cape Town, Rondebosch, 7701, South Africa; Department of Archaeology, University of Cape Town, Rondebosch, 7701, South Africa.
| |
Collapse
|
32
|
Linder RA, Zabanavar B, Majumder A, Hoang HCS, Delgado VG, Tran R, La VT, Leemans SW, Long AD. Adaptation in Outbred Sexual Yeast is Repeatable, Polygenic and Favors Rare Haplotypes. Mol Biol Evol 2022; 39:msac248. [PMID: 36366952 PMCID: PMC9728589 DOI: 10.1093/molbev/msac248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We carried out a 200 generation Evolve and Resequence (E&R) experiment initiated from an outbred diploid recombined 18-way synthetic base population. Replicate populations were evolved at large effective population sizes (>105 individuals), exposed to several different chemical challenges over 12 weeks of evolution, and whole-genome resequenced. Weekly forced outcrossing resulted in an average between adjacent-gene per cell division recombination rate of ∼0.0008. Despite attempts to force weekly sex, roughly half of our populations evolved cheaters and appear to be evolving asexually. Focusing on seven chemical stressors and 55 total evolved populations that remained sexual we observed large fitness gains and highly repeatable patterns of genome-wide haplotype change within chemical challenges, with limited levels of repeatability across chemical treatments. Adaptation appears highly polygenic with almost the entire genome showing significant and consistent patterns of haplotype change with little evidence for long-range linkage disequilibrium in a subset of populations for which we sequenced haploid clones. That is, almost the entire genome is under selection or drafting with selected sites. At any given locus adaptation was almost always dominated by one of the 18 founder's alleles, with that allele varying spatially and between treatments, suggesting that selection acts primarily on rare variants private to a founder or haplotype blocks harboring multiple mutations.
Collapse
Affiliation(s)
- Robert A Linder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Behzad Zabanavar
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Arundhati Majumder
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Hannah Chiao-Shyan Hoang
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vanessa Genesaret Delgado
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Ryan Tran
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Vy Thoai La
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| | - Simon William Leemans
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine
| | - Anthony D Long
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California, Irvine
| |
Collapse
|
33
|
Mansouri S, Gogoi H, Patel S, Katikaneni DS, Singh A, Aybar-Torres A, de Lartigue G, Jin L. MPYS Modulates Fatty Acid Metabolism and Immune Tolerance at Homeostasis Independent of Type I IFNs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2114-2132. [PMID: 36261171 PMCID: PMC9679991 DOI: 10.4049/jimmunol.2200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 01/04/2023]
Abstract
MPYS/STING (stimulator of IFN genes) senses cyclic dinucleotides (CDNs), generates type I IFNs, and plays a critical role in infection, inflammation, and cancer. In this study, analyzing genotype and haplotype data from the 1000 Genomes Project, we found that the R71H-G230A-R293Q (HAQ) MPYS allele frequency increased 57-fold in East Asians compared with sub-Saharan Africans. Meanwhile, the G230A-R293Q (AQ) allele frequency decreased by 98% in East Asians compared with sub-Saharan Africans. We propose that the HAQ and AQ alleles underwent a natural selection during the out-of-Africa migration. We used mouse models of HAQ and AQ to investigate the underlying mechanism. We found that the mice carrying the AQ allele, which disappeared in East Asians, had normal CDN-type I IFN responses. Adult AQ mice, however, had less fat mass than did HAQ or wild-type mice on a chow diet. AQ epididymal adipose tissue had increased regulatory T cells and M2 macrophages with protein expression associated with enhanced fatty acid oxidation. Conditional knockout mice and adoptive cell transfer indicate a macrophage and regulatory T cell-intrinsic role of MPYS in fatty acid metabolism. Mechanistically, AQ/IFNAR1-/- mice had a similar lean phenotype as for the AQ mice. MPYS intrinsic tryptophan fluorescence revealed that the R71H change increased MPYS hydrophilicity. Lastly, we found that the second transmembrane (TM) and the TM2-TM3 linker region of MPYS interact with activated fatty acid, fatty acyl-CoA. In summary, studying the evolution of the human MPYS gene revealed an MPYS function in modulating fatty acid metabolism that may be critical during the out-of-Africa migration.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Seema Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Divya S. Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Alexandra Aybar-Torres
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL; and
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
34
|
Thorpe HA, Tourrette E, Yahara K, Vale FF, Liu S, Oleastro M, Alarcon T, Perets TT, Latifi-Navid S, Yamaoka Y, Martinez-Gonzalez B, Karayiannis I, Karamitros T, Sgouras DN, Elamin W, Pascoe B, Sheppard SK, Ronkainen J, Aro P, Engstrand L, Agreus L, Suerbaum S, Thorell K, Falush D. Repeated out-of-Africa expansions of Helicobacter pylori driven by replacement of deleterious mutations. Nat Commun 2022; 13:6842. [PMID: 36369175 PMCID: PMC9652371 DOI: 10.1038/s41467-022-34475-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Helicobacter pylori lives in the human stomach and has a population structure resembling that of its host. However, H. pylori from Europe and the Middle East trace substantially more ancestry from modern African populations than the humans that carry them. Here, we use a collection of Afro-Eurasian H. pylori genomes to show that this African ancestry is due to at least three distinct admixture events. H. pylori from East Asia, which have undergone little admixture, have accumulated many more non-synonymous mutations than African strains. European and Middle Eastern bacteria have elevated African ancestry at the sites of these mutations, implying selection to remove them during admixture. Simulations show that population fitness can be restored after bottlenecks by migration and subsequent admixture of small numbers of bacteria from non-bottlenecked populations. We conclude that recent spread of African DNA has been driven by deleterious mutations accumulated during the original out-of-Africa bottleneck.
