1
|
Kibet M, Abebayehu D. Crosstalk between T cells and fibroblasts in biomaterial-mediated fibrosis. Matrix Biol Plus 2025; 26:100172. [PMID: 40226302 PMCID: PMC11986236 DOI: 10.1016/j.mbplus.2025.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Biomaterial implants are a critical aspect of our medical therapies and biomedical research and come in various forms: stents, implantable glucose sensors, orthopedic implants, silicone implants, drug delivery systems, and tissue engineered scaffolds. Their implantation triggers a series of biological responses that often times lead to the foreign body response and subsequent fibrotic encapsulation, a dense ECM-rich capsule that isolates the biomaterial and renders it ineffective. These responses lead to the failure of biomaterials and is a major hurdle to overcome and in promoting their success. Much attention has been given to macrophage populations for the inflammatory component of these responses to biomaterials but recent work has identified an important role of T cells and their ability to modulate fibroblast activity and vice versa. In this review, we focus on T cell-fibroblast crosstalk by exploring T cell subsets, critical signaling pathways, and fibroblast populations that have been shown to dictate biomaterial-mediated fibrosis. We then highlight emerging technologies and model systems that enable new insights and avenues to T cell-fibroblast crosstalk that will improve biomaterial outcomes.
Collapse
Affiliation(s)
- Mathew Kibet
- Department of Biomedical Engineering, School of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| | - Daniel Abebayehu
- Department of Biomedical Engineering, School of Engineering and Medicine, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
2
|
Yassouf MY, Kinoshita A, Hasan MM, Li TS. Improved transcriptome assembly and functional annotation of Pleurodeles waltl for regeneration research. PLoS One 2025; 20:e0323196. [PMID: 40367087 PMCID: PMC12077673 DOI: 10.1371/journal.pone.0323196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/03/2025] [Indexed: 05/16/2025] Open
Abstract
In this study, we present an updated transcriptome assembly for the Iberian ribbed newt, Pleurodeles waltl (P. waltl), a widely used model organism in regeneration research. The existing publicly available transcriptome for this species is limited by the inclusion of only three libraries from the limb and two from the heart, tissues of particular interest for regeneration studies. Additionally, the previous annotation was limited, reducing the utility of the dataset for further in-depth research. To provide a more complete transcriptome with a more comprehensive annotation, we utilized 58 previously published and 9 newly sequenced libraries, expanding the available transcriptomic data for key tissues, especially limb and heart tissues. Our assessment demonstrates that the new assembly offers a more comprehensive representation of reads and proteins compared to previous versions. Furthermore, we significantly improved the functional annotation by using the Trinotate pipeline, which includes the identification of complete ORFs, Pfam motifs, gene names, GO terms, and KEGG Orthology, facilitating more robust transcriptomic analyses. We also examined various stages of limb regeneration and development, gaining insights into the key signaling pathways involved. This work provides a valuable resource for researchers investigating the molecular mechanisms underlying P. waltl's regenerative abilities, enabling more detailed gene expression studies and broader biological insights.
Collapse
Affiliation(s)
- Mhd Yousuf Yassouf
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan.
| | - Md. Mahmudul Hasan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Sakamoto, Nagasaki, Japan
| |
Collapse
|
3
|
Sandin A, Jönsson L, Jennische E, Dellenmark Blom M, Friberg LG, Gatzinsky V, Holmqvist O, Abrahamsson K. Regenerative Response 35 Days After Esophageal Replacement in a Porcine Model; Technical Difficulties and Attempts to Achieve Optimal Tissue Remodeling. Artif Organs 2025. [PMID: 40358073 DOI: 10.1111/aor.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND In previous articles, a porcine model for bridging circumferential defects in the intrathoracic esophagus was developed. The aims of this present study were to evaluate the continued healing response after 35 days, avoid stent migration of the esophageal stent, and to investigate whether it would be beneficial to add new extracellular matrix (ECM) to the healing area after 20 days. METHODS Surgery was performed in twelve piglets, and five different types of stents were used. In two piglets, new ECM was added by endoscope to the area of healing after 20 days. After the animals were euthanized, the esophageal tissue was examined. RESULTS Histologic examination after 35 days showed clusters of desmin-positive smooth muscle cells and the sprouting of nerves in the area that was healing. Generally, there were fewer M1 classically activated macrophages in specimens after 35 days when we compared them with the 20-day study. The CD 163 positive macrophages (M2-macrophages) were seen in all specimens. Four piglets did not survive to the end of the study period because of adverse events. Out of the eight piglets that were euthanized after 34 to 35 days, six had stents that had migrated to the stomach. Only in two piglets, who had large rilled stents, did the stents remain in place throughout the study period. CONCLUSION After 35 days, the area of healing did not show more signs of regenerative healing than the 20 days study. A procedure to add a new biomatrix by re-stenting endoscopically after 20 days was performed on two pigs. The procedure was feasible, but due to limb pain in the animals, they had to be euthanized prior to the plan, which prevented the evaluation of the effect on the regenerative response. The regenerative healing that was started needs to be further orchestrated in other ways to produce a more functional outcome with time.
Collapse
Affiliation(s)
- A Sandin
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - L Jönsson
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - E Jennische
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - M Dellenmark Blom
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - L-G Friberg
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - V Gatzinsky
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - O Holmqvist
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - K Abrahamsson
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Walker SE, Yu K, Burgess S, Echeverri K. Neuronal activation in the axolotl brain promotes tail regeneration. NPJ Regen Med 2025; 10:22. [PMID: 40341072 PMCID: PMC12062227 DOI: 10.1038/s41536-025-00413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
The axolotl retains a remarkable capacity for regenerative repair and is one of the few vertebrate species capable of regenerating its brain and spinal cord after injury. To date, studies investigating axolotl spinal cord regeneration have placed particular emphasis on understanding how cells immediately adjacent to the injury site respond to damage to promote regenerative repair. How neurons outside of this immediate injury site respond to an injury remains unknown. Here, we identify a population of dpErk+/etv1+ glutamatergic neurons in the axolotl telencephalon that are activated in response to injury and are essential for tail regeneration. Furthermore, these neurons project to the hypothalamus where they upregulate the neuropeptide neurotensin in response to injury. Together, these findings identify a unique population of neurons in the axolotl brain whose activation is necessary for successful tail regeneration, and sheds light on how neurons outside of the immediate injury site respond to an injury.
Collapse
Affiliation(s)
- S E Walker
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA
| | - K Yu
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - S Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - K Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology, Woods Hole, MA, USA.
| |
Collapse
|
5
|
Gupta K, Kaushik N, Sharma V, Singh A. A review on innovations in hydroxyapatite: advancing sustainable and multifunctional dental implants. Odontology 2025:10.1007/s10266-025-01096-3. [PMID: 40208376 DOI: 10.1007/s10266-025-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
The increasing relevance of biomaterials in medical curements and the care of aging populations has led to significant advancements in the development and modification of these materials. Hydroxyapatite (HAp), a biocompatible ceramic that mimics the composition of bone mineral, stands out for its remarkable abilities. Its stability in body fluids and ability to integrate with bone without causing toxicity or inflammation made it a prime candidate for biomedical utilization, particularly in odontology and orthopedics. Dental implants, which necessitate a strong interface with the jawbone to effectively support prosthetic devices, are enhanced by coatings of calcium phosphate-based materials like HAp. This enhances osseointegration, ensuring a strong bond and longevity of the implant. HAp may be synthesized both synthetically and from natural sources like mammalian bones, marine shells, and plants, each offering unique trace elements that improve its bioactivity. The synthesis of HAp involves differential technique, including chemical precipitation, and hydrothermal techniques, each impacting the final abilities of the material. The use of natural sources is especially promising, providing a sustainable, cost-effective alternative that retains essential biocompatibility. Hence, this article aims to explore the synthesis, properties, and biomedical applications of hydroxyapatite (HAp), with a special emphasis on its role in improving the performance and durability of dental implants. It also addresses the challenges in manufacturing and biocompatibility, offering insights into future advancements in this field. By addressing current challenges in manufacturing and biocompatibility, HAp paves the way for more effective and long-lasting dental treatments.
Collapse
Affiliation(s)
- Komal Gupta
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Galgotias College of Pharmacy, Greater Noida, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | | | - Amit Singh
- School of Pharmacy, Monad University, Hapur, Uttar Pradesh, India
| |
Collapse
|
6
|
García-García D, Knapp D, Kim M, Jamwal K, Fuqua H, Seaman RP, Grindle RE, Nowoshilow S, Novatchkova M, Kolling FW, Graber JH, Murawala P. The essential role of connective-tissue cells during axolotl limb regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.30.645595. [PMID: 40236065 PMCID: PMC11996436 DOI: 10.1101/2025.03.30.645595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Axolotls ( Ambystoma mexicanum ) are known for their remarkable limb-regeneration abilities, which involve the formation of the blastema, a specialized structure consisting of progenitor cells contributed by all major tissues of the limb. Lateral plate mesoderm (LPM)-derived connective tissue (CT) cells dedifferentiate and play a critical role in blastema formation and subsequent limb regeneration. However, the complexity of the blastema's cellular composition and the extent of CT participation and necessity have not been rigorously explored. To address this gap, we conducted spatial transcriptomics using a select array of probes, revealing that CT cells constitute up to 75% of the blastema cells at their peak. Genetic ablation of CT cells significantly delays or truncates limb regeneration, underscoring their necessity during this process. Finally, we analyzed the molecular profile of CT cells throughout the stages of blastema formation and made it accessible through an interactive web platform. Our work reaffirms the central role of CT cells in axolotl limb regeneration and lays the foundation for identifying molecular mechanisms that govern blastema formation during the initial phases of limb regeneration.
