1
|
Bravo-Arévalo JE. Tracing the evolutionary pathway: on the origin of mitochondria and eukaryogenesis. FEBS J 2025. [PMID: 40271811 DOI: 10.1111/febs.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/10/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
The mito-early hypothesis posits that mitochondrial integration was a key driver in the evolution of defining eukaryotic characteristics (DECs). Building on previous work that identified endosymbiotic selective pressures as central to eukaryotic cell evolution, this study examines how endosymbiotic gene transfer (EGT) and the resulting genomic and bioenergetic constraints shaped mitochondrial protein import systems. These systems were crucial for maintaining cellular function in early eukaryotes and facilitated their subsequent diversification. A primary focus is the co-evolution of mitochondrial import mechanisms and eukaryotic endomembrane complexity. Specifically, I investigate how the necessity for nuclear-encoded mitochondrial protein import drove the adaptation of bacterial secretion components, alongside eukaryotic innovations, to refine translocation pathways. Beyond enabling bioenergetic expansion, mitochondrial endosymbiosis played a fundamental role in the emergence of compartmentalisation and cellular complexity in LECA, driving the evolution of organellar networks. By integrating genomic, structural and phylogenetic evidence, this study aimed to contribute to the mito-early framework, clarifying the mechanisms that linked mitochondrial acquisition to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- J Ernesto Bravo-Arévalo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
2
|
Gombeau K, Hoffmann SA, Cai Y. A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae. Genetics 2025; 229:iyaf037. [PMID: 40178993 PMCID: PMC12005268 DOI: 10.1093/genetics/iyaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.
Collapse
Affiliation(s)
- Kewin Gombeau
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, Netherlands
| | - Yizhi Cai
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
3
|
Butenko A, Lukeš J, Speijer D, Wideman JG. Mitochondrial genomes revisited: why do different lineages retain different genes? BMC Biol 2024; 22:15. [PMID: 38273274 PMCID: PMC10809612 DOI: 10.1186/s12915-024-01824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The mitochondria contain their own genome derived from an alphaproteobacterial endosymbiont. From thousands of protein-coding genes originally encoded by their ancestor, only between 1 and about 70 are encoded on extant mitochondrial genomes (mitogenomes). Thanks to a dramatically increasing number of sequenced and annotated mitogenomes a coherent picture of why some genes were lost, or relocated to the nucleus, is emerging. In this review, we describe the characteristics of mitochondria-to-nucleus gene transfer and the resulting varied content of mitogenomes across eukaryotes. We introduce a 'burst-upon-drift' model to best explain nuclear-mitochondrial population genetics with flares of transfer due to genetic drift.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Dave Speijer
- Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, USA.
| |
Collapse
|
4
|
Nieto-Panqueva F, Rubalcava-Gracia D, Hamel PP, González-Halphen D. The constraints of allotopic expression. Mitochondrion 2023; 73:30-50. [PMID: 37739243 DOI: 10.1016/j.mito.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (μΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (μΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for μΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico; Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA; Vellore Institute of Technology (VIT), School of BioScience and Technology, Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Szafranski P. New Dielis species and structural dichotomy of the mitochondrial cox2 gene in Scoliidae wasps. Sci Rep 2023; 13:1950. [PMID: 36732536 PMCID: PMC9895450 DOI: 10.1038/s41598-023-27806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Some mitochondrial protein-coding genes of protists and land plants have split over the course of evolution into complementary genes whose products can form heteromeric complexes that likely substitute for the undivided proteins. One of these genes, cox2, has also been found to have split in animals, specifically in Scoliidae wasps (Hymenoptera: Apocrita) of the genus Dielis (Campsomerini), while maintaining the conventional structure in related Scolia (Scoliini). Here, a hitherto unrecognized Nearctic species of Dielis, D. tejensis, is described based on its phenotype and mtDNA. The mitogenome of D. tejensis sp. nov. differs from that of the sympatric sibling species Dielis plumipes fossulana by the reduced size of the cox2-dividing insert, which, however, still constitutes the fifth part of the mtDNA; an enlarged nad2-trnW intergenic region; the presence of two trnKttt paralogues; and other features. Both species of Dielis have a unique insertion of a threonine in COXIIA, predicted to be involved in COXIIA-COXIIB docking, and substitutions of two hydrophobic residues with redox-active cysteines around the CuA centre in COXIIB. Importantly, the analysis of mtDNA from another Campsomerini genus, Megacampsomeris, shows that its cox2 gene is also split. The presented data highlight evolutionary processes taking place in hymenopteran mitogenomes that do not fall within the mainstream of animal mitochondrion evolution.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
7
|
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun 2021; 12:120. [PMID: 33402698 PMCID: PMC7785744 DOI: 10.1038/s41467-020-20381-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Alice Lacombe
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Paula Fernandes
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|
8
|
Garin S, Levi O, Cohen B, Golani-Armon A, Arava YS. Localization and RNA Binding of Mitochondrial Aminoacyl tRNA Synthetases. Genes (Basel) 2020; 11:genes11101185. [PMID: 33053729 PMCID: PMC7600831 DOI: 10.3390/genes11101185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria. Here, we review import mechanisms of these enzymes with emphasis on those that are localized to both mitochondria and cytosol. Furthermore, we describe RNA recognition features of these enzymes and their interaction with tRNA and non-tRNA molecules. The dual localization of mitochondria-destined aaRSs and their association with various RNA types impose diverse impacts on cellular physiology. Yet, the breadth and significance of these functions are not fully resolved. We highlight here possibilities for future explorations.
Collapse
|
9
|
Artika IM. Allotopic expression of mitochondrial genes: Basic strategy and progress. Genes Dis 2019; 7:578-584. [PMID: 33335957 PMCID: PMC7729113 DOI: 10.1016/j.gendis.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Allotopic expression of mitochondrial genes is a deliberate functional relocation of mitochondrial genes into the nucleus followed by import of the gene-encoded polypeptide from the cytoplasm into the mitochondria. For successful allotopic expression of a mitochondrial gene, several key aspects must be considered. These include the different codon dictionary used by the mitochondrial and nuclear genomes, different codon preferences between mitochondrial and nuclear-cytosolic translation systems, and the provision of an import signal to ensure that the newly translated protein in the cytosol is successfully imported into mitochondria. The allotopic expression strategy was first developed in yeast, a useful model organism for studying human and other eukaryotic cells. Currently, a number of mitochondrial genes have been successfully recoded and nuclearly expressed in yeast and human cells. In addition to its use in evolutionary and molecular biology studies, the allotopic expression strategy has been developed as a potential approach to treat mitochondrial genetic disorders. Substantial progress has been recently achieved, and the development of this technique for therapy of the mitochondrial disease Leber's hereditary optic neuropathy (LHON) has entered phase III clinical trials. However, a number of challenges remain to be overcome to accelerate the successful application of this technique. These include improvement of nuclear gene expression, import into mitochondria, processing, and functional integration of the allotopically expressed polypeptides into mitochondrial protein complexes. This review discusses the current basic strategy, progress, challenges, and prospects of the allotopic expression strategy for mitochondrial genes.