Collapse
Affiliation(s)
- Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Elise Tourrette
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Siqi Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Teresa Alarcon
- Department of Microbiology, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Tsachi-Tsadok Perets
- Gastroenterology Laboratory, Rabin Medical Center, Petah Tikva, Israel
- Department of Digital Medical Technologies, Holon Institute of Technology, Holon, Israel
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Oita, Japan
- Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ioannis Karayiannis
- Laboratory of Medical Microbiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | - Wael Elamin
- G42 Healthcare, Abu Dhabi, UAE
- Elrazi University, Khartoum, Sudan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | - Jukka Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- Primary Health Care Center, Tornio, Finland
| | | | - Lars Engstrand
- Center for Translational Microbiome Research, Department for Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agreus
- Division of Family Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Suerbaum
- Department of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
- DZIF German Center for Infection Research, Hannover-Braunschweig and Munich Partner Sites, Munich, Germany
| | - Kaisa Thorell
- Institute of Biomedicine, Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Falush
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
35
|
Wooding SP, Ramirez VA. Global population genetics and diversity in the TAS2R bitter taste receptor family. Front Genet 2022; 13:952299. [PMID: 36303543 PMCID: PMC9592824 DOI: 10.3389/fgene.2022.952299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bitter taste receptors (TAS2Rs) are noted for their role in perception, and mounting evidence suggests that they mediate responses to compounds entering airways, gut, and other tissues. The importance of these roles suggests that TAS2Rs have been under pressure from natural selection. To determine the extent of variation in TAS2Rs on a global scale and its implications for human evolution and behavior, we analyzed patterns of diversity in the complete 25 gene repertoire of human TAS2Rs in ∼2,500 subjects representing worldwide populations. Across the TAS2R family as a whole, we observed 721 single nucleotide polymorphisms (SNPs) including 494 nonsynonymous SNPs along with 40 indels and gained and lost start and stop codons. In addition, computational predictions identified 169 variants particularly likely to affect receptor function, making them candidate sources of phenotypic variation. Diversity levels ranged widely among loci, with the number of segregating sites ranging from 17 to 41 with a mean of 32 among genes and per nucleotide heterozygosity (π) ranging from 0.02% to 0.36% with a mean of 0.12%. FST ranged from 0.01 to 0.26 with a mean of 0.13, pointing to modest differentiation among populations. Comparisons of observed π and FST values with their genome wide distributions revealed that most fell between the 5th and 95th percentiles and were thus consistent with expectations. Further, tests for natural selection using Tajima’s D statistic revealed only two loci departing from expectations given D’s genome wide distribution. These patterns are consistent with an overall relaxation of selective pressure on TAS2Rs in the course of recent human evolution.