Collapse
|
7
|
Savchak OK, Gumuscu B. Long-term digital microfluidic chips for regulating macrophage cellular interactions in inflammation. LAB ON A CHIP 2025; 25:1776-1786. [PMID: 40033862 DOI: 10.1039/d4lc00947a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We introduce a robust multilayer dielectric stack for digital microfluidic chips to withstand the humid conditions of cell culture incubators for at least 60 days. Consisting of a combination of 1 μm polyvinylidene difluoride and 5 μm SU-8 layers, the stack demonstrated high breakdown voltages up to 1600 V and minimal surface currents <30 nA at 100 V. Long-term stability and precision in liquid handling enabled us to study macrophage phenotype modulation, pro-inflammatory response induction in macrophage population with single cell cytokine quantification and testing of a potentially anti-inflammatory drug candidate TCB-2 and its influence on macrophage phenotype, morphology, and cytokine release. The multilayer dielectric stack offers a durable solution for long-term biological assays on digital microfluidic platforms.
Collapse
Affiliation(s)
- Oksana K Savchak
- Biosensors and Devices Lab, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Burcu Gumuscu
- Biosensors and Devices Lab, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.
- Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Eindhoven Artificial Intelligence Systems Institute, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
8
|
Guan F, Wang R, Yi Z, Luo P, Liu W, Xie Y, Liu Z, Xia Z, Zhang H, Cheng Q. Tissue macrophages: origin, heterogenity, biological functions, diseases and therapeutic targets. Signal Transduct Target Ther 2025; 10:93. [PMID: 40055311 PMCID: PMC11889221 DOI: 10.1038/s41392-025-02124-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/01/2024] [Accepted: 12/15/2024] [Indexed: 05/04/2025] Open
Abstract
Macrophages are immune cells belonging to the mononuclear phagocyte system. They play crucial roles in immune defense, surveillance, and homeostasis. This review systematically discusses the types of hematopoietic progenitors that give rise to macrophages, including primitive hematopoietic progenitors, erythro-myeloid progenitors, and hematopoietic stem cells. These progenitors have distinct genetic backgrounds and developmental processes. Accordingly, macrophages exhibit complex and diverse functions in the body, including phagocytosis and clearance of cellular debris, antigen presentation, and immune response, regulation of inflammation and cytokine production, tissue remodeling and repair, and multi-level regulatory signaling pathways/crosstalk involved in homeostasis and physiology. Besides, tumor-associated macrophages are a key component of the TME, exhibiting both anti-tumor and pro-tumor properties. Furthermore, the functional status of macrophages is closely linked to the development of various diseases, including cancer, autoimmune disorders, cardiovascular disease, neurodegenerative diseases, metabolic conditions, and trauma. Targeting macrophages has emerged as a promising therapeutic strategy in these contexts. Clinical trials of macrophage-based targeted drugs, macrophage-based immunotherapies, and nanoparticle-based therapy were comprehensively summarized. Potential challenges and future directions in targeting macrophages have also been discussed. Overall, our review highlights the significance of this versatile immune cell in human health and disease, which is expected to inform future research and clinical practice.
Collapse
Affiliation(s)
- Fan Guan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruixuan Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wanyao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yao Xie
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwei Xia
- Department of Neurology, Hunan Aerospace Hospital, Hunan Normal University, Changsha, China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Londono R, Pan Z, Hudnall ML, Lozito TP. Simulation of adult limb regeneration with lizard tail spinal cord implants reveals distinct roles of radial glia and microglia populations. RESEARCH SQUARE 2025:rs.3.rs-6010337. [PMID: 40092433 PMCID: PMC11908338 DOI: 10.21203/rs.3.rs-6010337/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Lizards are the closest relatives of humans able to suppress fibrosis and regrow multiple tissue lineages following appendage regeneration. As amniotes capable of tail, but not limb regrowth, lizards are also distinguished as the only vertebrate group that include both regenerative and non-regenerative appendages in the same animal. Lizard tail stumps naturally form blastemas - heterogenous collections of fibroblasts, adult stem cells, and immune cells that suppress scar formation and potentiate new tissue growth. Conversely, amputated lizard limbs form scars similar to those observed in human patients. Lizard blastema formation is dependent upon tail spinal cord tissue, which contains distinct populations of radial glia and microglia. Using the parthenogenetic lizard Lepidodactylus lugubris as a platform for tail-to-limb spinal cord implantations, we developed an ectopic blastema model toward defining the roles of radial glial and microglia in appendage regeneration. Removal of either population inhibits fibroblast proliferation and blastema formation, but only microglia depletion leads to enhanced fibrosis. Similarly, effects of radial glia, but not microglia, depletion on fibroblast proliferation are reversed via Hedgehog agonism. Taken together, these results indicate that lizard limbs contain all the necessary cell types and biological responses necessary for blastema formation but lack the proliferative and anti-fibrotic signals provided by tail spinal cord radial glia and microglia, respectively. Radial glia contribute Hedgehog signals that cause fibroblast proliferation but do not affect fibrosis. Conversely, microglia enhance fibroblast sensitivity to Hedgehog signaling and inhibit differentiation into fibrocytes. In summary, this study demonstrates blastema stimulation in amputated limbs of adult amniotes with application of lizard spinal cord cells and holds promise as a blueprint for limiting painful scarring and supporting new tissue growth following amputation injuries in human patients.
Collapse
Affiliation(s)
- Ricardo Londono
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zheyu Pan
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA 90089, USA
| | - Megan L Hudnall
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA 90089, USA
| | - Thomas P Lozito
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA 90089, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA 90033, US
| |
Collapse
|
10
|
Powell CJ, Singer HD, Juarez AR, Kim RT, Payzin-Dogru D, Savage AM, Lopez NJ, Blair SJ, Abouelela A, Dittrich A, Akeson SG, Jain M, Whited JL. Pancreatic injury induces β-cell regeneration in axolotl. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634564. [PMID: 39896453 PMCID: PMC11785190 DOI: 10.1101/2025.01.23.634564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Diabetes is a condition characterized by a loss of pancreatic β-cell function which results in the dysregulation of insulin homeostasis. Using a partial pancreatectomy model in axolotl, we aimed to observe the pancreatic response to injury. Results Here we show a comprehensive histological assessment of pancreatic islets in axolotl. Following pancreatic injury, no apparent blastemal structure was observed. We found a significant, organ-wide increase in cellular proliferation post-resection in the pancreas compared to sham-operated controls. This proliferative response was most robust at the site of injury. We found that β-cells actively contributed to the increased rates of proliferation upon injury. β-cell proliferation manifested in increased β-cell mass in injured tissue at two weeks post injury. At four weeks post injury, we found organ-wide proliferation to be extinguished while proliferation at the injury site persisted, corresponding to pancreatic tissue recovery. Similarly, total β-cell mass was comparable to sham after four weeks. Conclusions Our findings suggest a non-blastema-mediated regeneration process takes place in the pancreas, by which pancreatic resection induces whole-organ β-cell proliferation without the formation of a blastemal structure. This process is analogous to other models of compensatory growth in axolotl, including liver regeneration.
Collapse
Affiliation(s)
- Connor J. Powell
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
- Department of Bioengineering, Northeastern University, 805 Columbus Ave., Boston, MA 02120
| | - Hani D. Singer
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Ashley R. Juarez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Ryan T. Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Duygu Payzin-Dogru
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Aaron M. Savage
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Noah J. Lopez
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Steven J. Blair
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Adnan Abouelela
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
| | - Anita Dittrich
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
- Comparative Medicine Lab, Department of Clinical Medicine, Aarhus University, Denmark, 8200
| | - Stuart G. Akeson
- Department of Bioengineering, Northeastern University, 805 Columbus Ave., Boston, MA 02120
| | - Miten Jain
- Department of Bioengineering, Northeastern University, 805 Columbus Ave., Boston, MA 02120
- Department of Physics, Northeastern University, 100 Forsyth St., Boston, MA 02125
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity 10 Ave., Cambridge, MA, USA, 02138
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA, 02138
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA, 02138
| |
Collapse
|
11
|
Ge C, Ye Z, Hu W, Tang J, Li H, Liu F, Liao X, Chen J, Zhang S, Cao Z. Effects of pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117552. [PMID: 39705973 DOI: 10.1016/j.ecoenv.2024.117552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
With the widespread application of pesticides, water pollution problems are becoming more and more serious, which is very likely to cause harm to fish. Lower vertebrates, including fish, have the ability to repair damaged tissues. The spread of pesticides in the water may affect their regeneration process after injury, leading to their death, thereby affecting the survival rate of the population. Therefore, we used zebrafish as a model animal to evaluate the effect of the pesticide pyrazosulfuron-ethyl on caudal fin regeneration in zebrafish larvae. We exposed zebrafish larvae to 0, 5, 15, and 25 mg/L pyrazosulfuron-ethyl at 3 days after caudal fin amputation. It was found that exposure to pyrazosulfuron-ethyl significantly inhibited caudal fin regeneration and affected the behavior of zebrafish larvae. After exposure to pyrazosulfuron-ethyl, proliferating cells decreased and apoptotic cells increased in the caudal fin of zebrafish larvae. Pyrazosulfuron-ethyl exposure resulted in the decreased number of neutrophils and macrophages, and the downregulation of immune related gene expression levels during caudal fin. Using LPS to activate inflammation can effectively rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. However, inhibiting the Notch signaling pathway and inhibiting reactive oxygen cannot rescue the fin regeneration defects induced by pyrazosulfuron-ethyl. Our results indicate that pyrazosulfuron-ethyl can inhibit zebrafish caudal fin regeneration by reducing the number of innate immune cells and affecting the normal process of inflammation, thereby inhibiting caudal fin regeneration. This study expands our understanding of the potential effects of the pesticide pyrazosulfuron-ethyl on injured fish, highlights the link between the immune system and the regeneration process, and demonstrates the potential application of fin regeneration in risk assessments of environmental toxicology to assess drug toxicity.