Collapse
Affiliation(s)
- I. Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
- Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
| |
Collapse
|
10
|
Rubalcava-Gracia D, García-Rincón J, Pérez-Montfort R, Hamel PP, González-Halphen D. Key within-membrane residues and precursor dosage impact the allotopic expression of yeast subunit II of cytochrome c oxidase. Mol Biol Cell 2019; 30:2358-2366. [PMID: 31318312 PMCID: PMC6741066 DOI: 10.1091/mbc.e18-12-0788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Experimentally relocating mitochondrial genes to the nucleus for functional expression (allotopic expression) is a challenging process. The high hydrophobicity of mitochondria-encoded proteins seems to be one of the main factors preventing this allotopic expression. We focused on subunit II of cytochrome c oxidase (Cox2) to study which modifications may enable or improve its allotopic expression in yeast. Cox2 can be imported from the cytosol into mitochondria in the presence of the W56R substitution, which decreases the protein hydrophobicity and allows partial respiratory rescue of a cox2-null strain. We show that the inclusion of a positive charge is more favorable than substitutions that only decrease the hydrophobicity. We also searched for other determinants enabling allotopic expression in yeast by examining the COX2 gene in organisms where it was transferred to the nucleus during evolution. We found that naturally occurring variations at within-membrane residues in the legume Glycine max Cox2 could enable yeast COX2 allotopic expression. We also evidence that directing high doses of allotopically synthesized Cox2 to mitochondria seems to be counterproductive because the subunit aggregates at the mitochondrial surface. Our findings are relevant to the design of allotopic expression strategies and contribute to the understanding of gene retention in organellar genomes.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan García-Rincón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ruy Pérez-Montfort
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Patrice Paul Hamel
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
11
|
Kolli R, Soll J, Carrie C. OXA2b is Crucial for Proper Membrane Insertion of COX2 during Biogenesis of Complex IV in Plant Mitochondria. PLANT PHYSIOLOGY 2019; 179:601-615. [PMID: 30487140 PMCID: PMC6426407 DOI: 10.1104/pp.18.01286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/10/2018] [Indexed: 05/07/2023]
Abstract
The evolutionarily conserved YidC/Oxa1/Alb3 proteins are involved in the insertion of membrane proteins in all domains of life. In plant mitochondria, individual knockouts of OXA1a, OXA2a, and OXA2b are embryo-lethal. In contrast to other members of the protein family, OXA2a and OXA2b contain a tetratricopeptide repeat (TPR) domain at the C-terminus. Here, the role of Arabidopsis (Arabidopsis thaliana) OXA2b was determined by using viable mutant plants that were generated by complementing homozygous lethal OXA2b T-DNA insertional mutants with a C-terminally truncated OXA2b lacking the TPR domain. The truncated-OXA2b-complemented plants displayed severe growth retardation due to a strong reduction in the steady-state abundance and enzyme activity of the mitochondrial respiratory chain complex IV. The TPR domain of OXA2b directly interacts with cytochrome c oxidase subunit 2, aiding in efficient membrane insertion and translocation of its C-terminus. Thus, OXA2b is crucial for the biogenesis of complex IV in plant mitochondria.
Collapse
Affiliation(s)
- Renuka Kolli
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Jürgen Soll
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Munich Centre for Integrated Protein Science, CIPSM, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| |
Collapse
|
12
|
Rubalcava-Gracia D, Vázquez-Acevedo M, Funes S, Pérez-Martínez X, González-Halphen D. Mitochondrial versus nuclear gene expression and membrane protein assembly: the case of subunit 2 of yeast cytochrome c oxidase. Mol Biol Cell 2018; 29:820-833. [PMID: 29437907 PMCID: PMC5905295 DOI: 10.1091/mbc.e17-09-0560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/12/2018] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
Deletion of the yeast mitochondrial gene COX2, encoding subunit 2 (mtCox2) of cytochrome c oxidase (CcO), results in a respiratory-incompetent Δcox2 strain. For a cytosol-synthesized Cox2 to restore respiratory growth, it must carry the W56R mutation (cCox2W56R). Nevertheless, only a fraction of cCox2W56R is matured in mitochondria, allowing ∼60% steady-state accumulation of CcO. This can be attributed either to the point mutation or to an inefficient biogenesis of cCox2W56R. We generated a strain expressing the mutant protein mtCox2W56R inside mitochondria which should follow the canonical biogenesis of mitochondria-encoded Cox2. This strain exhibited growth rates, CcO steady-state levels, and CcO activity similar to those of the wild type; therefore, the efficiency of Cox2 biogenesis is the limiting step for successful allotopic expression. Upon coexpression of cCox2W56R and mtCox2, each protein assembled into CcO independently from its genetic origin, resulting in a mixed population of CcO with most complexes containing the mtCox2 version. Notably, the presence of the mtCox2 enhances cCox2W56R incorporation. We provide proof of principle that an allotopically expressed Cox2 may complement a phenotype due to a mutant mitochondrial COX2 gene. These results are relevant to developing a rational design of genes for allotopic expression intended to treat human mitochondrial diseases.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Xochitl Pérez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad México, D. F., Mexico
| |
Collapse
|
13
|
Kolli R, Soll J, Carrie C. Plant Mitochondrial Inner Membrane Protein Insertion. Int J Mol Sci 2018; 19:E641. [PMID: 29495281 PMCID: PMC5855863 DOI: 10.3390/ijms19020641] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
During the biogenesis of the mitochondrial inner membrane, most nuclear-encoded inner membrane proteins are laterally released into the membrane by the TIM23 and the TIM22 machinery during their import into mitochondria. A subset of nuclear-encoded mitochondrial inner membrane proteins and all the mitochondrial-encoded inner membrane proteins use the Oxa machinery-which is evolutionarily conserved from the endosymbiotic bacterial ancestor of mitochondria-for membrane insertion. Compared to the mitochondria from other eukaryotes, plant mitochondria have several unique features, such as a larger genome and a branched electron transport pathway, and are also involved in additional cellular functions such as photorespiration and stress perception. This review focuses on the unique aspects of plant mitochondrial inner membrane protein insertion machinery, which differs from that in yeast and humans, and includes a case study on the biogenesis of Cox2 in yeast, humans, two plant species, and an algal species to highlight lineage-specific similarities and differences. Interestingly, unlike mitochondria of other eukaryotes but similar to bacteria and chloroplasts, plant mitochondria appear to use the Tat machinery for membrane insertion of the Rieske Fe/S protein.
