1
|
Zhu L, Beichman A, Harris K. Population size interacts with reproductive longevity to shape the germline mutation rate. Proc Natl Acad Sci U S A 2025; 122:e2423311122. [PMID: 40392851 DOI: 10.1073/pnas.2423311122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Mutation rates vary across the tree of life by many orders of magnitude, with fewer mutations occurring each generation in species that reproduce quickly and maintain large effective population sizes. A compelling explanation is that large effective population sizes facilitate selection against weakly deleterious "mutator alleles" such as variants that modulate cell division or interfere with the molecular efficacy of DNA repair. However, while the fidelity of a single cell division largely determines microorganisms' mutation rates, the relationship of the mutation rate to the molecular determinants of DNA damage and repair is more complex in multicellular species with long generation times. Since long generations leave more time for mutations to accrue each generation, we posit that a long generation time likely amplifies the fitness consequences of any damage agent or DNA repair defect that creates extra mutations in the spermatogonia or oocytes. This leads to the counterintuitive prediction that the species with the highest germline mutation rates per generation are also the species with most effective mechanisms for avoiding and repairing mutations in their reproductive cells. Consistent with this, we show that mutation rates in the reproductive cells are inversely correlated with generation time; in contrast, the number of germline mutations that occur during prepuberty development trends weakly upward as generation time increases. Our results parallel recent findings that the longest-lived species have the lowest mutation rates in adult somatic tissues, potentially due to selection to keep the lifetime mutation load below a harmful threshold.
Collapse
Affiliation(s)
- Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Annabel Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
2
|
Good BH, Bhatt AS, McDonald MJ. Unraveling the tempo and mode of horizontal gene transfer in bacteria. Trends Microbiol 2025:S0966-842X(25)00100-3. [PMID: 40274494 DOI: 10.1016/j.tim.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Research on horizontal gene transfer (HGT) has surged over the past two decades, revealing its critical role in accelerating evolutionary rates, facilitating adaptive innovations, and shaping pangenomes. Recent experimental and theoretical results have shown how HGT shapes the flow of genetic information within and between populations, expanding the range of possibilities for microbial evolution. These advances set the stage for a new wave of research seeking to predict how HGT shapes microbial evolution within natural communities, especially during rapid ecological shifts. In this article, we highlight these developments and outline promising research directions, emphasizing the necessity of quantifying the rates of HGT within diverse ecological contexts.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J McDonald
- ARC Centre for the Mathematical Analysis of Cellular Systems, Melbourne, Victoria, Australia; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Yu F, Li Y, Meng S, Zhang B, Liu Y, Luo W, Qian Z, Xie W, Ye X, Pratush A, Peng T, Wang H, Gu JD, Hu Z. Distribution of microbial taxa and genes degrading halogenated organic pollutants in the mangroves. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137145. [PMID: 39793385 DOI: 10.1016/j.jhazmat.2025.137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Anthropogenic activities have led to serious contamination of halogenated organic pollutants (HOPs), such as PCBs, PBDEs, and HBCDs, in the mangrove wetland. Biodegradation of HOPs is generally driven by environmental microorganisms harboring dehalogenase genes. However, little is known if HOPs can affect the distributions of HOPs-degrading bacteria and dehalogenase genes in the mangrove wetlands. Historical data suggested that HOPs contamination has been persistent and even deteriorated in the mangrove wetlands in China. We found that the organohalides-respiring bacteria Dehalococcoidia and reductive dehalogenase genes were more prevalent in the subsurface layer sediments (20-30 cm depth; 1.935-9.876 % relative abundance; 71-286 contigs) than the surface layer (0-5 cm depth; 0.174-2.020 % relative abundance; 7-130 contigs). While the genes of haloacid and haloalkane dehalogenases were more abundant in the surface layer (30-100 and 18-138 contigs) than the subsurface layer (22-56 and 50-101 contigs). The abundance of HOPs-degrading genes of reductive dehalogenase, haloacid dehalogenases, AtzA, AtzB, TrzA, TrzN, PcpB, were determined by GeoChip 5.0. Their total abundance ranged from 444.760 to 880.909. Their distributions were mainly associated with the contamination levels of HOPs and strength of anthropogenic activities around the mangrove wetlands. Therefore, the distribution of bacterial taxa and genes involved in HOPs degradation was related to the depth of sediments and affected by the selective stress from HOPs.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China.
| | - Yuyang Li
- Changde Hospital, Xiangya School of Medicine, Central South University(The first people's hospital of Changde city), Changde, Hunan Province, PR China
| | - Shanshan Meng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Bing Zhang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Zhihui Qian
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Wei Xie
- School of Food Science and Engineering, South China University of Technology, No 381 Wushan Road, Guangzhou, PR China
| | - Xueying Ye
- School of Life Sciences, Huizhou University, Huizhou, PR China
| | - Amit Pratush
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Tao Peng
- School of Resources and Environmental Engineering, Jiangsu University of Technology, 1801 Zhongwu Avenue, Changzhou, PR China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion -Israel Institute of Technology, Shantou, Guangdong Province, PR China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province 515063, PR China.
| |
Collapse
|
4
|
Matheson J, Hernández U, Bertram J, Masel J. Human deleterious mutation rate slows adaptation and implies high fitness variance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.01.555871. [PMID: 37732183 PMCID: PMC10508744 DOI: 10.1101/2023.09.01.555871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Each new human has an expectedU d = 2 - 10 new deleterious mutations. Using a novel approach to capture complex linkage disequilibria from highU d using genome-wide simulations, we confirm that fitness decline due to the fixation of many slightly deleterious mutations can be compensated by rarer beneficial mutations of larger effect. The evolution of increased genome size and complexity have previously been attributed to a similarly asymmetric pattern of fixations, but we propose that the cause might be highU d rather than the small population size posited as causal by drift barrier theory. High within-population variance in relative fitness is an inevitable consequence of highU d ∼ 2 - 10 combined with inferred human deleterious effect sizes; two individuals will typically differ in fitness by 15-40%. The need to compensate for the deluge of deleterious mutations slows net adaptation (i.e. to the external environment) by ~13%-55%. The rate of beneficial fixations is more sensitive to changes in the mutation rate than the rate of deleterious fixations is. As a surprising consequence of this, an increase (e.g. 10%) in overall mutation rate leads to faster adaptation; this puts to rest dysgenic fears about increasing mutation rates due to rising paternal age.
Collapse
Affiliation(s)
- Joseph Matheson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, 92093, USA
| | - Ulises Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Jason Bertram
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- Department of Mathematics, University of Western Ontario, London ON, Canada
| | - Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
5
|
Pavy N, Gérardi S, Prunier J, Rigault P, Laroche J, Daigle G, Boyle B, MacKay J, Bousquet J. Contrasting levels of transcriptome-wide SNP diversity and adaptive molecular variation among conifers. FRONTIERS IN PLANT SCIENCE 2025; 16:1500759. [PMID: 40115956 PMCID: PMC11922845 DOI: 10.3389/fpls.2025.1500759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Adaptive convergence can arise when response to natural selection involves shared molecular or functional mechanisms among multiple taxa. Conifers are archaic species of ancient origin with delayed sexual maturity related to their woody perennial nature. Thus, they represent a relevant plant group to assess if convergence from selection may have become disconnected between molecular and functional levels. In this purpose, transcriptome-wide SNP diversity was assessed in seven partially sympatric and reproductively isolated conifer species (118 individuals from 67 populations) populating the temperate and boreal forests of northeastern North America. SNP diversity was found highly heterogeneous among species, which would relate to variation in species-specific demography and history. Rapidly evolving genes with signatures of positive selection were identified, and their relative abundance among species reflected differences in transcriptome-wide SNP diversity. The analysis of sequence homology also revealed very limited convergence among taxa in spite of sampling same tissues at same age. However, convergence increased gradually at the levels of gene families and biological processes, which were largely related to stress response and regulatory mechanisms in all species. Given their multiple small to large gene families and long time since inception, conifers may have had sufficient gene network flexibility and gene functional redundancy for evolving alternative adaptive genes for similar metabolic responses to environmental selection pressures. Despite a long divergence time of ~350 Mya between conifers and Angiosperms, we also uncovered a set of 17 key genes presumably under positive selection in both lineages.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology and Forest Research Centre, Université Laval, Québec, QC, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Sébastien Gérardi
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology and Forest Research Centre, Université Laval, Québec, QC, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Julien Prunier
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology and Forest Research Centre, Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | | - Jérôme Laroche
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - Gaétan Daigle
- Département de Mathématiques et de Statistiques, Faculté des Sciences et de Génie, Université Laval, Québec, QC, Canada
| | - Brian Boyle
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| | - John MacKay
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Jean Bousquet
- Canada Research Chair in Forest Genomics, Institute for Systems and Integrative Biology and Forest Research Centre, Université Laval, Québec, QC, Canada
- Institute for Systems and Integrative Biology, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Mettrop L, Lipzen A, Vandecasteele C, Eché C, Labécot A, Barry K, Grigoriev IV, Piganeau G, Krasovec M. Low Mutation Rate and Atypical Mutation Spectrum in Prasinoderma coloniale: Insights From an Early Diverging Green Lineage. Genome Biol Evol 2025; 17:evaf026. [PMID: 40048667 PMCID: PMC11884799 DOI: 10.1093/gbe/evaf026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Mutations are the ultimate source of genetic diversity on which natural selection and genetic drift act, playing a crucial role in evolution and long-term adaptation. At the molecular level, the spontaneous mutation rate (µ), defined as the number of mutations per base per generation, thus determines the adaptive potential of a species. Through a mutation accumulation experiment, we estimate the mutation rate and spectrum in Prasinoderma coloniale, a phytoplankton species from an early-branching lineage within the Archaeplastida, characterized by an unusually high genomic guanine-cytosine (GC) content (69.8%). We find that P. coloniale has a very low total mutation rate of µ = 2.00 × 10-10. The insertion-deletion mutation rate is almost 5 times lesser than the single nucleotide mutation rate with µID = 3.40 × 10-11 and µSNM = 1.62 × 10-10. Prasinoderma coloniale also exhibits an atypical mutational spectrum: While essentially all other eukaryotes show a bias toward GC to AT mutations, no evidence of this AT-bias is observed in P. coloniale. Since cytosine methylation is known to be mutagenic, we hypothesized that this may result from an absence of C-methylation. Surprisingly, we found high levels of C-methylation (14% in 5mC, 25% in 5mCG contexts). Methylated cytosines did not show increased mutation rates compared with unmethylated ones, not supporting the prevailing notion that C-methylation universally leads to higher mutation rates. Overall, P. coloniale combines a GC-rich genome with a low mutation rate and original mutation spectrum, suggesting the almost universal AT-bias may not have been present in the ancestor of the green lineage.