Collapse
Affiliation(s)
- Stephen P. Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, United States
- *Correspondence: Stephen P. Wooding,
| | - Vicente A. Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, United States
| |
Collapse
|
36
|
Fedorova L, Khrunin A, Khvorykh G, Lim J, Thornton N, Mulyar OA, Limborska S, Fedorov A. Analysis of Common SNPs across Continents Reveals Major Genomic Differences between Human Populations. Genes (Basel) 2022; 13:genes13081472. [PMID: 36011383 PMCID: PMC9408407 DOI: 10.3390/genes13081472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022] Open
Abstract
Common alleles tend to be more ancient than rare alleles. These common SNPs appeared thousands of years ago and reflect intricate human evolution including various adaptations, admixtures, and migration events. Eighty-four thousand abundant region-specific alleles (ARSAs) that are common in one continent but absent in the rest of the world have been characterized by processing 3100 genomes from 230 populations. Also computed were 17,446 polymorphic sites with regional absence of common alleles (RACAs), which are widespread globally but absent in one region. A majority of these region-specific SNPs were found in Africa. America has the second greatest number of ARSAs (3348) and is even ahead of Europe (1911). Surprisingly, East Asia has the highest number of RACAs (10,524) and the lowest number of ARSAs (362). ARSAs and RACAs have distinct compositions of ancestral versus derived alleles in different geographical regions, reflecting their unique evolution. Genes associated with ARSA and RACA SNPs were identified and their functions were analyzed. The core 100 genes shared by multiple populations and associated with region-specific natural selection were examined. The largest part of them (42%) are related to the nervous system. ARSA and RACA SNPs are important for both association and human evolution studies.
Collapse
Affiliation(s)
| | - Andrey Khrunin
- Institute of Molecular Genetics of National Research Centre, “Kurchatov Institute”, 123182 Moscow, Russia
| | - Gennady Khvorykh
- Institute of Molecular Genetics of National Research Centre, “Kurchatov Institute”, 123182 Moscow, Russia
| | - Jan Lim
- CRI Genetics LLC, Santa Monica, CA 90404, USA
| | | | | | - Svetlana Limborska
- Institute of Molecular Genetics of National Research Centre, “Kurchatov Institute”, 123182 Moscow, Russia
| | - Alexei Fedorov
- CRI Genetics LLC, Santa Monica, CA 90404, USA
- Department of Medicine, University of Toledo, Toledo, OH 43606, USA
- Correspondence: ; Tel.: +1-419-383-5270
| |
Collapse
|
37
|
Redondo MJ, Gignoux CR, Dabelea D, Hagopian WA, Onengut-Gumuscu S, Oram RA, Rich SS. Type 1 diabetes in diverse ancestries and the use of genetic risk scores. Lancet Diabetes Endocrinol 2022; 10:597-608. [PMID: 35724677 PMCID: PMC10024251 DOI: 10.1016/s2213-8587(22)00159-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023]
Abstract
Over 75 genetic loci within and outside of the HLA region influence type 1 diabetes risk. Genetic risk scores (GRS), which facilitate the integration of complex genetic information, have been developed in type 1 diabetes and incorporated into models and algorithms for classification, prognosis, and prediction of disease and response to preventive and therapeutic interventions. However, the development and validation of GRS across different ancestries is still emerging, as is knowledge on type 1 diabetes genetics in populations of diverse genetic ancestries. In this Review, we provide a summary of the current evidence on the evolutionary genetic variation in type 1 diabetes and the racial and ethnic differences in type 1 diabetes epidemiology, clinical characteristics, and preclinical course. We also discuss the influence of genetics on type 1 diabetes with differences across ancestries and the development and validation of GRS in various populations.
Collapse
Affiliation(s)
- Maria J Redondo
- Division of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Christopher R Gignoux
- Department of Medicine and Colorado Center for Personalized Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William A Hagopian
- Division of Diabetes Programs, Pacific Northwest Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Richard A Oram
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, UK; The Academic Kidney Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen S Rich
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
38
|
Abstract
We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
39
|
Iwata T. Japan to Global Eye Genetics Consortium: Extending Research Collaboration for Inherited Eye Diseases. Asia Pac J Ophthalmol (Phila) 2022; 11:360-368. [PMID: 35904986 DOI: 10.1097/apo.0000000000000535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Japan Eye Genetics Consortium (JEGC) was established in 2011 to migrate research system to all-Japan structure for collecting phenotype-genotype information for inherited retinal diseases and other retinal diseases including hereditary optic neuropathy and hereditary glaucoma. Diagnostic team was assembled to maintain quality of diagnostic and to collect phenotype information to database in Tokyo Medical Center (TMC). Over the past 10 years, 1538 pedigree [2788 deoxyribonucleic acid (DNA) samples] was collected from 38 ophthalmology departments and eye hospitals. Whole exome analysis has improved diagnostic rate from ~17% in 2011 to 53% in 2021, with 27% of known variants, 18% of novel variants in known gene, 8% of potential novel disease-causing genes, and 47% of pedigree with unknown cause. Approximately 70% of Japanese patients were affected by novel mutation or by unknown cause. In 2014, Asian Eye Genetics Consortium (AEGC) was established by researchers from Hong Kong, India, Japan, and the US, later renamed to Global Eye Genetics Consortium (GEGC) to expand the idea of collaborative research on rare genetic eye diseases in Asia, Middle East, Africa, and South America. GEGC phenotype-genotype database, GenEye, was constructed to collect and catalog genetic eye diseases at global scale. Over 200 members from 30 countries, GEGC now has 200 members from 30 continents, performing scientific programs, young investigator visiting program, and GEGC organized session at the meetings of the Asia-Pacific Academy of Ophthalmology (APAO), The Association for Research in Vision and Ophthalmology (ARVO), All India Ophthalmological Society (AIOS), World Ophthalmology Congress (WOC), and International Society for Eye Research (ISER).