Collapse
Affiliation(s)
- Renuka Kolli
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| | - Jürgen Soll
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
- Munich Center for Integrated Protein Science, CiPSM, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, D-81377 Munich, Germany.
| | - Chris Carrie
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Großhaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany.
| |
Collapse
|
14
|
Cox2A/Cox2B subunit interaction in Polytomella sp. cytochrome c oxidase: role of the Cox2B subunit extension. J Bioenerg Biomembr 2017; 49:453-461. [PMID: 29043530 DOI: 10.1007/s10863-017-9728-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
Abstract
Subunit II of cytochrome c oxidase (Cox2) is usually encoded in the mitochondrial genome, synthesized in the organelle, inserted co-translationally into the inner mitochondrial membrane, and assembled into the respiratory complex. In chlorophycean algae however, the cox2 gene was split into the cox2a and cox2b genes, and in some algal species like Chlamydomonas reinhardtii and Polytomella sp. both fragmented genes migrated to the nucleus. The corresponding Cox2A and Cox2B subunits are imported into mitochondria forming a heterodimeric Cox2 subunit. When comparing the sequences of chlorophycean Cox2A and Cox2B proteins with orthodox Cox2 subunits, a C-terminal extension in Cox2A and an N-terminal extension in Cox2B were identified. It was proposed that these extensions favor the Cox2A/Cox2B interaction. In vitro studies carried out in this work suggest that the removal of the Cox2B extension only partially affects binding of Cox2B to Cox2A. We conclude that this extension is dispensable, but when present it weakly reinforces the Cox2A/Cox2B interaction.
Collapse
|
15
|
Szafranski P. Intercompartmental Piecewise Gene Transfer. Genes (Basel) 2017; 8:genes8100260. [PMID: 28984842 PMCID: PMC5664110 DOI: 10.3390/genes8100260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Gene relocation from the residual genomes of organelles to the nuclear genome still continues, although as a scaled down evolutionary phenomenon, limited in occurrence mostly to protists (sensu lato) and land plants. During this process, the structural integrity of transferred genes is usually preserved. However, the relocation of mitochondrial genes that code for respiratory chain and ribosomal proteins is sometimes associated with their fragmentation into two complementary genes. Herein, this review compiles cases of piecewise gene transfer from the mitochondria to the nucleus, and discusses hypothesized mechanistic links between the fission and relocation of those genes.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Szafranski P. Evolutionarily recent, insertional fission of mitochondrial cox2 into complementary genes in bilaterian Metazoa. BMC Genomics 2017; 18:269. [PMID: 28359330 PMCID: PMC5374615 DOI: 10.1186/s12864-017-3626-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 03/14/2017] [Indexed: 11/21/2022] Open
Abstract
Background Mitochondrial genomes (mtDNA) of multicellular animals (Metazoa) with bilateral symmetry (Bilateria) are compact and usually carry 13 protein-coding genes for subunits of three respiratory complexes and ATP synthase. However, occasionally reported exceptions to this typical mtDNA organization prompted speculation that, as in protists and plants, some bilaterian mitogenomes may continue to lose their canonical genes, or may even acquire new genes. To shed more light on this phenomenon, a PCR-based screen was conducted to assess fast-evolving mtDNAs of apocritan Hymenoptera (Arthropoda, Insecta) for genomic rearrangements that might be associated with the modification of mitochondrial gene content. Results Sequencing of segmental inversions, identified in the screen, revealed that the cytochrome oxidase subunit II gene (cox2) of Campsomeris (Dielis) (Scoliidae) was split into two genes coding for COXIIA and COXIIB. The COXII-derived complementary polypeptides apparently form a heterodimer, have reduced hydrophobicity compared with the majority of mitogenome-encoded COX subunits, and one of them, COXIIB, features increased content of Cys residues. Analogous cox2 fragmentation is known only in two clades of protists (chlorophycean algae and alveolates), where it has been associated with piecewise relocation of this gene into the nucleus. In Campsomeris mtDNA, cox2a and cox2b loci are separated by a 3-kb large cluster of several antiparallel overlapping ORFs, one of which, qnu, seems to encode a nuclease that may have played a role in cox2 fission. Conclusions Although discontinuous mitochondrial protein genes encoding fragmented, complementary polypeptides are known in protists and some plants, split cox2 of Campsomeris is the first case of such a gene arrangement found in animals. The reported data also indicate that bilaterian animal mitogenomes may be carrying lineage-specific genes more often than previously thought, and suggest a homing endonuclease-based mechanism for insertional mitochondrial gene fission. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3626-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, ABBR, R851C, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Plazzi F, Puccio G, Passamonti M. Comparative Large-Scale Mitogenomics Evidences Clade-Specific Evolutionary Trends in Mitochondrial DNAs of Bivalvia. Genome Biol Evol 2016; 8:2544-64. [PMID: 27503296 PMCID: PMC5010914 DOI: 10.1093/gbe/evw187] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 12/28/2022] Open
Abstract
Despite the figure of complete bivalve mitochondrial genomes keeps growing, an assessment of the general features of these genomes in a phylogenetic framework is still lacking, despite the fact that bivalve mitochondrial genomes are unusual under different aspects. In this work, we constructed a dataset of one hundred mitochondrial genomes of bivalves to perform the first systematic comparative mitogenomic analysis, developing a phylogenetic background to scaffold the evolutionary history of the class' mitochondrial genomes. Highly conserved domains were identified in all protein coding genes; however, four genes (namely, atp6, nad2, nad4L, and nad6) were found to be very divergent for many respects, notwithstanding the overall purifying selection working on those genomes. Moreover, the atp8 gene was newly annotated in 20 mitochondrial genomes, where it was previously declared as lacking or only signaled. Supernumerary mitochondrial proteins were compared, but it was possible to find homologies only among strictly related species. The rearrangement rate on the molecule is too high to be used as a phylogenetic marker, but here we demonstrate for the first time in mollusks that there is correlation between rearrangement rates and evolutionary rates. We also developed a new index (HERMES) to estimate the amount of mitochondrial evolution. Many genomic features are phylogenetically congruent and this allowed us to highlight three main phases in bivalve history: the origin, the branching of palaeoheterodonts, and the second radiation leading to the present-day biodiversity.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| |
Collapse
|
18
|
Abstract
Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome.
Collapse
|
19
|
Skippington E, Barkman TJ, Rice DW, Palmer JD. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes. Proc Natl Acad Sci U S A 2015; 112:E3515-24. [PMID: 26100885 PMCID: PMC4500244 DOI: 10.1073/pnas.1504491112] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the enormous diversity among parasitic angiosperms in form and structure, life-history strategies, and plastid genomes, little is known about the diversity of their mitogenomes. We report the sequence of the wonderfully bizarre mitogenome of the hemiparasitic aerial mistletoe Viscum scurruloideum. This genome is only 66 kb in size, making it the smallest known angiosperm mitogenome by a factor of more than three and the smallest land plant mitogenome. Accompanying this size reduction is exceptional reduction of gene content. Much of this reduction arises from the unexpected loss of respiratory complex I (NADH dehydrogenase), universally present in all 300+ other angiosperms examined, where it is encoded by nine mitochondrial and many nuclear nad genes. Loss of complex I in a multicellular organism is unprecedented. We explore the potential relationship between this loss in Viscum and its parasitic lifestyle. Despite its small size, the Viscum mitogenome is unusually rich in recombinationally active repeats, possessing unparalleled levels of predicted sublimons resulting from recombination across short repeats. Many mitochondrial gene products exhibit extraordinary levels of divergence in Viscum, indicative of highly relaxed if not positive selection. In addition, all Viscum mitochondrial protein genes have experienced a dramatic acceleration in synonymous substitution rates, consistent with the hypothesis of genomic streamlining in response to a high mutation rate but completely opposite to the pattern seen for the high-rate but enormous mitogenomes of Silene. In sum, the Viscum mitogenome possesses a unique constellation of extremely unusual features, a subset of which may be related to its parasitic lifestyle.
