1
|
Salman A, Radwan AF, Shaker OG, A A, Sayed GA. A comparison of the expression patterns and diagnostic capability of the ncRNAs NEAT1 and miR-34a in non-obstructive azoospermia and severe oligospermia. Hum Genomics 2025; 19:35. [PMID: 40165339 PMCID: PMC11959825 DOI: 10.1186/s40246-025-00742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Infertility is a major global health problem, affecting 8-12% of couples worldwide, with male causes contributing to approximately 50% of cases. Notably, around 15% of infertile men are azoospermic. Consequently, there is a critical necessity to find noninvasive biomarkers to help in diagnosing and assessing the susceptibility of patients with various infertility disorders. This study is designed to determine the roles of NEAT1 and miR-34a as diagnostic and susceptibility biomarkers for non-obstructive azoospermia and severe oligospermia. The interactions between these non-coding RNA (ncRNAs) were explored, along with their correlations to hormonal profiles and clinical parameters like sperm count and motility. The potential of serum NEAT1 and miR-34a as diagnostic biomarkers for these conditions was explored. The study included 100 participants: 40 non-obstructive azoospermia patients, 40 severe oligospermia patients, and 20 healthy controls. Quantitative real-time PCR and transcriptomics-based bioinformatics tools were employed to explore the co-expression networks and molecular interactions of NEAT1, miR-34a, SIRT1, and their associated hormonal and genetic pathways. Results indicated that NEAT1 was significantly downregulated in severe oligospermia patients, while its levels in non-obstructive azoospermia patients did not differ significantly from healthy controls. Furthermore, serum miR-34a expression was considerably upregulated in both patient groups compared to controls. This study highlights the promise of serum NEAT1 and miR-34a as diagnostic markers for non-obstructive azoospermia and severe oligospermia. These findings provide valuable insights into male infertility and indicate potential avenues for personalized treatment strategies.
Collapse
Affiliation(s)
- Aya Salman
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdullah F Radwan
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
- Department of Pharmacy, Kut University College, Wasit, 52001, Iraq
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Kasr AlAiny Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Adel A
- Department of Andrology, Sexology, and STIs, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt.
| |
Collapse
|
2
|
Graceli JB, Zomer HD, Medrano TI, Hess RA, Korach KS, Cooke PS. Role for Nongenomic Estrogen Signaling in Male Fertility. Endocrinology 2024; 165:bqad180. [PMID: 38066676 PMCID: PMC10797322 DOI: 10.1210/endocr/bqad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 01/22/2024]
Abstract
Estrogen actions are mediated by both nuclear (n) and membrane (m) localized estrogen receptor 1 (ESR1). Male Esr1 knockout (Esr1KO) mice lacking functional Esr1 are infertile, with reproductive tract abnormalities. Male mice expressing nESR1 but lacking mESR1 (nuclear-only estrogen receptor 1 mice) are progressively infertile due to testicular, rete testis, and efferent ductule abnormalities similar to Esr1KO males, indicating a role for mESR1 in male reproduction. The H2NES mouse expresses only mESR1 but lacks nESR1. The goal of this study was to identify the functions of mESR1 alone in mice where nESR1 was absent. Breeding trials showed that H2NES males are fertile, with decreased litter numbers but normal pup numbers/litter. In contrast to Esr1KO mice, H2NES testicular, and epididymal weights were not reduced, and seminiferous tubule abnormalities were less pronounced. However, Esr1KO and H2NES males both had decreased sperm motility and a high incidence of abnormal sperm morphology. Seminiferous tubule and rete testis dilation and decreased efferent ductule epithelial height characteristic of Esr1KO males were reduced in H2NES. Consistent with this, expression of genes involved in fluid transport and ion movement that were reduced in Esr1KO (Aqp1, Car2, Car14, Cftr) were partially or fully restored to wild-type levels in H2NES. In summary, in contrast to Esr1KO males, H2NES males are fertile and have reduced phenotypic and functional abnormalities in the testis and efferent ductules. Thus, mESR1 alone, in the absence of nESR1, can partially regulate male reproductive tract structure and function, emphasizing its importance for overall estrogen action.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
- Department of Morphology, Federal University of Espirito Santo, Vitoria, 29040-090, Brazil
| | - Helena D Zomer
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61802, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Kumar R. Structure and functions of the N-terminal domain of steroid hormone receptors. VITAMINS AND HORMONES 2023; 123:399-416. [PMID: 37717992 DOI: 10.1016/bs.vh.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The steroid hormone receptors (SHRs) belong to the large superfamily of nuclear receptors that selectively modulate gene expression in response to specific hormone ligands. The SHRs are required in a broad range of normal physiological processes as well as associated with numerous pathological conditions. Over years, the understanding of the SHR biology and mechanisms of their actions on target cells have found many clinical applications and management of various endocrine-related disorders. However, the effectiveness of SHR-based therapies in endocrine-related cancers remain a clinical challenge. This, in part, is due to the lack of in-depth understanding of structural dynamics and functions of SHRs' intrinsically disordered N-terminal domain (NTD). Recent progress in delineating SHR structural information and their correlations with receptor action in a highly dynamic environment is ultimately helping to explain how diverse SHR signaling mechanisms can elicit selective biological effects. Recent developments are providing new insights of how NTD's structural flexibility plays an important role in SHRs' allosteric regulation leading to the fine tuning of target gene expression to more precisely control SHRs' cell/tissue-specific functions. In this review article, we are discussing the up-to-date knowledge about the SHR actions with a particular emphasis on the structure and functions of the NTD.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY, United States.