Collapse
Affiliation(s)
- Takeshi Iwata
- Molecular and Cellular Biology Division, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| |
Collapse
|
40
|
African mitochondrial haplogroup L7: a 100,000-year-old maternal human lineage discovered through reassessment and new sequencing. Sci Rep 2022; 12:10747. [PMID: 35750688 PMCID: PMC9232647 DOI: 10.1038/s41598-022-13856-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Archaeological and genomic evidence suggest that modern Homo sapiens have roamed the planet for some 300–500 thousand years. In contrast, global human mitochondrial (mtDNA) diversity coalesces to one African female ancestor (“Mitochondrial Eve”) some 145 thousand years ago, owing to the ¼ gene pool size of our matrilineally inherited haploid genome. Therefore, most of human prehistory was spent in Africa where early ancestors of Southern African Khoisan and Central African rainforest hunter-gatherers (RFHGs) segregated into smaller groups. Their subdivisions followed climatic oscillations, new modes of subsistence, local adaptations, and cultural-linguistic differences, all prior to their exodus out of Africa. Seven African mtDNA haplogroups (L0–L6) traditionally captured this ancient structure—these L haplogroups have formed the backbone of the mtDNA tree for nearly two decades. Here we describe L7, an eighth haplogroup that we estimate to be ~ 100 thousand years old and which has been previously misclassified in the literature. In addition, L7 has a phylogenetic sublineage L7a*, the oldest singleton branch in the human mtDNA tree (~ 80 thousand years). We found that L7 and its sister group L5 are both low-frequency relics centered around East Africa, but in different populations (L7: Sandawe; L5: Mbuti). Although three small subclades of African foragers hint at the population origins of L5'7, the majority of subclades are divided into Afro-Asiatic and eastern Bantu groups, indicative of more recent admixture. A regular re-estimation of the entire mtDNA haplotype tree is needed to ensure correct cladistic placement of new samples in the future.
Collapse
|
41
|
Novembre J. The background and legacy of Lewontin's apportionment of human genetic diversity. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200406. [PMID: 35430890 PMCID: PMC9014184 DOI: 10.1098/rstb.2020.0406] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/18/2022] [Indexed: 12/18/2022] Open
Abstract
Lewontin's 1972 article 'The apportionment of human diversity' described a key feature of human genetic diversity that would have profound impacts on conversations regarding genetics and race: the typical genetic locus varies much less between classical human race groupings than one might infer from inspecting the features historically used to define those races, like skin pigmentation. From this, Lewontin concluded: 'Human racial classification … is now seen to be of virtually no genetic or taxonomic significance' (p. 397). Here, 50 years after the paper's publication, the goal is to understand the origins and legacy of the paper. Aided by insights from published papers and interviews with several of Lewontin's contemporaries, I review the 1972 paper, asking about the intellectual background that led to the publication of the paper, the development of its impact, the critiques of the work and the work's application and limitations today. The hope is that by gaining a clearer understanding of the origin and reasoning of the paper, we might dispel various confusions about the result and sharpen an understanding of the enduring value and insight the result provides. This article is part of the theme issue 'Celebrating 50 years since Lewontin's apportionment of human diversity'.