Collapse
Affiliation(s)
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Danny W Rice
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405;
| |
Collapse
|
20
|
Khadria AS, Mueller BK, Stefely JA, Tan CH, Pagliarini DJ, Senes A. A Gly-zipper motif mediates homodimerization of the transmembrane domain of the mitochondrial kinase ADCK3. J Am Chem Soc 2014; 136:14068-77. [PMID: 25216398 PMCID: PMC4195374 DOI: 10.1021/ja505017f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interactions between α-helices within the hydrophobic environment of lipid bilayers are integral to the folding and function of transmembrane proteins; however, the major forces that mediate these interactions remain debated, and our ability to predict these interactions is still largely untested. We recently demonstrated that the frequent transmembrane association motif GASright, the GxxxG-containing fold of the glycophorin A dimer, is optimal for the formation of extended networks of Cα-H hydrogen bonds, supporting the hypothesis that these bonds are major contributors to association. We also found that optimization of Cα-H hydrogen bonding and interhelical packing is sufficient to computationally predict the structure of known GASright dimers at near atomic level. Here, we demonstrate that this computational method can be used to characterize the structure of a protein not previously known to dimerize, by predicting and validating the transmembrane dimer of ADCK3, a mitochondrial kinase. ADCK3 is involved in the biosynthesis of the redox active lipid, ubiquinone, and human ADCK3 mutations cause a cerebellar ataxia associated with ubiquinone deficiency, but the biochemical functions of ADCK3 remain largely undefined. Our experimental analyses show that the transmembrane helix of ADCK3 oligomerizes, with an interface based on an extended Gly-zipper motif, as predicted by our models. The data provide strong evidence for the hypothesis that optimization of Cα-H hydrogen bonding is an important factor in the association of transmembrane helices. This work also provides a structural foundation for investigating the role of transmembrane association in regulating the biological activity of ADCK3.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | | | | | | | | | | |
Collapse
|
21
|
Vázquez-Acevedo M, Rubalcava-Gracia D, González-Halphen D. In vitro import and assembly of the nucleus-encoded mitochondrial subunit III of cytochrome c oxidase (Cox3). Mitochondrion 2014; 19 Pt B:314-22. [PMID: 24561572 DOI: 10.1016/j.mito.2014.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/24/2014] [Accepted: 02/12/2014] [Indexed: 11/17/2022]
Abstract
The cox3 gene, encoding subunit III of cytochrome c oxidase (Cox3) is in mitochondrial genomes except in chlorophycean algae, where it is localized in the nucleus. Therefore, algae like Chlamydomonas reinhardtii, Polytomella sp. and Volvox carteri, synthesize the Cox3 polypeptide in the cytosol, import it into mitochondria, and integrate it into the cytochrome c oxidase complex. In this work, we followed the in vitro internalization of the Cox3 precursor by isolated, import-competent mitochondria of Polytomella sp. In this colorless alga, the precursor Cox3 protein is synthesized with a long, cleavable, N-terminal mitochondrial targeting sequence (MTS) of 98 residues. In an import time course, a transient Cox3 intermediate was identified, suggesting that the long MTS is processed more than once. The first processing step is sensitive to the metalo-protease inhibitor 1,10-ortophenantroline, suggesting that it is probably carried out by the matrix-located Mitochondrial Processing Protease. Cox3 is readily imported through an energy-dependent import pathway and integrated into the inner mitochondrial membrane, becoming resistant to carbonate extraction. Furthermore, the imported Cox3 protein was assembled into cytochrome c oxidase, as judged by the presence of a labeled band co-migrating with complex IV in Blue Native Electrophoresis. A model for the biogenesis of Cox3 in chlorophycean algae is proposed. This is the first time that the in vitro mitochondrial import of a cytosol-synthesized Cox3 subunit is described.
Collapse
Affiliation(s)
- Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, México 04510, D.F., Mexico.
| |
Collapse
|
22
|
de Paula WBM, Lucas CH, Agip ANA, Vizcay-Barrena G, Allen JF. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120263. [PMID: 23754815 PMCID: PMC3685464 DOI: 10.1098/rstb.2012.0263] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Oxidative phosphorylation couples ATP synthesis to respiratory electron transport. In eukaryotes, this coupling occurs in mitochondria, which carry DNA. Respiratory electron transport in the presence of molecular oxygen generates free radicals, reactive oxygen species (ROS), which are mutagenic. In animals, mutational damage to mitochondrial DNA therefore accumulates within the lifespan of the individual. Fertilization generally requires motility of one gamete, and motility requires ATP. It has been proposed that oxidative phosphorylation is nevertheless absent in the special case of quiescent, template mitochondria, that these remain sequestered in oocytes and female germ lines and that oocyte mitochondrial DNA is thus protected from damage, but evidence to support that view has hitherto been lacking. Here we show that female gametes of Aurelia aurita, the common jellyfish, do not transcribe mitochondrial DNA, lack electron transport, and produce no free radicals. In contrast, male gametes actively transcribe mitochondrial genes for respiratory chain components and produce ROS. Electron microscopy shows that this functional division of labour between sperm and egg is accompanied by contrasting mitochondrial morphology. We suggest that mitochondrial anisogamy underlies division of any animal species into two sexes with complementary roles in sexual reproduction. We predict that quiescent oocyte mitochondria contain DNA as an unexpressed template that avoids mutational accumulation by being transmitted through the female germ line. The active descendants of oocyte mitochondria perform oxidative phosphorylation in somatic cells and in male gametes of each new generation, and the mutations that they accumulated are not inherited. We propose that the avoidance of ROS-dependent mutation is the evolutionary pressure underlying maternal mitochondrial inheritance and the developmental origin of the female germ line.