Collapse
Affiliation(s)
- Chenkai Ge
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Zhijun Ye
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jingrong Tang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Huimin Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence,Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health, Tongji University School of Medicine, Tongji University, Shanghai 200331, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, The Affiliated Children's Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
12
|
Blumenstiel JP. From the cauldron of conflict: Endogenous gene regulation by piRNA and other modes of adaptation enabled by selfish transposable elements. Semin Cell Dev Biol 2025; 164:1-12. [PMID: 38823219 DOI: 10.1016/j.semcdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Transposable elements (TEs) provide a prime example of genetic conflict because they can proliferate in genomes and populations even if they harm the host. However, numerous studies have shown that TEs, though typically harmful, can also provide fuel for adaptation. This is because they code functional sequences that can be useful for the host in which they reside. In this review, I summarize the "how" and "why" of adaptation enabled by the genetic conflict between TEs and hosts. In addition, focusing on mechanisms of TE control by small piwi-interacting RNAs (piRNAs), I highlight an indirect form of adaptation enabled by conflict. In this case, mechanisms of host defense that regulate TEs have been redeployed for endogenous gene regulation. I propose that the genetic conflict released by meiosis in early eukaryotes may have been important because, among other reasons, it spurred evolutionary innovation on multiple interwoven trajectories - on the part of hosts and also embedded genetic parasites. This form of evolution may function as a complexity generating engine that was a critical player in eukaryotic evolution.
Collapse
Affiliation(s)
- Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, United States.
| |
Collapse
|
13
|
Zhang D, Wang X, Zhu L, Chen Y, Yang C, Zhong Z, Kong X, Nan J, Wang C, Hu H, Chen J, Shi P, Hu X, Zhu W, Wang J. TIMD4 hiMHCⅡ hi Macrophages Preserve Heart Function Through Retnla. JACC Basic Transl Sci 2025; 10:65-84. [PMID: 39906591 PMCID: PMC11788475 DOI: 10.1016/j.jacbts.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 02/06/2025]
Abstract
Genetic fate mapping confirmed the existence of the TIMD4hiMHCⅡhi macrophage subset and showed that they were resident macrophages with minimal input from peripheral monocytes. Further, single-cell RNA sequencing revealed that Retnla could serve as the signature gene for TIMD4hiMHCⅡhi macrophages. Administration of recombinant protein of the Retnla gene, RELMα, delayed the onset of heart failure, whereas either deletion of TIMD4hiMHCⅡhi macrophages or macrophage-specific loss of Retnla facilitated heart failure progression.
Collapse
Affiliation(s)
- Danyang Zhang
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuanhao Wang
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Lianlian Zhu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuxing Chen
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chao Yang
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhiwei Zhong
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiangming Kong
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinliang Nan
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chen Wang
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hengxun Hu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Shi
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jian’an Wang
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Sousa NS, Bica M, Brás MF, Sousa AC, Antunes IB, Encarnação IA, Costa TM, Martins IB, Barbosa-Morais NL, Sousa-Victor P, Neves J. The immune landscape of murine skeletal muscle regeneration and aging. Cell Rep 2024; 43:114975. [PMID: 39541212 DOI: 10.1016/j.celrep.2024.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Age-related alterations in the immune system are starting to emerge as key contributors to impairments found in aged organs. A decline in regenerative capacity is a hallmark of tissue aging; however, the contribution of immune aging to regenerative failure is just starting to be explored. Here, we apply a strategy combining single-cell RNA sequencing with flow cytometry, histological analysis, and functional assays to perform a complete analysis of the immune environment of the aged regenerating skeletal muscle on a time course following injury with single-cell resolution. Our results reveal an unanticipated complexity and functional heterogeneity in immune populations within the skeletal muscle that have been regarded as homogeneous. Furthermore, we uncover a profound remodeling of both myeloid and lymphoid compartments in aging. These discoveries challenge established notions on immune regulation of skeletal muscle regeneration, providing a set of potential targets to improve skeletal muscle health and regenerative capacity in aging.
Collapse
Affiliation(s)
- Neuza S Sousa
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta Bica
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Margarida F Brás
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Ana C Sousa
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Inês B Antunes
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Isabel A Encarnação
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal
| | - Tiago M Costa
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Inês B Martins
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal; Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | | | - Pedro Sousa-Victor
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal.
| | - Joana Neves
- GIMM - Gulbenkian Institute for Molecular Medicine, 1649-035 Lisbon, Portugal.
| |
Collapse
|
15
|
Altın H, Delice B, Yıldırım B, Demircan T, Yıldırım S. Temporal microbiome changes in axolotl limb regeneration: Stage-specific restructuring of bacterial and fungal communities with a Flavobacterium bloom during blastema proliferation. Wound Repair Regen 2024; 32:826-839. [PMID: 39105277 PMCID: PMC11584358 DOI: 10.1111/wrr.13207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024]
Abstract
The intricate relationship between regeneration and microbiota has recently gained attention, spanning diverse model organisms. Axolotl (Ambystoma mexicanum) is a critically endangered salamander species and a model organism for regenerative and developmental biology. Despite its significance, a noticeable gap exists in understanding the interplay between axolotl regeneration and its microbiome. Here, we analyse in depth bacterial 16S rRNA amplicon dataset that we reported before as data resource and profile fungal community by sequencing ITS amplicons at the critical stages of limb regeneration (0-1-4-7-30-60 days post amputation, 'dpa'). Results reveal a decline in richness and evenness in the course of limb regeneration, with bacterial community richness recovering beyond 30 dpa unlike fungi community. Beta diversity analysis reveals precise restructuring of the bacterial community along the three phases of limb regeneration, contrasting with less congruent changes in the fungal community. Temporal dynamics of the bacterial community highlight prevalent anaerobic bacteria in initiation phase and Flavobacterium bloom in the early phase correlating with limb blastema proliferation. Predicted functional analysis mirrors these shifts, emphasising a transition from amino acid metabolism to lipid metabolism control. Fungal communities shift from Blastomycota to Ascomycota dominance in the late regeneration stage. Our findings provide ecologically relevant insights into stage specific role of microbiome contributions to axolotl limb regeneration.
Collapse
Affiliation(s)
- Hanne Altın
- Department of Medical MicrobiologyIstanbul Medipol University International School of MedicineIstanbulTürkiye
| | - Büşra Delice
- Department of Medical MicrobiologyIstanbul Medipol University International School of MedicineIstanbulTürkiye
| | - Berna Yıldırım
- Department of Histology and EmbryologyAtlas University School of MedicineIstanbulTürkiye
- Regenerative and Restorative Medicine Research Center, REMER, İstanbul Medipol University, İstanbul & Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTürkiye
| | - Turan Demircan
- Medical Biology DepartmentMuğla Sıtkı Koçman University School of MedicineMuğlaTurkey
| | - Süleyman Yıldırım
- Department of Medical MicrobiologyIstanbul Medipol University International School of MedicineIstanbulTürkiye
- Regenerative and Restorative Medicine Research Center, REMER, İstanbul Medipol University, İstanbul & Research Institute for Health Sciences and Technologies (SABITA)Istanbul Medipol UniversityIstanbulTürkiye
| |
Collapse
|
16
|
Essien SA, Ahuja I, Eisenhoffer GT. Apoptotic extracellular vesicles carrying Mif regulate macrophage recruitment and compensatory proliferation in neighboring epithelial stem cells during tissue maintenance. PLoS Biol 2024; 22:e3002194. [PMID: 39495793 DOI: 10.1371/journal.pbio.3002194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2024] [Accepted: 08/27/2024] [Indexed: 11/06/2024] Open
Abstract
Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss to maintain tissue homeostasis. While apoptotic cell-derived extracellular vesicles (AEVs) can transmit instructional cues to mediate communication with neighboring cells, the molecular mechanisms that induce cell division are not well understood. Here, we show that macrophage migration inhibitory factor (Mif)-containing AEVs regulate compensatory proliferation via ERK signaling in epithelial stem cells of larval zebrafish. Time-lapse imaging showed efferocytosis of AEVs from dying epithelial stem cells by healthy neighboring stem cells. Proteomic and ultrastructure analysis of purified AEVs identified Mif localization on the AEV surface. Pharmacological inhibition or genetic mutation of Mif, or its cognate receptor CD74, decreased levels of phosphorylated ERK and compensatory proliferation in the neighboring epithelial stem cells. Disruption of Mif activity also caused decreased numbers of macrophages patrolling near AEVs, while depletion of the macrophage lineage resulted in a reduced proliferative response by the epithelial stem cells. We propose that AEVs carrying Mif directly stimulate epithelial stem cell repopulation and guide macrophages to cell non-autonomously induce localized proliferation to sustain overall cell numbers during tissue maintenance.