Collapse
Affiliation(s)
- Lisa Mettrop
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Anna Lipzen
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, USA
| | - Celine Vandecasteele
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, Castanet-Tolosan, France
| | - Camille Eché
- INRAE, US 1426, GeT-PlaGe, Genotoul, France Génomique, Université Fédérale de Toulouse, Castanet-Tolosan, France
| | - Anaïs Labécot
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Kerrie Barry
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, USA
| | - Igor V Grigoriev
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Gwenaël Piganeau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | - Marc Krasovec
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| |
Collapse
|
7
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the Rates and Patterns of De Novo Germline Mutations in the Aye-Aye (Daubentonia madagascariensis). Mol Biol Evol 2025; 42:msaf034. [PMID: 40048663 PMCID: PMC11884812 DOI: 10.1093/molbev/msaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates-spanning from species to individuals to genomic regions-future steps in our understanding of mutation rate evolution will not only be aided by a greater breadth of species coverage across the primate clade but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects and sex dependency in mutation rates, which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Hale OF, Yin M, Behringer MG. Elevated rates and biased spectra of mutations in anaerobically cultured lactic acid bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.639667. [PMID: 40060621 PMCID: PMC11888475 DOI: 10.1101/2025.02.28.639667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The rate, spectrum, and biases of mutations represent a fundamental force shaping biological evolution. Convention often attributes oxidative DNA damage as a major driver of spontaneous mutations. Yet, despite the contribution of oxygen to mutagenesis and the ecological, industrial, and biomedical importance of anaerobic organisms, relatively little is known about the mutation rates and spectra of anaerobic species. Here, we present the rates and spectra of spontaneous mutations assessed anaerobically over 1000 generations for three fermentative lactic acid bacteria species with varying levels of aerotolerance: Lactobacillus acidophilus, Lactobacillus crispatus, and Lactococcus lactis. Our findings reveal highly elevated mutation rates compared to the average rates observed in aerobically respiring bacteria with mutations strongly biased towards transitions, emphasizing the prevalence of spontaneous deamination in these anaerobic species and highlighting the inherent fragility of purines even under conditions that minimize oxidative stress. Beyond these overarching patterns, we identify several novel mutation dynamics: positional mutation bias around the origin of replication in Lb. acidophilus, a significant disparity between observed and equilibrium GC content in Lc. lactis, and repeated independent deletions of spacer sequences from within the CRISPR locus in Lb. crispatus providing mechanistic insights into the evolution of bacterial adaptive immunity. Overall, our study provides new insights into the mutational landscape of anaerobes, revealing how non-oxygenic factors shape mutation rates and influence genome evolution.
Collapse
Affiliation(s)
- Owen F. Hale
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Michelle Yin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Megan G. Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Li W, Baehr S, Marasco M, Reyes L, Brister D, Pikaard CS, Gout JF, Vermulst M, Lynch M. A Narrow Range of Transcript-error Rates Across the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.02.538944. [PMID: 39868080 PMCID: PMC11761650 DOI: 10.1101/2023.05.02.538944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The expression of genomically-encoded information is not error-free. Transcript-error rates are dramatically higher than DNA-level mutation rates, and despite their transient nature, the steady-state load of such errors must impose some burden on cellular performance. However, a broad perspective on the degree to which transcript-error rates are constrained by natural selection and diverge among lineages remains to be developed. Here, we present a genome-wide analysis of transcript-error rates across the Tree of Life using a modified rolling-circle sequencing method, revealing that the range in error rates is remarkably narrow across diverse species. Transcript errors tend to be randomly distributed, with little evidence supporting local control of error rates associated with gene-expression levels. A majority of transcript errors result in missense errors if translated, and as with a fraction of nonsense transcript errors, these are underrepresented relative to random expectations, suggesting the existence of mechanisms for purging some such errors. To quantitatively understand how natural selection and random genetic drift might shape transcript-error rates across species, we present a model based on cell biology and population genetics, incorporating information on cell volume, proteome size, average degree of exposure of individual errors, and effective population size. However, while this model provides a framework for understanding the evolution of this highly conserved trait, as currently structured it explains only 20% of the variation in the data, suggesting a need for further theoretical work in this area.
Collapse
Affiliation(s)
- Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305
| | - Stephan Baehr
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Michelle Marasco
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Lauren Reyes
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Danielle Brister
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| | - Craig S Pikaard
- Department of Biology, Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biological Sciences, Mississippi State, MS 39762
| | - Marc Vermulst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
10
|
Kumawat B, Lalejini A, Acosta MM, Zaman L. Evolution takes multiple paths to evolvability when facing environmental change. Proc Natl Acad Sci U S A 2025; 122:e2413930121. [PMID: 39739809 PMCID: PMC11725885 DOI: 10.1073/pnas.2413930121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Life at all scales is surprisingly effective at exploiting new opportunities, as demonstrated by the rapid emergence of antimicrobial resistance and novel pathogens. How populations acquire this level of evolvability and the various ways it aids survival are major open questions with direct implications for human health. Here, we use digital evolution to show that changing environments facilitate the simultaneous evolution of high mutation rates and a distribution of mutational effects skewed toward beneficial phenotypes. The evolved mutational neighborhoods allow rapid adaptation to previously encountered environments, whereas higher mutation rates aid adaptation to completely new environmental conditions. By precisely tracking evolving lineages and the phenotypes of their mutants, we show that evolving populations localize on phenotypic boundaries between distinct regions of genotype space. Our results demonstrate how evolution shapes multiple determinants of evolvability concurrently, fine-tuning a population's adaptive responses to unpredictable or recurrent environmental shifts.
Collapse
Affiliation(s)
- Bhaskar Kumawat
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
| | - Alexander Lalejini
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI48109
- School of Computing, Grand Valley State University, Allendale, MI49401
| | - Monica M. Acosta
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI48109
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI48109
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
11
|
Luo H. How Big Is Big? The Effective Population Size of Marine Bacteria. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:537-560. [PMID: 39288792 DOI: 10.1146/annurev-marine-050823-104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Genome-reduced bacteria constitute most of the cells in surface-ocean bacterioplankton communities. Their extremely large census population sizes (N c) have been unfoundedly translated to huge effective population sizes (N e)-the size of an ideal population carrying as much neutral genetic diversity as the actual population. As N e scales inversely with the strength of genetic drift, constraining the magnitude of N e is key to evaluating whether natural selection can overcome the power of genetic drift to drive evolutionary events. Determining the N e of extant species requires measuring the genomic mutation rate, a challenging step for most genome-reduced bacterioplankton lineages. Results for genome-reduced Prochlorococcus and CHUG are surprising-their N e values are an order of magnitude lower than those of less abundant lineages carrying large genomes, such as Ruegeria and Vibrio. As bacterioplankton genome reduction commonly occurred in the distant past, appreciating their population genetic mechanisms requires constraining their ancient N e values by other methods.
Collapse
Affiliation(s)
- Haiwei Luo
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR;
| |
Collapse
|
12
|
Bottery MJ, van Rhijn N, Chown H, Rhodes JL, Celia-Sanchez BN, Brewer MT, Momany M, Fisher MC, Knight CG, Bromley MJ. Elevated mutation rates in multi-azole resistant Aspergillus fumigatus drive rapid evolution of antifungal resistance. Nat Commun 2024; 15:10654. [PMID: 39681549 PMCID: PMC11649685 DOI: 10.1038/s41467-024-54568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
The environmental use of azole fungicides has led to selective sweeps across multiple loci in the Aspergillus fumigatus genome causing the rapid global expansion of a genetically distinct cluster of resistant genotypes. Isolates within this cluster are also more likely to be resistant to agricultural antifungals with unrelated modes of action. Here we show that this cluster is not only multi-azole resistant but has increased propensity to develop resistance to next generation antifungals because of variants in the DNA mismatch repair system. A variant in msh6-G233A is found almost exclusively within azole resistant isolates harbouring the canonical cyp51A azole resistance allelic variant TR34/L98H. Naturally occurring isolates with this msh6 variant display up to 5-times higher rate of mutation, leading to an increased likelihood of evolving resistance to other antifungals. Furthermore, unlike hypermutator strains, the G233A variant conveys no measurable fitness cost and has become globally distributed. Our findings further suggest that resistance to next-generation antifungals is more likely to emerge within organisms that are already multi-azole resistant due to close linkage between TR34/L98H and msh6-G233A, posing a major problem due to the prospect of dual use of novel antifungals in clinical and agricultural settings.
Collapse
Affiliation(s)
- Michael J Bottery
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Norman van Rhijn
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Harry Chown
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Johanna L Rhodes
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Brandi N Celia-Sanchez
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Marin T Brewer
- Fungal Biology Group and Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew C Fisher
- Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Christopher G Knight
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Michael J Bromley
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Luiselli J, Rouzaud-Cornabas J, Lartillot N, Beslon G. Genome Streamlining: Effect of Mutation Rate and Population Size on Genome Size Reduction. Genome Biol Evol 2024; 16:evae250. [PMID: 39566106 DOI: 10.1093/gbe/evae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
Genome streamlining, i.e. genome size reduction, is observed in bacteria with very different life traits, including endosymbiotic bacteria and several marine bacteria, raising the question of its evolutionary origin. None of the hypotheses proposed in the literature is firmly established, mainly due to the many confounding factors related to the diverse habitats of species with streamlined genomes. Computational models may help overcome these difficulties and rigorously test hypotheses. In this work, we used Aevol, a platform designed to study the evolution of genome architecture, to test 2 main hypotheses: that an increase in population size (N) or mutation rate (μ) could cause genome reduction. In our experiments, both conditions lead to streamlining but have very different resulting genome structures. Under increased population sizes, genomes lose a significant fraction of noncoding sequences but maintain their coding size, resulting in densely packed genomes (akin to streamlined marine bacteria genomes). By contrast, under an increased mutation rate, genomes lose both coding and noncoding sequences (akin to endosymbiotic bacteria genomes). Hence, both factors lead to an overall reduction in genome size, but the coding density of the genome appears to be determined by N×μ. Thus, a broad range of genome size and density can be achieved by different combinations of N and μ. Our results suggest that genome size and coding density are determined by the interplay between selection for phenotypic adaptation and selection for robustness.