Collapse
Affiliation(s)
- Wilson B M de Paula
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | | |
Collapse
|
23
|
Matsunaga M, Takahashi Y, Yui-Kurino R, Mikami T, Kubo T. Evolutionary aspects of a unique internal mitochondrial targeting signal in nuclear-migrated rps19 of sugar beet (Beta vulgaris L.). Gene 2013; 517:19-26. [PMID: 23305819 DOI: 10.1016/j.gene.2012.12.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
The endosymbiotic theory postulates that many genes migrated from endosymbionts to the nuclear genomes of their hosts. Some migrated genes lack presequences directing proteins to mitochondria, and their mitochondrial targeting signals appear to be inscribed in the core coding regions as internal targeting signals (ITSs). ITSs may have evolved after sequence transfer to nuclei or ITSs may have pre-existed before sequence transfer. Here, we report the molecular cloning of a sugar beet gene for ribosomal protein S19 (Rps19; the first letter is capitalized when the gene is a nuclear gene). We show that sugar beet Rps19 (BvRps19) is an ITS-type gene. Based on amino-acid sequence comparison, dicotyledonous rps19s (the first letter is lower-cased when the gene is a mitochondrial gene), such as tobacco rps19 (Ntrps19), resemble an ancestral form of BvRps19. We investigated whether differences in amino-acid sequences between BvRps19 and Ntrps19 were involved in ITS evolution. Analyses of the intracellular localization of chimaeric GFP-fusion proteins that were transiently expressed in Welsh onion cells showed that Ntrps19-gfp was not localized in mitochondria. When several BvRps19-type amino acid substitutions, none of which was seen in any other angiosperm rps19, were introduced into Ntrps19-gfp, the modified Ntrps19-gfp became localized in mitochondria, supporting the notion that an ITS in BvRps19 evolved following sequence transfer to nuclei. Not all of these substitutions were seen in other ITS-type Rps19s, suggesting that the ITSs of Rps19 are diverse.
Collapse
Affiliation(s)
- Muneyuki Matsunaga
- Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo 060-8589, Japan
| | | | | | | | | |
Collapse
|
24
|
Cruz-Torres V, Vázquez-Acevedo M, García-Villegas R, Pérez-Martínez X, Mendoza-Hernández G, González-Halphen D. The cytosol-synthesized subunit II (Cox2) precursor with the point mutation W56R is correctly processed in yeast mitochondria to rescue cytochrome oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2128-39. [PMID: 22985601 DOI: 10.1016/j.bbabio.2012.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023]
Abstract
Deletion of the yeast mitochondrial gene COX2 encoding subunit 2 (Cox2) of cytochrome c oxidase (CcO) results in loss of respiration (Δcox2 strain). Supekova et al. (2010) [1] transformed a Δcox2 strain with a vector expressing Cox2 with a mitochondrial targeting sequence (MTS) and the point mutation W56R (Cox2(W56R)), restoring respiratory growth. Here, the CcO carrying the allotopically-expressed Cox2(W56R) was characterized. Yeast mitochondria from the wild-type (WT) and the Δcox2+Cox2(W56R) strains were subjected to Blue Native electrophoresis. In-gel activity of CcO and spectroscopic quantitation of cytochromes revealed that only 60% of CcO is present in the complemented strain, and that less CcO is found associated in supercomplexes as compared to WT. CcOs from the WT and the mutant exhibited similar subunit composition, although activity was 20-25% lower in the enzyme containing Cox2(W56R) than in the one with Cox2(WT). Tandem mass spectrometry confirmed that W(56) was substituted by R(56) in Cox2(W56R). In addition, Cox2(W56R) exhibited the same N-terminus than Cox2(WT), indicating that the MTS of Oxa1 and the leader sequence of 15 residues were removed from Cox2(W56R) during maturation. Thus, Cox2(W56R) is identical to Cox2(WT) except for the point mutation W56R. Mitochondrial Cox1 synthesis is strongly reduced in Δcox2 mutants, but the Cox2(W56R) complemented strain led to full restoration of Cox1 synthesis. We conclude that the cytosol-synthesized Cox2(W56R) follows a rate-limiting process of import, maturation or assembly that yields lower steady-state levels of CcO. Still, the allotopically-expressed Cox2(W56R) restores CcO activity and allows mitochondrial Cox1 synthesis to advance at WT levels.
Collapse
Affiliation(s)
- Valentín Cruz-Torres
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., Mexico
| | | | | | | | | | | |
Collapse
|
25
|
In Polytomella sp. mitochondria, biogenesis of the heterodimeric COX2 subunit of cytochrome c oxidase requires two different import pathways. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:819-27. [DOI: 10.1016/j.bbabio.2012.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 02/28/2012] [Accepted: 02/28/2012] [Indexed: 11/22/2022]
|
26
|
Cuenca A, Petersen G, Seberg O, Jahren AH. Genes and processed paralogs co-exist in plant mitochondria. J Mol Evol 2012; 74:158-69. [PMID: 22484699 DOI: 10.1007/s00239-012-9496-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 03/23/2012] [Indexed: 10/28/2022]
Abstract
RNA-mediated gene duplication has been proposed to create processed paralogs in the plant mitochondrial genome. A processed paralog may retain signatures left by the maturation process of its RNA precursor, such as intron removal and no need of RNA editing. Whereas it is well documented that an RNA intermediary is involved in the transfer of mitochondrial genes to the nucleus, no direct evidence exists for insertion of processed paralogs in the mitochondria (i.e., processed and un-processed genes have never been found simultaneously in the mitochondrial genome). In this study, we sequenced a region of the mitochondrial gene nad1, and identified a number of taxa were two different copies of the region co-occur in the mitochondria. The two nad1 paralogs differed in their (a) presence or absence of a group II intron, and (b) number of edited sites. Thus, this work provides the first evidence of co-existence of processed paralogs and their precursors within the plant mitochondrial genome. In addition, mapping the presence/absence of the paralogs provides indirect evidence of RNA-mediated gene duplication as an essential process shaping the mitochondrial genome in plants.
Collapse
Affiliation(s)
- Argelia Cuenca
- Botanical Garden, Natural History Museum of Denmark, University of Copenhagen, Sølvgade 83 Opg. S, 1307, Copenhagen K, Denmark.
| | | | | | | |
Collapse
|
27
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 2011; 6:e16404. [PMID: 21283772 PMCID: PMC3024419 DOI: 10.1371/journal.pone.0016404] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/18/2010] [Indexed: 11/26/2022] Open
Abstract
The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38–297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.