Collapse
Affiliation(s)
- Safia A Essien
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ivanshi Ahuja
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - George T Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
17
|
Lara J, Mastela C, Abd M, Pitstick L, Ventrella R. Tail Tales: What We Have Learned About Regeneration from Xenopus Laevis Tadpoles. Int J Mol Sci 2024; 25:11597. [PMID: 39519148 PMCID: PMC11547152 DOI: 10.3390/ijms252111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the regenerative capacity of Xenopus laevis, focusing on tail regeneration, as a model to uncover cellular, molecular, and developmental mechanisms underlying tissue repair. X. laevis tadpoles provide unique insights into regenerative biology due to their regeneration-competent and -incompetent stages and ability to regrow complex structures in the tail, including the spinal cord, muscle, and skin, after amputation. The review delves into the roles of key signaling pathways, such as those involving reactive oxygen species (ROS) and signaling molecules like BMPs and FGFs, in orchestrating cellular responses during regeneration. It also examines how mechanotransduction, epigenetic regulation, and metabolic shifts influence tissue restoration. Comparisons of regenerative capacity with other species shed light on the evolutionary loss of regenerative abilities and underscore X. laevis as an invaluable model for understanding the constraints of tissue repair in higher organisms. This comprehensive review synthesizes recent findings, suggesting future directions for exploring regeneration mechanisms, with potential implications for advancing regenerative medicine.
Collapse
Affiliation(s)
- Jessica Lara
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Camilla Mastela
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Magda Abd
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.L.); (C.M.); (M.A.)
| | - Lenore Pitstick
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Rosa Ventrella
- Precision Medicine Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
18
|
Huang J, Sati S, Murphy C, Spencer CA, Rapp E, Prouty SM, Korte S, Ahart O, Sheng E, Jones P, Kersh AE, Leung D, Leung TH. Granulocyte colony stimulating factor promotes scarless tissue regeneration. Cell Rep 2024; 43:114742. [PMID: 39306847 PMCID: PMC11574610 DOI: 10.1016/j.celrep.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 08/27/2024] [Indexed: 10/26/2024] Open
Abstract
Mammals typically heal with fibrotic scars, and treatments to regenerate human skin and hair without a scar remain elusive. We discovered that mice lacking C-X-C motif chemokine receptor 2 (CXCR2 knockout [KO]) displayed robust and complete tissue regeneration across three different injury models: skin, hair follicle, and cartilage. Remarkably, wild-type mice receiving plasma from CXCR2 KO mice through parabiosis or injections healed wounds scarlessly. A comparison of circulating proteins using multiplex ELISA revealed a 24-fold higher plasma level of granulocyte colony stimulating factor (G-CSF) in CXCR2 KO blood. Local injections of G-CSF into wild-type (WT) mouse wound beds reduced scar formation and increased scarless tissue regeneration. G-CSF directly polarized macrophages into an anti-inflammatory phenotype, and both CXCR2 KO and G-CSF-treated mice recruited more anti-inflammatory macrophages into injured areas. Modulating macrophage activation states at early time points after injury promotes scarless tissue regeneration and may offer a therapeutic approach to improve healing of human skin wounds.
Collapse
Affiliation(s)
- Jianhe Huang
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Satish Sati
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Christina Murphy
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Casey A Spencer
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Emmanuel Rapp
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Stephen M Prouty
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Scott Korte
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Olivia Ahart
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Emily Sheng
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Parker Jones
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Anna E Kersh
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Denis Leung
- Singapore Management University, Singapore, Singapore
| | - Thomas H Leung
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Wang X, Wang S, Mu H, Yang C, Dong W, Wang X, Wang J. Macrophage-derived amphiregulin promoted the osteogenic differentiation of chondrocytes through EGFR/Yap axis and TGF-β activation. Bone 2024; 190:117275. [PMID: 39383984 DOI: 10.1016/j.bone.2024.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Endochondral ossification represents a crucial biological process in skeletal development and bone defect repair. Macrophages, recognized as key players in the immune system, are now acknowledged for their substantial role in promoting endochondral ossification within cartilage. Concurrently, the epidermal growth factor receptor (EGFR) ligand amphiregulin (Areg) has been documented for its contributory role in restoring bone tissue homeostasis post-injury. However, the mechanism by which macrophage-secreted Areg facilitates bone repair remains elusive. In this study, the induction of macrophage depletion through in vivo administration of clodronate liposomes was employed in a standard open tibial fracture mouse model to assess bone healing using micro-computed tomography (micro-CT) analysis, histomorphology, and ELISA serum evaluations. The investigation revealed sustained expression of Areg during the fracture healing period in wild-type mice. Macrophage depletion significantly reduced the number of macrophages on the local bone surface and vital organs. This reduction led to diminished Areg secretion, decreased collagen production, and delayed fracture healing. However, histological and micro-CT assessments at 7 and 21 days post-local Areg treatment exhibited a marked improvement of bone healing compared to the vehicle control. In vitro studies demonstrated an increase of Areg secretion by the Raw264.7 cells upon ATP stimulation. Indirect co-culture of Raw264.7 and ATDC5 cells indicated that Areg overexpression enhanced the osteogenic potential of chondrocytes, and vice versa. This osteogenic promotion was attributed to Areg's activation of the membrane receptor EGFR in the ATDC5 cell line, the enhanced phosphorylation of transcription factor Yap, and the facilitation of the expression of bioactive TGF-β by chondrocytes. Collectively, this research elucidates the direct mechanistic effects of macrophage-secreted Areg in promoting bone homeostasis following bone injury.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Hailin Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Chang Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Xinru Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jaiwei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
20
|
Zaraisky AG, Araslanova KR, Shitikov AD, Tereshina MB. Loss of the ability to regenerate body appendages in vertebrates: from side effects of evolutionary innovations to gene loss. Biol Rev Camb Philos Soc 2024; 99:1868-1888. [PMID: 38817123 DOI: 10.1111/brv.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The ability to regenerate large body appendages is an ancestral trait of vertebrates, which varies across different animal groups. While anamniotes (fish and amphibians) commonly possess this ability, it is notably restricted in amniotes (reptiles, birds, and mammals). In this review, we explore the factors contributing to the loss of regenerative capabilities in amniotes. First, we analyse the potential negative impacts on appendage regeneration caused by four evolutionary innovations: advanced immunity, skin keratinization, whole-body endothermy, and increased body size. These innovations emerged as amniotes transitioned to terrestrial habitats and were correlated with a decline in regeneration capability. Second, we examine the role played by the loss of regeneration-related enhancers and genes initiated by these innovations in the fixation of an inability to regenerate body appendages at the genomic level. We propose that following the cessation of regenerative capacity, the loss of highly specific regeneration enhancers could represent an evolutionarily neutral event. Consequently, the loss of such enhancers might promptly follow the suppression of regeneration as a side effect of evolutionary innovations. By contrast, the loss of regeneration-related genes, due to their pleiotropic functions, would only take place if such loss was accompanied by additional evolutionary innovations that compensated for the loss of pleiotropic functions unrelated to regeneration, which would remain even after participation of these genes in regeneration was lost. Through a review of the literature, we provide evidence that, in many cases, the loss in amniotes of genes associated with body appendage regeneration in anamniotes was significantly delayed relative to the time when regenerative capability was lost. We hypothesise that this delay may be attributed to the necessity for evolutionary restructuring of developmental mechanisms to create conditions where the loss of these genes was a beneficial innovation for the organism. Experimental investigation of the downregulation of genes involved in the regeneration of body appendages in anamniotes but absent in amniotes offers a promising avenue to uncover evolutionary innovations that emerged from the loss of these genes. We propose that the vast majority of regeneration-related genes lost in amniotes (about 150 in humans) may be involved in regulating the early stages of limb and tail regeneration in anamniotes. Disruption of this stage, rather than the late stage, may not interfere with the mechanisms of limb and tail bud development during embryogenesis, as these mechanisms share similarities with those operating in the late stage of regeneration. Consequently, the most promising approach to restoring regeneration in humans may involve creating analogs of embryonic limb buds using stem cell-based tissue-engineering methods, followed by their transfer to the amputation stump. Due to the loss of many genes required specifically during the early stage of regeneration, this approach may be more effective than attempting to induce both early and late stages of regeneration directly in the stump itself.
Collapse
Affiliation(s)
- Andrey G Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| | - Karina R Araslanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Alexander D Shitikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya str., Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, 1 Ostrovityanova str., Moscow, 117997, Russia
| |
Collapse
|
21
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. Bone Res 2024; 12:56. [PMID: 39341816 PMCID: PMC11438896 DOI: 10.1038/s41413-024-00347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 10/01/2024] Open
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single-nucleus transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as a driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis.
Collapse
Affiliation(s)
| | - Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Anais Julien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julia Vettese
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | - Christian Göritz
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, Hong Kong
| | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.
| |
Collapse
|
22
|
Poss KD, Tanaka EM. Hallmarks of regeneration. Cell Stem Cell 2024; 31:1244-1261. [PMID: 39163854 PMCID: PMC11410156 DOI: 10.1016/j.stem.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Regeneration is a heroic biological process that restores tissue architecture and function in the face of day-to-day cell loss or the aftershock of injury. Capacities and mechanisms for regeneration can vary widely among species, organs, and injury contexts. Here, we describe "hallmarks" of regeneration found in diverse settings of the animal kingdom, including activation of a cell source, initiation of regenerative programs in the source, interplay with supporting cell types, and control of tissue size and function. We discuss these hallmarks with an eye toward major challenges and applications of regenerative biology.
