1
|
Hassan A, Pinkas M, Yaeshima C, Ishino S, Uchiumi T, Ito K, Demo G. Novel archaeal ribosome dimerization factor facilitating unique 30S-30S dimerization. Nucleic Acids Res 2025; 53:gkae1324. [PMID: 39797736 PMCID: PMC11724365 DOI: 10.1093/nar/gkae1324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress. Despite extensive studies on bacteria and eukaryotes, understanding factor-mediated ribosome dimerization or anti-association in archaea remains elusive. Here, we present cryo-electron microscopy structures of an archaeal 30S dimer complexed with an archaeal ribosome dimerization factor (designated aRDF), from Pyrococcus furiosus, resolved at a resolution of 3.2 Å. The complex features two 30S subunits stabilized by aRDF homodimers in a unique head-to-body architecture, which differs from the disome architecture observed during hibernation in bacteria and eukaryotes. aRDF interacts directly with eS32 ribosomal protein, which is essential for subunit association. The binding mode of aRDF elucidates its anti-association properties, which prevent the assembly of archaeal 70S ribosomes.
Collapse
Affiliation(s)
- Ahmed H Hassan
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Matyas Pinkas
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Chiaki Yaeshima
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Niigata 950-2181, Japan
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| |
Collapse
|
2
|
Miao S, Liang J, Xu Y, Yu G, Shao M. Bacillaene, sharp objects consist in the arsenal of antibiotics produced by Bacillus. J Cell Physiol 2024; 239:e30974. [PMID: 36790954 DOI: 10.1002/jcp.30974] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Bacillus species act as plant growth-promoting rhizobacteria (PGPR) that can produce a large number of bioactive metabolites. Bacillaene, a linear polyketide/nonribosomal peptide produced by Bacillus strains, is synthesized by the trans-acyltransferase polyketide synthetase. The complexity of the chemical structure, particularity of biosynthesis, potent bioactivity, and the important role of competition make Bacillus an ideal antibiotic weapon to resist other microbes and maintain the optimal rhizosphere environment. This review provides an updated view of the structural features, biological activity, biosynthetic regulators of biosynthetic pathways, and the important competitive role of bacillaene during Bacillus survival.
Collapse
Affiliation(s)
- Shuang Miao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Jianhao Liang
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Yuan Xu
- College of Pharmaceutical Engineering, XinYang College Of Agriculture And Forestry, Xinyang, P.R. China
| | - Guohui Yu
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| | - Mingwei Shao
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, P.R. China
| |
Collapse
|
3
|
Chen F, Zhao Q, Yang Z, Chen R, Pan H, Wang Y, Liu H, Cao Q, Gan J, Liu X, Zhang N, Yang CG, Liang H, Lan L. Citrate serves as a signal molecule to modulate carbon metabolism and iron homeostasis in Staphylococcus aureus. PLoS Pathog 2024; 20:e1012425. [PMID: 39078849 PMCID: PMC11315280 DOI: 10.1371/journal.ppat.1012425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.
Collapse
Affiliation(s)
- Feifei Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Life Science, Northwest University, Xi’an, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingmin Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ziqiong Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanhui Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiao Cao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Diving and Hyperbaric Medicine, Navy Medical Center, Naval Medical University, Shanghai, China
| | - Naixia Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haihua Liang
- College of Life Science, Northwest University, Xi’an, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- College of Life Science, Northwest University, Xi’an, China
- Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Fernandez NL, Simmons LA. Two Distinct Regulatory Systems Control Pulcherrimin Biosynthesis in Bacillus subtilis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574033. [PMID: 38260623 PMCID: PMC10802322 DOI: 10.1101/2024.01.03.574033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Regulation of transcription is a fundamental process that allows bacteria to respond to external stimuli with appropriate timing and magnitude of response. In the soil bacterium Bacillus subtilis, transcriptional regulation is at the core of developmental processes needed for cell survival. Gene expression in cells transitioning from exponential phase to stationary phase is under the control of a group of transcription factors called transition state regulators (TSRs). TSRs influence numerous developmental processes including the decision between biofilm formation and motility, genetic competence, and sporulation, but the extent to which TSRs influence bacterial physiology remains to be fully elucidated. Here, we demonstrate two TSRs, ScoC and AbrB, along with the MerR-family transcription factor PchR negatively regulate production of the iron chelator pulcherrimin in B. subtilis. Genetic analysis of the relationship between the three transcription factors indicate that all are necessary to limit pulcherrimin production during exponential phase and influence the rate and total amount of pulcherrimin produced. Similarly, expression of the pulcherrimin biosynthesis gene yvmC was found to be under control of ScoC, AbrB, and PchR and correlated with the amount of pulcherrimin produced by each background. Lastly, our in vitro data indicate a weak direct role for ScoC in controlling pulcherrimin production along with AbrB and PchR. The layered regulation by two distinct regulatory systems underscores the important, and somewhat enigmatic, role for pulcherrimin in B. subtilis physiology.
Collapse
Affiliation(s)
- Nicolas L. Fernandez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Gao Y, Poudel S, Seif Y, Shen Z, Palsson BO. Elucidating the CodY regulon in Staphylococcus aureus USA300 substrains TCH1516 and LAC. mSystems 2023; 8:e0027923. [PMID: 37310465 PMCID: PMC10470025 DOI: 10.1128/msystems.00279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
CodY is a conserved broad-acting transcription factor that regulates the expression of genes related to amino acid metabolism and virulence in Gram-positive bacteria. Here, we performed the first in vivo determination of CodY target genes using a novel CodY monoclonal antibody in methicillin-resistant Staphylococcus aureus (MRSA) USA300. Our results showed (i) the same 135 CodY promoter binding sites regulating the 165 target genes identified in two closely related virulent S. aureus USA300 TCH1516 and LAC strains; (ii) the differential binding intensity for the same target genes under the same conditions was due to sequence differences in the same CodY-binding site in the two strains; (iii) a CodY regulon comprising 72 target genes that are differentially regulated relative to a CodY deletion strain, representing genes that are mainly involved in amino acid transport and metabolism, inorganic ion transport and metabolism, transcription and translation, and virulence, all based on transcriptomic data; and (iv) CodY systematically regulated central metabolic flux to generate branched-chain amino acids (BCAAs) by mapping the CodY regulon onto a genome-scale metabolic model of S. aureus. Our study performed the first system-level analysis of CodY in two closely related USA300 TCH1516 and LAC strains, revealing new insights into the similarities and differences of CodY regulatory roles between the closely related strains. IMPORTANCE With the increasing availability of whole-genome sequences for many strains within the same pathogenic species, a comparative analysis of key regulators is needed to understand how the different strains uniquely coordinate metabolism and expression of virulence. To successfully infect the human host, Staphylococcus aureus USA300 relies on the transcription factor CodY to reorganize metabolism and express virulence factors. While CodY is a known key transcription factor, its target genes are not characterized on a genome-wide basis. We performed a comparative analysis to describe the transcriptional regulation of CodY between two dominant USA300 strains. This study motivates the characterization of common pathogenic strains and an evaluation of the possibility of developing specialized treatments for major strains circulating in the population.
Collapse
Affiliation(s)
- Ye Gao
- Department of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Yara Seif
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Zeyang Shen
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Pei H, Zhu C, Shu F, Lu Z, Wang H, Ma K, Wang J, Lan R, Shang F, Xue T. CodY: An Essential Transcriptional Regulator Involved in Environmental Stress Tolerance in Foodborne Staphylococcus aureus RMSA24. Foods 2023; 12:3166. [PMID: 37685098 PMCID: PMC10486358 DOI: 10.3390/foods12173166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023] Open
Abstract
Staphylococcus aureus (S. aureus), as the main pathogen in milk and dairy products, usually causes intoxication with vomiting and various kinds of inflammation after entering the human body. CodY, an important transcriptional regulator in S. aureus, plays an important role in regulating metabolism, growth, and virulence. However, little is known about the role of CodY on environmental stress tolerance. In this research, we revealed the role of CodY in environmental stress tolerance in foodborne S. aureus RMSA24. codY mutation significantly reduced the tolerance of S. aureus to desiccation and oxidative, salt, and high-temperature stresses. However, S. aureus was more tolerant to low temperature stress due to mutation of codY. We found that the expressions of two important heat shock proteins-GroEL and DanJ-were significantly down-regulated in the mutant codY. This suggests that CodY may indirectly regulate the high- and low-temperature tolerance of S. aureus by regulating the expressions of groEL and danJ. This study reveals a new mechanism of environmental stress tolerance in S. aureus and provides new insights into controlling the contamination and harm caused by S. aureus in the food industry.