| |
Collapse
|
4
|
He H, Ding T, Zhang T, Geng W, Xu J, Wei Y, Zhai J. BDE-209 disturbed proliferation and differentiation of spermatogonia during mitotic process through estrogen receptor α. Reprod Biol 2023; 23:100737. [PMID: 36821943 DOI: 10.1016/j.repbio.2023.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Deca-bromodiphenyl ether (BDE-209) exposure caused spermatogenesis disorder resulting in poor sperm quality has become a public concern in recent years. Spermatogenesis refers to the process by which the division of spermatogonia stem cells (SSCs) produces haploid spermatozoa, including mitosis, meiosis, and spermiogenesis. However, the mechanism of mitosis including proliferation and differentiation of spermatogonia dysfunction induced by BDE-209 remains largely unclear. Here, our data showed that BDE-209 exposure caused a decline in sperm quality with seminiferous tubule structure disorder in rats. In addition, BDE-209 exposure damage spermatogonia proliferation and differentiation with decreasing level of PLZF and cKit in testis. Moreover, rats exposed to BDE-209 decreased the expression of ERα, whereas an elevated expression of Wnt3a and Wnt5a. Mechanistically, supplementation with propipyrazole triol (PPT, a selective ERα pathway agonist) rescued sperm quality and attenuated impairment of proliferation and differentiation of spermatogonia in BDE-209-induced rats. Therefore, ERα plays a crucial role in the proliferation and differentiation of spermatogonia during mitotic process. In conclusion, our study clarified the role of ERα in BDE-209-induced spermatogonia proliferation and differentiation in rats and provides a potential therapeutic application on poor sperm quality caused by BDE-209 exposure.
Collapse
Affiliation(s)
- Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Tao Ding
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China; Guangming District Center for Disease Control and Prevention, Shenzhen, Guangdong 518106, China
| | - Taifa Zhang
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Wenfeng Geng
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jixiang Xu
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei 230032, China.
| |
Collapse
|
5
|
Arao Y, Korach KS. The physiological role of estrogen receptor functional domains. Essays Biochem 2021; 65:867-875. [PMID: 34028522 PMCID: PMC8611119 DOI: 10.1042/ebc20200167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/21/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
Estrogen receptor (ER) is a member of the nuclear receptor superfamily whose members share conserved domain structures, including a DNA-binding domain (DBD) and ligand-binding domain (LBD). Estrogenic chemicals work as ligands for activation or repression of ER-mediated transcriptional activity derived from two transactivation domains: AF-1 and AF-2. AF-2 is localized in the LBD, and helix 12 of the LBD is essential for controlling AF-2 functionality. The positioning of helix 12 defines the ER alpha (ERα) ligand properties as agonists or antagonists. In contrast, it is still less well defined as to the ligand-dependent regulation of N-terminal AF-1 activity. It has been thought that the action of selective estrogen receptor modulators (SERMs) is mediated by the regulation of a tissue specific AF-1 activity rather than AF-2 activity. However, it is still unclear how SERMs regulate AF-1 activity in a tissue-selective manner. This review presents some recent observations toward information of ERα mediated SERM actions related to the ERα domain functionality, focusing on the following topics. (1) The F-domain, which is connected to helix 12, controls 4-hydroxytamoxifen (4OHT) mediated AF-1 activation associated with the receptor dimerization activity. (2) The zinc-finger property of the DBD for genomic sequence recognition. (3) The novel estrogen responsive genomic DNA element, which contains multiple long-spaced direct-repeats without a palindromic ERE sequence, is differentially recognized by 4OHT and E2 ligand bound ERα transactivation complexes.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH
| |
Collapse
|
6
|
Talarczyk-Desole J, Andrusiewicz M, Chmielewska M, Berger A, Pawelczyk L, Jędrzejczak P, Kotwicka M. A Potential Relationship Between Estrogen
Receptors Polymorphisms, Sperm Function and
in vitro Fertilization Success: A Preliminary Study*. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Estrogen receptor 1 (ESR1) and 2 (ESR2) play an important role in regulating fertility in the
human reproductive system. Polymorphisms of these receptor genes have been implicated in
male infertility in both Chinese and Caucasian populations. However, studies have produced
inconsistent results. Spermatozoa defects that result in conception deficiencies could be related
to estrogens, their receptors, or genes involved in estrogen-related pathways. This study aims
to explore the potential association between the ESR1 and the ESR2 polymorphisms in relation
to semen parameters of Caucasian males as well as fertilization success.
Materials/Methods: A total of 116 males were included in this study. Forty couples underwent conventional in vitro
fertilization, while 76 couples were treated by intracytoplasmic sperm injection. Standard
semen analyses were performed according to the World Health Organization criteria. Polymerase
chain reaction and restriction fragment length polymorphisms were used to determine
genotype and allele distributions.
Results: A strong association between the ESR1 rs2234693 recognized by PvuII enzyme, genotype/allele
distribution and fertilization success was shown. The T allele occurrence was significantly
lower in the case of fertilization failure (p = 0.02). Additionally, the TT genotype was absent
in the same group (p=0.02). In the case of the remaining analyzed polymorphisms, little to no
interdependence of genotype/allele distribution and fertilization success was noted.
Conclusions: Apart from ESR1 rs2234693, the study failed to demonstrate that fertilization success was associated
with the selected polymorphisms. In most cases, we did not discover a relationship
between both estrogen receptors polymorphisms and sperm function.
Collapse
Affiliation(s)
- Joanna Talarczyk-Desole
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Chmielewska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Berger
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
7
|
Hess RA, Sharpe RM, Hinton BT. Estrogens and development of the rete testis, efferent ductules, epididymis and vas deferens. Differentiation 2021; 118:41-71. [PMID: 33441255 PMCID: PMC8026493 DOI: 10.1016/j.diff.2020.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
Estrogen has always been considered the female hormone and testosterone the male hormone. However, estrogen's presence in the testis and deleterious effects of estrogen treatment during development have been known for nearly 90 years, long before estrogen receptors (ESRs) were discovered. Eventually it was learned that testes actually synthesize high levels of estradiol (E2) and sequester high concentrations in the reproductive tract lumen, which seems contradictory to the overwhelming number of studies showing reproductive pathology following exogenous estrogen exposures. For too long, the developmental pathology of estrogen has dominated our thinking, even resulting in the "estrogen hypothesis" as related to the testicular dysgenesis syndrome. However, these early studies and the development of an Esr1 knockout mouse led to a deluge of research into estrogen's potential role in and disruption of development and function of the male reproductive system. What is new is that estrogen action in the male cannot be divorced from that of androgen. This paper presents what is known about components of the estrogen pathway, including its synthesis and target receptors, and the need to achieve a balance between androgen- and estrogen-action in male reproductive tract differentiation and adult functions. The review focuses on what is known regarding development of the male reproductive tract, from the rete testis to the vas deferens, and examines the expression of estrogen receptors and presence of aromatase in the male reproductive system, traces the evidence provided by estrogen-associated knockout and transgenic animal models and discusses the effects of fetal and postnatal exposures to estrogens. Hopefully, there will be enough here to stimulate discussions and new investigations of the androgen:estrogen balance that seems to be essential for development of the male reproductive tract.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, IL, 61802 USA and Epivara, Inc., Research Park, 60 Hazelwood Dr., Suite 230G, Champaign, IL, 61820, USA.