Collapse
Affiliation(s)
- Juliette Luiselli
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| | - Jonathan Rouzaud-Cornabas
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| | - Nicolas Lartillot
- Laboratoire de Biométrie et de Biologie Évolutive UMR CNRS 5558, Université Claude Bernard Lyon 1, Université Lyon 1, Villeurbanne, France
| | - Guillaume Beslon
- INSA-Lyon, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205, Lyon 69621, France
- Beagle Team, Inria Lyon La Doua, Villeurbanne, France
| |
Collapse
|
14
|
Ghosh S, Orman MA. UV-Induced DNA Repair Mechanisms and Their Effects on Mutagenesis and Culturability in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623584. [PMID: 39605428 PMCID: PMC11601333 DOI: 10.1101/2024.11.14.623584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutagenic processes drive evolutionary progress, with ultraviolet (UV) radiation significantly affecting evolution. Despite extensive research on SOS response-mediated mutagenesis, UV-induced repair mechanisms remain complex, and their effects on cell survival and mutagenesis are not fully understood. We previously observed a near-perfect correlation between RecA-mediated SOS response and mutation levels in Escherichia coli following UV treatment. However, prolonged UV exposure caused transient non-culturability and impaired SOS-mediated mutagenesis. Using fluorescent reporters, flow cytometry, promoter-reporter assays, single-gene deletions, knockouts, and clonogenic assays, we found that excessive UV exposure disrupts cellular translation, reducing SOS gene expression, albeit with minimal impact on membrane permeability or reactive oxygen species levels. While our findings underline the abundance of repair mechanisms in E. coli cells, enabling them to compensate when specific genes are disrupted, they also highlighted the differential impacts of gene deletions on mutagenesis versus culturability, leading to three major outcomes: (i) Disruption of proteins involved in DNA polymerase for translesion synthesis (UmuC and UmuD) or Holliday junction resolution (RuvC) results in significantly decreased mutagenesis levels while maintaining a transient non-culturability pattern after UV exposure. (ii) Disruption of proteins involved in homologous recombination (RecA and RecB) and nucleotide excision repair (UvrA) leads to both significantly reduced mutagenesis and a more severe transient non-culturability pattern after UV exposure, making these cells more sensitive to UV. (iii) Disruption of DNA Helicase II (UvrD), which functions in mismatch repair, does not affect mutagenesis levels from UV radiation but results in a very pronounced transient non-culturability pattern following UV exposure. Overall, our results further advance our understanding of bacterial adaptation mechanisms and the role of DNA repair pathways in shaping mutagenesis.
Collapse
Affiliation(s)
- Sreyashi Ghosh
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Mehmet A. Orman
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
15
|
Versoza CJ, Ehmke EE, Jensen JD, Pfeifer SP. Characterizing the rates and patterns of de novo germline mutations in the aye-aye ( Daubentonia madagascariensis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622690. [PMID: 39605388 PMCID: PMC11601268 DOI: 10.1101/2024.11.08.622690] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Given the many levels of biological variation in mutation rates observed to date in primates - spanning from species to individuals to genomic regions - future steps in our understanding of mutation rate evolution will be aided by both a greater breadth of species coverage across the primate clade, but also by a greater depth as afforded by an evaluation of multiple trios within individual species. In order to help bridge these gaps, we here present an analysis of a species representing one of the most basal splits on the primate tree (aye-ayes), combining whole-genome sequencing of seven parent-offspring trios from a three-generation pedigree with a novel computational pipeline that takes advantage of recently developed pan-genome graphs, thereby circumventing the application of (highly subjective) quality metrics that has previously been shown to result in notable differences in the detection of de novo mutations, and ultimately estimates of mutation rates. This deep sampling has enabled both a detailed picture of parental age effects as well as sex dependency in mutation rates which we here compare with previously studied primates, but has also provided unique insights into the nature of genetic variation in one of the most endangered primates on the planet.
Collapse
Affiliation(s)
- Cyril J. Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Jeffrey D. Jensen
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Susanne P. Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
16
|
Zhu L, Beichman A, Harris K. Population size interacts with reproductive longevity to shape the germline mutation rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570457. [PMID: 39574678 PMCID: PMC11580940 DOI: 10.1101/2023.12.06.570457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutation rates vary across the tree of life by many orders of magnitude, with lower mutation rates in species that reproduce quickly and maintain large effective population sizes. A compelling explanation for this trend is that large effective population sizes facilitate selection against weakly deleterious "mutator alleles" such as variants that interfere with the molecular efficacy of DNA repair. However, in multicellular organisms, the relationship of the mutation rate to DNA repair efficacy is complicated by variation in reproductive age. Long generation times leave more time for mutations to accrue each generation, and late reproduction likely amplifies the fitness consequences of any DNA repair defect that creates extra mutations in the sperm or eggs. Here, we present theoretical and empirical evidence that a long generation time amplifies the strength of selection for low mutation rates in the spermatocytes and oocytes. This leads to the counterintuitive prediction that the species with the highest germline mutation rates per generation are also the species with most effective mechanisms for DNA proofreading and repair in their germ cells. In contrast, species with different generation times accumulate similar mutation loads during embryonic development. Our results parallel recent findings that the longest-lived species have the lowest mutation rates in adult somatic tissues, potentially due to selection to keep the lifetime mutation load below a harmful threshold.
Collapse
Affiliation(s)
- Luke Zhu
- Department of Bioengineering, University of Washington
| | | | - Kelley Harris
- Department of Genome Sciences, University of Washington
- Computational Biology Division, Fred Hutchinson Cancer Center
| |
Collapse
|
17
|
Ferrare JT, Good BH. Evolution of evolvability in rapidly adapting populations. Nat Ecol Evol 2024; 8:2085-2096. [PMID: 39261599 PMCID: PMC12049861 DOI: 10.1038/s41559-024-02527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Mutations can alter the short-term fitness of an organism, as well as the rates and benefits of future mutations. While numerous examples of these evolvability modifiers have been observed in rapidly adapting microbial populations, existing theory struggles to predict when they will be favoured by natural selection. Here we develop a mathematical framework for predicting the fates of genetic variants that modify the rates and benefits of future mutations in linked genomic regions. We derive analytical expressions showing how the fixation probabilities of these variants depend on the size of the population and the diversity of competing mutations. We find that competition between linked mutations can dramatically enhance selection for modifiers that increase the benefits of future mutations, even when they impose a strong direct cost on fitness. However, we also find that modest direct benefits can be sufficient to drive evolutionary dead ends to fixation. Our results suggest that subtle differences in evolvability could play an important role in shaping the long-term success of genetic variants in rapidly evolving microbial populations.
Collapse
Affiliation(s)
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Abbara A, Pagani L, García-Pareja C, Bitbol AF. Mutant fate in spatially structured populations on graphs: Connecting models to experiments. PLoS Comput Biol 2024; 20:e1012424. [PMID: 39241045 PMCID: PMC11410244 DOI: 10.1371/journal.pcbi.1012424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/18/2024] [Accepted: 08/15/2024] [Indexed: 09/08/2024] Open
Abstract
In nature, most microbial populations have complex spatial structures that can affect their evolution. Evolutionary graph theory predicts that some spatial structures modelled by placing individuals on the nodes of a graph affect the probability that a mutant will fix. Evolution experiments are beginning to explicitly address the impact of graph structures on mutant fixation. However, the assumptions of evolutionary graph theory differ from the conditions of modern evolution experiments, making the comparison between theory and experiment challenging. Here, we aim to bridge this gap by using our new model of spatially structured populations. This model considers connected subpopulations that lie on the nodes of a graph, and allows asymmetric migrations. It can handle large populations, and explicitly models serial passage events with migrations, thus closely mimicking experimental conditions. We analyze recent experiments in light of this model. We suggest useful parameter regimes for future experiments, and we make quantitative predictions for these experiments. In particular, we propose experiments to directly test our recent prediction that the star graph with asymmetric migrations suppresses natural selection and can accelerate mutant fixation or extinction, compared to a well-mixed population.