Collapse
Affiliation(s)
- Hao Pei
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Chengfeng Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fang Shu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Zhengfei Lu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Hui Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Kai Ma
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Jun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Ranxiang Lan
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (H.P.); (C.Z.); (F.S.); (Z.L.); (H.W.); (K.M.); (J.W.); (R.L.); (F.S.)
- Food Procession Research Institute, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
7
|
Hainzl T, Bonde M, Almqvist F, Johansson J, Sauer-Eriksson A. Structural insights into CodY activation and DNA recognition. Nucleic Acids Res 2023; 51:7631-7648. [PMID: 37326020 PMCID: PMC10415144 DOI: 10.1093/nar/gkad512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands-branched chain amino acids and GTP-induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.
Collapse
Affiliation(s)
- Tobias Hainzl
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Mari Bonde
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- QureTech Bio, Umeå, Sweden
| | - Fredrik Almqvist
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Molecular Infection Medicine, Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - A Elisabeth Sauer-Eriksson
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre of Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Fitzgerald DM, Stringer AM, Smith C, Lapierre P, Wade JT. Genome-Wide Mapping of the Escherichia coli PhoB Regulon Reveals Many Transcriptionally Inert, Intragenic Binding Sites. mBio 2023; 14:e0253522. [PMID: 37067422 PMCID: PMC10294691 DOI: 10.1128/mbio.02535-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/23/2023] [Indexed: 04/18/2023] Open
Abstract
Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of, genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert and hence are tolerated as genomic "noise." IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of nonregulatory, intragenic binding sites for transcription factors and that these binding sites are not under selective pressure.
Collapse
Affiliation(s)
- Devon M. Fitzgerald
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Anne M. Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
9
|
Zhu J, Wang S, Wang C, Wang Z, Luo G, Li J, Zhan Y, Cai D, Chen S. Microbial synthesis of bacitracin: Recent progress, challenges, and prospects. Synth Syst Biotechnol 2023; 8:314-322. [PMID: 37122958 PMCID: PMC10130698 DOI: 10.1016/j.synbio.2023.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Microorganisms are important sources of various natural products that have been commercialized for human medicine and animal healthcare. Bacitracin is an important antibacterial natural product predominantly produced by Bacillus licheniformis and Bacillus subtilis, and it is characterized by a broad antimicrobial spectrum, strong activity and low resistance, thus bacitracin is extensively applied in animal feed and veterinary medicine industries. In recent years, various strategies have been proposed to improve bacitracin production. Herein, we systematically describe the regulation of bacitracin biosynthesis in genus Bacillus and its associated mechanism, to provide a theoretical basis for bacitracin overproduction. The metabolic engineering strategies applied for bacitracin production are explored, including improving substrate utilization, using an enlarged precursor amino acid pool, increasing ATP supply and NADPH generation, and engineering transcription regulators. We also present several approaches of fermentation process optimization to facilitate the industrial large-scale production of bacitracin. Finally, the challenges and prospects associated with microbial bacitracin synthesis are discussed to facilitate the establishment of high-yield and low-cost biological factories.
Collapse
Affiliation(s)
- Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Cheng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Wang
- Hubei Provincial Key Laboratory of Industrial Microbiology, Key Laboratory of Fermentation Engineering (Ministry of Education), School of Food and Biological Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, PR China
| | - Gan Luo
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd, Nanping, 353400, PR China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, PR China
- Corresponding author. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, PR China.
| |
Collapse
|
10
|
Fitzgerald D, Stringer A, Smith C, Lapierre P, Wade JT. Genome-wide mapping of the Escherichia coli PhoB regulon reveals many transcriptionally inert, intragenic binding sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527549. [PMID: 36798257 PMCID: PMC9934606 DOI: 10.1101/2023.02.07.527549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Genome-scale analyses have revealed many transcription factor binding sites within, rather than upstream of genes, raising questions as to the function of these binding sites. Here, we use complementary approaches to map the regulon of the Escherichia coli transcription factor PhoB, a response regulator that controls transcription of genes involved in phosphate homeostasis. Strikingly, the majority of PhoB binding sites are located within genes, but these intragenic sites are not associated with detectable transcription regulation and are not evolutionarily conserved. Many intragenic PhoB sites are located in regions bound by H-NS, likely due to shared sequence preferences of PhoB and H-NS. However, these PhoB binding sites are not associated with transcription regulation even in the absence of H-NS. We propose that for many transcription factors, including PhoB, binding sites not associated with promoter sequences are transcriptionally inert, and hence are tolerated as genomic "noise". IMPORTANCE Recent studies have revealed large numbers of transcription factor binding sites within the genes of bacteria. The function, if any, of the vast majority of these binding sites has not been investigated. Here, we map the binding of the transcription factor PhoB across the Escherichia coli genome, revealing that the majority of PhoB binding sites are within genes. We show that PhoB binding sites within genes are not associated with regulation of the overlapping genes. Indeed, our data suggest that bacteria tolerate the presence of large numbers of non-regulatory, intragenic binding sites for transcription factors, and that these binding sites are not under selective pressure.
Collapse
Affiliation(s)
- Devon Fitzgerald
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Anne Stringer
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Pascal Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| |
Collapse
|
11
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
12
|
He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Nitrogen sources play an essential role in maintaining the physiological and biochemical activity of bacteria. Nitrogen metabolism, which is the core of microorganism metabolism, makes bacteria able to autonomously respond to different external nitrogen environments by exercising complex internal regulatory networks to help them stay in an ideal state. Although various studies have been put forth to better understand this regulation in Bacillus, and many valuable viewpoints have been obtained, these views need to be presented systematically and their possible applications need to be specified. AIM OF REVIEW The intention is to provide a deep and comprehensive understanding of nitrogen metabolism in Bacillus, an important industrial microorganism, and thereby apply this regulatory logic to synthetic biology to improve biosynthesis competitiveness. In addition, the potential researches in the future are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Understanding the meticulous regulation process of nitrogen metabolism in Bacillus not only could facilitate research on metabolic engineering but also could provide constructive insights and inspiration for studies of other microorganisms.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
13
|
Hirooka K. RhgKL and CcpA directly regulate the rhiLFGN-rhgR-yesTUV operon involved in the metabolism of rhamnogalacturonan type I in Bacillus subtilis. Biosci Biotechnol Biochem 2022; 86:1383-1397. [PMID: 35881471 DOI: 10.1093/bbb/zbac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
The Bacillus subtilis rhiLFGN-rhgR-yesTUVWXYZ (formerly yesOPQRSTUVWXYZ) gene cluster includes genes for metabolizing rhamnogalacturonan type I (RG-I), a major pectin constituent, and the rhgR gene encoding an AraC/XylS transcriptional activator. The yesL-rhgKL (formerly yesLMN) operon, adjacent to the rhiL gene, includes the rhgKL genes encoding a two-component regulatory system. The reporter analyses showed that three promoters immediately upstream of the rhiL, yesW, and yesL genes were induced by RG-I and repressed by glucose in the medium. The reporter analyses also showed that RhgL and RhgR contribute to the RG-I-dependent induction of the rhiL promoter and that CcpA mediates the catabolite repression of the rhiL and yesL promoters. The in vitro experiments demonstrated that the RhgL response regulator and the CcpA complex bind to each site in the rhiL promoter region. The RT-PCR analysis and the different properties of the rhiL and yesW promoters suggested the rhiLFGN-rhgR-yesTUV genes as an operon.