| | - Richard M Sharpe
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021; 43:619-642. [PMID: 33784950 PMCID: PMC8018493 DOI: 10.1080/0886022x.2021.1901739] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are posing great threats to global health within this century. Studies have suggested that estrogen and estrogen receptors (ERs) play important roles in many physiological processes in the kidney. For instance, they are crucial in maintaining mitochondrial homeostasis and modulating endothelin-1 (ET-1) system in the kidney. Estrogen takes part in the kidney repair and regeneration via its receptors. Estrogen also participates in the regulation of phosphorus homeostasis via its receptors in the proximal tubule. The ERα polymorphisms have been associated with the susceptibilities and outcomes of several renal diseases. As a consequence, the altered or dysregulated estrogen/ERs signaling pathways may contribute to a variety of kidney diseases, including various causes-induced AKI, diabetic kidney disease (DKD), lupus nephritis (LN), IgA nephropathy (IgAN), CKD complications, etc. Experimental and clinical studies have shown that targeting estrogen/ERs signaling pathways might have protective effects against certain renal disorders. However, many unsolved problems still exist in knowledge regarding the roles of estrogen and ERs in distinct kidney diseases. Further research is needed to shed light on this area and to enable the discovery of pathway-specific therapies for kidney diseases.
Collapse
Affiliation(s)
- Hao-Yang Ma
- Department of Geriatrics, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Arao Y, Hamilton KJ, Grimm SA, Korach KS. The genomic regulatory elements for estrogen receptor alpha transactivation-function-1 regulated genes. FASEB J 2020; 34:16003-16021. [PMID: 33064339 DOI: 10.1096/fj.202001435r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/24/2020] [Indexed: 01/24/2023]
Abstract
Estrogen receptor alpha (ERα) is a ligand-dependent transcription regulator, containing two transactivation functional domains, AF-1 and AF-2. The selective estrogen receptor modulators (SERMs), including 4-hydroxytamoxifen (4OHT), activate AF-1 preferentially rather than AF-2. However, it is unclear whether this specific function is related to the tissue-selective functionality of SERMs. Moreover, there is no information determining AF-1-dependent estrogenic-genes existing in tissues. We sought to identify AF-1-dependent estrogenic-genes using the AF-2 mutated knock-in (KI) mouse model, AF2ERKI. AF2ER is an AF-2 disrupted estradiol (E2)-insensitive mutant ERα, but AF-1-dependent transcription can be activated by the estrogen-antagonists, fulvestrant (ICI) and 4OHT. Gene profiling and ChIP-Seq analysis identified Klk1b21 as an ICI-inducible gene in AF2ERKI uterus. The regulatory activity was analyzed further using a cell-based reporter assay. The 5'-flanking 0.4k bp region of Klk1b21 gene responded as an ERα AF-1-dependent estrogen-responsive promoter. The 150 bp minimum ERα binding element (EBE) consists of three direct repeats. These three half-site sequences were essential for the ERα-dependent transactivation and were differentially recognized by E2 and 4OHT for the gene activation. This response was impaired when the minimum EBE was fused with a thymidine-kinase promoter but could be restored by fusion with the 100 bp minimum transcription initiation element (TIE) of Klk1b21, suggesting that the cooperative function of EBE and TIE is essential for mediating AF-1-dependent transactivation. These findings provide the first in vivo evidence that endogenous ERα AF-1 dominant estrogenic-genes exist in estrogen-responsive organs. Such findings will aid in understanding the mechanism of ERα-dependent tissue-selective activity of SERMs.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - Katherine J Hamilton
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Hewitt SC, Carmona M, Foley KG, Donoghue LJ, Lierz SL, Winuthayanon W, Korach KS. Peri- and Postpubertal Estrogen Exposures of Female Mice Optimize Uterine Responses Later in Life. Endocrinology 2020; 161:bqaa081. [PMID: 32623449 PMCID: PMC7417879 DOI: 10.1210/endocr/bqaa081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 01/12/2023]
Abstract
At birth, all female mice, including those that either lack estrogen receptor α (ERα-knockout) or that express mutated forms of ERα (AF2ERKI), have a hypoplastic uterus. However, uterine growth and development that normally accompany pubertal maturation does not occur in ERα-knockout or AF2ERKI mice, indicating ERα-mediated estrogen (E2) signaling is essential for this process. Mice that lack Cyp19 (aromatase knockout, ArKO mice), an enzyme critical for E2 synthesis, are unable to make E2 and lack pubertal uterine development. A single injection of E2 into ovariectomized adult (10 weeks old) females normally results in uterine epithelial cell proliferation; however, we observe that although ERα is present in the ArKO uterine cells, no proliferative response is seen. We assessed the impact of exposing ArKO mice to E2 during pubertal and postpubertal windows and observed that E2-exposed ArKO mice acquired growth responsiveness. Analysis of differential gene expression between unexposed ArKO samples and samples from animals exhibiting the ability to mount an E2-induced uterine growth response (wild-type [WT] or E2-exposed ArKO) revealed activation of enhancer of zeste homolog 2 (EZH2) and heart- and neural crest derivatives-expressed protein 2 (HAND2) signaling and inhibition of GLI Family Zinc Finger 1 (GLI1) responses. EZH2 and HAND2 are known to inhibit uterine growth, and GLI1 is involved in Indian hedgehog signaling, which is a positive mediator of uterine response. Finally, we show that exposure of ArKO females to dietary phytoestrogens results in their acquisition of uterine growth competence. Altogether, our findings suggest that pubertal levels of endogenous and exogenous estrogens impact biological function of uterine cells later in life via ERα-dependent mechanisms.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| | - Marleny Carmona
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| | - K Grace Foley