Collapse
Affiliation(s)
- Andrew J Alverson
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America.
| | | | | | | | | |
Collapse
|
29
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
30
|
Tong J, Dolezal P, Selkrig J, Crawford S, Simpson AGB, Noinaj N, Buchanan SK, Gabriel K, Lithgow T. Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana. Mol Biol Evol 2010; 28:1581-91. [PMID: 21081480 DOI: 10.1093/molbev/msq305] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Collapse
Affiliation(s)
- Janette Tong
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Figueroa-Martínez F, Vázquez-Acevedo M, Cortés-Hernández P, García-Trejo JJ, Davidson E, King MP, González-Halphen D. What limits the allotopic expression of nucleus-encoded mitochondrial genes? The case of the chimeric Cox3 and Atp6 genes. Mitochondrion 2010; 11:147-54. [PMID: 20854934 DOI: 10.1016/j.mito.2010.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/17/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
Allotopic expression is potentially a gene therapy for mtDNA-related diseases. Some OXPHOS proteins like ATP6 (subunit a of complex V) and COX3 (subunit III of complex IV) that are typically mtDNA-encoded, are naturally nucleus-encoded in the alga Chlamydomonas reinhardtii. The mitochondrial proteins whose genes have been relocated to the nucleus exhibit long mitochondrial targeting sequences ranging from 100 to 140 residues and a diminished overall mean hydrophobicity when compared with their mtDNA-encoded counterparts. We explored the allotopic expression of the human gene products COX3 and ATP6 that were re-designed for mitochondrial import by emulating the structural properties of the corresponding algal proteins. In vivo and in vitro data in homoplasmic human mutant cells carrying either a T8993G mutation in the mitochondrial atp6 gene or a 15bp deletion in the mtDNA-encoded cox3 gene suggest that these human mitochondrial proteins re-designed for nuclear expression are targeted to the mitochondria, but fail to functionally integrate into their corresponding OXPHOS complexes.
Collapse
|
32
|
A single mutation in the first transmembrane domain of yeast COX2 enables its allotopic expression. Proc Natl Acad Sci U S A 2010; 107:5047-52. [PMID: 20194738 DOI: 10.1073/pnas.1000735107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the course of evolution, a massive reduction of the mitochondrial genome content occurred that was associated with transfer of a large number of genes to the nucleus. To further characterize factors that control the mitochondrial gene transfer/retention process, we have investigated the barriers to transfer of yeast COX2, a mitochondrial gene coding for a subunit of cytochrome c oxidase complex. Nuclear-recoded Saccharomyces cerevisiae COX2 fused at the amino terminus to various alternative mitochondrial targeting sequences (MTS) fails to complement the growth defect of a yeast strain with an inactivated mitochondrial COX2 gene, even though it is expressed in cells. Through random mutagenesis of one such hybrid MTS-COX2, we identified a single mutation in the first Cox2 transmembrane domain (W56 --> R) that (i) results in the cellular expression of a Cox2 variant with a molecular mass indicative of MTS cleavage, which (ii) supports growth of a cox2 mutant on a nonfermentable carbon source, and that (iii) partially restores cytochrome c oxidase-specific respiration by the mutant mitochondria. COX2(W56R) can be allotopically expressed with an MTS derived from S. cerevisiae OXA1 or Neurospora crassa SU9, both coding for hydrophobic mitochondrial proteins, but not with an MTS derived from the hydrophilic protein Cox4. In contrast to some other previously transferred genes, allotopic COX2 expression is not enabled or enhanced by a 3'-UTR that localizes mRNA translation to the mitochondria, such as yeast ATP2(3)('-UTR). Application of in vitro evolution strategies to other mitochondrial genes might ultimately lead to yeast entirely lacking the mitochondrial genome, but still possessing functional respiratory capacity.
Collapse
|
33
|
Abstract
In Chlamydomonas reinhardtii several nucleus-encoded proteins that participate in the mitochondrial oxidative phosphorylation are targeted to the organelle by unusually long mitochondrial targeting sequences. Here, we explored the components of the mitochondrial import machinery of the green alga. We mined the algal genome, searching for yeast and plant homologs, and reconstructed the mitochondrial import machinery. All the main translocation components were identified in Chlamydomonas as well as in Arabidopsis thaliana and in the recently sequenced moss Physcomitrella patens. Some of these components appear to be duplicated, as is the case of Tim22. In contrast, several yeast components that have relatively large hydrophilic regions exposed to the cytosol or to the intermembrane space seem to be absent in land plants and green algae. If present at all, these components of plants and algae may differ significantly from their yeast counterparts. We propose that long mitochondrial targeting sequences in some Chlamydomonas mitochondrial protein precursors are involved in preventing the aggregation of the hydrophobic proteins they carry.
Collapse
|
34
|
|
35
|
Bokori-Brown M, Holt IJ. Expression of algal nuclear ATP synthase subunit 6 in human cells results in protein targeting to mitochondria but no assembly into ATP synthase. Rejuvenation Res 2007; 9:455-69. [PMID: 17105386 DOI: 10.1089/rej.2006.9.455] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Artificial transfer of mitochondrial genes to the nucleus has implications for the understanding of mitochondrial function, evolution, and human health. Therefore, we created nuclear compatible versions of human subunit a (A6) of ATP synthase, linked to a mitochondrial targeting signal. Expression and targeting of human nuclear subunit a were compared to subunit a of Chlamydomonas reinhardtii, which naturally occurs in the nucleus. Algal subunit a was targeted to mitochondria more efficiently than human nuclear subunit a variants. However, there was no evidence of improved mitochondrial function in cultured cells; on the contrary, long-term expression of algal subunit a was associated with poor survival and intolerance of growth conditions that demand heavy reliance on oxidative phosphorylation. Analysis of enriched mitochondrial membrane fractions on native gels revealed a high-molecular- weight complex containing FLAG-tagged subunit a; however, this complex did not colocalize with ATP synthase. Thus, there was no evidence of assembly of algal subunit a into holoenzyme, nor did human nuclear subunit a colocalize with ATP synthase holoenzyme. In conclusion, obstacles remain to functional expression of mitochondrial genes transferred to the nucleus.
Collapse
|
36
|
Waller RF, Keeling PJ. Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 2006; 383:33-7. [PMID: 16987614 DOI: 10.1016/j.gene.2006.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 06/20/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
The mitochondrial gene for COXII is typically encoded in the organelle genome, however in some members of two unrelated groups, Apicomplexa and Chlorophyceae, cox2 is split into two genes, and both are encoded in the nucleus. Rare genomic changes (RGCs) have acquired popularity as phylogenetic markers, and accordingly this rearrangement of cox2 has been used to infer a possible source of the apicomplexan plastid, the apicoplast, a topic that continues to attract much debate. Accurate interpretation of RGCs, however, is critically dependent on appropriate sampling of the character state of interest amongst relevant taxa. Dinoflagellates form the sister taxon to Apicomplexa, and therefore the state of their cox2 is essential to the interpretation of this apparent RGC. Here we present the first complete cox2 data from dinoflagellates, that suggests despite the remarkable similarity of cox2 seen in Alveolates and Chlorophyceae, this gene reorganization arose independently in these two groups, not through lateral transfer as previously suggested.