Collapse
Affiliation(s)
- Kazutake Hirooka
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Hiroshima, Japan
| |
Collapse
|
14
|
Identification of a Putative CodY Regulon in the Gram-Negative Phylum Synergistetes. Int J Mol Sci 2022; 23:ijms23147911. [PMID: 35887256 PMCID: PMC9318921 DOI: 10.3390/ijms23147911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
CodY is a dominant regulator in low G + C, Gram-positive Firmicutes that governs the regulation of various metabolic pathways and cellular processes. By using various bioinformatics analyses and DNA affinity precipitation assay (DAPA), this study confirmed the presence of CodY orthologues and corresponding regulons in Gram-negative Synergistetes. A novel palindromic sequence consisting of AT-rich arms separated by a spacer region of variable length and sequence was identified in the promoters of the putative codY-containing operons in Synergistetes. The consensus sequence from genera Synergistes and Cloacibacillus (5′-AATTTTCTTAAAATTTCSCTTGATATTTACAATTTT) contained three AT-rich regions, resulting in two palindromic sequences; one of which is identical to Firmicutes CodY box (5′-AATTTTCWGAAAATT). The function of the consensus sequence was tested by using a recombinant CodY protein (His-CodYDSM) of Cloacibacillus evryensis DSM19522 in DAPA. Mutations in the central AT-rich sequence reduced significantly the binding of His-CodYDSM, whereas mutations in the 5′ or 3′ end AT-rich sequence slightly reduced the binding, indicating that CodYDSM could recognize both palindromic sequences. The proposed binding sequences were found in the promoters of multiple genes involved in amino acids biosynthesis, metabolism, regulation, and stress responses in Synergistetes. Thus, a CodY-like protein from Synergistetes may function similarly to Firmicutes CodY.
Collapse
|
15
|
Wang M, Wamp S, Gibhardt J, Holland G, Schwedt I, Schmidtke KU, Scheibner K, Halbedel S, Commichau FM. Adaptation of Listeria monocytogenes to perturbation of c-di-AMP metabolism underpins its role in osmoadaptation and identifies a fosfomycin uptake system. Environ Microbiol 2022; 24:4466-4488. [PMID: 35688634 DOI: 10.1111/1462-2920.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
The human pathogen Listeria monocytogenes synthesizes and degrades c-di-AMP using the diadenylate cyclase CdaA and the phosphodiesterases PdeA and PgpH respectively. c-di-AMP is essential because it prevents the uncontrolled uptake of osmolytes. Here, we studied the phenotypes of cdaA, pdeA, pgpH and pdeA pgpH mutants with defects in c-di-AMP metabolism and characterized suppressor mutants restoring their growth defects. The characterization of the pdeA pgpH mutant revealed that the bacteria show growth defects in defined medium, a phenotype that is invariably suppressed by mutations in cdaA. The previously reported growth defect of the cdaA mutant in rich medium is suppressed by mutations that osmotically stabilize the c-di-AMP-free strain. We also found that the cdaA mutant has an increased sensitivity against isoleucine. The isoleucine-dependent growth inhibition of the cdaA mutant is suppressed by codY mutations that likely reduce the DNA-binding activity of encoded CodY variants. Moreover, the characterization of the cdaA suppressor mutants revealed that the Opp oligopeptide transport system is involved in the uptake of the antibiotic fosfomycin. In conclusion, the suppressor analysis corroborates a key function of c-di-AMP in controlling osmolyte homeostasis in L. monocytogenes.
Collapse
Affiliation(s)
- Mengyi Wang
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sabrina Wamp
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Johannes Gibhardt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,Department of General Microbiology, Institute for Microbiology and Genetics, University of Goettingen, 37077, Göttingen, Germany.,Research Complex NanoBio, Peter the Great Saint Petersburg Polytechnic University, Politekhnicheskaya ulitsa 29A, Saint Petersburg, 195251, Russia
| | - Gudrun Holland
- ZBS4 - Advanced Light and Electron Microscopy, Robert-Koch-Institute, Seestraße 10, 13353, Berlin, Germany
| | - Inge Schwedt
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| | - Kai-Uwe Schmidtke
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Katrin Scheibner
- FG Enzyme Technology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany
| | - Sven Halbedel
- Division of Enteropathogenic Bacteria and Legionella, Robert-Koch-Institute, 38855, Wernigerode, Germany
| | - Fabian M Commichau
- FG Synthetic Microbiology, Institute for Biotechnology, BTU Cottbus-Senftenberg, 01968, Senftenberg, Germany.,FG Molecular Microbiology, Institute of Biology, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
16
|
Yang J, Barra JT, Fung DK, Wang JD. Bacillus subtilis produces (p)ppGpp in response to the bacteriostatic antibiotic chloramphenicol to prevent its potential bactericidal effect. MLIFE 2022; 1:101-113. [PMID: 38817674 PMCID: PMC10989873 DOI: 10.1002/mlf2.12031] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 06/01/2024]
Abstract
Antibiotics combat bacteria through their bacteriostatic (by growth inhibition) or bactericidal (by killing bacteria) action. Mechanistically, it has been proposed that bactericidal antibiotics trigger cellular damage, while bacteriostatic antibiotics suppress cellular metabolism. Here, we demonstrate how the difference between bacteriostatic and bactericidal activities of the antibiotic chloramphenicol can be attributed to an antibiotic-induced bacterial protective response: the stringent response. Chloramphenicol targets the ribosome to inhibit the growth of the Gram-positive bacterium Bacillus subtilis. Intriguingly, we found that chloramphenicol becomes bactericidal in B. subtilis mutants unable to produce (p)ppGpp. We observed a similar (p)ppGpp-dependent bactericidal effect of chloramphenicol in the Gram-positive pathogen Enterococcus faecalis. In B. subtilis, chloramphenicol treatment induces (p)ppGpp accumulation through the action of the (p)ppGpp synthetase RelA. (p)ppGpp subsequently depletes the intracellular concentration of GTP and antagonizes GTP action. This GTP regulation is critical for preventing chloramphenicol from killing B. subtilis, as bypassing (p)ppGpp-dependent GTP regulation potentiates chloramphenicol killing, while reducing GTP synthesis increases survival. Finally, chloramphenicol treatment protects cells from the classical bactericidal antibiotic vancomycin, reminiscent of the clinical phenomenon of antibiotic antagonism. Taken together, our findings suggest a role of (p)ppGpp in the control of the bacteriostatic and bactericidal activity of antibiotics in Gram-positive bacteria, which can be exploited to potentiate the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Jin Yang
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| | | | - Danny K. Fung
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| | - Jue D. Wang
- Department of BacteriologyUniversity of WisconsinMadisonUSA
| |
Collapse
|
17
|
Pellegrini A, Lentini G, Famà A, Bonacorsi A, Scoffone VC, Buroni S, Trespidi G, Postiglione U, Sassera D, Manai F, Pietrocola G, Firon A, Biondo C, Teti G, Beninati C, Barbieri G. CodY Is a Global Transcriptional Regulator Required for Virulence in Group B Streptococcus. Front Microbiol 2022; 13:881549. [PMID: 35572655 PMCID: PMC9096947 DOI: 10.3389/fmicb.2022.881549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium able to switch from a harmless commensal of healthy adults to a pathogen responsible for invasive infections in neonates. The signals and regulatory mechanisms governing this transition are still largely unknown. CodY is a highly conserved global transcriptional regulator that links nutrient availability to the regulation of major metabolic and virulence pathways in low-G+C Gram-positive bacteria. In this work, we investigated the role of CodY in BM110, a GBS strain representative of a hypervirulent lineage associated with the majority of neonatal meningitis. Deletion of codY resulted in a reduced ability of the mutant strain to cause infections in neonatal and adult animal models. The observed decreased in vivo lethality was associated with an impaired ability of the mutant to persist in the blood, spread to distant organs, and cross the blood-brain barrier. Notably, the codY null mutant showed reduced adhesion to monolayers of human epithelial cells in vitro and an increased ability to form biofilms, a phenotype associated with strains able to asymptomatically colonize the host. RNA-seq analysis showed that CodY controls about 13% of the genome of GBS, acting mainly as a repressor of genes involved in amino acid transport and metabolism and encoding surface anchored proteins, including the virulence factor Srr2. CodY activity was shown to be dependent on the availability of branched-chain amino acids, which are the universal cofactors of this regulator. These results highlight a key role for CodY in the control of GBS virulence.