Collapse
Affiliation(s)
- John Novembre
- Department of Human Genetics, University of Chicago, Chicago, 60637, IL
- Department of Ecology and Evolution, University of Chicago, Chicago, 60637, IL
| |
Collapse
|
42
|
Cai D, Zhu S, Gong M, Zhang N, Wen J, Liang Q, Sun W, Shao X, Guo Y, Cai Y, Zheng Z, Zhang W, Hu S, Wang X, Tian H, Li Y, Liu W, Yang M, Yang J, Wu D, Orlando L, Jiang Y. Radiocarbon and genomic evidence for the survival of Equus Sussemionus until the late Holocene. eLife 2022; 11:73346. [PMID: 35543411 PMCID: PMC9142152 DOI: 10.7554/elife.73346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
The exceptionally rich fossil record available for the equid family has provided textbook examples of macroevolutionary changes. Horses, asses, and zebras represent three extant subgenera of Equus lineage, while the Sussemionus subgenus is another remarkable Equus lineage ranging from North America to Ethiopia in the Pleistocene. We sequenced 26 archaeological specimens from Northern China in the Holocene that could be assigned morphologically and genetically to Equus ovodovi, a species representative of Sussemionus. We present the first high-quality complete genome of the Sussemionus lineage, which was sequenced to 13.4× depth of coverage. Radiocarbon dating demonstrates that this lineage survived until ~3500 years ago, despite continued demographic collapse during the Last Glacial Maximum and the great human expansion in East Asia. We also confirmed the Equus phylogenetic tree and found that Sussemionus diverged from the ancestor of non-caballine equids ~2.3–2.7 million years ago and possibly remained affected by secondary gene flow post-divergence. We found that the small genetic diversity, rather than enhanced inbreeding, limited the species’ chances of survival. Our work adds to the growing literature illustrating how ancient DNA can inform on extinction dynamics and the long-term resilience of species surviving in cryptic population pockets.
Collapse
Affiliation(s)
- Dawei Cai
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Siqi Zhu
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Mian Gong
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Naifan Zhang
- Bioarchaeology Laboratory, Jilin University, Changchuin, China
| | - Jia Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qiyao Liang
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Weilu Sun
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Xinyue Shao
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Yaqi Guo
- Bioarchaeology Laboratory, Jilin University, Changchun, China
| | - Yudong Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wei Zhang
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Songmei Hu
- Shaanxi Provincial Institute of Archaeology, Xi'an, China
| | - Xiaoyang Wang
- Ningxia Institute of Cultural Relics and Archaeology, Yinchuan, China
| | - He Tian
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Youqian Li
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Wei Liu
- Heilongjiang Provincial Institute of Cultural Relics and Archaeology, Harbin, China
| | - Miaomiao Yang
- Shaanxi Provincial Institute of Archaeology, Xi'an, China
| | - Jian Yang
- Ningxia Institute of Cultural Relics and Archaeology, Yinchuan, China
| | - Duo Wu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Ludovic Orlando
- 7Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, CNRS UMR 5288, Toulouse, France
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
43
|
Pless E, Powell JR, Seger KR, Ellis B, Gloria‐Soria A. Evidence for serial founder events during the colonization of North America by the yellow fever mosquito, Aedes aegypti. Ecol Evol 2022; 12:e8896. [PMID: 35592063 PMCID: PMC9102526 DOI: 10.1002/ece3.8896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
The Aedes aegypti mosquito first invaded the Americas about 500 years ago and today is a widely distributed invasive species and the primary vector for viruses causing dengue, chikungunya, Zika, and yellow fever. Here, we test the hypothesis that the North American colonization by Ae. aegypti occurred via a series of founder events. We present findings on genetic diversity, structure, and demographic history using data from 70 Ae. aegypti populations in North America that were genotyped at 12 microsatellite loci and/or ~20,000 single nucleotide polymorphisms, the largest genetic study of the region to date. We find evidence consistent with colonization driven by serial founder effect (SFE), with Florida as the putative source for a series of westward invasions. This scenario was supported by (1) a decrease in the genetic diversity of Ae. aegypti populations moving west, (2) a correlation between pairwise genetic and geographic distances, and (3) demographic analysis based on allele frequencies. A few Ae. aegypti populations on the west coast do not follow the general trend, likely due to a recent and distinct invasion history. We argue that SFE provides a helpful albeit simplified model for the movement of Ae. aegypti across North America, with outlier populations warranting further investigation.