Collapse
Affiliation(s)
- Ross F Waller
- Canadian Institute for Advanced Research, Botany Department, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
37
|
Cardol P, Lapaille M, Minet P, Franck F, Matagne RF, Remacle C. ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme. EUKARYOTIC CELL 2006; 5:1460-7. [PMID: 16963630 PMCID: PMC1563589 DOI: 10.1128/ec.00118-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 07/05/2006] [Indexed: 11/20/2022]
Abstract
Made of more than 40 subunits, the rotenone-sensitive NADH:ubiquinone oxidoreductase (complex I) is the most intricate membrane-bound enzyme of the mitochondrial respiratory chain. In vascular plants, fungi, and animals, at least seven complex I subunits (ND1, -2, -3, -4, -4L, -5, and -6; ND is NADH dehydrogenase) are coded by mitochondrial genes. The role of these highly hydrophobic subunits in the enzyme activity and assembly is still poorly understood. In the unicellular green alga Chlamydomonas reinhardtii, the ND3 and ND4L subunits are encoded in the nuclear genome, and we show here that the corresponding genes, called NUO3 and NUO11, respectively, display features that facilitate their expression and allow the proper import of the corresponding proteins into mitochondria. In particular, both polypeptides show lower hydrophobicity compared to their mitochondrion-encoded counterparts. The expression of the NUO3 and NUO11 genes has been suppressed by RNA interference. We demonstrate that the absence of ND3 or ND4L polypeptides prevents the assembly of the 950-kDa whole complex I and suppresses the enzyme activity. The putative role of hydrophobic ND subunits is discussed in relation to the structure of the complex I enzyme. A model for the assembly pathway of the Chlamydomonas enzyme is proposed.
Collapse
Affiliation(s)
- Pierre Cardol
- Biochemistry and Photobiology Laboratory, Department of Life Sciences, Université de Liège, B-4000, Liège, Belgium.
| | | | | | | | | | | |
Collapse
|
38
|
Ong HC, Palmer JD. Pervasive survival of expressed mitochondrial rps14 pseudogenes in grasses and their relatives for 80 million years following three functional transfers to the nucleus. BMC Evol Biol 2006; 6:55. [PMID: 16842621 PMCID: PMC1543663 DOI: 10.1186/1471-2148-6-55] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 07/14/2006] [Indexed: 01/10/2023] Open
Abstract
Background Many mitochondrial genes, especially ribosomal protein genes, have been frequently transferred as functional entities to the nucleus during plant evolution, often by an RNA-mediated process. A notable case of transfer involves the rps14 gene of three grasses (rice, maize, and wheat), which has been relocated to the intron of the nuclear sdh2 gene and which is expressed and targeted to the mitochondrion via alternative splicing and usage of the sdh2 targeting peptide. Although this transfer occurred at least 50 million years ago, i.e., in a common ancestor of these three grasses, it is striking that expressed, nearly intact pseudogenes of rps14 are retained in the mitochondrial genomes of both rice and wheat. To determine how ancient this transfer is, the extent to which mitochondrial rps14 has been retained and is expressed in grasses, and whether other transfers of rps14 have occurred in grasses and their relatives, we investigated the structure, expression, and phylogeny of mitochondrial and nuclear rps14 genes from 32 additional genera of grasses and from 9 other members of the Poales. Results Filter hybridization experiments showed that rps14 sequences are present in the mitochondrial genomes of all examined Poales except for members of the grass subfamily Panicoideae (to which maize belongs). However, PCR amplification and sequencing revealed that the mitochondrial rps14 genes of all examined grasses (Poaceae), Cyperaceae, and Joinvilleaceae are pseudogenes, with all those from the Poaceae sharing two 4-NT frameshift deletions and all those from the Cyperaceae sharing a 5-NT insertion (only one member of the Joinvilleaceae was examined). cDNA analysis showed that all mitochondrial pseudogenes examined (from all three families) are transcribed, that most are RNA edited, and that surprisingly many of the edits are reverse (U→C) edits. Putatively nuclear copies of rps14 were isolated from one to several members of each of these three Poales families. Multiple lines of evidence indicate that the nuclear genes are probably the products of three independent transfers. Conclusion The rps14 gene has, most likely, been functionally transferred from the mitochondrion to the nucleus at least three times during the evolution of the Poales. The transfers in Cyperaceae and Poaceae are relatively ancient, occurring in the common ancestor of each family, roughly 80 million years ago, whereas the putative Joinvilleaceae transfer may be the most recent case of functional organelle-to-nucleus transfer yet described in any organism. Remarkably, nearly intact and expressed pseudogenes of rps14 have persisted in the mitochondrial genomes of most lineages of Poaceae and Cyperaceae despite the antiquity of the transfers and of the frameshift and RNA editing mutations that mark the mitochondrial genes as pseudogenes. Such long-term, nearly pervasive survival of expressed, apparent pseudogenes is to our knowledge unparalleled in any genome. Such survival probably reflects a combination of factors, including the short length of rps14, its location immediately downstream of rpl5 in most plants, and low rates of nucleotide substitutions and indels in plant mitochondrial DNAs. Their survival also raises the possibility that these rps14 sequences may not actually be pseudogenes despite their appearance as such. Overall, these findings indicate that intracellular gene transfer may occur even more frequently in angiosperms than already recognized and that pseudogenes in plant mitochondrial genomes can be surprisingly resistant to forces that lead to gene loss and inactivation.
Collapse
Affiliation(s)
- Han Chuan Ong
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Proc Natl Acad Sci U S A 2006; 103:9566-71. [PMID: 16760254 PMCID: PMC1480447 DOI: 10.1073/pnas.0600707103] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The introduction of plastids into different heterotrophic protists created lineages of algae that diversified explosively, proliferated in marine and freshwater environments, and radically altered the biosphere. The origins of these secondary plastids are usually inferred from the presence of additional plastid membranes. However, two examples provide unique snapshots of secondary-endosymbiosis-in-action, because they retain a vestige of the endosymbiont nucleus known as the nucleomorph. These are chlorarachniophytes and cryptomonads, which acquired their plastids from a green and red alga respectively. To allow comparisons between them, we have sequenced the nucleomorph genome from the chlorarachniophyte Bigelowiella natans: at a mere 373,000 bp and with only 331 genes, the smallest nuclear genome known and a model for extreme reduction. The genome is eukaryotic in nature, with three linear chromosomes containing densely packed genes with numerous overlaps. The genome is replete with 852 introns, but these are the smallest introns known, being only 18, 19, 20, or 21 nt in length. These pygmy introns are shown to be miniaturized versions of normal-sized introns present in the endosymbiont at the time of capture. Seventeen nucleomorph genes encode proteins that function in the plastid. The other nucleomorph genes are housekeeping entities, presumably underpinning maintenance and expression of these plastid proteins. Chlorarachniophyte plastids are thus serviced by three different genomes (plastid, nucleomorph, and host nucleus) requiring remarkable coordination and targeting. Although originating by two independent endosymbioses, chlorarachniophyte and cryptomonad nucleomorph genomes have converged upon remarkably similar architectures but differ in many molecular details that reflect two distinct trajectories to hypercompaction and reduction.