Collapse
Affiliation(s)
- Angelica Pellegrini
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | | | - Arnaud Firon
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Carmelo Biondo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
18
|
Anderson BW, Schumacher MA, Yang J, Turdiev A, Turdiev H, Schroeder J, He Q, Lee V, Brennan R, Wang J. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Nucleic Acids Res 2022; 50:847-866. [PMID: 34967415 PMCID: PMC8789054 DOI: 10.1093/nar/gkab1281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qixiang He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent T Lee
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Systems-level analysis of the global regulatory mechanism of CodY in Lactococcus lactis metabolism and nisin immunity modulation. Appl Environ Microbiol 2022; 88:e0184721. [PMID: 35044848 DOI: 10.1128/aem.01847-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria adapt to the constantly changing environment by regulating their metabolism. The global transcriptional regulator CodY is known to regulate metabolism in low G+C Gram-positive bacteria. Systems-level identification of its direct targets by proteome and ChIP-seq assays was rarely reported. Here, we identified CodY serves as an activator or a repressor of hundreds of genes involved in nitrogen metabolism, carbohydrate metabolism, and transcription through iTRAQ proteome and ChIP-seq. Combined with EMSA experiment, apart from the genes associated with amino acid biosynthesis (ilvD, leuA, optS, ybbD, dtpT, and pepN), genes involved in cell wall synthesis (murD and ftsW) and nisin immunity (nisI) were identified to be regulated by CodY. Moreover, it was demonstrated that CodY activated the transcription of nisI and contributed to the nisin immunity by nisin resistance assay. Intriguingly, CodY showed a self-regulation through binding to the motif 'AAAGGTGTGACAACT'in the CDS region of codY verified by DNase I footprinting assay and MEME analysis. In addition, a novel conserved AT-rich motif 'AATWTTCTGACAATT' was obtained in L. lactis F44. This study provides new insights into the comprehensive CodY regulation in L. lactis by controlling metabolism, nisin immunity and self-expression. Importance Lactococcus lactis, a widely used lactic acid bacteria (LAB) in the food fermentation, has been the model strain in genetic engineering, and its application has extended from food to microbial cell factory. CodY is a global regulator in low G+C Gram-positive bacteria. Its function and direct target genes in genome-level were rarely known in L. lactis. In this study, we described the comprehensive regulation mechanism of CodY. It widely modulated the metabolism of nitrogen and carbohydrate, cell wall synthesis and nisin immunity in L. lactis F44, and its expression level was regulated by feedback control.
Collapse
|
20
|
Zhao N, Jiao L, Xu J, Zhang J, Qi Y, Qiu M, Wei X, Fan M. Integrated transcriptomic and proteomic analysis reveals the response mechanisms of Alicyclobacillus acidoterrestris to heat stress. Food Res Int 2022; 151:110859. [PMID: 34980395 DOI: 10.1016/j.foodres.2021.110859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Alicyclobacillus acidoterrestris can survive pasteurization and is implicated in pasteurized fruit juice spoilage. However, the mechanisms underlying heat responses remain largely unknown. Herein, gene transcription changes of A. acidoterrestris under heat stress were detected by transcriptome, and an integrated analysis with proteomic and physiological data was conducted. A total of 911 differentially expressed genes (DEGs) was observed. The majority of DEGs and differentially expressed proteins (DEPs) were exclusively regulated at the mRNA and protein level, respectively, whereas only 59 genes were regulated at both levels and had the same change trends. Comparative analysis of the functions of the specifically or commonly regulated DEGs and DEPs revealed that the heat resistance of A. acidoterrestris was primarily based on modulating peptidoglycan and fatty acid composition to maintain cell envelope integrity. Low energy consumption strategies were established with attenuated glycolysis, decreased ribosome de novo synthesis, and activated ribosome hibernation. Terminal oxidases, cytochrome bd and aa3, in aerobic respiratory chain were upregulated. Meanwhile, the MarR family transcriptional regulator was upregulated, reactive oxygen species (ROS) was discovered, and the concentration of superoxide dismutase (SOD) increased, indicating that the accompanied oxidative stress was induced by high temperature. Additionally, DNA and protein damage repair systems were activated. This study provided a global perspective on the response mechanisms of A. acidoterrestris to heat stress, with implications for better detection and control of its contamination in fruit juice.
Collapse
Affiliation(s)
- Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
21
|
Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea CM, Pessione E, Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front Microbiol 2021; 12:674639. [PMID: 34367082 PMCID: PMC8336468 DOI: 10.3389/fmicb.2021.674639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Collapse
Affiliation(s)
- Paolo Costa
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giulia Usai
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Bange G, Bedrunka P. Physiology of guanosine-based second messenger signaling in Bacillus subtilis. Biol Chem 2021; 401:1307-1322. [PMID: 32881708 DOI: 10.1515/hsz-2020-0241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/22/2020] [Indexed: 12/19/2022]
Abstract
The guanosine-based second messengers (p)ppGpp and c-di-GMP are key players of the physiological regulation of the Gram-positive model organism Bacillus subtilis. Their regulatory spectrum ranges from key metabolic processes over motility to biofilm formation. Here we review our mechanistic knowledge on their synthesis and degradation in response to environmental and stress signals as well as what is known on their cellular effectors and targets. Moreover, we discuss open questions and our gaps in knowledge on these two important second messengers.
Collapse
Affiliation(s)
- Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO) and Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Strasse 6, C07, Marburg, D-35043,Germany
| |
Collapse
|
23
|
Basal-Level Effects of (p)ppGpp in the Absence of Branched-Chain Amino Acids in Actinobacillus pleuropneumoniae. J Bacteriol 2020; 202:JB.00640-19. [PMID: 32015147 DOI: 10.1128/jb.00640-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
The (p)ppGpp-mediated stringent response (SR) is a highly conserved regulatory mechanism in bacterial pathogens, enabling adaptation to adverse environments, and is linked to pathogenesis. Actinobacillus pleuropneumoniae can cause damage to the lungs of pigs, its only known natural host. Pig lungs are known to have a low concentration of free branched-chain amino acids (BCAAs) compared to the level in plasma. We had investigated the role for (p)ppGpp in viability and biofilm formation of A. pleuropneumoniae Now, we sought to determine whether (p)ppGpp was a trigger signal for the SR in A. pleuropneumoniae in the absence of BCAAs. Combining transcriptome and phenotypic analyses of the wild type (WT) and an relA spoT double mutant [which does not produce (p)ppGpp], we found that (p)ppGpp could repress de novo purine biosynthesis and activate antioxidant pathways. There was a positive correlation between GTP and endogenous hydrogen peroxide content. Furthermore, the growth, viability, morphology, and virulence were altered by the inability to produce (p)ppGpp. Genes involved in the biosynthesis of BCAAs were constitutively upregulated, regardless of the existence of BCAAs, without accumulation of (p)ppGpp beyond a basal level. Collectively, our study shows that the absence of BCAAs was not a sufficient signal to trigger the SR in A. pleuropneumoniae (p)ppGpp-mediated regulation in A. pleuropneumoniae is different from that described for the model organism Escherichia coli Further work will establish whether the (p)ppGpp-dependent SR mechanism in A. pleuropneumoniae is conserved among other veterinary pathogens, especially those in the Pasteurellaceae family.IMPORTANCE (p)ppGpp is a key player in reprogramming transcriptomes to respond to nutritional challenges. Here, we present transcriptional and phenotypic differences of A. pleuropneumoniae grown in different chemically defined media in the absence of (p)ppGpp. We show that the deprivation of branched-chain amino acids (BCAAs) does not elicit a change in the basal-level (p)ppGpp, but this level is sufficient to regulate the expression of BCAA biosynthesis. The mechanism found in A. pleuropneumoniae is different from that of the model organism Escherichia coli but similar to that found in some Gram-positive bacteria. This study not only broadens the research scope of (p)ppGpp but also further validates the complexity and multiplicity of (p)ppGpp regulation in microorganisms that occupy different biological niches.