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| | - Lauren J Donoghue
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| | - Sydney L Lierz
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| | - Wipawee Winuthayanon
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| | - Kenneth S Korach
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, NIH, North Carolina
| |
Collapse
|
11
|
Salama N, Blgozah S. Serum estradiol levels in infertile men with non-obstructive azoospermia. Ther Adv Reprod Health 2020; 14:2633494120928342. [PMID: 32647832 PMCID: PMC7325549 DOI: 10.1177/2633494120928342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To report the different patterns of estradiol levels in infertile men with non-obstructive azoospermia and correlate these levels with their clinical and laboratory findings. MATERIALS AND METHODS A retrospective study was launched, and a retrieval of data for infertile men with non-obstructive azoospermia (n = 166) and fertile controls (n = 40) was performed. The retrieved data included demographics, clinical findings, scrotal duplex, semen analysis, and hormonal assay (testosterone, follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol). RESULTS Our findings showed a wide spectrum of estradiol concentrations. The patients were arranged into three groups (high, normal, and low estradiol groups). The normal estradiol group was the most prevalent (71.1%). Testosterone, gonadotrophins, testicular volumes, and the number of patients with jobs in polluted workplaces showed significant differences among the study groups (p = 0.001, <0.001, <0.001, and 0.004, respectively). Age, body mass index, varicocele prevalence, prolactin, and smoking habits did not show any significant differences among the groups. Obesity was lacking in the low estradiol group, but it had significantly higher prevalence in the normal (p = 0.013) or high group (p = 0.023) compared with the controls. CONCLUSION Serum estradiol, in infertile men with non-obstructive azoospermia, may be present at different levels. It is recommended that estradiol be measured in infertile men with non-obstructive azoospermia when there is an alteration in testosterone concentration, obesity, a polluted workplace occupation, or before trying hormonal therapy. Extended studies are highly recommended to provide a clear clue whether alterations in estradiol concentrations in men with non-obstructive azoospermia are the cause or a consequence of the condition.
Collapse
Affiliation(s)
- Nader Salama
- Department of Urology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Saeed Blgozah
- Department of Urology, Faculty of Medicine, Hadhramout University, P.O. Box 50512-50511, Mukalla, Yemen
| |
Collapse
|
12
|
Arao Y, Korach KS. Transactivation Function-1-Mediated Partial Agonist Activity of Selective Estrogen Receptor Modulator Requires Homo-Dimerization of the Estrogen Receptor α Ligand Binding Domain. Int J Mol Sci 2019; 20:ijms20153718. [PMID: 31366023 PMCID: PMC6695978 DOI: 10.3390/ijms20153718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022] Open
Abstract
The isolation of estrogen receptor alpha (ERα) cDNA was successful around 30 years ago. The characteristics of ERα protein have been examined from various aspects, primarily through in vitro cell culture studies, but more recently using in vivo experimental models. There remains, however, some uncharacterized ERα functionalities. In particular, the mechanism of partial agonist activity of selective estrogen receptor modulators (SERMs) that involves control of the N-terminal transcription function of ERα, termed AF-1, is still an unsolved ERα functionality. We review the possible mechanism of SERM-dependent regulation of ERα AF-1-mediated transcriptional activity, which includes the role of helix 12 of ERα ligand binding domain (LBD) for SERM-dependent AF-1 regulation. In addition, we describe a specific portion of the LBD that associates with blocking AF-1 activity with an additional role of the F-domain in mediating SERM activity.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Durham, NC 27709, USA.
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Durham, NC 27709, USA.
| |
Collapse
|
13
|
Hess RA, Cooke PS. Estrogen in the male: a historical perspective. Biol Reprod 2019; 99:27-44. [PMID: 29438493 PMCID: PMC6044326 DOI: 10.1093/biolre/ioy043] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/08/2018] [Indexed: 12/18/2022] Open
Abstract
Estrogens have traditionally been considered female hormones. Nevertheless, the presence of estrogen in males has been known for over 90 years. Initial studies suggested that estrogen was deleterious to male reproduction because exogenous treatments induced developmental abnormalities. However, demonstrations of estrogen synthesis in the testis and high concentrations of 17β-estradiol in rete testis fluid suggested that the female hormone might have a function in normal male reproduction. Identification of estrogen receptors and development of biological radioisotope methods to assess estradiol binding revealed that the male reproductive tract expresses estrogen receptor extensively from the neonatal period to adulthood. This indicated a role for estrogens in normal development, especially in efferent ductules, whose epithelium is the first in the male reproductive tract to express estrogen receptor during development and a site of exceedingly high expression. In the 1990s, a paradigm shift occurred in our understanding of estrogen function in the male, ushered in by knockout mouse models where estrogen production or expression of its receptors was not present. These knockout animals revealed that estrogen's main receptor (estrogen receptor 1 [ESR1]) is essential for male fertility and development of efferent ductules, epididymis, and prostate, and that loss of only the membrane fraction of ESR1 was sufficient to induce extensive male reproductive abnormalities and infertility. This review provides perspectives on the major discoveries and developments that led to our current knowledge of estrogen's importance in the male reproductive tract and shaped our evolving concept of estrogen's physiological role in the male.