Collapse
Affiliation(s)
- Paul R. Gilson
- *Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Australia
| | - Vanessa Su
- School of Botany, University of Melbourne, Victoria 3010, Australia
| | - Claudio H. Slamovits
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Michael E. Reith
- Institute for Marine Biosciences, National Research Council, Halifax, NS, Canada B3H 3Z1; and
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Geoffrey I. McFadden
- School of Botany, University of Melbourne, Victoria 3010, Australia
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Murcha MW, Rudhe C, Elhafez D, Adams KL, Daley DO, Whelan J. Adaptations required for mitochondrial import following mitochondrial to nucleus gene transfer of ribosomal protein S10. PLANT PHYSIOLOGY 2005; 138:2134-44. [PMID: 16040655 PMCID: PMC1183401 DOI: 10.1104/pp.105.062745] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphipathic alpha-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal.
Collapse
Affiliation(s)
- Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Mitochondria and plastids (including chloroplasts) have a small but vital genetic coding capacity, but what are the properties of some genes that dictate that they must remain encoded in organelles? Mitochondria and plastids (including chloroplasts) have a small but vital genetic coding capacity, but what are the properties of some genes that dictate that they must remain encoded in organelles?
Collapse
Affiliation(s)
- Daniel O Daley
- Department of Biochemistry and Biophysics, Stockholm University, S106 91, Sweden
| | - James Whelan
- Plant Molecular Biology Group, School of Biomedical and Chemical Science, University of Western Australia, Nedlands 6009, Western Australia, Australia
| |
Collapse
|
42
|
Cardol P, González-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. PLANT PHYSIOLOGY 2005; 137:447-59. [PMID: 15710684 PMCID: PMC1065347 DOI: 10.1104/pp.104.054148] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/25/2004] [Accepted: 11/25/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms , Institute of Plant Biology B22, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
43
|
de Grey ADNJ. Inter-Species Therapeutic Cloning: The Looming Problem of Mitochondrial DNA and Two Possible Solutions. Rejuvenation Res 2004; 7:95-8. [PMID: 15312296 DOI: 10.1089/1549168041553017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
44
|
González-Halphen D, Funes S, Pérez-Martínez X, Reyes-Prieto A, Claros MG, Davidson E, King MP. Genetic Correction of Mitochondrial Diseases: Using the Natural Migration of Mitochondrial Genes to the Nucleus in Chlorophyte Algae as a Model System. Ann N Y Acad Sci 2004; 1019:232-9. [PMID: 15247021 DOI: 10.1196/annals.1297.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mitochondrial diseases display great diversity in clinical symptoms and biochemical characteristics. Although mtDNA mutations have been identified in many patients, there are currently no effective treatments. A number of human diseases result from mutations in mtDNA-encoded proteins, a group of proteins that are hydrophobic and have multiple membrane-spanning regions. One method that has great potential for overcoming the pathogenic consequences of these mutations is to place a wild-type copy of the affected gene in the nucleus, and target the expressed protein to the mitochondrion to function in place of the defective protein. Several respiratory chain subunit genes, which are typically mtDNA encoded, are nucleus encoded in the chlorophyte algae Chlamydomonas reinhardtii and Polytomella sp. Analysis of these genes has revealed adaptations that facilitated their expression from the nucleus. The nucleus-encoded proteins exhibited diminished physical constraints for import as compared to their mtDNA-encoded homologues. The hydrophobicity of the nucleus-encoded proteins is diminished in those regions that are not involved in subunit-subunit interactions or that contain amino acids critical for enzymatic reactions of the proteins. In addition, these proteins have unusually large mitochondrial targeting sequences. Information derived from these studies should be applicable toward the development of genetic therapies for human diseases resulting from mutations in mtDNA-encoded polypeptides.
Collapse
Affiliation(s)
- Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The acquisitions of mitochondria and plastids were important events in the evolution of the eukaryotic cell, supplying it with compartmentalized bioenergetic and biosynthetic factories. Ancient invasions by eubacteria through symbiosis more than a billion years ago initiated these processes. Advances in geochemistry, molecular phylogeny, and cell biology have offered insight into complex molecular events that drove the evolution of endosymbionts into contemporary organelles. In losing their autonomy, endosymbionts lost the bulk of their genomes, necessitating the evolution of elaborate mechanisms for organelle biogenesis and metabolite exchange. In the process, symbionts acquired many host-derived properties, lost much of their eubacterial identity, and were transformed into extraordinarily diverse organelles that reveal complex histories that we are only beginning to decipher.
Collapse
Affiliation(s)
- Sabrina D Dyall
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
46
|
Timmis JN, Ayliffe MA, Huang CY, Martin W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 2004; 5:123-35. [PMID: 14735123 DOI: 10.1038/nrg1271] [Citation(s) in RCA: 974] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy N Timmis
- School of Molecular and Biomedical Science, The University of Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
47
|
|
48
|
Oca-Cossio J, Kenyon L, Hao H, Moraes CT. Limitations of Allotopic Expression of Mitochondrial Genes in Mammalian Cells. Genetics 2003; 165:707-20. [PMID: 14573482 PMCID: PMC1462783 DOI: 10.1093/genetics/165.2.707] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The possibility of expressing mitochondrial DNA-coded genes in the nuclear-cytoplasmic compartment provides an attractive system for genetic treatment of mitochondrial disorders associated with mitochondrial DNA mutations. In theory, by recoding mitochondrial genes to adapt them to the universal genetic code and by adding a DNA sequence coding for a mitochondrial-targeting sequence, one could achieve correct localization of the gene product. Such transfer has occurred in nature, and certain species of algae and plants express a number of polypeptides that are commonly coded by mtDNA in the nuclear-cytoplasmic compartment. In the present study, allotopic expression of three different mtDNA-coded polypeptides (ATPase8, apocytochrome b, and ND4) into COS-7 and HeLa cells was analyzed. Among these, only ATPase8 was correctly expressed and localized to mitochondria. The full-length, as well as truncated forms, of apocytochrome b and ND4 decorated the periphery of mitochondria, but also aggregated in fiber-like structures containing tubulin and in some cases also vimentin. The addition of a hydrophilic tail (EGFP) to the C terminus of these polypeptides did not change their localization. Overexpression of molecular chaperones also did not have a significant effect in preventing aggregations. Allotopic expression of apocytochrome b and ND4 induced a loss of mitochondrial membrane potential in transfected cells, which can lead to cell death. Our observations suggest that only a subset of mitochondrial genes can be replaced allotopically. Analyses of the hydrophobic patterns of different polypeptides suggest that hydrophobicity of the N-terminal segment is the main determinant for the importability of peptides into mammalian mitochondria.
Collapse
Affiliation(s)
- Jose Oca-Cossio
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
49
|
Waller RF, Keeling PJ, van Dooren GG, McFadden GI. Comment on "A green algal apicoplast ancestor". Science 2003. [PMID: 12843377 DOI: 10.1126/science.1083647] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ross F Waller
- Department of Biochemistry and, Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
50
|
Waller RF, Keeling PJ, van Dooren GG, McFadden GI. Comment on "A green algal apicoplast ancestor". Science 2003; 301:49; author reply 49. [PMID: 12843377 DOI: 10.1126/science.1084684] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ross F Waller
- Department of Biochemistry and, Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|