Collapse
|
24
|
Babel H, Naranjo-Meneses P, Trauth S, Schulmeister S, Malengo G, Sourjik V, Bischofs IB. Ratiometric population sensing by a pump-probe signaling system in Bacillus subtilis. Nat Commun 2020; 11:1176. [PMID: 32132526 PMCID: PMC7055314 DOI: 10.1038/s41467-020-14840-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Communication by means of diffusible signaling molecules facilitates higher-level organization of cellular populations. Gram-positive bacteria frequently use signaling peptides, which are either detected at the cell surface or ‘probed’ by intracellular receptors after being pumped into the cytoplasm. While the former type is used to monitor cell density, the functions of pump-probe networks are less clear. Here we show that pump-probe networks can, in principle, perform different tasks and mediate quorum-sensing, chronometric and ratiometric control. We characterize the properties of the prototypical PhrA-RapA system in Bacillus subtilis using FRET. We find that changes in extracellular PhrA concentrations are tracked rather poorly; instead, cells accumulate and strongly amplify the signal in a dose-dependent manner. This suggests that the PhrA-RapA system, and others like it, have evolved to sense changes in the composition of heterogeneous populations and infer the fraction of signal-producing cells in a mixed population to coordinate cellular behaviors. Gram-positive bacteria can release signaling peptides that are ‘probed’ by intracellular receptors after being pumped into the cytoplasm. Here, Babel et al. show that these pump-probe networks can infer the fraction of signal-producing cells in a mixed population, and do not necessarily mediate typical quorum-sensing control.
Collapse
Affiliation(s)
- Heiko Babel
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Pablo Naranjo-Meneses
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Sonja Schulmeister
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| | - Gabriele Malengo
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Str. 16, 35043, Marburg, Germany
| | - Victor Sourjik
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.,LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Str. 16, 35043, Marburg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
25
|
Osaka N, Kanesaki Y, Watanabe M, Watanabe S, Chibazakura T, Takada H, Yoshikawa H, Asai K. Novel (p)ppGpp 0 suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis in Bacillus subtilis. Mol Microbiol 2020; 113:1155-1169. [PMID: 32052499 DOI: 10.1111/mmi.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.
Collapse
Affiliation(s)
- Natsuki Osaka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Megumi Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
26
|
Biswas R, Sonenshein AL, Belitsky BR. Genome-wide identification of Listeria monocytogenes CodY-binding sites. Mol Microbiol 2020; 113:841-858. [PMID: 31944451 DOI: 10.1111/mmi.14449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
CodY is a global transcriptional regulator that controls, directly or indirectly, the expression of dozens of genes and operons in Listeria monocytogenes. We used in vitro DNA affinity purification combined with massively parallel sequencing (IDAP-Seq) to identify genome-wide L. monocytogenes chromosomal DNA regions that CodY binds in vitro. The total number of CodY-binding regions exceeded 2,000, but they varied significantly in their strengths of binding at different CodY concentrations. The 388 strongest CodY-binding regions were chosen for further analysis. A strand-specific analysis of the data allowed pinpointing CodY-binding sites at close to single-nucleotide resolution. Gel shift and DNase I footprinting assays confirmed the presence and locations of several CodY-binding sites. Surprisingly, most of the sites were located within genes' coding regions. The binding site within the beginning of the coding sequence of the prfA gene, which encodes the master regulator of virulence genes, has been previously implicated in regulation of prfA, but this site was weaker in vitro than hundreds of other sites. The L. monocytogenes CodY protein was functionally similar to Bacillus subtilis CodY when expressed in B. subtilis cells. Based on the sequences of the CodY-binding sites, a model of CodY interaction with DNA is proposed.
Collapse
Affiliation(s)
- Rajesh Biswas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Zhang X, Wang C, Liu L, Ban R. Improve uridine production by modifying related metabolic pathways in Bacillus subtilis. Biotechnol Lett 2020; 42:551-555. [PMID: 31993847 DOI: 10.1007/s10529-020-02820-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The metabolic pathway related to uridine production was modified in Bacillus subtilis in order to increase the production of uridine. RESULTS Decreasing the relative transcriptional level of pur operon in Bacillus subtilis TD300 to 80%, and the production of the derived strain TD312 was increased to 11.81 g uridine/l and the yield was increased to 270 mg uridine/g glucose. The expression of pucR gene in situ by PccpA resulting in a 194.01-fold increase in the relative transcriptional level of pucR gene and 349.71-fold increase in the relative transcriptional level of ure operon, respectively. Furthermore, the production of TD314 reached 13.06 g uridine/l, while the yield reached 250 mg uridine/g glucose. CONCLUSION This is the first report that more than 13 g uridine/l with a yield of 250 mg uridine/g glucose is produced in shake flask fermentation of genetically engineered Bacillus subtilis.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Chen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lu Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Rui Ban
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Tianjin University), Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
28
|
Tran NT, Stevenson CE, Som NF, Thanapipatsiri A, Jalal ASB, Le TBK. Permissive zones for the centromere-binding protein ParB on the Caulobacter crescentus chromosome. Nucleic Acids Res 2019; 46:1196-1209. [PMID: 29186514 PMCID: PMC5815017 DOI: 10.1093/nar/gkx1192] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA–ParB–parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleoprotein complex to each daughter cell. Here, we investigated the genome-wide distribution of ParB on the Caulobacter chromosome using a combination of in vivo chromatin immunoprecipitation (ChIP-seq) and in vitro DNA affinity purification with deep sequencing (IDAP-seq). We confirmed two previously identified parS sites and discovered at least three more sites that cluster ∼8 kb from the origin of replication. We showed that Caulobacter ParB nucleates at parS sites and associates non-specifically with ∼10 kb flanking DNA to form a high-order nucleoprotein complex on the left chromosomal arm. Lastly, using transposon mutagenesis coupled with deep sequencing (Tn-seq), we identified a ∼500 kb region surrounding the native parS cluster that is tolerable to the insertion of a second parS cluster without severely affecting cell viability. Our results demonstrate that the genomic distribution of parS sites is highly restricted and is crucial for chromosome segregation in Caulobacter.
Collapse
Affiliation(s)
- Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Clare E Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, UK
| | - Nicolle F Som
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
29
|
Cai D, Zhu J, Zhu S, Lu Y, Zhang B, Lu K, Li J, Ma X, Chen S. Metabolic Engineering of Main Transcription Factors in Carbon, Nitrogen, and Phosphorus Metabolisms for Enhanced Production of Bacitracin in Bacillus licheniformis. ACS Synth Biol 2019; 8:866-875. [PMID: 30865822 DOI: 10.1021/acssynbio.9b00005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Primary metabolism plays a key role in the synthesis of secondary metabolite. In this study, the main transcription factors in carbon, nitrogen, and phosphorus metabolisms (CcpA, CcpC, CcpN, CodY, TnrA, GlnR, and PhoP) were engineered to improve bacitracin yield in Bacillus licheniformis DW2, an industrial strain for bacitracin production. First, our results demonstrated that deletions of ccpC and ccpN improved ATP and NADPH supplies, and the bacitracin yields were respectively increased by 14.02% and 16.06% compared with that of DW2, while it was decreased significantly in ccpA deficient strain DW2ΔccpA. Second, excessive branched chain amino acids (BCAAs) were accumulated in codY, tnrA, and glnR deletion strains DW2ΔcodY, DW2ΔtnrA, and DW2ΔglnR, which resulted in the nitrogen catabolite repressions and reductions of bacitracin yields. Moreover, overexpression of these regulators improved intracellular BCAA supplies, and further enhanced bacitracin yields by 14.17%, 12.98%, and 16.20%, respectively. Furthermore, our results confirmed that phosphate addition reduced bacitracin synthesis capability, and bacitracin yield was improved by 15.71% in gene phop deletion strain. On the contrary, overexpression of PhoP led to a 19.40% decrease of bacitracin yield. Finally, a combinatorial engineering of these above metabolic manipulations was applied, and bacitracin yield produced by the final strain DW2-CNCTGP (Simultaneously deleting ccpC, ccpN, phop and overexpressing glnR, codY, and tnrA in DW2) reached 1014.38 U/mL, increased by 35.72% compared to DW2, and this yield was the highest bacitracin yield currently reported. Taken together, this study implied that metabolic engineering of carbon, nitrogen, and phosphorus metabolism regulators is an efficient strategy to enhance bacitracin production, and provided a promising B. licheniformis strain for industrial production of bacitracin.