Collapse
Affiliation(s)
- Rex A Hess
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Hewitt SC, Korach KS. Estrogen Receptors: New Directions in the New Millennium. Endocr Rev 2018; 39:664-675. [PMID: 29901737 PMCID: PMC6173474 DOI: 10.1210/er.2018-00087] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Nineteen years have passed since our previous review in this journal in 1999 regarding estrogen receptors. At that time, we described the current assessments of the physiological activities of estrogen and estrogen receptors. Since that time there has been an explosion of progress in our understanding of details of estrogen receptor-mediated processes from the molecular and cellular level to the whole organism. In this review we discuss the basic understanding of estrogen signaling and then elaborate on the progress and current understanding of estrogen receptor actions that have developed using new models and continuing clinical studies.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Endocrinology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Endocrinology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
15
|
Arao Y, Hamilton KJ, Lierz SL, Korach KS. N-terminal transactivation function, AF-1, of estrogen receptor alpha controls obesity through enhancement of energy expenditure. Mol Metab 2018; 18:68-78. [PMID: 30287090 PMCID: PMC6308972 DOI: 10.1016/j.molmet.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 01/28/2023] Open
Abstract
Objective Studies using the estrogen receptor alpha (ERα) knock-out (αERKO) mice have demonstrated that ERα plays a crucial role in various estrogen-mediated metabolic regulations. ERα is a ligand dependent transcription regulator and its activity is regulated by estrogenic compounds. ERα consists of two transcriptional activation domains, AF-1 and AF-2. The activities of these domains are regulated through different mechanisms; however, the specific physiological role in metabolic regulation by these domains is still unclear. Methods We utilized an ERα AF-2 mutant knock-in mouse (AF2ERKI) to evaluate the physiological functionality of ERα transactivation domains. Due to the estrogen insensitive AF-2 mutation, the phenotypes of AF2ERKI mice are seemingly identical to the global αERKO including obesity in the females. Distinct from the αERKO, the AF-1 function of AF2ERKI mice can be activated by tamoxifen (Tam). Ovariectomized (OVX) AF2ERKI and WT females were treated with Tam and fed a high-fat diet (HFD) for 10 weeks. Additionally, indirect calorimetric analysis was performed using metabolic chambers with food intake and locomotor activity recorded for Tam-treated AF2ERKI and αERKO females. Results Obesity in HFD-fed AF2ERKI females was prevented by Tam treatment; particularly, inguinal fat accumulation was strongly blocked by Tam treatment. Alterations in fat metabolism genes, however, were not found in either inguinal fat nor visceral fat to be Tam-regulated, even though fat accumulation was strongly reduced by Tam treatment. Indirect calorimetric analysis revealed that without alteration of food intake and locomotor activity Tam treatment increased energy expenditure in AF2ERKI but not αERKO females. Conclusions These results suggest that the activation of ERα AF-1 prevents fat accumulation. The prevention of obesity through AF-1 is mediated by induction of energy expenditure rather than ERα AF-1 functionality of lipid metabolism gene regulation in fat tissues. AF-2 disrupted ERα mutant (AF2ERKI) females are obese with a pre-diabetic condition. Activation of ERα AF-1 prevented AF2ERKI obesity. Inguinal fat accumulation altered more than visceral fat in AF2ERKI females. AF-1 activation improved energy expenditure without changing activity and feeding.
Collapse
Affiliation(s)
- Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, 27709, USA.
| | - Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, 27709, USA
| | - Sydney L Lierz
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, 27709, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
16
|
Filowitz GL, Rajakumar R, O’Shaughnessy KL, Cohn MJ. Cartilaginous Fishes Provide Insights into the Origin, Diversification, and Sexually Dimorphic Expression of Vertebrate Estrogen Receptor Genes. Mol Biol Evol 2018; 35:2695-2701. [DOI: 10.1093/molbev/msy165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Grant L Filowitz
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
| | - Rajendhran Rajakumar
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
| | - Katherine L O’Shaughnessy
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL
- Department of Biology, University of Florida, Gainesville, FL
| |
Collapse
|
17
|
Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, Fontaine C, Gourdy P, Chambon P, Katzenellenbogen B, Katzenellenbogen J. Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications. Physiol Rev 2017; 97:1045-1087. [DOI: 10.1152/physrev.00024.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 12/22/2022] Open
Abstract
Estrogen receptor alpha (ERα) has been recognized now for several decades as playing a key role in reproduction and exerting functions in numerous nonreproductive tissues. In this review, we attempt to summarize the in vitro studies that are the basis of our current understanding of the mechanisms of action of ERα as a nuclear receptor and the key roles played by its two activation functions (AFs) in its transcriptional activities. We then depict the consequences of the selective inactivation of these AFs in mouse models, focusing on the prominent roles played by ERα in the reproductive tract and in the vascular system. Evidence has accumulated over the two last decades that ERα is also associated with the plasma membrane and activates non-nuclear signaling from this site. These rapid/nongenomic/membrane-initiated steroid signals (MISS) have been characterized in a variety of cell lines, and in particular in endothelial cells. The development of selective pharmacological tools that specifically activate MISS and the generation of mice expressing an ERα protein impeded for membrane localization have begun to unravel the physiological role of MISS in vivo. Finally, we discuss novel perspectives for the design of tissue-selective ER modulators based on the integration of the physiological and pathophysiological roles of MISS actions of estrogens.
Collapse
Affiliation(s)
- Jean-Francois Arnal
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Françoise Lenfant
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Raphaël Metivier
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Gilles Flouriot
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Daniel Henrion
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Marine Adlanmerini
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Coralie Fontaine
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Gourdy
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Pierre Chambon
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - Benita Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| | - John Katzenellenbogen
- I2MC, Institut National de la Santé et de la Recherche Médicale (INSERM) U 1048, Université de Toulouse 3 and CHU de Toulouse, Toulouse, France; Equipe SP@RTE UMR 6290 CNRS, Institut de Genétique et Développement de Rennes, Université de Rennes 1, Campus de Beaulieu, Rennes, France; Université de Rennes 1, Institut de Recherche en Santé, Environnement et Travail (Irest–INSERM UMR 1085), Equipe TREC, Rennes, France; Unité Mixte de Recherche 6214, Centre National de la Recherche Scientifique, Angers,
| |
Collapse
|
18
|
Cooke PS, Nanjappa MK, Ko C, Prins GS, Hess RA. Estrogens in Male Physiology. Physiol Rev 2017; 97:995-1043. [PMID: 28539434 PMCID: PMC6151497 DOI: 10.1152/physrev.00018.2016] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/06/2017] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues.