Collapse
Affiliation(s)
- Alia Abbara
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Pagani
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Celia García-Pareja
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
19
|
Kapsetaki SE, Compton ZT, Mellon W, Vincze O, Giraudeau M, Harrison TM, Abegglen LM, Boddy AM, Maley CC, Schiffman JD. Germline mutation rate predicts cancer mortality across 37 vertebrate species. Evol Med Public Health 2024; 12:122-128. [PMID: 39233763 PMCID: PMC11372239 DOI: 10.1093/emph/eoae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Background and objectives Cancer develops across nearly every species. However, cancer occurs at unexpected and widely different rates throughout the animal kingdom. The reason for this variation in cancer susceptibility remains an area of intense investigation. Cancer evolves in part through the accumulation of mutations, and therefore, we hypothesized that germline mutation rates would be associated with cancer prevalence and mortality across species. Methodology We collected previously published data on germline mutation rate and cancer mortality data for 37 vertebrate species. Results Germline mutation rate was positively correlated with cancer mortality (P-value = 0.0008; R2 = 0.13). Controlling for species' average parental age, maximum longevity, adult body mass or domestication did not improve the model fit (the change (Δ) in Akaike Information Criterion (AIC) was less than 2). However, this model fit was better than a model controlling for species trophic level (ΔAIC > 2). Conclusions and implications The increased death rate from cancer in animals with increased germline mutation rates may suggest underlying hereditary cancer predisposition syndromes similar to those diagnosed in human patients. Species with higher germline mutation rates may benefit from close monitoring for tumors due to increased genetic risk for cancer development. Early diagnoses of cancer in these species may increase their chances of overall survival, especially for threatened and endangered species.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, USA
| | - Zachary T Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- University of Arizona Cancer Center, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - Walker Mellon
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
| | - Orsolya Vincze
- Evolutionary Ecology Group, Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Institute of Aquatic Ecology, Centre for Ecological Research, Debrecen, Hungary
| | - Mathieu Giraudeau
- Littoral Environnement Et Sociétés (LIENSs), UMR7266, CNRS Université de La Rochelle, 2 rue Olympe de Gouges, 17042 La Rochelle Cedex, France
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC 27607, USA
| | - Lisa M Abegglen
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC 27607, USA
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC 27607, USA
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Joshua D Schiffman
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| |
Collapse
|
20
|
Lerch BA, Zipple MN, Gesquiere LR, Sloan ET, Beehner JC, Alberts SC. Male-mediated early maturation unlikely to evolve via adaptive evolution. Anim Behav 2024; 214:219-240. [PMID: 39035706 PMCID: PMC11259042 DOI: 10.1016/j.anbehav.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The Vandenbergh effect, or male-mediated maturation, occurs when females reach sexual maturation upon exposure to a novel male. Male-mediated maturation is found across mammals, including in geladas, Theropithecus gelada, where it may be an adaptive counterstrategy to infanticide that follows the immigration of a new male; maturing after male immigration maximizes a female's chances of weaning her first offspring before the next infanticidal male immigrates (the 'optimal timing hypothesis'). Alternatively, the nonadaptive 'Bruce effect by-product hypothesis' posits that male-mediated maturation in geladas (and possibly other mammals) is triggered by the same physiological changes that, in pregnant females, produce spontaneous abortion (the Bruce effect). We test both hypotheses using theory and observational data. We show that neither male-mediated maturation nor its associated hormonal changes occur in baboons (Papio cynocephalus × P. anubis), a primate without the Bruce effect. An individual-based model suggests that male-mediated maturation should not evolve via adaptive evolution in either geladas or baboons. Finally, we derive the selection coefficient for male-mediated maturation and show it is likely to be very small because male-mediated maturation yields only marginal potential benefits unless the system is extremely fine-tuned. We conclude that male-mediated maturation in geladas is a by-product of the Bruce effect and more broadly that the Vandenbergh effect may be nonadaptive.
Collapse
Affiliation(s)
- Brian A. Lerch
- Department of Biology, University of North Carolina Chapel Hill, NC, U.S.A
| | - Matthew N. Zipple
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, U.S.A
| | | | - Evan T. Sloan
- Plant Conservation and Population Biology Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jacinta C. Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI, U.S.A
- Department of Anthropology, University of Michigan, Ann Arbor, MI, U.S.A
| | - Susan C. Alberts
- Department of Biology, Duke University, Durham, NC, U.S.A
- Department of Evolutionary Anthropology, Duke University, Durham, NC, U.S.A
| |
Collapse
|
21
|
Beichman AC, Zhu L, Harris K. The Evolutionary Interplay of Somatic and Germline Mutation Rates. Annu Rev Biomed Data Sci 2024; 7:83-105. [PMID: 38669515 DOI: 10.1146/annurev-biodatasci-102523-104225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Novel sequencing technologies are making it increasingly possible to measure the mutation rates of somatic cell lineages. Accurate germline mutation rate measurement technologies have also been available for a decade, making it possible to assess how this fundamental evolutionary parameter varies across the tree of life. Here, we review some classical theories about germline and somatic mutation rate evolution that were formulated using principles of population genetics and the biology of aging and cancer. We find that somatic mutation rate measurements, while still limited in phylogenetic diversity, seem consistent with the theory that selection to preserve the soma is proportional to life span. However, germline and somatic theories make conflicting predictions regarding which species should have the most accurate DNA repair. Resolving this conflict will require carefully measuring how mutation rates scale with time and cell division and achieving a better understanding of mutation rate pleiotropy among cell types.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| | - Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Kelley Harris
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
22
|
Windels A, Franceus J, Pleiss J, Desmet T. CANDy: Automated analysis of domain architectures in carbohydrate-active enzymes. PLoS One 2024; 19:e0306410. [PMID: 38990885 PMCID: PMC11238990 DOI: 10.1371/journal.pone.0306410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Carbohydrate-active enzymes (CAZymes) can be found in all domains of life and play a crucial role in metabolic and physiological processes. CAZymes often possess a modular structure, comprising not only catalytic domains but also associated domains such as carbohydrate-binding modules (CBMs) and linker domains. By exploring the modular diversity of CAZy families, catalysts with novel properties can be discovered and further insight in their biological functions and evolutionary relationships can be obtained. Here we present the carbohydrate-active enzyme domain analysis tool (CANDy), an assembly of several novel scripts, tools and databases that allows users to analyze the domain architecture of all protein sequences in a given CAZy family. CANDy's usability is shown on glycoside hydrolase family 48, a small yet underexplored family containing multi-domain enzymes. Our analysis reveals the existence of 35 distinct domain assemblies, including eight known architectures, with the remaining assemblies awaiting characterization. Moreover, we substantiate the occurrence of horizontal gene transfer from prokaryotes to insect orthologs and provide evidence for the subsequent removal of auxiliary domains, likely through a gene fission event. CANDy is available at https://github.com/PyEED/CANDy.
Collapse
Affiliation(s)
- Alex Windels
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Jorick Franceus
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Tom Desmet
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Green R, Wang H, Botchey C, Zhang SNN, Wadsworth C, Tyrrell F, Letton J, McBain AJ, Paszek P, Krašovec R, Knight CG. Collective peroxide detoxification determines microbial mutation rate plasticity in E. coli. PLoS Biol 2024; 22:e3002711. [PMID: 39008532 PMCID: PMC11272383 DOI: 10.1371/journal.pbio.3002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 07/25/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Mutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species. Here, we determine the mechanism responsible for this mutation rate plasticity. Using dynamical computational modelling and in culture mutation rate estimation, we show that the negative relationship between mutation rate and population density arises from the collective ability of microbial populations to control concentrations of hydrogen peroxide. We demonstrate a loss of this density-associated mutation rate plasticity (DAMP) when Escherichia coli populations are deficient in the degradation of hydrogen peroxide. We further show that the reduction in mutation rate in denser populations is restored in peroxide degradation-deficient cells by the presence of wild-type cells in a mixed population. Together, these model-guided experiments provide a mechanistic explanation for DAMP, applicable across all domains of life, and frames mutation rate as a dynamic trait shaped by microbial community composition.
Collapse
Affiliation(s)
- Rowan Green
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| | - Hejie Wang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Carol Botchey
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Siu Nam Nancy Zhang
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Charles Wadsworth
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Francesca Tyrrell
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - James Letton
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Andrew J. McBain
- School of Health Sciences, Faculty of Biology Medicine & Health, University of Manchester, United Kingdom
| | - Pawel Paszek
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Rok Krašovec
- School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, United Kingdom
| | - Christopher G. Knight
- School of Natural Sciences, Faculty of Science & Engineering, University of Manchester, United Kingdom
| |
Collapse
|
24
|
Radrizzani S, Kudla G, Izsvák Z, Hurst LD. Selection on synonymous sites: the unwanted transcript hypothesis. Nat Rev Genet 2024; 25:431-448. [PMID: 38297070 DOI: 10.1038/s41576-023-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 02/02/2024]
Abstract
Although translational selection to favour codons that match the most abundant tRNAs is not readily observed in humans, there is nonetheless selection in humans on synonymous mutations. We hypothesize that much of this synonymous site selection can be explained in terms of protection against unwanted RNAs - spurious transcripts, mis-spliced forms or RNAs derived from transposable elements or viruses. We propose not only that selection on synonymous sites functions to reduce the rate of creation of unwanted transcripts (for example, through selection on exonic splice enhancers and cryptic splice sites) but also that high-GC content (but low-CpG content), together with intron presence and position, is both particular to functional native mRNAs and used to recognize transcripts as native. In support of this hypothesis, transcription, nuclear export, liquid phase condensation and RNA degradation have all recently been shown to promote GC-rich transcripts and suppress AU/CpG-rich ones. With such 'traps' being set against AU/CpG-rich transcripts, the codon usage of native genes has, in turn, evolved to avoid such suppression. That parallel filters against AU/CpG-rich transcripts also affect the endosomal import of RNAs further supports the unwanted transcript hypothesis of synonymous site selection and explains the similar design rules that have enabled the successful use of transgenes and RNA vaccines.
Collapse
Affiliation(s)
- Sofia Radrizzani
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Laurence D Hurst
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| |
Collapse
|
25
|
Jiang W, Lin T, Pan J, Rivera CE, Tincher C, Wang Y, Zhang Y, Gao X, Wang Y, Tsui HCT, Winkler ME, Lynch M, Long H. Spontaneous mutations and mutational responses to penicillin treatment in the bacterial pathogen Streptococcus pneumoniae D39. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:198-211. [PMID: 38827133 PMCID: PMC11136922 DOI: 10.1007/s42995-024-00220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/04/2024] [Indexed: 06/04/2024]
Abstract
Bacteria with functional DNA repair systems are expected to have low mutation rates due to strong natural selection for genomic stability. However, our study of the wild-type Streptococcus pneumoniae D39, a pathogen responsible for many common diseases, revealed a high spontaneous mutation rate of 0.02 per genome per cell division in mutation-accumulation (MA) lines. This rate is orders of magnitude higher than that of other non-mutator bacteria and is characterized by a high mutation bias in the A/T direction. The high mutation rate may have resulted from a reduction in the overall efficiency of selection, conferred by the tiny effective population size in nature. In line with this, S. pneumoniae D39 also exhibited the lowest DNA mismatch-repair (MMR) efficiency among bacteria. Treatment with the antibiotic penicillin did not elevate the mutation rate, as penicillin did not induce DNA damage and S. pneumoniae lacks a stress response pathway. Our findings suggested that the MA results are applicable to within-host scenarios and provide insights into pathogen evolution. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00220-6.