Collapse
Affiliation(s)
- Evlyn Pless
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Department of AnthropologyUniversity of CaliforniaDavisCaliforniaUSA
| | - Jeffrey R. Powell
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
| | | | - Brett Ellis
- U.S. Virgin Islands Department of HealthChristianstedVIUSA
| | - Andrea Gloria‐Soria
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Department of Environmental SciencesThe Connecticut Agricultural Experiment StationNew HavenConnecticutUSA
| |
Collapse
|
44
|
Abstract
This paper deals with the question about how early humans managed to feed themselves, and how they preserved and stored food for times of need. It attempts to show how humans interacted with their environments and demonstrate what lessons can be learnt from the about 3.4 million years of food processing and preservation. It includes a discussion about how hominins shifted from consumption of nuts and berries toward meat and learnt to control and use fire. Cooking with fire generated more food-related energy and enabled humans to have more mobility. The main trust of the paper is on historical food preservations, organized from the perspectives of key mechanical, thermal, biological and chemical processes. Emerging food processes are also highlighted. Furthermore, how humans historically dealt with food storage and packaging and how early humans interacted with their given environments are discussed. Learnings from the history of food preservation and culinary practices of our ancestors provide us with an understanding of their culture and how they adapted and lived with their given environments to ensure adequacy of food supply. Collaboration between food scientists and anthropologists is advocated as this adds another dimension to building resilient and sustainable food systems for the future.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
45
|
Granot-Hershkovitz E, Sun Q, Argos M, Zhou H, Lin X, Browning SR, Sofer T. AFA: Ancestry-specific allele frequency estimation in admixed populations: The Hispanic Community Health Study/Study of Latinos. HGG ADVANCES 2022; 3:100096. [PMID: 35300209 PMCID: PMC8920934 DOI: 10.1016/j.xhgg.2022.100096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/18/2022] [Indexed: 11/22/2022] Open
Abstract
Allele frequency estimates in admixed populations, such as Hispanics and Latinos, rely on the sample's specific admixture composition and thus may differ between two seemingly similar populations. However, ancestry-specific allele frequencies, i.e., pertaining to the ancestral populations of an admixed group, may be particularly useful for prioritizing genetic variants for genetic discovery and personalized genomic health. We developed a method, ancestry-specific allele frequency estimation in admixed populations (AFA), to estimate the frequencies of biallelic variants in admixed populations with an unlimited number of ancestries. AFA uses maximum-likelihood estimation by modeling the conditional probability of having an allele given proportions of genetic ancestries. It can be applied using either local ancestry interval proportions encompassing the variant (local-ancestry-specific allele frequency estimations in admixed populations [LAFAs]) or global proportions of genetic ancestries (global-ancestry-specific allele frequency estimations in admixed populations [GAFAs]), which are easier to compute and are more widely available. Simulations and comparisons to existing software demonstrated the high accuracy of the method. We implemented AFA on high-quality imputed data of ∼9,000 Hispanics and Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), an understudied, admixed population with three predominant continental ancestries: Amerindian, European, and African. Comparison of the European and African estimated frequencies to the respective gnomAD frequencies demonstrated high correlations (Pearson R2 = 0.97-0.99). We provide a genome-wide dataset of the estimated ancestry-specific allele frequencies for available variants with allele frequency between 5% and 95% in at least one of the three ancestral populations. Association analysis of Amerindian-enriched variants with cardiometabolic traits identified five loci associated with lipid traits in Hispanics and Latinos, demonstrating the utility of ancestry-specific allele frequencies in admixed populations.
Collapse
Affiliation(s)
- Einat Granot-Hershkovitz
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maria Argos
- School of Public Health, The University of Illinois, Chicago, Chicago, IL 60612, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sharon R. Browning
- Department of Biostatistics, University of Washington, Seattle, WA 98105, USA
| | - Tamar Sofer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
46
|
Cowie RH, Bouchet P, Fontaine B. The Sixth Mass Extinction: fact, fiction or speculation? Biol Rev Camb Philos Soc 2022; 97:640-663. [PMID: 35014169 PMCID: PMC9786292 DOI: 10.1111/brv.12816] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022]
Abstract
There have been five Mass Extinction events in the history of Earth's biodiversity, all caused by dramatic but natural phenomena. It has been claimed that the Sixth Mass Extinction may be underway, this time caused entirely by humans. Although considerable evidence indicates that there is a biodiversity crisis of increasing extinctions and plummeting abundances, some do not accept that this amounts to a Sixth Mass Extinction. Often, they use the IUCN Red List to support their stance, arguing that the rate of species loss does not differ from the background rate. However, the Red List is heavily biased: almost all birds and mammals but only a minute fraction of invertebrates have been evaluated against conservation criteria. Incorporating estimates of the true number of invertebrate extinctions leads to the conclusion that the rate vastly exceeds the background rate and that we may indeed be witnessing the start of the Sixth Mass Extinction. As an example, we focus on molluscs, the second largest phylum in numbers of known species, and, extrapolating boldly, estimate that, since around AD 1500, possibly as many as 7.5-13% (150,000-260,000) of all ~2 million known species have already gone extinct, orders of magnitude greater than the 882 (0.04%) on the Red List. We review differences in extinction rates according to realms: marine species face significant threats but, although previous mass extinctions were largely defined by marine invertebrates, there is no evidence that the marine biota has reached the same crisis as the non-marine biota. Island species have suffered far greater rates than continental ones. Plants face similar conservation biases as do invertebrates, although there are hints they may have suffered lower extinction rates. There are also those who do not deny an extinction crisis but accept it as a new trajectory of evolution, because humans are part of the natural world; some even embrace it, with a desire to manipulate it for human benefit. We take issue with these stances. Humans are the only species able to manipulate the Earth on a grand scale, and they have allowed the current crisis to happen. Despite multiple conservation initiatives at various levels, most are not species oriented (certain charismatic vertebrates excepted) and specific actions to protect every living species individually are simply unfeasible because of the tyranny of numbers. As systematic biologists, we encourage the nurturing of the innate human appreciation of biodiversity, but we reaffirm the message that the biodiversity that makes our world so fascinating, beautiful and functional is vanishing unnoticed at an unprecedented rate. In the face of a mounting crisis, scientists must adopt the practices of preventive archaeology, and collect and document as many species as possible before they disappear. All this depends on reviving the venerable study of natural history and taxonomy. Denying the crisis, simply accepting it and doing nothing, or even embracing it for the ostensible benefit of humanity, are not appropriate options and pave the way for the Earth to continue on its sad trajectory towards a Sixth Mass Extinction.