Collapse
Affiliation(s)
- Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shan Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yu Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bowen Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Kai Lu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Junhui Li
- Lifecome Biochemistry Co., Ltd., Nanping 353400, PR China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
30
|
Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-018-1737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Thermal and Nutritional Regulation of Ribosome Hibernation in Staphylococcus aureus. J Bacteriol 2018; 200:JB.00426-18. [PMID: 30297357 PMCID: PMC6256015 DOI: 10.1128/jb.00426-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites. The translationally silent 100S ribosome is a poorly understood form of the dimeric 70S complex that is ubiquitously found in all bacterial phyla. The elimination of the hibernating 100S ribosome leads to translational derepression, ribosome instability, antibiotic sensitivity, and biofilm defects in some bacteria. In Firmicutes, such as the opportunistic pathogen Staphylococcus aureus, a 190-amino acid protein called hibernating-promoting factor (HPF) dimerizes and conjoins two 70S ribosomes through a direct interaction between the HPF homodimer, with each HPF monomer tethered on an individual 70S complex. While the formation of the 100S ribosome in gammaproteobacteria and cyanobacteria is exclusively induced during postexponential growth phase and darkness, respectively, the 100S ribosomes in Firmicutes are constitutively produced from the lag-logarithmic phase through the post-stationary phase. Very little is known about the regulatory pathways that control hpf expression and 100S ribosome abundance. Here, we show that a general stress response (GSR) sigma factor (SigB) and a GTP-sensing transcription factor (CodY) integrate nutrient and thermal signals to regulate hpf synthesis in S. aureus, resulting in an enhanced virulence of the pathogen in a mouse model of septicemic infection. CodY-dependent regulation of hpf is strain specific. An epistasis analysis further demonstrated that CodY functions upstream of the GSR pathway in a condition-dependent manner. The results reveal an important link between S. aureus stress physiology, ribosome metabolism, and infection biology. IMPORTANCE The dimerization of 70S ribosomes (100S complex) plays an important role in translational regulation and infectivity of the major human pathogen Staphylococcus aureus. Although the dimerizing factor HPF has been characterized biochemically, the pathways that regulate 100S ribosome abundance remain elusive. We identified a metabolite- and nutrient-sensing transcription factor, CodY, that serves both as an activator and a repressor of hpf expression in nutrient- and temperature-dependent manners. Furthermore, CodY-mediated activation of hpf masks a secondary hpf transcript derived from a general stress response SigB promoter. CodY and SigB regulate a repertoire of virulence genes. The unexpected link between ribosome homeostasis and the two master virulence regulators provides new opportunities for alternative druggable sites.
Collapse
|
32
|
Westbrook AW, Ren X, Moo‐Young M, Chou CP. Metabolic engineering ofBacillus subtilisforl‐valine overproduction. Biotechnol Bioeng 2018; 115:2778-2792. [DOI: 10.1002/bit.26789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Murray Moo‐Young
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| |
Collapse
|
33
|
Branching Out: Alterations in Bacterial Physiology and Virulence Due to Branched-Chain Amino Acid Deprivation. mBio 2018; 9:mBio.01188-18. [PMID: 30181248 PMCID: PMC6123439 DOI: 10.1128/mbio.01188-18] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. The branched-chain amino acids (BCAAs [Ile, Leu, and Val]) represent important nutrients in bacterial physiology, with roles that range from supporting protein synthesis to signaling and fine-tuning the adaptation to amino acid starvation. In some pathogenic bacteria, the adaptation to amino acid starvation includes induction of virulence gene expression: thus, BCAAs support not only proliferation during infection, but also the evasion of host defenses. A body of research has accumulated over the years to describe the multifaceted physiological roles of BCAAs and the mechanisms bacteria use to maintain their intracellular levels. More recent studies have focused on understanding how fluctuations in their intracellular levels impact global regulatory pathways that coordinate the adaptation to nutrient limitation, especially in pathogenic bacteria. In this minireview, we discuss how these studies have refined the individual roles of BCAAs, shed light on how BCAA auxotrophy might promote higher sensitivity to exogenous BCAA levels, and revealed pathogen-specific responses to BCAA deprivation. These advancements improve our understanding of how bacteria meet their nutritional requirements for growth while simultaneously remaining responsive to changes in environmental nutrient availability to promote their survival in a range of environments.
Collapse
|
34
|
Cao H, Villatoro-Hernandez J, Weme RDO, Frenzel E, Kuipers OP. Boosting heterologous protein production yield by adjusting global nitrogen and carbon metabolic regulatory networks in Bacillus subtilis. Metab Eng 2018; 49:143-152. [DOI: 10.1016/j.ymben.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/23/2018] [Accepted: 08/06/2018] [Indexed: 01/19/2023]
|
35
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
36
|
Yu Y, Yan F, He Y, Qin Y, Chen Y, Chai Y, Guo JH. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiology (Reading) 2018; 164:848-862. [DOI: 10.1099/mic.0.000658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yiyang Yu
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Fang Yan
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinghao He
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yuxuan Qin
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Jian-hua Guo
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
| |
Collapse
|
37
|
Mutlu A, Trauth S, Ziesack M, Nagler K, Bergeest JP, Rohr K, Becker N, Höfer T, Bischofs IB. Phenotypic memory in Bacillus subtilis links dormancy entry and exit by a spore quantity-quality tradeoff. Nat Commun 2018; 9:69. [PMID: 29302032 PMCID: PMC5754360 DOI: 10.1038/s41467-017-02477-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Some bacteria, such as Bacillus subtilis, withstand starvation by forming dormant spores that revive when nutrients become available. Although sporulation and spore revival jointly determine survival in fluctuating environments, the relationship between them has been unclear. Here we show that these two processes are linked by a phenotypic “memory” that arises from a carry-over of molecules from the vegetative cell into the spore. By imaging life histories of individual B. subtilis cells using fluorescent reporters, we demonstrate that sporulation timing controls nutrient-induced spore revival. Alanine dehydrogenase contributes to spore memory and controls alanine-induced outgrowth, thereby coupling a spore’s revival capacity to the gene expression and growth history of its progenitors. A theoretical analysis, and experiments with signaling mutants exhibiting altered sporulation timing, support the hypothesis that such an intrinsically generated memory leads to a tradeoff between spore quantity and spore quality, which could drive the emergence of complex microbial traits. Bacillus subtilis withstands starvation by forming dormant spores that revive when nutrients become available. Here, Mutlu et al. show that sporulation timing controls spore revival through a phenotypic ‘memory’ that arises from the carry-over of a metabolic enzyme from the vegetative cell into the spore.
Collapse
Affiliation(s)
- Alper Mutlu
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Stephanie Trauth
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Marika Ziesack
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany
| | - Katja Nagler
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Jan-Philip Bergeest
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Karl Rohr
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology (IPMB), 69120, Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Nils Becker
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Thomas Höfer
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), University of Heidelberg, 69120, Heidelberg, Germany. .,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
38
|
Hoffmann T, Bremer E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol Chem 2017; 398:193-214. [PMID: 27935846 DOI: 10.1515/hsz-2016-0265] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
The development of a semi-permeable cytoplasmic membrane was a key event in the evolution of microbial proto-cells. As a result, changes in the external osmolarity will inevitably trigger water fluxes along the osmotic gradient. The ensuing osmotic stress has consequences for the magnitude of turgor and will negatively impact cell growth and integrity. No microorganism can actively pump water across the cytoplasmic membrane; hence, microorganisms have to actively adjust the osmotic potential of their cytoplasm to scale and direct water fluxes in order to prevent dehydration or rupture. They will accumulate ions and physiologically compliant organic osmolytes, the compatible solutes, when they face hyperosmotic conditions to retain cell water, and they rapidly expel these compounds through the transient opening of mechanosensitive channels to curb water efflux when exposed to hypo-osmotic circumstances. Here, we provide an overview on the salient features of the osmostress response systems of the ubiquitously distributed bacterium Bacillus subtilis with a special emphasis on the transport systems and channels mediating regulation of cellular hydration and turgor under fluctuating osmotic conditions. The uptake of osmostress protectants via the Opu family of transporters, systems of central importance for the management of osmotic stress by B. subtilis, will be particularly highlighted.