Collapse
Affiliation(s)
- Wanyue Jiang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Caitlyn E. Rivera
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Clayton Tincher
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, 266000 China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, School of Life Science, Shandong University, Qingdao, 266237 China
| | - Yan Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Ho-Ching T. Tsui
- Department of Biology, Indiana University, Bloomington, IN 47405 USA
| | | | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281 USA
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, 266237 China
| |
Collapse
|
26
|
Logares R. Decoding populations in the ocean microbiome. MICROBIOME 2024; 12:67. [PMID: 38561814 PMCID: PMC10983722 DOI: 10.1186/s40168-024-01778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024]
Abstract
Understanding the characteristics and structure of populations is fundamental to comprehending ecosystem processes and evolutionary adaptations. While the study of animal and plant populations has spanned a few centuries, microbial populations have been under scientific scrutiny for a considerably shorter period. In the ocean, analyzing the genetic composition of microbial populations and their adaptations to multiple niches can yield important insights into ecosystem function and the microbiome's response to global change. However, microbial populations have remained elusive to the scientific community due to the challenges associated with isolating microorganisms in the laboratory. Today, advancements in large-scale metagenomics and metatranscriptomics facilitate the investigation of populations from many uncultured microbial species directly from their habitats. The knowledge acquired thus far reveals substantial genetic diversity among various microbial species, showcasing distinct patterns of population differentiation and adaptations, and highlighting the significant role of selection in structuring populations. In the coming years, population genomics is expected to significantly increase our understanding of the architecture and functioning of the ocean microbiome, providing insights into its vulnerability or resilience in the face of ongoing global change. Video Abstract.
Collapse
Affiliation(s)
- Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Catalonia, 08003, Spain.
| |
Collapse
|
27
|
Balogun EJ, Ness RW. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii. Mol Biol Evol 2024; 41:msae035. [PMID: 38366781 PMCID: PMC10910851 DOI: 10.1093/molbev/msae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Mutation is the ultimate source of genetic variation, the bedrock of evolution. Yet, predicting the consequences of new mutations remains a challenge in biology. Gene expression provides a potential link between a genotype and its phenotype. But the variation in gene expression created by de novo mutation and the fitness consequences of mutational changes to expression remain relatively unexplored. Here, we investigate the effects of >2,600 de novo mutations on gene expression across the transcriptome of 28 mutation accumulation lines derived from 2 independent wild-type genotypes of the green algae Chlamydomonas reinhardtii. We observed that the amount of genetic variance in gene expression created by mutation (Vm) was similar to the variance that mutation generates in typical polygenic phenotypic traits and approximately 15-fold the variance seen in the limited species where Vm in gene expression has been estimated. Despite the clear effect of mutation on expression, we did not observe a simple additive effect of mutation on expression change, with no linear correlation between the total expression change and mutation count of individual MA lines. We therefore inferred the distribution of expression effects of new mutations to connect the number of mutations to the number of differentially expressed genes (DEGs). Our inferred DEE is highly L-shaped with 95% of mutations causing 0-1 DEG while the remaining 5% are spread over a long tail of large effect mutations that cause multiple genes to change expression. The distribution is consistent with many cis-acting mutation targets that affect the expression of only 1 gene and a large target of trans-acting targets that have the potential to affect tens or hundreds of genes. Further evidence for cis-acting mutations can be seen in the overabundance of mutations in or near differentially expressed genes. Supporting evidence for trans-acting mutations comes from a 15:1 ratio of DEGs to mutations and the clusters of DEGs in the co-expression network, indicative of shared regulatory architecture. Lastly, we show that there is a negative correlation with the extent of expression divergence from the ancestor and fitness, providing direct evidence of the deleterious effects of perturbing gene expression.
Collapse
Affiliation(s)
- Eniolaye J Balogun
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S-3B2, Canada
| | - Rob W Ness
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
| |
Collapse
|
28
|
Ilker E, Hinczewski M. Bioenergetic costs and the evolution of noise regulation by microRNAs. Proc Natl Acad Sci U S A 2024; 121:e2308796121. [PMID: 38386708 PMCID: PMC10907262 DOI: 10.1073/pnas.2308796121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 01/14/2024] [Indexed: 02/24/2024] Open
Abstract
Noise control, together with other regulatory functions facilitated by microRNAs (miRNAs), is believed to have played important roles in the evolution of multicellular eukaryotic organisms. miRNAs can dampen protein fluctuations via enhanced degradation of messenger RNA (mRNA), but this requires compensation by increased mRNA transcription to maintain the same expression levels. The overall mechanism is metabolically expensive, leading to questions about how it might have evolved in the first place. We develop a stochastic model of miRNA noise regulation, coupled with a detailed analysis of the associated metabolic costs. Additionally, we calculate binding free energies for a range of miRNA seeds, the short sequences which govern target recognition. We argue that natural selection may have fine-tuned the Michaelis-Menten constant [Formula: see text] describing miRNA-mRNA affinity and show supporting evidence from analysis of experimental data. [Formula: see text] is constrained by seed length, and optimal noise control (minimum protein variance at a given energy cost) is achievable for seeds of 6 to 7 nucleotides in length, the most commonly observed types. Moreover, at optimality, the degree of noise reduction approaches the theoretical bound set by the Wiener-Kolmogorov linear filter. The results illustrate how selective pressure toward energy efficiency has potentially shaped a crucial regulatory pathway in eukaryotes.
Collapse
Affiliation(s)
- Efe Ilker
- Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
29
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
30
|
Galtier N. Half a Century of Controversy: The Neutralist/Selectionist Debate in Molecular Evolution. Genome Biol Evol 2024; 16:evae003. [PMID: 38311843 PMCID: PMC10839204 DOI: 10.1093/gbe/evae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2024] [Indexed: 02/06/2024] Open
Abstract
The neutral and nearly neutral theories, introduced more than 50 yr ago, have raised and still raise passionate discussion regarding the forces governing molecular evolution and their relative importance. The debate, initially focused on the amount of within-species polymorphism and constancy of the substitution rate, has spread, matured, and now underlies a wide range of topics and questions. The neutralist/selectionist controversy has structured the field and influences the way molecular evolutionary scientists conceive their research.
Collapse
Affiliation(s)
- Nicolas Galtier
- ISEM, CNRS, IRD, Université de Montpellier, Montpellier, France
| |
Collapse
|
31
|
de Jong MJ, van Oosterhout C, Hoelzel AR, Janke A. Moderating the neutralist-selectionist debate: exactly which propositions are we debating, and which arguments are valid? Biol Rev Camb Philos Soc 2024; 99:23-55. [PMID: 37621151 DOI: 10.1111/brv.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Half a century after its foundation, the neutral theory of molecular evolution continues to attract controversy. The debate has been hampered by the coexistence of different interpretations of the core proposition of the neutral theory, the 'neutral mutation-random drift' hypothesis. In this review, we trace the origins of these ambiguities and suggest potential solutions. We highlight the difference between the original, the revised and the nearly neutral hypothesis, and re-emphasise that none of them equates to the null hypothesis of strict neutrality. We distinguish the neutral hypothesis of protein evolution, the main focus of the ongoing debate, from the neutral hypotheses of genomic and functional DNA evolution, which for many species are generally accepted. We advocate a further distinction between a narrow and an extended neutral hypothesis (of which the latter posits that random non-conservative amino acid substitutions can cause non-ecological phenotypic divergence), and we discuss the implications for evolutionary biology beyond the domain of molecular evolution. We furthermore point out that the debate has widened from its initial focus on point mutations, and also concerns the fitness effects of large-scale mutations, which can alter the dosage of genes and regulatory sequences. We evaluate the validity of neutralist and selectionist arguments and find that the tested predictions, apart from being sensitive to violation of underlying assumptions, are often derived from the null hypothesis of strict neutrality, or equally consistent with the opposing selectionist hypothesis, except when assuming molecular panselectionism. Our review aims to facilitate a constructive neutralist-selectionist debate, and thereby to contribute to answering a key question of evolutionary biology: what proportions of amino acid and nucleotide substitutions and polymorphisms are adaptive?
Collapse
Affiliation(s)
- Menno J de Jong
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
| | - Cock van Oosterhout
- Centre for Ecology, Evolution and Conservation, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - A Rus Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, 60325, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse 9, Frankfurt am Main, 60438, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt am Main, 60325, Germany
| |
Collapse
|
32
|
Watts JL, Dow GJ, Buckley TN, Muir CD. Does stomatal patterning in amphistomatous leaves minimize the CO 2 diffusion path length within leaves? AOB PLANTS 2024; 16:plae015. [PMID: 39906553 PMCID: PMC11792893 DOI: 10.1093/aobpla/plae015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 02/06/2025]
Abstract
Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance and carbon dioxide (C O 2 ). Amphistomatous leaves have stomata on both abaxial and adaxial leaf surfaces. This feature is considered an adaptation to alleviateC O 2 diffusion limitations in productive environments as the diffusion path length from stomate to chloroplast is effectively halved in amphistomatous leaves. Plants may also reduceC O 2 limitations through other aspects of optimal stomatal anatomy: stomatal density, distribution, patterning and size. Some studies have demonstrated that stomata are overdispersed compared to a random distribution on a single leaf surface; however, despite their prevalence in nature and near ubiquity among crop species, much less is known about stomatal anatomy in amphistomatous leaves, especially the coordination between leaf surfaces. Here, we use novel spatial statistics based on simulations and photosynthesis modelling to test hypotheses about how amphistomatous plants may optimizeC O 2 diffusion in the model angiosperm Arabidopsis thaliana grown in different light environments. We find that (i) stomata are overdispersed, but not ideally dispersed, on both leaf surfaces across all light treatments; (ii) the patterning of stomata on abaxial and adaxial leaf surfaces is independent and (iii) the theoretical improvements to photosynthesis from abaxial-adaxial stomatal coordination are miniscule ( ≪ 1 %) across the range of feasible parameter space. However, we also find that (iv) stomatal size is correlated with the mesophyll volume that it supplies withC O 2 , suggesting that plants may optimizeC O 2 diffusion limitations through alternative pathways other than ideal, uniform stomatal spacing. We discuss the developmental, physical and evolutionary constraints that may prohibit plants from reaching this theoretical adaptive peak of uniform stomatal spacing and inter-surface stomatal coordination. These findings contribute to our understanding of variation in the anatomy of amphistomatous leaves.