Collapse
Affiliation(s)
- Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Elly M Tanaka
- Institute of Molecular Biotechnology (IMBA), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
23
|
Zhang Q, Lu B. The mRNA and microRNA Landscape of the Blastema Niche in Regenerating Newt Limbs. Int J Mol Sci 2024; 25:9225. [PMID: 39273174 PMCID: PMC11395517 DOI: 10.3390/ijms25179225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Newts are excellent vertebrate models for investigating tissue regeneration due to their remarkable regenerative capabilities. To investigate the mRNA and microRNAs (miRNAs) profiles within the blastema niche of regenerating newt limbs, we amputated the limbs of Chinese fire belly newts (Cynops orientalis) and conducted comprehensive analyses of the transcriptome and microRNA profiles at five distinct time points post-amputation (0 hours, 1 day, 5 days 10 days and 20 days). We identified 24 significantly differentially expressed (DE) genes and 20 significantly DE miRNAs. Utilizing weighted gene co-expression network analysis (WGCNA) and gene ontology (GO) enrichment analysis, we identified four genes likely to playing crucial roles in the early stages of limb regeneration: Cemip, Rhou, Gpd2 and Pcna. Moreover, mRNA-miRNA integration analysis uncovered seven human miRNAs (miR-19b-1, miR-19b-2, miR-21-5p, miR-127-5p, miR-150-5p, miR-194-5p, and miR-210-5p) may regulate the expression of these four key genes. The temporal expression patterns of these key genes and miRNAs further validated the robustness of the identified mRNA-miRNA landscape. Our study successfully identified candidate key genes and elucidated a portion of the genetic regulatory mechanisms involved in newt limb regeneration. These findings offer valuable insights for further exploration of the intricate processes of tissue regeneration.
Collapse
Affiliation(s)
- Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
24
|
Manole CG, Voiculescu VM, Soare C, Ceafalan LC, Gherghiceanu M, Hinescu ME. Skin Telocytes Could Fundament the Cellular Mechanisms of Wound Healing in Platelet-Rich Plasma Administration. Cells 2024; 13:1321. [PMID: 39195210 PMCID: PMC11353115 DOI: 10.3390/cells13161321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
For more than 40 years, autologous platelet concentrates have been used in clinical medicine. Since the first formula used, namely platelet-rich plasma (PRP), other platelet concentrates have been experimented with, including platelet-rich fibrin and concentrated growth factor. Platelet concentrates have three standard characteristics: they act as scaffolds, they serve as a source of growth factors and cytokines, and they contain live cells. PRP has become extensively used in regenerative medicine for the successful treatment of a variety of clinical (non-)dermatological conditions like alopecies, acne scars, skin burns, skin ulcers, muscle, cartilage, and bone repair, and as an adjuvant in post-surgery wound healing, with obvious benefits in terms of functionality and aesthetic recovery of affected tissues/organs. These indications were well documented, and a large amount of evidence has already been published supporting the efficacy of this method. The primordial principle behind minimally invasive PRP treatments is the usage of the patient's own platelets. The benefits of the autologous transplantation of thrombocytes are significant, representing a fast and economic method that requires only basic equipment and training, and it is biocompatible, thus being a low risk for the patient (infection and immunological reactions can be virtually disregarded). Usually, the structural benefits of applying PRP are attributed to fibroblasts only, as they are considered the most numerous cell population within the interstitium. However, this apparent simplistic explanation is still eluding those different types of interstitial cells (distinct from fibroblasts) that are residing within stromal tissue, e.g., telocytes (TCs). Moreover, dermal TCs have an already documented potential in angiogenesis (extra-cutaneous, but also within skin), and their implication in skin recovery in a few dermatological conditions was attested and described ultrastructurally and immunophenotypically. Interestingly, PRP biochemically consists of a series of growth factors, cytokines, and other molecules, to which TCs have also proven to have a positive expression. Thus, it is attractive to hypothesize and to document any tissular collaboration between cutaneous administered PRP and local dermal TCs in skin recovery/repair/regeneration. Therefore, TCs could be perceived as the missing link necessary to provide a solid explanation of the good results achieved by administering PRP in skin-repairing processes.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihaela Gherghiceanu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Mihail E. Hinescu
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
25
|
Li L, Zhai M, Cheng C, Cui S, Wang J, Zhang Z, Liu J, Wei F. Mechanically induced M2 macrophages are involved in bone remodeling of the midpalatal suture during palatal expansion. Prog Orthod 2024; 25:30. [PMID: 39098934 PMCID: PMC11298508 DOI: 10.1186/s40510-024-00529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/30/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Palatal expansion is a common way of treating maxillary transverse deficiency. Under mechanical force, the midpalatal suture is expanded, causing local immune responses. This study aimed to determine whether macrophages participate in bone remodeling of the midpalatal suture during palatal expansion and the effects on bone remodeling. METHODS Palatal expansion model and macrophage depletion model were established. Micro-CT, histological staining, and immunohistochemical staining were used to investigate the changes in the number and phenotype of macrophages during palatal expansion as well as the effects on bone remodeling of the midpalatal suture. Additionally, the effect of mechanically induced M2 macrophages on palatal osteoblasts was also elucidated in vitro. RESULTS The number of macrophages increased significantly and polarized toward M2 phenotype with the increase of the expansion time, which was consistent with the trend of bone remodeling. After macrophage depletion, the function of osteoblasts and bone formation at the midpalatal suture were impaired during palatal expansion. In vitro, conditioned medium derived from M2 macrophages facilitated osteogenic differentiation of osteoblasts and decreased the RANKL/OPG ratio. CONCLUSIONS Macrophages through polarizing toward M2 phenotype participated in midpalatal suture bone remodeling during palatal expansion, which may provide a new idea for promoting bone remodeling from the perspective of regulating macrophage polarization.
Collapse
Affiliation(s)
- Lan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Mingrui Zhai
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Chen Cheng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Shuyue Cui
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, No.44-1 Wenhua Road West, Shandong, Jinan, 250012, China.
| |
Collapse
|
26
|
DeStefano S, Hartigan DR, Josyula A, Faust M, Fertil D, Lokwani R, Ngo TB, Sadtler K. Conserved and tissue-specific immune responses to biologic scaffold implantation. Acta Biomater 2024; 184:68-80. [PMID: 38879103 DOI: 10.1016/j.actbio.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Upon implantation into a patient, any biomaterial induces a cascade of immune responses that influences the outcome of that device. This cascade depends upon several factors, including the composition of the material itself and the location in which the material is implanted. There is still significant uncertainty around the role of different tissue microenvironments in the immune response to biomaterials and how that may alter downstream scaffold remodeling and integration. In this study, we present a study evaluating the immune response to decellularized extracellular matrix materials within the intraperitoneal cavity, the subcutaneous space, and in a traumatic skeletal muscle injury microenvironment. All different locations induced robust cellular recruitment, specifically of macrophages and eosinophils. The latter was most prominent in the subcutaneous space. Intraperitoneal implants uniquely recruited B cells that may alter downstream reactivity as adaptive immunity has been strongly implicated in the outcome of scaffold remodeling. These data suggest that the location of tissue implants should be taken together with the composition of the material itself when designing devices for downline therapeutics. STATEMENT OF SIGNIFICANCE: Different tissue locations have unique immune microenvironments, which can influence the immune response to biomaterial implants. By considering the specific immune profiles of the target tissue, researchers can develop implant materials that promote better integration, reduce complications, and improve the overall outcome of the implantation process.
Collapse
Affiliation(s)
- Sabrina DeStefano
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Devon R Hartigan
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aditya Josyula
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mondreakest Faust
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daphna Fertil
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ravi Lokwani
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tran B Ngo
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kaitlyn Sadtler
- Section on Immunoengineering, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Huang L, Ho C, Ye X, Gao Y, Guo W, Chen J, Sun J, Wen D, Liu Y, Liu Y, Zhang Y, Li Q. Mechanisms and translational applications of regeneration in limbs: From renewable animals to humans. Ann Anat 2024; 255:152288. [PMID: 38823491 DOI: 10.1016/j.aanat.2024.152288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/08/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.
Collapse
Affiliation(s)
- Lu Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| | - Chiakang Ho
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinran Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Ya Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Weiming Guo
- Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China; National Clinical Research Center for Oral Diseases, Shanghai 200011, China; National Center for Stomatology, Shanghai 200011, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Jiaming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Dongsheng Wen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yangdan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuxin Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China.
| |
Collapse
|
28
|
Tomasso A, Disela V, Longaker MT, Bartscherer K. Marvels of spiny mouse regeneration: cellular players and their interactions in restoring tissue architecture in mammals. Curr Opin Genet Dev 2024; 87:102228. [PMID: 39047585 DOI: 10.1016/j.gde.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Understanding the cellular and molecular determinants of mammalian tissue regeneration and repair is crucial for developing effective therapies that restore tissue architecture and function. In this review, we focus on the cell types involved in scarless wound response and regeneration of spiny mice (Acomys). Comparative -omics approaches with scar-prone mammals have revealed species-specific peculiarities in cellular behavior during the divergent healing trajectories. We discuss the developing views on which cell types engage in restoring the architecture of spiny mouse tissues through a co-ordinated spatiotemporal response to injury. While yet at the beginning of understanding how cells interact in these fascinating animals to regenerate tissues, spiny mice hold great promise for scar prevention and anti-fibrotic treatments.