Collapse
|
39
|
Moreno-Del Álamo M, Tabone M, Lioy VS, Alonso JC. Toxin ζ Triggers a Survival Response to Cope with Stress and Persistence. Front Microbiol 2017; 8:1130. [PMID: 28690594 PMCID: PMC5481361 DOI: 10.3389/fmicb.2017.01130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria have evolved complex regulatory controls in response to various environmental stresses. Protein toxins of the ζ superfamily, found in prominent human pathogens, are broadly distributed in nature. We show that ζ is a uridine diphosphate-N-acetylglucosamine (UNAG)-dependent ATPase whose activity is inhibited in vitro by stoichiometric concentrations of ε2 antitoxin. In vivo, transient ζ expression promotes a reversible multi-level response by altering the pool of signaling purine nucleotides, which leads to growth arrest (dormancy), although a small cell subpopulation persists rather than tolerating toxin action. High c-di-AMP levels (absence of phosphodiesterase GdpP) decrease, and low c-di-AMP levels (absence of diadenylate cyclase DisA) increase the rate of ζ persistence. The absence of CodY, a transition regulator from exponential to stationary phase, sensitizes cells to toxin action, and suppresses persisters formed in the ΔdisA context. These changes, which do not affect the levels of stochastic ampicillin (Amp) persistence, sensitize cells to toxin and Amp action. Our findings provide an explanation for the connection between ζ-mediated growth arrest (with alterations in the GTP and c-di-AMP pools) and persistence formation.
Collapse
Affiliation(s)
- María Moreno-Del Álamo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Mariangela Tabone
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Virginia S Lioy
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CSIC)Madrid, Spain
| |
Collapse
|
40
|
Genome-Wide Investigation of Biofilm Formation in Bacillus cereus. Appl Environ Microbiol 2017; 83:AEM.00561-17. [PMID: 28432092 DOI: 10.1128/aem.00561-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 01/03/2023] Open
Abstract
Bacillus cereus is a soil-dwelling Gram-positive bacterium capable of forming structured multicellular communities, or biofilms. However, the regulatory pathways controlling biofilm formation are less well understood in B. cereus In this work, we developed a method to study B. cereus biofilms formed at the air-liquid interface. We applied two genome-wide approaches, random transposon insertion mutagenesis to identify genes that are potentially important for biofilm formation, and transcriptome analyses by RNA sequencing (RNA-seq) to characterize genes that are differentially expressed in B. cereus when cells were grown in a biofilm-inducing medium. For the first approach, we identified 23 genes whose disruption by transposon insertion led to altered biofilm phenotypes. Based on the predicted function, they included genes involved in processes such as nucleotide biosynthesis, iron salvage, and antibiotic production, as well as genes encoding an ATP-dependent protease and transcription regulators. Transcriptome analyses identified about 500 genes that were differentially expressed in cells grown under biofilm-inducing conditions. One particular set of those genes may contribute to major metabolic shifts, leading to elevated production of small volatile molecules. Selected volatile molecules were shown to stimulate robust biofilm formation in B. cereus Our studies represent a genome-wide investigation of B. cereus biofilm formation.IMPORTANCE In this work, we established a robust method for B. cereus biofilm studies and applied two genome-wide approaches, transposon insertion mutagenesis and transcriptome analyses by RNA-seq, to identify genes and pathways that are potentially important for biofilm formation in B. cereus We discovered dozens of genes and two major metabolic shifts that seem to be important for biofilm formation in B. cereus Our study represents a genome-wide investigation on B. cereus biofilm formation.
Collapse
|
41
|
Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by In Vivo Footprinting. J Bacteriol 2017; 199:JB.00086-17. [PMID: 28439033 DOI: 10.1128/jb.00086-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Upon oxygen limitation, the Bacillus subtilis ResE sensor kinase and its cognate ResD response regulator play primary roles in the transcriptional activation of genes functioning in anaerobic respiration. The nitric oxide (NO)-sensitive NsrR repressor controls transcription to support nitrate respiration. In addition, the ferric uptake repressor (Fur) can modulate transcription under anaerobic conditions. However, whether these controls are direct or indirect has been investigated only in a gene-specific manner. To gain a genomic view of anaerobic gene regulation, we determined the genome-wide in vivo DNA binding of ResD, NsrR, and Fur transcription factors (TFs) using in situ DNase I footprinting combined with chromatin affinity precipitation sequencing (ChAP-seq; genome footprinting by high-throughput sequencing [GeF-seq]). A significant number of sites were targets of ResD and NsrR, and a majority of them were also bound by Fur. The binding of multiple TFs to overlapping targets affected each individual TF's binding, which led to combinatorial transcriptional control. ResD bound to both the promoters and the coding regions of genes under its positive control. Other genes showing enrichment of ResD at only the promoter regions are targets of direct ResD-dependent repression or antirepression. The results support previous findings of ResD as an RNA polymerase (RNAP)-binding protein and indicated that ResD can associate with the transcription elongation complex. The data set allowed us to reexamine consensus sequence motifs of Fur, ResD, and NsrR and uncovered evidence that multiple TGW (where W is A or T) sequences surrounded by an A- and T-rich sequence are often found at sites where all three TFs competitively bind.IMPORTANCE Bacteria encounter oxygen fluctuation in their natural environment as well as in host organisms. Hence, understanding how bacteria respond to oxygen limitation will impact environmental and human health. ResD, NsrR, and Fur control transcription under anaerobic conditions. This work using in situ DNase I footprinting uncovered the genome-wide binding profile of the three transcription factors (TFs). Binding of the TFs is often competitive or cooperative depending on the promoters and the presence of other TFs, indicating that transcriptional regulation by multiple TFs is much more complex than we originally thought. The results from this study provide a more complete picture of anaerobic gene regulation governed by ResD, NsrR, and Fur and contribute to our further understanding of anaerobic physiology.
Collapse
|
42
|
Zhu C, Xiao F, Qiu Y, Wang Q, He Z, Chen S. Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids. Appl Microbiol Biotechnol 2017; 101:6375-6383. [DOI: 10.1007/s00253-017-8352-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 01/31/2023]
|
43
|
Selby CP. Mfd Protein and Transcription-Repair Coupling in Escherichia coli. Photochem Photobiol 2017; 93:280-295. [PMID: 27864884 DOI: 10.1111/php.12675] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023]
Abstract
In 1989, transcription-repair coupling (TRC) was first described in Escherichia coli, as the transcription-dependent, preferential nucleotide excision repair (NER) of UV photoproducts located in the template DNA strand. This finding led to pioneering biochemical studies of TRC in the laboratory of Professor Aziz Sancar, where, at the time, major contributions were being made toward understanding the roles of the UvrA, UvrB and UvrC proteins in NER. When the repair studies were extended to TRC, template but not coding strand lesions were found to block RNA polymerase (RNAP) in vitro, and unexpectedly, the blocked RNAP inhibited NER. A transcription-repair coupling factor, also called Mfd protein, was found to remove the blocked RNAP, deliver the repair enzyme to the lesion and thereby mediate more rapid repair of the transcription-blocking lesion compared with lesions elsewhere. Structural and functional analyses of Mfd protein revealed helicase motifs responsible for ATP hydrolysis and DNA binding, and regions that interact with RNAP and UvrA. These and additional studies provided a basis upon which other investigators, in following decades, have characterized fascinating and unexpected structural and mechanistic features of Mfd, revealed the possible existence of additional pathways of TRC and discovered additional roles of Mfd in the cell.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
44
|
Levdikov VM, Blagova E, Young VL, Belitsky BR, Lebedev A, Sonenshein AL, Wilkinson AJ. Structure of the Branched-chain Amino Acid and GTP-sensing Global Regulator, CodY, from Bacillus subtilis. J Biol Chem 2016; 292:2714-2728. [PMID: 28011634 PMCID: PMC5314169 DOI: 10.1074/jbc.m116.754309] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/23/2016] [Indexed: 01/02/2023] Open
Abstract
CodY is a branched-chain amino acid (BCAA) and GTP sensor and a global regulator of transcription in low G + C Gram-positive bacteria. It controls the expression of over 100 genes and operons, principally by repressing during growth genes whose products are required for adaptations to nutrient limitation. However, the mechanism by which BCAA binding regulates transcriptional changes is not clear. It is known that CodY consists of a GAF (cGMP-stimulated phosphodiesterases, adenylate cyclases, FhlA) domain that binds BCAAs and a winged helix-turn-helix (wHTH) domain that binds to DNA, but the way in which these domains interact and the structural basis of the BCAA dependence of this interaction are unknown. To gain new insights, we determined the crystal structure of unliganded CodY from Bacillus subtilis revealing a 10-turn α-helix linking otherwise discrete GAF and wHTH domains. The structure of CodY in complex with isoleucine revealed a reorganized GAF domain. In both complexes CodY was tetrameric. Size exclusion chromatography with multiangle laser light scattering (SEC-MALLS) experiments showed that CodY is a dimer at concentrations found in bacterial cells. Comparison of structures of dimers of unliganded CodY and CodY-Ile derived from the tetramers showed a splaying of the wHTH domains when Ile was bound; splaying is likely to account for the increased affinity of Ile-bound CodY for DNA. Electrophoretic mobility shift and SEC-MALLS analyses of CodY binding to 19-36-bp operator fragments are consistent with isoleucine-dependent binding of two CodY dimers per duplex. The implications of these observations for effector control of CodY activity are discussed.