Collapse
Affiliation(s)
- Robert H. Cowie
- Pacific Biosciences Research CenterUniversity of HawaiiHonoluluHawaii96822U.S.A.
| | - Philippe Bouchet
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHEUniversité des Antilles57 rue Cuvier CP 5175005 ParisFrance
| | - Benoît Fontaine
- UMS 2006 Patrinat (OFB, CNRS, MNHN), Centre d'Écologie et des Sciences de la Conservation (UMR 7204), Muséum National d'Histoire Naturelle43 rue Buffon CP 13575005 ParisFrance
| |
Collapse
|
47
|
Cardona PJ, Català M, Prats C. The Origin and Maintenance of Tuberculosis Is Explained by the Induction of Smear-Negative Disease in the Paleolithic. Pathogens 2022; 11:pathogens11030366. [PMID: 35335692 PMCID: PMC8955375 DOI: 10.3390/pathogens11030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
Is it possible that the origin of Mycobacterium tuberculosis (Mtb) infection was around 70,000 years before the common era? At that time Homo sapiens was just another primate species with discrete growth and a very low-density geographic occupation. Therefore, it is difficult to understand the origin of a highly virulent obligate human pathogen. We have designed a new SEIR model (TBSpectr) that allows the differentiation of smear-positive and -negative tuberculosis. The model reconciles currently accepted growth rates for the Middle Paleolithic (0.003%/year) and Neolithic (0.1%/year). The obtained data link the origin of Mtb infection in the Middle Paleolithic to the induction of smear-negative TB, and reveal that its persistence required interrelations among hunter–gatherer groups, while the risk of human extinction was negligible. It also highlights the number of people infected per case and the fast progression to disease for Mtb infection maintenance, as well as the link between poor health in the Neolithic with the increased incidence of more severe forms of TB (smear-positive). In conclusion, our data support the origin of TB as a well-tolerated, highly persistent disease, even in low-density populations, showing the difficulty of its eradication and highlighting the necessity for providing better health conditions to humans to reduce its severity.
Collapse
Affiliation(s)
- Pere-Joan Cardona
- Unitat de Tuberculosi Experimental, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Microbiology Department, North Metropolitan Clinical Laboratory, ‘Germans Trias i Pujol’ University Hospital, 08916 Badalona, Spain
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08916 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence:
| | - Martí Català
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (M.C.); (C.P.)
- Departament de Física, Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08916 Badalona, Spain
| | - Clara Prats
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain; (M.C.); (C.P.)
- Departament de Física, Escola d’Enginyeria Agroalimentària i de Biosistemes de Barcelona, Universitat Politècnica de Catalunya (UPC)-BarcelonaTech, 08916 Badalona, Spain
| |
Collapse
|
48
|
Roca-Umbert A, Caro-Consuegra R, Londono-Correa D, Rodriguez-Lozano GF, Vicente R, Bosch E. Understanding signatures of positive natural selection in human zinc transporter genes. Sci Rep 2022; 12:4320. [PMID: 35279701 PMCID: PMC8918337 DOI: 10.1038/s41598-022-08439-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential micronutrient with a tightly regulated systemic and cellular homeostasis. In humans, some zinc transporter genes (ZTGs) have been previously reported as candidates for strong geographically restricted selective sweeps. However, since zinc homeostasis is maintained by the joint action of 24 ZTGs, other more subtle modes of selection could have also facilitated human adaptation to zinc availability. Here, we studied whether the complete set of ZTGs are enriched for signals of positive selection in worldwide populations and population groups from South Asia. ZTGs showed higher levels of genetic differentiation between African and non-African populations than would be randomly expected, as well as other signals of polygenic selection outside Africa. Moreover, in several South Asian population groups, ZTGs were significantly enriched for SNPs with unusually extended haplotypes and displayed SNP genotype-environmental correlations when considering zinc deficiency levels in soil in that geographical area. Our study replicated some well-characterized targets for positive selection in East Asia and sub-Saharan Africa, and proposes new candidates for follow-up in South Asia (SLC39A5) and Africa (SLC39A7). Finally, we identified candidate variants for adaptation in ZTGs that could contribute to different disease susceptibilities and zinc-related human health traits.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Diego Londono-Correa
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Gabriel Felipe Rodriguez-Lozano
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Ruben Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain.