Collapse
Affiliation(s)
- Jacob L Watts
- School of Life Sciences, University of Hawai’i at Mānoa,
Honolulu, HI 96822, USA
- Ecology and Evolutionary Biology, University of Colorado,
Boulder, CO 80309, USA
| | - Graham J Dow
- Department of Crop Science and Production Systems, NIAB,
Cambridge CB3 0LE, UK
| | - Thomas N Buckley
- Department of Plant Sciences, University of California,
Davis, CA 95616, USA
| | - Christopher D Muir
- School of Life Sciences, University of Hawai’i at Mānoa,
Honolulu, HI 96822, USA
- Department of Botany, University of Wisconsin, Madison,
WI 53706, USA
| |
Collapse
|
33
|
Zhang H, Hellweger FL, Luo H. Genome reduction occurred in early Prochlorococcus with an unusually low effective population size. THE ISME JOURNAL 2024; 18:wrad035. [PMID: 38365237 PMCID: PMC10837832 DOI: 10.1093/ismejo/wrad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 02/18/2024]
Abstract
In the oligotrophic sunlit ocean, the most abundant free-living planktonic bacterial lineages evolve convergently through genome reduction. The cyanobacterium Prochlorococcus responsible for 10% global oxygen production is a prominent example. The dominant theory known as "genome streamlining" posits that they have extremely large effective population sizes (Ne) such that selection for metabolic efficiency acts to drive genome reduction. Because genome reduction largely took place anciently, this theory builds on the assumption that their ancestors' Ne was similarly large. Constraining Ne for ancient ancestors is challenging because experimental measurements of extinct organisms are impossible and alternatively reconstructing ancestral Ne with phylogenetic models gives large uncertainties. Here, we develop a new strategy that leverages agent-based modeling to simulate the changes in the genome-wide ratio of radical to conservative nonsynonymous nucleotide substitution rate (dR/dC) in a possible range of Ne in ancestral populations. This proxy shows expected increases with decreases of Ne only when Ne falls to about 10 k - 100 k or lower, magnitudes characteristic of Ne of obligate endosymbiont species where drift drives genome reduction. Our simulations therefore strongly support a scenario where the primary force of Prochlorococcus genome reduction is drift rather than selection.
Collapse
Affiliation(s)
- Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518000, China
| | - Ferdi L Hellweger
- Water Quality Engineering, Technical University of Berlin, Berlin, 10623, Germany
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong SAR
| |
Collapse
|
34
|
Collins G, Schneider C, Boštjančić LL, Burkhardt U, Christian A, Decker P, Ebersberger I, Hohberg K, Lecompte O, Merges D, Muelbaier H, Romahn J, Römbke J, Rutz C, Schmelz R, Schmidt A, Theissinger K, Veres R, Lehmitz R, Pfenninger M, Bálint M. The MetaInvert soil invertebrate genome resource provides insights into below-ground biodiversity and evolution. Commun Biol 2023; 6:1241. [PMID: 38066075 PMCID: PMC10709333 DOI: 10.1038/s42003-023-05621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Soil invertebrates are among the least understood metazoans on Earth. Thus far, the lack of taxonomically broad and dense genomic resources has made it hard to thoroughly investigate their evolution and ecology. With MetaInvert we provide draft genome assemblies for 232 soil invertebrate species, representing 14 common groups and 94 families. We show that this data substantially extends the taxonomic scope of DNA- or RNA-based taxonomic identification. Moreover, we confirm that theories of genome evolution cannot be generalised across evolutionarily distinct invertebrate groups. The soil invertebrate genomes presented here will support the management of soil biodiversity through molecular monitoring of community composition and function, and the discovery of evolutionary adaptations to the challenges of soil conditions.
Collapse
Affiliation(s)
- Gemma Collins
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Clément Schneider
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ljudevit Luka Boštjančić
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | | | - Axel Christian
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Peter Decker
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Ingo Ebersberger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Karin Hohberg
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Odile Lecompte
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | - Dominik Merges
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hannah Muelbaier
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Juliane Romahn
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
| | - Jörg Römbke
- ECT Oekotoxikologie GmbH, Flörsheim, Germany
| | - Christelle Rutz
- Department of Computer Science, ICube, UMR 7357, University of Strasbourg, CNRS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| | | | - Alexandra Schmidt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Kathrin Theissinger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Department of Molecular Ecology, Institute for Environmental Sciences, Rhineland-Palatinate Technical University Kaiserslautern Landau, Landau, Germany
| | - Robert Veres
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Institute of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ricarda Lehmitz
- Soil Zoology, Senckenberg Museum of Natural History, Görlitz, Germany
| | - Markus Pfenninger
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany
- Johannes Gutenberg University, Mainz, Germany
| | - Miklós Bálint
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany.
- Department of Insect Biotechnology, Justus-Liebig University, Gießen, Germany.
| |
Collapse
|
35
|
Choquet M, Lenner F, Cocco A, Toullec G, Corre E, Toullec JY, Wallberg A. Comparative Population Transcriptomics Provide New Insight into the Evolutionary History and Adaptive Potential of World Ocean Krill. Mol Biol Evol 2023; 40:msad225. [PMID: 37816123 PMCID: PMC10642690 DOI: 10.1093/molbev/msad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Genetic variation is instrumental for adaptation to changing environments but it is unclear how it is structured and contributes to adaptation in pelagic species lacking clear barriers to gene flow. Here, we applied comparative genomics to extensive transcriptome datasets from 20 krill species collected across the Atlantic, Indian, Pacific, and Southern Oceans. We compared genetic variation both within and between species to elucidate their evolutionary history and genomic bases of adaptation. We resolved phylogenetic interrelationships and uncovered genomic evidence to elevate the cryptic Euphausia similis var. armata into species. Levels of genetic variation and rates of adaptive protein evolution vary widely. Species endemic to the cold Southern Ocean, such as the Antarctic krill Euphausia superba, showed less genetic variation and lower evolutionary rates than other species. This could suggest a low adaptive potential to rapid climate change. We uncovered hundreds of candidate genes with signatures of adaptive evolution among Antarctic Euphausia but did not observe strong evidence of adaptive convergence with the predominantly Arctic Thysanoessa. We instead identified candidates for cold-adaptation that have also been detected in Antarctic fish, including genes that govern thermal reception such as TrpA1. Our results suggest parallel genetic responses to similar selection pressures across Antarctic taxa and provide new insights into the adaptive potential of important zooplankton already affected by climate change.
Collapse
Affiliation(s)
- Marvin Choquet
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Felix Lenner
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arianna Cocco
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gaëlle Toullec
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Erwan Corre
- CNRS, Sorbonne Université, FR 2424, ABiMS Platform, Station Biologique de Roscoff, Roscoff, France
| | - Jean-Yves Toullec
- CNRS, UMR 7144, AD2M, Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
36
|
Burda K, Konczal M. Validation of machine learning approach for direct mutation rate estimation. Mol Ecol Resour 2023; 23:1757-1771. [PMID: 37486035 DOI: 10.1111/1755-0998.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023]
Abstract
Mutations are the primary source of all genetic variation. Knowledge about their rates is critical for any evolutionary genetic analyses, but for a long time, that knowledge has remained elusive and indirectly inferred. In recent years, parent-offspring comparisons have yielded the first direct mutation rate estimates. The analyses are, however, challenging due to high rate of false positives and no consensus regarding standardized filtering of candidate de novo mutations. Here, we validate the application of a machine learning approach for such a task and estimate the mutation rate for the guppy (Poecilia reticulata), a model species in eco-evolutionary studies. We sequenced 4 parents and 20 offspring, followed by screening their genomes for de novo mutations. The initial large number of candidate de novo mutations was hard-filtered to remove false-positive results. These results were compared with mutation rate estimated with a supervised machine learning approach. Both approaches were followed by molecular validation of all candidate de novo mutations and yielded similar results. The ML method uniquely identified three mutations, but overall required more hands-on curation and had higher rates of false positives and false negatives. Both methods concordantly showed no difference in mutation rates between families. Estimated here the guppy mutation rate is among the lowest directly estimated mutation rates in vertebrates; however, previous research has also found low estimated rates in other teleost fishes. We discuss potential explanations for such a pattern, as well as future utility and limitations of machine learning approaches.
Collapse
Affiliation(s)
- Katarzyna Burda
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
37
|
Horton JS, Taylor TB. Mutation bias and adaptation in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001404. [PMID: 37943288 PMCID: PMC10710837 DOI: 10.1099/mic.0.001404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Genetic mutation, which provides the raw material for evolutionary adaptation, is largely a stochastic force. However, there is ample evidence showing that mutations can also exhibit strong biases, with some mutation types and certain genomic positions mutating more often than others. It is becoming increasingly clear that mutational bias can play a role in determining adaptive outcomes in bacteria in both the laboratory and the clinic. As such, understanding the causes and consequences of mutation bias can help microbiologists to anticipate and predict adaptive outcomes. In this review, we provide an overview of the mechanisms and features of the bacterial genome that cause mutational biases to occur. We then describe the environmental triggers that drive these mechanisms to be more potent and outline the adaptive scenarios where mutation bias can synergize with natural selection to define evolutionary outcomes. We conclude by describing how understanding mutagenic genomic features can help microbiologists predict areas sensitive to mutational bias, and finish by outlining future work that will help us achieve more accurate evolutionary forecasts.
Collapse
Affiliation(s)
- James S. Horton
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, BA2 7AY, UK
| |
Collapse
|
38
|
Lynch M, Ali F, Lin T, Wang Y, Ni J, Long H. The divergence of mutation rates and spectra across the Tree of Life. EMBO Rep 2023; 24:e57561. [PMID: 37615267 PMCID: PMC10561183 DOI: 10.15252/embr.202357561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several-fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift-barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population-genetic analysis and raises challenges for future applications in these areas.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Farhan Ali
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| |
Collapse
|
39
|
Beichman AC, Robinson J, Lin M, Moreno-Estrada A, Nigenda-Morales S, Harris K. Evolution of the Mutation Spectrum Across a Mammalian Phylogeny. Mol Biol Evol 2023; 40:msad213. [PMID: 37770035 PMCID: PMC10566577 DOI: 10.1093/molbev/msad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023] Open
Abstract
Although evolutionary biologists have long theorized that variation in DNA repair efficacy might explain some of the diversity of lifespan and cancer incidence across species, we have little data on the variability of normal germline mutagenesis outside of humans. Here, we shed light on the spectrum and etiology of mutagenesis across mammals by quantifying mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k-mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clock-like mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the 1-mer spectrum's phylogenetic signal in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.