Collapse
Affiliation(s)
- Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Manjunatha K Nanjappa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - CheMyong Ko
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Gail S Prins
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Rex A Hess
- Department of Physiological Sciences, University of Florida, Gainesville, Florida; Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
19
|
Kumar R. Steroid hormone receptors and prostate cancer: role of structural dynamics in therapeutic targeting. Asian J Androl 2017; 18:682-6. [PMID: 27364545 PMCID: PMC5000788 DOI: 10.4103/1008-682x.183380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Steroid hormone receptors (SHRs) act in cell type- and gene-specific manner through interactions with coregulatory proteins to regulate numerous physiological and pathological processes at the level of gene regulation. Binding of steroid receptor modulator (SRM) ligand leads to allosteric changes in SHR to exert positive or negative effects on the expression of target genes. Due, in part, to the fact that current SRMs generally target ligand binding domain (LBD)/AF2 and neglect intrinsically disordered (ID) N-terminal domain (NTD)/AF1, clinically relevant SRMs lack selectivity and are also prone to the development of resistance over time. Therefore, to maximize the efficacy of SHR-based therapeutics, the possibility of developing unique modulators that act to control AF1 activity must be considered. Recent studies targeting androgen receptor's (AR's) ID AF1 domain for the castration-resistant prostate cancer has provided the possibility of therapeutically targeting ID NTD/AF1 surfaces by allosteric modulations to achieve desired effects. In this review article, we discuss how inter- and intra- molecular allosteric regulations controlled by AR's structural flexibility and dynamics particularly the ID NTD/AF1 is an emerging area of investigation, which could be exploited for drug development and therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Basic Sciences, The Commonwealth Medical College, Scranton, PA, USA
| |
Collapse
|
20
|
Abstract
The hormone estrogen is involved in both female and male reproduction, as well as numerous other biological systems including the neuroendocrine, vascular, skeletal, and immune systems. Therefore, it is also implicated in many different diseases and conditions such as infertility, obesity, osteoporosis, endometriosis, and a variety of cancers. Estrogen works through its two distinct nuclear receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). Various transcriptional regulation mechanisms have been identified as the mode of action for estrogen, mainly the classical mechanism with direct DNA binding but also a nongenomic mode of action and one using tethered or indirect binding. The expression profiles of ERα and ERβ are unique with the primary sites of ERα expression being the uterus and pituitary gland and the main site of ERβ expression being the granulosa cells of the ovary. Mouse models with knockout or mutation of Esr1 and Esr2 have furthered our understanding of the role of each individual receptor plays in physiology. From these studies, it is known that the primary roles for ERα are in the uterus and neuroendocrine system, as female mice lacking ERα are infertile due to impaired ovarian and uterine function, whereas female mice lacking ERβ are subfertile due to ovarian defects. The development of effective therapies for estrogen-related diseases has relied on an understanding of the physiological roles and mechanistic functionalities of ERα and ERβ in human health and disease.
Collapse
Affiliation(s)
- Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Sylvia C Hewitt
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Yukitomo Arao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC, United States.
| |
Collapse
|
21
|
Gunes S, Arslan MA, Hekim GNT, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet 2016; 33:553-569. [PMID: 26941097 DOI: 10.1007/s10815-016-0682-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/22/2016] [Indexed: 12/17/2022] Open
Abstract
Infertility is a complex disorder with multiple genetic and environmental causes. Although some specific mutations have been identified, other factors responsible for sperm defects remain largely unknown. Despite considerable efforts to identify the pathophysiology of the disease, we cannot explain the underlying mechanisms of approximately half of infertility cases. This study reviews current data on epigenetic regulation and idiopathic male infertility. Recent data have shown an association between epigenetic modifications and idiopathic infertility. In this regard, epigenetics has emerged as one of the promising research areas in understanding male infertility. Many studies have indicated that epigenetic modifications, including DNA methylation in imprinted and developmental genes, histone tail modifications and short non-coding RNAs in spermatozoa may have a role in idiopathic male infertility.
Collapse
Affiliation(s)
- Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | - Mehmet Alper Arslan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, 55139, Samsun, Turkey.
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, 55139, Samsun, Turkey.
| | | | - Ramazan Asci
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, 55139, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, 55139, Samsun, Turkey
| |
Collapse
|
22
|
Li X, Li H, Jia L, Li X, Rahman N. Oestrogen action and male fertility: experimental and clinical findings. Cell Mol Life Sci 2015; 72:3915-30. [PMID: 26160724 PMCID: PMC11113595 DOI: 10.1007/s00018-015-1981-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 12/24/2022]
Abstract
A proper balance between androgen and oestrogen is fundamental for normal male reproductive development and function in both animals and humans. This balance is governed by the cytochrome P450 aromatase, which is expressed also under spatio-temporal control. Oestrogen receptors ERα and/or ERβ, together with the membrane-associated G-protein-coupled functional ER (GPER), mediate the effects of oestrogen in the testis. Oestrogen action in male reproduction is more complex than previously predicted. The androgen/oestrogen balance and its regulation in the masculinisation programming window (MPW) during foetal life is the most critical period for the development of the male reproductive system. If this balance is impaired during the MPW, the male reproductive system may be negatively affected. Recent data from genetically modified mice and human infertile patients have shown that oestrogens may promote the engulfment of live Leydig cells by macrophages leading to male infertility. We also discuss recent data on environmental oestrogen exposure in men and rodents, where a rodent-human distinction is crucial and analyse some aspects of male fertility potentially related to impaired oestrogen/androgen balance.
Collapse
Affiliation(s)
- Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, Faculty of Biological Sciences, China Agricultural University, Beijing, China.
| | - Haiwen Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Lina Jia
- State Key Laboratory of the Agro-Biotechnology, Faculty of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Nafis Rahman
- Department of Physiology, Institute F Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
23
|
Arao Y, Coons LA, Zuercher WJ, Korach KS. Transactivation Function-2 of Estrogen Receptor α Contains Transactivation Function-1-regulating Element. J Biol Chem 2015; 290:17611-27. [PMID: 26028650 DOI: 10.1074/jbc.m115.638650] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Indexed: 01/29/2023] Open
Abstract
ERα has a ligand-dependent transactivation function in the ligand binding domain of ERα C terminus (AF-2) and a ligand-independent activation function in the N terminus (AF-1). It is still not fully understood how AF-1 and AF-2 activities are regulated cooperatively by ligands. To evaluate the AF-1 involvement in the estrogenic activities of various compounds, we analyzed these transactivation functions using AF-1-truncated and AF-2-mutated ERα mutants. AF-2 is composed of two domains with flexible and static regions. We used an AF-2 flexible region mutant and an AF-2 static region mutant. Both mutants have been reported as non-E2 responsive due to disruption of E2-mediated coactivator recruitment to the AF-2. The AF-2 mutants were not activated by agonists, but surprisingly antagonists and selective estrogen receptor modulators (SERMs) activated the AF-2 mutants. This antagonist reversal activity was derived from AF-1. Furthermore, we demonstrated that the AF-2 contains an AF-1 suppression function using C-terminal-truncated ERα mutants. From these findings we hypothesized that the mutation of AF-2 disrupted its ability to suppress AF-1, causing the antagonist reversal. To assess the AF-2-mediated AF-1 suppression, we analyzed the transcription activity of physically separated AF-1 and AF-2 using a novel hybrid reporter assay. We observed that the AF-1 activity was not suppressed by the physically separated AF-2. Furthermore, SERMs did not induce the AF-1-mediated activity from the separated mutant AF-2, which differed from the intact protein. These results imply that SERM activity is dependent on a conformational change of the full-length ERα molecule, which allows for AF-1 activation.