| |
Collapse
|
49
|
Li J, Zhao B, Huang T, Qin Z, Wang SM. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance 2022; 5:5/5/e202101263. [PMID: 35165121 PMCID: PMC8860097 DOI: 10.26508/lsa.202101263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. BRCA germline pathogenic variants increase cancer risk. However, the evolutionary origin of human BRCA pathogenic variants remains largely elusive. We tested the 2,972 human BRCA1 and 3,652 human BRCA2 pathogenic variants from ClinVar database in 100 vertebrates across eight clades, but failed to find evidence to show cross-species evolution conservation as the origin; we searched the variants in 2,792 ancient human genome data, and identified 28 BRCA1 and 22 BRCA2 pathogenic variants in 44 cases dated from 45,000 to 300 yr ago; we analyzed the haplotype-dated human BRCA pathogenic founder variants, and observed that they were mostly arisen within the past 3,000 yr; we traced ethnic distribution of human BRCA pathogenic variants, and found that the majority were present in single or a few ethnic populations. Based on the data, we propose that human BRCA pathogenic variants were highly likely arisen in recent human history after the latest out-of-Africa migration, and the expansion of modern human population could largely increase the variation spectrum.
Collapse
Affiliation(s)
- Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Bojin Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
50
|
Abeid SN, Farhane H, Motrane M, Anaibar FE, Harich N. Allelic and haplotypic data of MHC class II Alu insertions in Ngazidja (Comoros archipelago) and insight on its historical biology. Int J Immunogenet 2022; 49:209-214. [PMID: 35112489 DOI: 10.1111/iji.12571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/01/2022]
Abstract
This study aimed to analyse, for the first time, five MHC class II polymorphic Alu insertions in a population with a strong Sub-Saharan African genetic background: the Ngazidja islanders and compare its allelic and haplotypic data with Worldwide populations. The genotyping was performed in 80 individuals, using simple PCR and agarose gel electrophoresis methods. Allele and haplotype frequencies, genetic diversity, Hardy-Weinberg equilibrium deviations, normalized deviate of homozygotes and pairwise linkage disequilibrium were estimated. The phylogenetic analyses included the available population data. In Ngazidja, the MHC class II Alu insertion frequencies ranged from 0.119 for AluORF10 to 0.588 for AluDPB2. Concerning haplotypes, the most predominant were the ones with only the AluDPB2 insertion allele (AluDPB2*2-AluDQA2*1-AluDQA1*1-AluDRB1*1-AluORF10*1), followed by the theoretical ancestral haplotype with no Alu insertions (AluDPB2*1-AluDQA2*1-AluDQA1*1-AluDRB1*1-AluORF10*1) and finally the haplotype with the AluDPB2 and AluDQA1 Alu insertions (AluDPB2*2-AluDQA2*1-AluDQA1*2-AluDRB1*1-AluORF10*1) with frequencies of 19.2%, 15% and 12.9%, respectively. In the phylogenetic analyses, our results indicate that the Ngazidja people are genetically differentiated from the other populations of the analysis; we found also a new haplotype that can be probably characteristic of Sub-Saharans and finally confirm the usefulness of these markers as genetic and evolutionary tools for studying genetic variations among populations of different origins.
Collapse
Affiliation(s)
- Said Nassor Abeid
- Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie, Faculté des sciences, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Hamid Farhane
- Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie, Faculté des sciences, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Majida Motrane
- Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie, Faculté des sciences, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Fatima-Ezzahra Anaibar
- Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie, Faculté des sciences, Université Chouaïb Doukkali, El Jadida, Morocco
| | - Nourdin Harich
- Equipe des Sciences Anthropogénétiques et Biotechnologies, Département de Biologie, Faculté des sciences, Université Chouaïb Doukkali, El Jadida, Morocco
| |
Collapse
|