Collapse
Affiliation(s)
- Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Meixi Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Advanced Genomics Unit (UGA-LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Sergio Nigenda-Morales
- Department of Biological Sciences, California State University, San Marcos, San Marcos, CA, USA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
40
|
Tuffaha MZ, Varakunan S, Castellano D, Gutenkunst RN, Wahl LM. Shifts in Mutation Bias Promote Mutators by Altering the Distribution of Fitness Effects. Am Nat 2023; 202:503-518. [PMID: 37792927 PMCID: PMC11288183 DOI: 10.1086/726010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
AbstractRecent experimental evidence demonstrates that shifts in mutational biases-for example, increases in transversion frequency-can change the distribution of fitness effects of mutations (DFE). In particular, reducing or reversing a prevailing bias can increase the probability that a de novo mutation is beneficial. It has also been shown that mutator bacteria are more likely to emerge if the beneficial mutations they generate have a larger effect size than observed in the wild type. Here, we connect these two results, demonstrating that mutator strains that reduce or reverse a prevailing bias have a positively shifted DFE, which in turn can dramatically increase their emergence probability. Since changes in mutation rate and bias are often coupled through the gain and loss of DNA repair enzymes, our results predict that the invasion of mutator strains will be facilitated by shifts in mutation bias that offer improved access to previously undersampled beneficial mutations.
Collapse
Affiliation(s)
| | | | - David Castellano
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
41
|
Herrick J. Kimura's Theory of Non-Adaptive Radiation and Peto's Paradox: A Missing Link? BIOLOGY 2023; 12:1140. [PMID: 37627024 PMCID: PMC10452704 DOI: 10.3390/biology12081140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Karyotype diversity reflects genome integrity and stability. A strong correlation between karyotype diversity and species richness, meaning the number of species in a phylogenetic clade, was first reported in mammals over forty years ago: in mammalian phylogenetic clades, the standard deviation of karyotype diversity (KD) closely corresponded to species richness (SR) at the order level. These initial studies, however, did not control for phylogenetic signal, raising the possibility that the correlation was due to phylogenetic relatedness among species in a clade. Accordingly, karyotype diversity trivially reflects species richness simply as a passive consequence of adaptive radiation. A more recent study in mammals controlled for phylogenetic signals and established the correlation as phylogenetically independent, suggesting that species richness cannot, in itself, explain the observed corresponding karyotype diversity. The correlation is, therefore, remarkable because the molecular mechanisms contributing to karyotype diversity are evolutionarily independent of the ecological mechanisms contributing to species richness. Recently, it was shown in salamanders that the two processes generating genome size diversity and species richness were indeed independent and operate in parallel, suggesting a potential non-adaptive, non-causal but biologically meaningful relationship. KD depends on mutational input generating genetic diversity and reflects genome stability, whereas species richness depends on ecological factors and reflects natural selection acting on phenotypic diversity. As mutation and selection operate independently and involve separate and unrelated evolutionary mechanisms-there is no reason a priori to expect such a strong, let alone any, correlation between KD and SR. That such a correlation exists is more consistent with Kimura's theory of non-adaptive radiation than with ecologically based adaptive theories of macro-evolution, which are not excluded in Kimura's non-adaptive theory. The following reviews recent evidence in support of Kimura's proposal, and other findings that contribute to a wider understanding of the molecular mechanisms underlying the process of non-adaptive radiation.
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher, 3, rue des Jeûneurs, 75002 Paris, France
| |
Collapse
|
42
|
Bush SJ, Goriely A. Fine-tuning germline mutation rates across evolution. Trends Genet 2023; 39:598-599. [PMID: 37244758 PMCID: PMC10914633 DOI: 10.1016/j.tig.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
The germline mutation rate (GMR) sets the pace at which mutations, the raw material of evolution, are introduced into the genome. By sequencing a dataset of unprecedently broad phylogenetic scope, Bergeron et al. estimated species-specific GMR, offering numerous insights into how this parameter shapes and is shaped by life-history traits.
Collapse
Affiliation(s)
- Stephen J Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Moger-Reischer RZ, Glass JI, Wise KS, Sun L, Bittencourt DMC, Lehmkuhl BK, Schoolmaster DR, Lynch M, Lennon JT. Evolution of a minimal cell. Nature 2023; 620:122-127. [PMID: 37407813 PMCID: PMC10396959 DOI: 10.1038/s41586-023-06288-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Possessing only essential genes, a minimal cell can reveal mechanisms and processes that are critical for the persistence and stability of life1,2. Here we report on how an engineered minimal cell3,4 contends with the forces of evolution compared with the Mycoplasma mycoides non-minimal cell from which it was synthetically derived. Mutation rates were the highest among all reported bacteria, but were not affected by genome minimization. Genome streamlining was costly, leading to a decrease in fitness of greater than 50%, but this deficit was regained during 2,000 generations of evolution. Despite selection acting on distinct genetic targets, increases in the maximum growth rate of the synthetic cells were comparable. Moreover, when performance was assessed by relative fitness, the minimal cell evolved 39% faster than the non-minimal cell. The only apparent constraint involved the evolution of cell size. The size of the non-minimal cell increased by 80%, whereas the minimal cell remained the same. This pattern reflected epistatic effects of mutations in ftsZ, which encodes a tubulin-homologue protein that regulates cell division and morphology5,6. Our findings demonstrate that natural selection can rapidly increase the fitness of one of the simplest autonomously growing organisms. Understanding how species with small genomes overcome evolutionary challenges provides critical insights into the persistence of host-associated endosymbionts, the stability of streamlined chassis for biotechnology and the targeted refinement of synthetically engineered cells2,7-9.
Collapse
Affiliation(s)
| | - J I Glass
- J. Craig Venter Institute, La Jolla, CA, USA
| | - K S Wise
- J. Craig Venter Institute, La Jolla, CA, USA
| | - L Sun
- J. Craig Venter Institute, La Jolla, CA, USA
- Novartis Gene Therapy, San Diego, CA, USA
| | - D M C Bittencourt
- J. Craig Venter Institute, La Jolla, CA, USA
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology in Synthetic Biology, Brasília, Brazil
| | - B K Lehmkuhl
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - D R Schoolmaster
- US Geological Survey, Wetland and Aquatic Research Center, Lafayette, LA, USA
| | - M Lynch
- Arizona State University, Tempe, AZ, USA
| | - J T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
44
|
Wang Y, Obbard DJ. Experimental estimates of germline mutation rate in eukaryotes: a phylogenetic meta-analysis. Evol Lett 2023; 7:216-226. [PMID: 37475753 PMCID: PMC10355183 DOI: 10.1093/evlett/qrad027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Mutation is the ultimate source of all genetic variation, and over the last 10 years the ready availability of whole-genome sequencing has permitted direct estimation of mutation rate for many non-model species across the tree of life. In this meta-analysis, we make a comprehensive search of the literature for mutation rate estimates in eukaryotes, identifying 140 mutation accumulation (MA) and parent-offspring (PO) sequencing studies covering 134 species. Based on these data, we revisit differences in the single-nucleotide mutation (SNM) rate between different phylogenetic lineages and update the known relationships between mutation rate and generation time, genome size, and nucleotide diversity-while accounting for phylogenetic nonindependence. We do not find a significant difference between MA and PO in estimated mutation rates, but we confirm that mammal and plant lineages have higher mutation rates than arthropods and that unicellular eukaryotes have the lowest mutation rates. We find that mutation rates are higher in species with longer generation times and larger genome sizes, even when accounting for phylogenetic relationships. Moreover, although nucleotide diversity is positively correlated with mutation rate, the gradient of the relationship is significantly less than one (on a logarithmic scale), consistent with higher mutation rates in populations with smaller effective size. For the 29 species for which data are available, we find that indel mutation rates are positively correlated with nucleotide mutation rates and that short deletions are generally more common than short insertions. Nevertheless, despite recent progress, no estimates of either SNM or indel mutation rates are available for the majority of deeply branching eukaryotic lineages-or even for most animal phyla. Even among charismatic megafauna, experimental mutation rate estimates remain unknown for amphibia and scarce for reptiles and fish.
Collapse
Affiliation(s)
- Yiguan Wang
- Corresponding author: Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, United Kingdom.