Collapse
Affiliation(s)
- Antonio Tomasso
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA; Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@anto_tomasso
| | - Vanessa Disela
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@VDisela
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA. https://twitter.com/@LongakerLab
| | - Kerstin Bartscherer
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany.
| |
Collapse
|
29
|
Aztekin C. Mechanisms of regeneration: to what extent do they recapitulate development? Development 2024; 151:dev202541. [PMID: 39045847 DOI: 10.1242/dev.202541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
One of the enduring debates in regeneration biology is the degree to which regeneration mirrors development. Recent technical advances, such as single-cell transcriptomics and the broad applicability of CRISPR systems, coupled with new model organisms in research, have led to the exploration of this longstanding concept from a broader perspective. In this Review, I outline the historical parallels between development and regeneration before focusing on recent research that highlights how dissecting the divergence between these processes can uncover previously unreported biological mechanisms. Finally, I discuss how these advances position regeneration as a more dynamic and variable process with expanded possibilities for morphogenesis compared with development. Collectively, these insights into mechanisms that orchestrate morphogenesis may reshape our understanding of the evolution of regeneration, reveal hidden biology activated by injury, and offer non-developmental strategies for restoring lost or damaged organs and tissues.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Mathisen AF, Larsen U, Kavli N, Unger L, Daian LM, Vacaru AM, Vacaru AM, Herrera PL, Ghila L, Chera S. Moderate beta-cell ablation triggers synergic compensatory mechanisms even in the absence of overt metabolic disruption. Commun Biol 2024; 7:833. [PMID: 38982170 PMCID: PMC11233560 DOI: 10.1038/s42003-024-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
Regeneration, the ability to replace injured tissues and organs, is a phenomenon commonly associated with lower vertebrates but is also observed in mammals, in specific tissues. In this study, we investigated the regenerative potential of pancreatic islets following moderate beta-cell loss in mice. Using a rapid model of moderate ablation, we observed a compensatory response characterized by transient inflammation and proliferation signatures, ultimately leading to the recovery of beta-cell identity and function. Interestingly, this proliferative response occurred independently of inflammation, as demonstrated in ablated immunodeficient mice. Furthermore, exposure to high-fat diet stimulated beta-cell proliferation but negatively impacted beta-cell function. In contrast, an equivalent slower ablation model revealed a delayed but similar proliferative response, suggesting proliferation as a common regenerative response. However, high-fat diet failed to promote proliferation in this model, indicating a differential response to metabolic stressors. Overall, our findings shed light on the complex interplay between beta-cell loss, inflammation, and stress in modulating pancreatic islet regeneration. Understanding these mechanisms could pave the way for novel therapeutic strategies based on beta-cell proliferation.
Collapse
Affiliation(s)
- Andreas Frøslev Mathisen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ulrik Larsen
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Natalie Kavli
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lucas Unger
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Laura Maria Daian
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Andrei Mircea Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Vacaru
- BetaUpreg Research Group, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simona Chera
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
31
|
Chu CQ, Quan T. Fibroblast Yap/Taz Signaling in Extracellular Matrix Homeostasis and Tissue Fibrosis. J Clin Med 2024; 13:3358. [PMID: 38929890 PMCID: PMC11204269 DOI: 10.3390/jcm13123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Tissue fibrosis represents a complex pathological condition characterized by the excessive accumulation of collagenous extracellular matrix (ECM) components, resulting in impaired organ function. Fibroblasts are central to the fibrotic process and crucially involved in producing and depositing collagen-rich ECM. Apart from their primary function in ECM synthesis, fibroblasts engage in diverse activities such as inflammation and shaping the tissue microenvironment, which significantly influence cellular and tissue functions. This review explores the role of Yes-associated protein (Yap) and Transcriptional co-activator with PDZ-binding motif (Taz) in fibroblast signaling and their impact on tissue fibrosis. Gaining a comprehensive understanding of the intricate molecular mechanisms of Yap/Taz signaling in fibroblasts may reveal novel therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
- Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Portland, OR 97239, USA;
- Rheumatology Section, VA Portland Health Care System, Portland, OR 97239, USA
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Tsissios G, Sallese A, Perez-Estrada JR, Tangeman JA, Chen W, Smucker B, Ratvasky SC, Grajales-Esquivel E, Martinez A, Visser KJ, Joven Araus A, Wang H, Simon A, Yun MH, Del Rio-Tsonis K. Macrophages modulate fibrosis during newt lens regeneration. Stem Cell Res Ther 2024; 15:141. [PMID: 38745238 PMCID: PMC11094960 DOI: 10.1186/s13287-024-03740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Previous studies have suggested that macrophages are present during lens regeneration in newts, but their role in the process is yet to be elucidated. METHODS Here we generated a transgenic reporter line using the newt, Pleurodeles waltl, that traces macrophages during lens regeneration. Furthermore, we assessed early changes in gene expression during lens regeneration using two newt species, Notophthalmus viridescens and Pleurodeles waltl. Finally, we used clodronate liposomes to deplete macrophages during lens regeneration in both species and tested the effect of a subsequent secondary injury after macrophage recovery. RESULTS Macrophage depletion abrogated lens regeneration, induced the formation of scar-like tissue, led to inflammation, decreased iris pigment epithelial cell (iPEC) proliferation, and increased rates of apoptosis in the eye. Some of these phenotypes persisted throughout the last observation period of 100 days and could be attenuated by exogenous FGF2 administration. A distinct transcript profile encoding acute inflammatory effectors was established for the dorsal iris. Reinjury of the newt eye alleviated the effects of macrophage depletion, including the resolution of scar-like tissue, and re-initiated the regeneration process. CONCLUSIONS Together, our findings highlight the importance of macrophages for facilitating a pro-regenerative environment in the newt eye by regulating fibrotic responses, modulating the overall inflammatory landscape, and maintaining the proper balance of early proliferation and late apoptosis of the iPECs.
Collapse
Affiliation(s)
- Georgios Tsissios
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Anthony Sallese
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - J Raul Perez-Estrada
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Jared A Tangeman
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Weihao Chen
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - Byran Smucker
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Statistics, Miami University, Oxford, OH, USA
| | - Sophia C Ratvasky
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA
| | - Erika Grajales-Esquivel
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Arielle Martinez
- Department of Biology, Miami University, Oxford, OH, USA
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
| | - Kimberly J Visser
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Hui Wang
- Center for Visual Sciences at, Miami University, Oxford, OH, USA
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Maximina H Yun
- CRTD/ Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA.
- Center for Visual Sciences at, Miami University, Oxford, OH, USA.
- Cellular Molecular and Structural Biology Program, Miami University, Oxford, OH, USA.
| |
Collapse
|
33
|
Grigoryan EN, Markitantova YV. Tail and Spinal Cord Regeneration in Urodelean Amphibians. Life (Basel) 2024; 14:594. [PMID: 38792615 PMCID: PMC11122520 DOI: 10.3390/life14050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/21/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Urodelean amphibians can regenerate the tail and the spinal cord (SC) and maintain this ability throughout their life. This clearly distinguishes these animals from mammals. The phenomenon of tail and SC regeneration is based on the capability of cells involved in regeneration to dedifferentiate, enter the cell cycle, and change their (or return to the pre-existing) phenotype during de novo organ formation. The second critical aspect of the successful tail and SC regeneration is the mutual molecular regulation by tissues, of which the SC and the apical wound epidermis are the leaders. Molecular regulatory systems include signaling pathways components, inflammatory factors, ECM molecules, ROS, hormones, neurotransmitters, HSPs, transcriptional and epigenetic factors, etc. The control, carried out by regulatory networks on the feedback principle, recruits the mechanisms used in embryogenesis and accompanies all stages of organ regeneration, from the moment of damage to the completion of morphogenesis and patterning of all its structures. The late regeneration stages and the effects of external factors on them have been poorly studied. A new model for addressing this issue is herein proposed. The data summarized in the review contribute to understanding a wide range of fundamentally important issues in the regenerative biology of tissues and organs in vertebrates including humans.
Collapse
Affiliation(s)
| | - Yuliya V. Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| |
Collapse
|
34
|
Li Y, Stewart CA, Finer Y. Advanced Antimicrobial and Anti-Infective Strategies to Manage Peri-Implant Infection: A Narrative Review. Dent J (Basel) 2024; 12:125. [PMID: 38786523 PMCID: PMC11120417 DOI: 10.3390/dj12050125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms that cause implant infection can be targeted by new prevention and treatment methods which can also lead to the reduction of systemic antibiotic exposure and its associated adverse effects. This review aims to summarize advanced biomaterial strategies applied to implant components based on anti-pathogenic mechanisms and immune balance mechanisms. It emphasizes that modifying the dental implant surface and regulating the early immune response are promising strategies, which may further prevent or slow the development of peri-implant infection, and subsequent failure.
Collapse
Affiliation(s)
- Yihan Li
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
| | - Cameron A. Stewart
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| | - Yoav Finer
- Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, ON M5G 1G6, Canada; (Y.L.); (C.A.S.)