Collapse
Affiliation(s)
- Yukitomo Arao
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Laurel A Coons
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, Department of Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, North Carolina 27710, and
| | - William J Zuercher
- Department of Chemical Biology, GlaxoSmithKline, Research Triangle Park, North Carolina 27709
| | - Kenneth S Korach
- From the Receptor Biology Section, Reproductive and Developmental Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709,
| |
Collapse
|
24
|
Fratev F. Activation helix orientation of the estrogen receptor is mediated by receptor dimerization: evidence from molecular dynamics simulations. Phys Chem Chem Phys 2015; 17:13403-20. [DOI: 10.1039/c5cp00327j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ERα dimer formation reshapes the helix 12 conformational landscape and is a leading factor for the activation helix conformation.
Collapse
Affiliation(s)
- Filip Fratev
- Institute of Biophysics and Biomedical Engineering
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
- Micar21 Ltd
| |
Collapse
|
25
|
Hess RA. Disruption of estrogen receptor signaling and similar pathways in the efferent ductules and initial segment of the epididymis. SPERMATOGENESIS 2014; 4:e979103. [PMID: 26413389 PMCID: PMC4581051 DOI: 10.4161/21565562.2014.979103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023]
Abstract
Seminiferous tubular atrophy may involve indirectly the disruption of estrogen receptor-α (ESR1) function in efferent ductules of the testis. ESR1 helps to maintain fluid resorption by the ductal epithelium and the inhibition or stimulation of this activity in rodent species will lead to fluid accumulation in the lumen. If not resolved, the abnormal buildup of fluid in the head of the epididymis and efferent ductules becomes a serious problem for the testis, as it leads to an increase in testis weight, tubular dilation and seminiferous epithelial degeneration, as well as testicular atrophy. The same sequence of pathogenesis occurs if the efferent ductule lumen becomes occluded. This review provides an introduction to the role of estrogen in the male reproductive tract but focuses on the various overlapping mechanisms that could induce efferent ductule dysfunction and fluid backpressure histopathology. Although efferent ductules are difficult to find, their inclusion in routine histological evaluations is recommended, as morphological images of these delicate tubules may be essential for understanding the mechanism of testicular injury, especially if dilations are observed in the rete testis and/or seminiferous tubules. Signature Lesion: The rete testis and efferent ductules can appear dilated, as if the lumens were greatly expanded with excess fluid or the accumulation of sperm. Because the efferent ductules resorb most of the fluid arriving from the rete testis lumen, one of two mechanisms is likely to be involved: a) reduced fluid uptake, which has been caused by the disruption in estrogen receptor signaling or associated pathways; or b) an increased rate of fluid resorption, which results in luminal occlusion. Both mechanisms can lead to a temporary increase in testicular weight, tubular dilation and atrophy of the seminiferous tubules.
Collapse
Affiliation(s)
- Rex A Hess
- Reproductive Biology & Toxicology; Department of Comparative Biosciences; College of Veterinary Medicine; University of Illinois ; Urbana, IL USA
| |
Collapse
|
26
|
Aquila S, De Amicis F. Steroid receptors and their ligands: effects on male gamete functions. Exp Cell Res 2014; 328:303-13. [PMID: 25062984 DOI: 10.1016/j.yexcr.2014.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/29/2014] [Accepted: 07/14/2014] [Indexed: 02/07/2023]
Abstract
In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential.
Collapse
Affiliation(s)
- Saveria Aquila
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via P Bucci cubo 34 B, Rende 87036, CS, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health Science and Nutrition, University of Calabria, Via P Bucci cubo 34 B, Rende 87036, CS, Italy.
| |
Collapse
|
27
|
Hamilton KJ, Arao Y, Korach KS. Estrogen hormone physiology: reproductive findings from estrogen receptor mutant mice. Reprod Biol 2013; 14:3-8. [PMID: 24607249 DOI: 10.1016/j.repbio.2013.12.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/08/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Abstract
Estrogen receptors (ERs) play a crucial role in reproduction and normal physiology. The two sub-types of ER (ERα and β) are expressed in various levels in different tissues and selective cell types. Gene targeting technology allowed us to produce lines of mice with disrupted ERα (αERKO) and ERβ genes (βERKO) as well as a compound αβERKO in the whole body. Male and female αERKO mice are infertile. Estrogen, EGF and IGF-1 treatments failed to induce uterine growth and DNA synthesis in αERKO uteri. αERKO females are infertile due to hypoplastic uteri and hyperemic ovaries with no corpora lutea due to persistent LH stimulation from loss of negative feedback. αERKO males are infertile, with testicular atrophy and seminiferous tubule dysmorphogenesis producing decreased spermatogenesis and inactive sperm. βERKO females show arrested folliculogenesis and subfertility. Ovarian analyses indicate differential gene expression related to ovulatory stimulation deficits including lack of LH, PR, Cyp19 and Cox2 expression. A unique ovarian phenotype is found only in αβERKO females showing transdifferentiation of granulosa cells to Sertoli cells. We describe here several novel mouse models which possess ERα gene modification. To understand ERα function in uterine endometrial epithelial cells, we generated a tissue selective ERα gene disrupted mouse model, the uterine epithelial-specific ERα knockout (UtEpiαERKO). To understand the physiological role of ERα functional domains, we generated a mouse model with a mutation in the ligand dependent transcription activation domain of ERα (AF2ERKI). Findings from the ERα mutant mice suggest that the absence of functional ERα is not lethal and results in significant endocrine effects and altered physiological processes.