| | - Darren J Obbard
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Kuderna LFK, Gao H, Janiak MC, Kuhlwilm M, Orkin JD, Bataillon T, Manu S, Valenzuela A, Bergman J, Rousselle M, Silva FE, Agueda L, Blanc J, Gut M, de Vries D, Goodhead I, Harris RA, Raveendran M, Jensen A, Chuma IS, Horvath JE, Hvilsom C, Juan D, Frandsen P, Schraiber JG, de Melo FR, Bertuol F, Byrne H, Sampaio I, Farias I, Valsecchi J, Messias M, da Silva MNF, Trivedi M, Rossi R, Hrbek T, Andriaholinirina N, Rabarivola CJ, Zaramody A, Jolly CJ, Phillips-Conroy J, Wilkerson G, Abee C, Simmons JH, Fernandez-Duque E, Kanthaswamy S, Shiferaw F, Wu D, Zhou L, Shao Y, Zhang G, Keyyu JD, Knauf S, Le MD, Lizano E, Merker S, Navarro A, Nadler T, Khor CC, Lee J, Tan P, Lim WK, Kitchener AC, Zinner D, Gut I, Melin AD, Guschanski K, Schierup MH, Beck RMD, Umapathy G, Roos C, Boubli JP, Rogers J, Farh KKH, Marques Bonet T. A global catalog of whole-genome diversity from 233 primate species. Science 2023; 380:906-913. [PMID: 37262161 DOI: 10.1126/science.abn7829] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/06/2023] [Indexed: 06/03/2023]
Abstract
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
Collapse
Affiliation(s)
- Lukas F K Kuderna
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Hong Gao
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Mareike C Janiak
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Martin Kuhlwilm
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Austria
| | - Joseph D Orkin
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Département d'anthropologie, Université de Montréal, 3150 Jean-Brillant, Montréal, QC H3T 1N8, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Shivakumara Manu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Alejandro Valenzuela
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | - Juraj Bergman
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Felipe Ennes Silva
- Research Group on Primate Biology and Conservation, Mamirauá Institute for Sustainable Development, Estrada da Bexiga 2584, CEP 69553-225, Tefé, Amazonas, Brazil
- Evolutionary Biology and Ecology (EBE), Département de Biologie des Organismes, Université libre de Bruxelles (ULB), Av. Franklin D. Roosevelt 50, CP 160/12, B-1050 Brussels Belgium
| | - Lidia Agueda
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Julie Blanc
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Ian Goodhead
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
| | | | - Julie E Horvath
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - David Juan
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
| | | | - Joshua G Schraiber
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | | | - Fabrício Bertuol
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - Hazel Byrne
- Department of Anthropology, University of Utah, Salt Lake City. UT 84102, USA
| | | | - Izeni Farias
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
| | - João Valsecchi
- Research Group on Terrestrial Vertebrate Ecology, Mamirauá Institute for Sustainable Development, Tefé, Amazonas, Brazil
- Rede de Pesquisa para Estudos sobre Diversidade, Conservação e Uso da Fauna na Amazônia - RedeFauna, Manaus, Amazonas, Brazil
- Comunidad de Manejo de Fauna Silvestre en la Amazonía y en Latinoamérica - ComFauna, Iquitos, Loreto, Peru
| | - Malu Messias
- Universidade Federal de Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Mihir Trivedi
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Rogerio Rossi
- Instituto de Biociências, Universidade Federal do Mato Grosso, Cuiabá, MT, Brazil
| | - Tomas Hrbek
- Universidade Federal do Amazonas, Departamento de Genética, Laboratório de Evolução e Genética Animal (LEGAL), Manaus, Amazonas 69080-900, Brazil
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Nicole Andriaholinirina
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clément J Rabarivola
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Alphonse Zaramody
- Life Sciences and Environment, Technology and Environment of Mahajanga, University of Mahajanga, Mahajanga, Madagascar
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY 10003, USA
| | - Jane Phillips-Conroy
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Gregory Wilkerson
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Christian Abee
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | - Joe H Simmons
- Keeling Center for Comparative Medicine and Research, MD Anderson Cancer Center, Bastrop TX 78602, USA
| | | | - Sree Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85004, USA
| | - Fekadu Shiferaw
- Guinea Worm Eradication Program, The Carter Center Ethiopia, Addis Ababa, Ethiopia
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Long Zhou
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
- Women's Hospital, School of Medicine, Zhejiang University, 1 Xueshi Road, Shangcheng District, Hangzhou 310006, China
| | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Head Office, P.O. Box 661, Arusha, Tanzania
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Minh D Le
- Department of Environmental Ecology, Faculty of Environmental Sciences, University of Science and Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi, Vietnam
| | - Esther Lizano
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Stefan Merker
- Department of Zoology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Arcadi Navarro
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Av. Doctor Aiguader, N88, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, C. Wellington 30, 08005 Barcelona, Spain
| | - Tilo Nadler
- Cuc Phuong Commune, Nho Quan District, Ninh Binh Province, Vietnam
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Jessica Lee
- Mandai Nature, 80 Mandai Lake Road, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK, and School of Geosciences, Drummond Street, Edinburgh EH8 9XP, UK
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, Germany Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Department of Primate Cognition, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, 37077 Göttingen, Germany
| | - Ivo Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
- Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, HMRB 202, Calgary, AB T2N 4N1, Canada
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, SE-75236 Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Govindhaswamy Umapathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Jean P Boubli
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kyle Kai-How Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Tomas Marques Bonet
- IBE, Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra. PRBB, C. Doctor Aiguader N88, 08003 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri I Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra. Pg. Luís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Beichman AC, Robinson J, Lin M, Moreno-Estrada A, Nigenda-Morales S, Harris K. "Evolution of the mutation spectrum across a mammalian phylogeny". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543114. [PMID: 37398383 PMCID: PMC10312511 DOI: 10.1101/2023.05.31.543114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Little is known about how the spectrum and etiology of germline mutagenesis might vary among mammalian species. To shed light on this mystery, we quantify variation in mutational sequence context biases using polymorphism data from thirteen species of mice, apes, bears, wolves, and cetaceans. After normalizing the mutation spectrum for reference genome accessibility and k -mer content, we use the Mantel test to deduce that mutation spectrum divergence is highly correlated with genetic divergence between species, whereas life history traits like reproductive age are weaker predictors of mutation spectrum divergence. Potential bioinformatic confounders are only weakly related to a small set of mutation spectrum features. We find that clocklike mutational signatures previously inferred from human cancers cannot explain the phylogenetic signal exhibited by the mammalian mutation spectrum, despite the ability of these clocklike signatures to fit each species' 3-mer spectrum with high cosine similarity. In contrast, parental aging signatures inferred from human de novo mutation data appear to explain much of the mutation spectrum's phylogenetic signal when fit to non-context-dependent mutation spectrum data in combination with a novel mutational signature. We posit that future models purporting to explain the etiology of mammalian mutagenesis need to capture the fact that more closely related species have more similar mutation spectra; a model that fits each marginal spectrum with high cosine similarity is not guaranteed to capture this hierarchy of mutation spectrum variation among species.
Collapse
Affiliation(s)
| | - Jacqueline Robinson
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA
| | - Meixi Lin
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity, Advanced Genomics Unit (UGA-LANGEBIO), CINVESTAV, Irapuato, Mexico
| | - Sergio Nigenda-Morales
- Department of Biological Sciences, California State University, San Marcos, San Marcos CA
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle WA
| |
Collapse
|
47
|
Krasovec M, Hoshino M, Zheng M, Lipinska AP, Coelho SM. Low Spontaneous Mutation Rate in Complex Multicellular Eukaryotes with a Haploid-Diploid Life Cycle. Mol Biol Evol 2023; 40:msad105. [PMID: 37140022 PMCID: PMC10254074 DOI: 10.1093/molbev/msad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.
Collapse
Affiliation(s)
- Marc Krasovec
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Masakazu Hoshino
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Min Zheng
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| |
Collapse
|
48
|
Bloom JD, Beichman AC, Neher RA, Harris K. Evolution of the SARS-CoV-2 Mutational Spectrum. Mol Biol Evol 2023; 40:msad085. [PMID: 37039557 PMCID: PMC10124870 DOI: 10.1093/molbev/msad085] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of G→T mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of C→T mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.
Collapse
Affiliation(s)
- Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
| | | | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA
| |
Collapse
|
49
|
Madi N, Chen D, Wolff R, Shapiro BJ, Garud NR. Community diversity is associated with intra-species genetic diversity and gene loss in the human gut microbiome. eLife 2023; 12:e78530. [PMID: 36757364 PMCID: PMC9977275 DOI: 10.7554/elife.78530] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
How the ecological process of community assembly interacts with intra-species diversity and evolutionary change is a longstanding question. Two contrasting hypotheses have been proposed: Diversity Begets Diversity (DBD), in which taxa tend to become more diverse in already diverse communities, and Ecological Controls (EC), in which higher community diversity impedes diversification. Previously, using 16S rRNA gene amplicon data across a range of microbiomes, we showed a generally positive relationship between taxa diversity and community diversity at higher taxonomic levels, consistent with the predictions of DBD (Madi et al., 2020). However, this positive 'diversity slope' plateaus at high levels of community diversity. Here we show that this general pattern holds at much finer genetic resolution, by analyzing intra-species strain and nucleotide variation in static and temporally sampled metagenomes from the human gut microbiome. Consistent with DBD, both intra-species polymorphism and strain number were positively correlated with community Shannon diversity. Shannon diversity is also predictive of increases in polymorphism over time scales up to ~4-6 months, after which the diversity slope flattens and becomes negative - consistent with DBD eventually giving way to EC. Finally, we show that higher community diversity predicts gene loss at a future time point. This observation is broadly consistent with the Black Queen Hypothesis, which posits that genes with functions provided by the community are less likely to be retained in a focal species' genome. Together, our results show that a mixture of DBD, EC, and Black Queen may operate simultaneously in the human gut microbiome, adding to a growing body of evidence that these eco-evolutionary processes are key drivers of biodiversity and ecosystem function.
Collapse
Affiliation(s)
- Naïma Madi
- Département de sciences biologiques, Université de MontréalMontréalCanada
| | - Daisy Chen
- Computational and Systems Biology, University of California, Los AngelesLos AngelesUnited States
- Bioinformatics and Systems Biology Program, University of California, San DiegoSan DiegoUnited States
| | - Richard Wolff
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
| | - B Jesse Shapiro
- Département de sciences biologiques, Université de MontréalMontréalCanada
- McGill Genome Centre, McGill UniversityMontrealCanada
- Quebec Centre for Biodiversity ScienceMontrealCanada
- McGill Centre for Microbiome ResearchMontrealCanada
- Department of Microbiology and Immunology, McGill UniversityMontrealCanada
| | - Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
50
|
Genome structure-based Juglandaceae phylogenies contradict alignment-based phylogenies and substitution rates vary with DNA repair genes. Nat Commun 2023; 14:617. [PMID: 36739280 PMCID: PMC9899254 DOI: 10.1038/s41467-023-36247-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
In lineages of allopolyploid origin, sets of homoeologous chromosomes may coexist that differ in gene content and syntenic structure. Presence or absence of genes and microsynteny along chromosomal blocks can serve to differentiate subgenomes and to infer phylogenies. We here apply genome-structural data to infer relationships in an ancient allopolyploid lineage, the walnut family (Juglandaceae), by using seven chromosome-level genomes, two of them newly assembled. Microsynteny and gene-content analyses yield identical topologies that place Platycarya with Engelhardia as did a 1980s morphological-cladistic study. DNA-alignment-based topologies here and in numerous earlier studies instead group Platycarya with Carya and Juglans, perhaps misled by past hybridization. All available data support a hybrid origin of Juglandaceae from extinct or unsampled progenitors nested within, or sister to, Myricaceae. Rhoiptelea chiliantha, sister to all other Juglandaceae, contains proportionally more DNA repair genes and appears to evolve at a rate 2.6- to 3.5-times slower than the remaining species.
Collapse
|