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON M5S 3E2, Canada
| |
Collapse
|
35
|
Hachemi Y, Perrin S, Ethel M, Julien A, Vettese J, Geisler B, Göritz C, Colnot C. Multimodal analyses of immune cells during bone repair identify macrophages as a therapeutic target in musculoskeletal trauma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591608. [PMID: 38746344 PMCID: PMC11092472 DOI: 10.1101/2024.04.29.591608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Musculoskeletal traumatic injuries (MTI) involve soft tissue lesions adjacent to a bone fracture leading to fibrous nonunion. The impact of MTI on the inflammatory response to fracture and on the immunomodulation of skeletal stem/progenitor cells (SSPCs) remains unknown. Here, we used single cell transcriptomic analyses to describe the immune cell dynamics after bone fracture and identified distinct macrophage subsets with successive pro-inflammatory, pro-repair and anti-inflammatory profiles. Concurrently, SSPCs transition via a pro- and anti-inflammatory fibrogenic phase of differentiation prior to osteochondrogenic differentiation. In a preclinical MTI mouse model, the injury response of immune cells and SSPCs is disrupted leading to a prolonged pro-inflammatory phase and delayed resolution of inflammation. Macrophage depletion improves bone regeneration in MTI demonstrating macrophage involvement in fibrous nonunion. Finally, pharmacological inhibition of macrophages using the CSF1R inhibitor Pexidartinib ameliorates healing. These findings reveal the coordinated immune response of macrophages and skeletal stem/progenitor cells as driver of bone healing and as a primary target for the treatment of trauma-associated fibrosis. Summary Hachemi et al. report the immune cell atlas of bone repair revealing macrophages as pro-fibrotic regulators and a therapeutic target for musculoskeletal regeneration. Genetic depletion or pharmacological inhibition of macrophages improves bone healing in musculoskeletal trauma.
Collapse
|
36
|
Mathavarajah S, Thompson AW, Stoyek MR, Quinn TA, Roy S, Braasch I, Dellaire G. Suppressors of cGAS-STING are downregulated during fin-limb regeneration and aging in aquatic vertebrates. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:241-251. [PMID: 37877156 PMCID: PMC11043210 DOI: 10.1002/jez.b.23227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
During the early stages of limb and fin regeneration in aquatic vertebrates (i.e., fishes and amphibians), blastema undergo transcriptional rewiring of innate immune signaling pathways to promote immune cell recruitment. In mammals, a fundamental component of innate immune signaling is the cytosolic DNA sensing pathway, cGAS-STING. However, to what extent the cGAS-STING pathway influences regeneration in aquatic anamniotes is unknown. In jawed vertebrates, negative regulation of cGAS-STING activity is accomplished by suppressors of cytosolic DNA such as Trex1, Pml, and PML-like exon 9 (Plex9) exonucleases. Here, we examine the expression of these suppressors of cGAS-STING, as well as inflammatory genes and cGAS activity during caudal fin and limb regeneration using the spotted gar (Lepisosteus oculatus) and axolotl (Ambystoma mexicanum) model species, and during age-related senescence in zebrafish (Danio rerio). In the regenerative blastema of wounded gar and axolotl, we observe increased inflammatory gene expression, including interferon genes and interleukins 6 and 8. We also observed a decrease in axolotl Trex1 and gar pml expression during the early phases of wound healing which correlates with a dramatic increase in cGAS activity. In contrast, the plex9.1 gene does not change in expression during wound healing in gar. However, we observed decreased expression of plex9.1 in the senescing cardiac tissue of aged zebrafish, where 2'3'-cGAMP levels are elevated. Finally, we demonstrate a similar pattern of Trex1, pml, and plex9.1 gene regulation across species in response to exogenous 2'3'-cGAMP. Thus, during the early stages of limb-fin regeneration, Pml, Trex1, and Plex9.1 exonucleases are downregulated, presumably to allow an evolutionarily ancient cGAS-STING activity to promote inflammation and the recruitment of immune cells.
Collapse
Affiliation(s)
| | - Andrew W. Thompson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Canada
| | - Stéphane Roy
- Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, QC, Canada
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
37
|
Galili U, Li J, Schaer GL. Regeneration in Mice of Injured Skin, Heart, and Spinal Cord by α-Gal Nanoparticles Recapitulates Regeneration in Amphibians. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:730. [PMID: 38668224 PMCID: PMC11055133 DOI: 10.3390/nano14080730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
The healing of skin wounds, myocardial, and spinal cord injuries in salamander, newt, and axolotl amphibians, and in mouse neonates, results in scar-free regeneration, whereas injuries in adult mice heal by fibrosis and scar formation. Although both types of healing are mediated by macrophages, regeneration in these amphibians and in mouse neonates also involves innate activation of the complement system. These differences suggest that localized complement activation in adult mouse injuries might induce regeneration instead of the default fibrosis and scar formation. Localized complement activation is feasible by antigen/antibody interaction between biodegradable nanoparticles presenting α-gal epitopes (α-gal nanoparticles) and the natural anti-Gal antibody which is abundant in humans. Administration of α-gal nanoparticles into injuries of anti-Gal-producing adult mice results in localized complement activation which induces rapid and extensive macrophage recruitment. These macrophages bind anti-Gal-coated α-gal nanoparticles and polarize into M2 pro-regenerative macrophages that orchestrate accelerated scar-free regeneration of skin wounds and regeneration of myocardium injured by myocardial infarction (MI). Furthermore, injection of α-gal nanoparticles into spinal cord injuries of anti-Gal-producing adult mice induces recruitment of M2 macrophages, that mediate extensive angiogenesis and axonal sprouting, which reconnects between proximal and distal severed axons. Thus, α-gal nanoparticle treatment in adult mice mimics physiologic regeneration in amphibians. These studies further suggest that α-gal nanoparticles may be of significance in the treatment of human injuries.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (J.L.); (G.L.S.)
| | | | | |
Collapse
|
38
|
Caballero-Sánchez N, Alonso-Alonso S, Nagy L. Regenerative inflammation: When immune cells help to re-build tissues. FEBS J 2024; 291:1597-1614. [PMID: 36440547 PMCID: PMC10225019 DOI: 10.1111/febs.16693] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.
Collapse
Affiliation(s)
- Noemí Caballero-Sánchez
- Doctoral School of Molecular Cell and Immunobiology, Faculty of Medicine, University of Debrecen, Hungary
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
| | - Sergio Alonso-Alonso
- Instituto Oftalmológico Fernández-Vega, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Laszlo Nagy
- Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary
- Departments Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, and Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| |
Collapse
|
39
|
Bahraoui S, Tejedor G, Mausset-Bonnefont AL, Autelitano F, Barthelaix A, Terraza-Aguirre C, Gisbert V, Arribat Y, Jorgensen C, Wei M, Djouad F. PLOD2, a key factor for MRL MSC metabolism and chondroprotective properties. Stem Cell Res Ther 2024; 15:70. [PMID: 38454524 PMCID: PMC10921602 DOI: 10.1186/s13287-024-03650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Initially discovered for its ability to regenerate ear holes, the Murphy Roth Large (MRL) mouse has been the subject of multiple research studies aimed at evaluating its ability to regenerate other body tissues and at deciphering the mechanisms underlying it. These enhanced abilities to regenerate, retained during adulthood, protect the MRL mouse from degenerative diseases such as osteoarthritis (OA). Here, we hypothesized that mesenchymal stromal/stem cells (MSC) derived from the regenerative MRL mouse could be involved in their regenerative potential through the release of pro-regenerative mediators. METHOD To address this hypothesis, we compared the secretome of MRL and BL6 MSC and identified several candidate molecules expressed at significantly higher levels by MRL MSC than by BL6 MSC. We selected one candidate, Plod2, and performed functional in vitro assays to evaluate its role on MRL MSC properties including metabolic profile, migration, and chondroprotective effects. To assess its contribution to MRL protection against OA, we used an experimental model for osteoarthritis induced by collagenase (CiOA). RESULTS Among the candidate molecules highly expressed by MRL MSC, we focused our attention on procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2). Plod2 silencing induced a decrease in the glycolytic function of MRL MSC, resulting in the alteration of their migratory and chondroprotective abilities in vitro. In vivo, we showed that Plod2 silencing in MRL MSC significantly impaired their capacity to protect mouse from developing OA. CONCLUSION Our results demonstrate that the chondroprotective and therapeutic properties of MRL MSC in the CiOA experimental model are in part mediated by PLOD2.