Collapse
Affiliation(s)
- Katherine J Hamilton
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC 27709, United States
| | - Yukitomo Arao
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC 27709, United States
| | - Kenneth S Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
28
|
Simons SS, Edwards DP, Kumar R. Minireview: dynamic structures of nuclear hormone receptors: new promises and challenges. Mol Endocrinol 2013; 28:173-82. [PMID: 24284822 DOI: 10.1210/me.2013-1334] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Therapeutic targeting of nuclear receptors (NRs) is presently restricted due to 2 constraints: 1) a limited knowledge of the structural dynamics of intact receptor when complexed to DNA and coregulatory proteins; and 2) the inability to more selectively modulate NR actions at specific organ/gene targets. A major obstacle has been the current lack of understanding about the function and structure of the intrinsically disordered N-terminal domain that contains a major regulatory transcriptional activation function (AF1). Current studies of both mechanism of action and small molecule-selective receptor modulators for clinical uses target the structured pocket of the ligand-binding domain to modulate coregulatory protein interactions with the other activation function AF2. However, these approaches overlook AF1 activity. Recent studies have shown that highly flexible intrinsically disordered regions of transcription factors, including that of the N-terminal domain AF1 of NRs, not only are critical for several aspects of NR action but also can be exploited as drug targets, thereby opening unique opportunities for endocrine-based therapies. In this review article, we discuss the role of structural flexibilities in the allosteric modulation of NR activity and future perspectives for therapeutic interventions.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section (S.S.S.), Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Departments of Molecular & Cellular Biology and Pathology & Immunology (D.P.E.), Baylor College of Medicine, Houston, Texas 77030; and Department of Basic Sciences (R.K.), The Commonwealth Medical College, Scranton, Pennsylvania 18510
| | | | | |
Collapse
|
29
|
Arao Y, Hamilton KJ, Korach KS. The Transactivating Function 2 (AF-2) of Estrogen Receptor (ER) α is Indispensable for ERα-mediated Physiological Responses and AF-1 Activity. OPEN JOURNAL OF ENDOCRINE AND METABOLIC DISEASES 2013; 3:12-19. [PMID: 30310730 PMCID: PMC6177219 DOI: 10.4236/ojemd.2013.34a2002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Estrogen has various physiological functions and the estrogen receptor (ER) is a key regulator of those functions. ERα is a ligand-dependent transcription factor and that activity is mediated by the transactivating function-1 (AF-1) in the N-terminal domain and transactivating function-2 (AF-2) in the C-terminal ligand-binding domain. The functions of ERα AF-1 and AF-2 have been characterized by various in vitro experiments, however, there is still less information about the in vivo physiological functions of ERα AF-1 and AF-2. Recently, we established a genetically mutated ERα AF-2 knock-in mouse (AF2ERKI) that possesses L543A, L544A mutated-ERα. This AF-2 core mutation disrupted AF-2 function and resulted in ERα null phenotypes. This mouse model revealed that proper AF-2 core structure and function are indispensable for ERα-mediated physiological responses and AF-1 functionality. AF2ER mutation reverses the ERα antagonists to agonists and that activity is mediated by AF-1 solely. The pure antagonist, ICI182780/fulvestrant, activated several estrogen-mediated physiological responses in the AF2ERKI mouse. The AF2ERKI mouse model will be able to discern estrogen physiological functions which involve AF-1.
Collapse
Affiliation(s)
- Yukitomo Arao
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/ NIH, Research Triangle Park, North Carolina, USA
| | - Katherine J. Hamilton
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/ NIH, Research Triangle Park, North Carolina, USA
| | - Kenneth S. Korach
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences/ NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
30
|
Arao Y, Hamilton KJ, Coons LA, Korach KS. Estrogen receptor α L543A,L544A mutation changes antagonists to agonists, correlating with the ligand binding domain dimerization associated with DNA binding activity. J Biol Chem 2013; 288:21105-21116. [PMID: 23733188 DOI: 10.1074/jbc.m113.463455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A ligand-dependent nuclear transcription factor, ERα has two transactivating functional domains (AF), AF-1 and AF-2. AF-1 is localized in the N-terminal region, and AF-2 is distributed in the C-terminal ligand-binding domain (LBD) of the ERα protein. Helix 12 (H12) in the LBD is a component of the AF-2, and the configuration of H12 is ligand-inducible to an active or inactive form. We demonstrated previously that the ERα mutant (AF2ER) possessing L543A,L544A mutations in H12 disrupts AF-2 function and reverses antagonists such as fulvestrant/ICI182780 (ICI) or 4-hydoxytamoxifen (OHT) into agonists in the AF2ER knock-in mouse. Our previous in vitro studies suggested that the mode of AF2ER activation is similar to the partial agonist activity of OHT for WT-ERα. However, it is still unclear how antagonists activate ERα. To understand the molecular mechanism of antagonist reversal activity, we analyzed the correlation between the ICI-dependent estrogen-responsive element-mediated transcription activity of AF2ER and AF2ER-LBD dimerization activity. We report here that ICI-dependent AF2ER activation correlated with the activity of AF2ER-LBD homodimerization. Prevention of dimerization impaired the ICI-dependent ERE binding and transcription activity of AF2ER. The dislocation of H12 caused ICI-dependent LBD homodimerization involving the F-domain, the adjoining region of H12. Furthermore, F-domain truncation also strongly depressed the dimerization of WT-ERα-LBD with antagonists but not with E2. AF2ER activation levels with ICI, OHT, and raloxifene were parallel with the degree of AF2ER-LBD homodimerization, supporting a mechanism that antagonist-dependent LBD homodimerization involving the F-domain results in antagonist reversal activity of H12-mutated ERα.
Collapse
Affiliation(s)
- Yukitomo Arao
- From the Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Katherine J Hamilton
- From the Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709 and
| | - Laurel A Coons
- From the Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709 and; the Department of Pharmacology and Cancer Biology, Duke University, Medical Center, Durham, North Carolina 27710
| | - Kenneth S Korach
- From the Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709 and.
| |
Collapse
|