Collapse
Affiliation(s)
- Sarah Bahraoui
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
- CellVax, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Gautier Tejedor
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Anne-Laure Mausset-Bonnefont
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | | | - Audrey Barthelaix
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Claudia Terraza-Aguirre
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
- CellVax, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Vincent Gisbert
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Yoan Arribat
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - Mingxing Wei
- CellVax, Villejuif Bio Park, 1 Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM U 1183, Hôpital Saint-Eloi, 80 Avenue Augustin Fliche, 34295, Montpellier cedex 5, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France.
| |
Collapse
|
40
|
Piazza A, Carlone R, Spencer GE. Non-canonical retinoid signaling in neural development, regeneration and synaptic function. Front Mol Neurosci 2024; 17:1371135. [PMID: 38516042 PMCID: PMC10954794 DOI: 10.3389/fnmol.2024.1371135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Canonical retinoid signaling via nuclear receptors and gene regulation is critical for the initiation of developmental processes such as cellular differentiation, patterning and neurite outgrowth, but also mediates nerve regeneration and synaptic functions in adult nervous systems. In addition to canonical transcriptional regulation, retinoids also exert rapid effects, and there are now multiple lines of evidence supporting non-canonical retinoid actions outside of the nucleus, including in dendrites and axons. Together, canonical and non-canonical retinoid signaling provide the precise temporal and spatial control necessary to achieve the fine cellular coordination required for proper nervous system function. Here, we examine and discuss the evidence supporting non-canonical actions of retinoids in neural development and regeneration as well as synaptic function, including a review of the proposed molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Gaynor E. Spencer
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
41
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
42
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
43
|
Riquelme-Guzmán C, Sandoval-Guzmán T. The salamander limb: a perfect model to understand imperfect integration during skeletal regeneration. Biol Open 2024; 13:bio060152. [PMID: 38319134 PMCID: PMC10868587 DOI: 10.1242/bio.060152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Limb regeneration in salamanders is achieved by a complex coordination of various biological processes and requires the proper integration of new tissue with old. Among the tissues found inside the limb, the skeleton is the most prominent component, which serves as a scaffold and provides support for locomotion in the animal. Throughout the years, researchers have studied the regeneration of the appendicular skeleton in salamanders both after limb amputation and as a result of fracture healing. The final outcome has been widely seen as a faithful re-establishment of the skeletal elements, characterised by a seamless integration into the mature tissue. The process of skeletal integration, however, is not well understood, and several works have recently provided evidence of commonly occurring flawed regenerates. In this Review, we take the reader on a journey through the course of bone formation and regeneration in salamanders, laying down a foundation for critically examining the mechanisms behind skeletal integration. Integration is a phenomenon that could be influenced at various steps of regeneration, and hence, we assess the current knowledge in the field and discuss how early events, such as tissue histolysis and patterning, influence the faithful regeneration of the appendicular skeleton.
Collapse
Affiliation(s)
- Camilo Riquelme-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Tatiana Sandoval-Guzmán
- Department of Internal Medicine 3, Center for Healthy Aging, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
44
|
Hsu WL, Lin YC, Lin MJ, Wang YW, Lee SJ. Macrophages enhance regeneration of lateral line neuromast derived from interneuromast cells through TGF-β in zebrafish. Dev Growth Differ 2024; 66:133-144. [PMID: 38281811 DOI: 10.1111/dgd.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/30/2024]
Abstract
Macrophages play a pivotal role in the response to injury, contributing significantly to the repair and regrowth of damaged tissues. The external lateral line system in aquatic organisms offers a practical model for studying regeneration, featuring interneuromast cells connecting sensory neuromasts. Under normal conditions, these cells remain dormant, but their transformation into neuromasts occurs when overcoming inhibitory signals from Schwann cells and posterior lateral line nerves. The mechanism enabling interneuromast cells to evade inhibition by Schwann cells remains unclear. Previous observations suggest that macrophages physically interact with neuromasts, nerves, and Schwann cells during regeneration. This interaction leads to the regeneration of neuromasts in a subset of zebrafish with ablated neuromasts. To explore whether macrophages achieve this effect through secreted cytokines, we conducted experiments involving tail amputation in zebrafish larvae and tested the impact of cytokine inhibitors on neuromast regeneration. Most injured larvae remarkably regenerated a neuromast within 4 days post-amputation. Intriguingly, removal of macrophages and inhibition of the anti-inflammatory cytokine transforming growth factor-beta (TGF-β) significantly delayed neuromast regeneration. Conversely, inhibition of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) had minor effects on the regeneration process. This study provides insights into how macrophages activate interneuromast cells, elucidating the pathways underlying neuromast regeneration.
Collapse
Affiliation(s)
- Wei-Lin Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chi Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Meng-Ju Lin
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Wang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
45
|
Raymond MJ, McCusker CD. Making a new limb out of old cells: exploring endogenous cell reprogramming and its role during limb regeneration. Am J Physiol Cell Physiol 2024; 326:C505-C512. [PMID: 38105753 PMCID: PMC11192473 DOI: 10.1152/ajpcell.00233.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| | - Catherine D McCusker
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States
| |
Collapse
|
46
|
Noble A, Qubrosi R, Cariba S, Favaro K, Payne SL. Neural dependency in wound healing and regeneration. Dev Dyn 2024; 253:181-203. [PMID: 37638700 DOI: 10.1002/dvdy.650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.
Collapse
Affiliation(s)
- Alexandra Noble
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rozana Qubrosi
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Solsa Cariba
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kayla Favaro
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samantha L Payne
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
47
|
Song AT, Sindeaux RHM, Li Y, Affia H, Agnihotri T, Leclerc S, van Vliet PP, Colas M, Guimond JV, Patey N, Feulner L, Joyal JS, Haddad E, Barreiro L, Andelfinger G. Developmental role of macrophages modeled in human pluripotent stem cell-derived intestinal tissue. Cell Rep 2024; 43:113616. [PMID: 38150367 DOI: 10.1016/j.celrep.2023.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023] Open
Abstract
Macrophages populate the embryo early in gestation, but their role in development is not well defined. In particular, specification and function of macrophages in intestinal development remain little explored. To study this event in the human developmental context, we derived and combined human intestinal organoid and macrophages from pluripotent stem cells. Macrophages migrate into the organoid, proliferate, and occupy the emerging microanatomical niches of epithelial crypts and ganglia. They also acquire a transcriptomic profile similar to that of fetal intestinal macrophages and display tissue macrophage behaviors, such as recruitment to tissue injury. Using this model, we show that macrophages reduce glycolysis in mesenchymal cells and limit tissue growth without affecting tissue architecture, in contrast to the pro-growth effect of enteric neurons. In short, we engineered an intestinal tissue model populated with macrophages, and we suggest that resident macrophages contribute to the regulation of metabolism and growth of the developing intestine.
Collapse
Affiliation(s)
- Andrew T Song
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada.
| | - Renata H M Sindeaux
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Meakins Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, Department of Pathology Research Institute of McGill University Health Centre, Montréal, QC, Canada
| | - Yuanyi Li
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Hicham Affia
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Tapan Agnihotri
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | | | | | - Mathieu Colas
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Jean-Victor Guimond
- CLSC des Faubourgs, CIUSSS du Centre-Sud-de-l'Ile-de-Montréal, Montréal, QC, Canada
| | - Natalie Patey
- Department of Pathology, CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Lara Feulner
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
| | - Jean-Sebastien Joyal
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada; Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Elie Haddad
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Luis Barreiro
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Genetics Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Gregor Andelfinger
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada; Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada; Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
48
|
Li H, Hao J, Liu X. Research progress and perspective of metallic implant biomaterials for craniomaxillofacial surgeries. Biomater Sci 2024; 12:252-269. [PMID: 38170634 DOI: 10.1039/d2bm01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Craniomaxillofacial bone serves a variety of functions. However, the increasing number of cases of craniomaxillofacial bone injury and the use of selective rare implants make the treatment difficult, and the cure rate is low. If such a bone injury is not properly treated, it can lead to a slew of complications that can seriously disrupt a patient's daily life. For example, premature closure of cranial sutures or skull fractures can lead to increased intracranial pressure, which can lead to headaches, vomiting, and even brain hernia. At present, implant placement is one of the most common approaches to repair craniomaxillofacial bone injury or abnormal closure, especially with biomedical metallic implants. This review analyzes the research progress in the design and development of degradable and non-degradable metallic implants in craniomaxillofacial surgery. The mechanical properties, corrosion behaviours, as well as in vitro and in vivo performances of these materials are summarized. The challenges and future research directions of metallic biomaterials used in craniomaxillofacial surgery are also identified.
Collapse
Affiliation(s)
- Huafang Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jiaqi Hao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xiwei Liu
- Lepu Medical Technology Co., Ltd, Beijing 102200, China
| |
Collapse
|
49
|
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mech Dis 2024; 16:e1629. [PMID: 37700522 PMCID: PMC10840678 DOI: 10.1002/wsbm.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
50
|
Guo YM, Jiang X, Min J, Huang J, Huang XF, Ye L. Advances in the study of Müller glia reprogramming in mammals. Front Cell Neurosci 2023; 17:1305896. [PMID: 38155865 PMCID: PMC10752929 DOI: 10.3389/fncel.2023.1305896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
Müller cells play an integral role in the development, maintenance, and photopic signal transmission of the retina. While lower vertebrate Müller cells can differentiate into various types of retinal neurons to support retinal repair following damage, there is limited neurogenic potential of mammalian Müller cells. Therefore, it is of great interest to harness the neurogenic potential of mammalian Müller cells to achieve self-repair of the retina. While multiple studies have endeavored to induce neuronal differentiation and proliferation of mammalian Müller cells under defined conditions, the efficiency and feasibility of these methods often fall short, rendering them inadequate for the requisites of retinal repair. As the mechanisms and methodologies of Müller cell reprogramming have been extensively explored, a summary of the reprogramming process of unlocking the neurogenic potential of Müller cells can provide insight into Müller cell fate development and facilitate their therapeutic use in retinal repair. In this review, we comprehensively summarize the progress in reprogramming mammalian Müller cells and discuss strategies for optimizing methods and enhancing efficiency based on the mechanisms of fate regulation.
Collapse
Affiliation(s)
- Yi-Ming Guo
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xinyi Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Min
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Juan Huang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiu-Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Ye
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| |
Collapse
|