Collapse
Affiliation(s)
- Vladimir M Levdikov
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Elena Blagova
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Vicki L Young
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Boris R Belitsky
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Andrey Lebedev
- the STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Abraham L Sonenshein
- the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, and
| | - Anthony J Wilkinson
- From the Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom,
| |
Collapse
|
45
|
Brinsmade SR. CodY, a master integrator of metabolism and virulence in Gram-positive bacteria. Curr Genet 2016; 63:417-425. [PMID: 27744611 DOI: 10.1007/s00294-016-0656-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
Abstract
A growing body of evidence points to CodY, a global regulator in Gram-positive bacteria, as a critical link between microbial physiology and pathogenesis in diverse environments. Recent studies uncovering graded regulation of CodY gene targets reflect the true nature of this transcription factor controlled by ligands and reveal nutrient availability as a potentially critical factor in modulating pathogenesis. This review will serve to update the status of the field and raise new questions to be answered.
Collapse
|
46
|
Kaiser JC, Sen S, Sinha A, Wilkinson BJ, Heinrichs DE. The role of two branched-chain amino acid transporters in Staphylococcus aureus growth, membrane fatty acid composition and virulence. Mol Microbiol 2016; 102:850-864. [PMID: 27589208 DOI: 10.1111/mmi.13495] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/24/2022]
Abstract
The branched-chain amino acids (BCAAs) are vital to both growth and virulence of the human pathogen Staphylococcus aureus. In addition to supporting protein synthesis, the BCAAs serve as precursors for branched-chain fatty acids (BCFAs), which are predominant membrane fatty acids, and, in association with the global regulatory protein CodY, the BCAAs are key co-regulators of virulence factors. Despite these critical functions, S. aureus represses Leu and Val synthesis, instead preferring to acquire them from the extracellular milieu. We previously identified BrnQ1 as a BCAA transporter, yet a brnQ1 mutant remained capable of BCAA acquisition. Here, we describe BcaP as an additional BCAA transporter, and determine that it plays a secondary role to BrnQ1 during S. aureus growth in a chemically defined medium. Furthermore, membrane fatty acid composition analysis revealed that BrnQ1, and not BcaP, is required for transporting Leu and Val to be used for iso-BCFA synthesis. Despite a predominant role for BrnQ1 in vitro, both BrnQ1 and BcaP are required for S. aureus fitness in vivo in a hematogenous spread infection model and a nasal colonisation model. These data demonstrate the importance of BrnQ1 and BcaP for growth, environmental adaptation and virulence of S. aureus.
Collapse
Affiliation(s)
- Julienne C Kaiser
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Suranjana Sen
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Anshul Sinha
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - David E Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
47
|
Han AR, Kang HR, Son J, Kwon DH, Kim S, Lee WC, Song HK, Song MJ, Hwang KY. The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism. Nucleic Acids Res 2016; 44:9483-9493. [PMID: 27596595 PMCID: PMC5100569 DOI: 10.1093/nar/gkw775] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022] Open
Abstract
GTP and branched-chain amino acids (BCAAs) are metabolic sensors that are indispensable for the determination of the metabolic status of cells. However, their molecular sensing mechanism remains unclear. CodY is a unique global transcription regulator that recognizes GTP and BCAAs as specific signals and affects expression of more than 100 genes associated with metabolism. Herein, we report the first crystal structures of the full-length CodY complex with sensing molecules and describe their functional states. We observed two different oligomeric states of CodY: a dimeric complex of CodY from Staphylococcus aureus with the two metabolites GTP and isoleucine, and a tetrameric form (apo) of CodY from Bacillus cereus. Notably, the tetrameric state shows in an auto-inhibitory manner by blocking the GTP-binding site, whereas the binding sites of GTP and isoleucine are clearly visible in the dimeric state. The GTP is located at a hinge site between the long helical region and the metabolite-binding site. Together, data from structural and electrophoretic mobility shift assay analyses improve understanding of how CodY senses GTP and operates as a DNA-binding protein and a pleiotropic transcription regulator.
Collapse
Affiliation(s)
- Ah-Reum Han
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Hye-Ri Kang
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Jonghyeon Son
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Do Hoon Kwon
- Department of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Sulhee Kim
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Woo Cheol Lee
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Hyun Kyu Song
- Department of Life Sciences, College of Life Sciences & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Moon Jung Song
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| | - Kwang Yeon Hwang
- Department of Biosystems & Biotechnology, Korea University, Anam-dong, Seoungbuk-gu, Seoul 136-713, South Korea
| |
Collapse
|
48
|
Kim SK, Jung KH, Chai YG. Changes in Bacillus anthracis CodY regulation under host-specific environmental factor deprived conditions. BMC Genomics 2016; 17:645. [PMID: 27530340 PMCID: PMC4987991 DOI: 10.1186/s12864-016-3004-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Background Host-specific environmental factors induce changes in Bacillus anthracis gene transcription during infection. A global transcription regulator, CodY, plays a pivotal role in regulating central metabolism, biosynthesis, and virulence in B. anthracis. In this study, we utilized RNA-sequencing to assess changes in the transcriptional patterns of CodY-regulated B. anthracis genes in response to three conditions of environmental starvation: iron, CO2, or glucose deprivation. In addition, we performed chromatin immunoprecipitation on newly identified CodY-mediated genes. Results Environmental deprivation induced transcriptional changes in CodY-regulated genes in both wild-type and codY null strains, and both CodY-specific and environment-specific patterns were observed. In the iron-depleted condition, overexpression of iron homeostasis genes was observed independent of codY deletion; however, transcription of siderophore and amino acid biosynthesis genes was CodY dependent. Although CodY has a significant regulatory role in central metabolism and the carbon overflow pathway, metabolism-associated genes exhibited CodY-independent expression patterns under glucose starvation. Genes that were differentially expressed in response to CO2 availability showed CodY-dependent regulation, though their maximal expression did require a supply of CO2/bicarbonate. Conclusions We speculate that CodY regulates the expression of environmental-responsive genes in a hierarchical manner and is likely associated with other transcription regulators that are specific for a particular environmental change. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3004-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Kye Kim
- Department of Molecular and Life Science, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University ERICA, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do, 15588, Republic of Korea. .,Department of Bionanotechnology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
49
|
CodY-Dependent Regulation of Sporulation in Clostridium difficile. J Bacteriol 2016; 198:2113-30. [PMID: 27246573 DOI: 10.1128/jb.00220-16] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/22/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Clostridium difficile must form a spore to survive outside the gastrointestinal tract. The factors that trigger sporulation in C. difficile remain poorly understood. Previous studies have suggested that a link exists between nutritional status and sporulation initiation in C. difficile In this study, we investigated the impact of the global nutritional regulator CodY on sporulation in C. difficile strains from the historical 012 ribotype and the current epidemic 027 ribotype. Sporulation frequencies were increased in both backgrounds, demonstrating that CodY represses sporulation in C. difficile The 027 codY mutant exhibited a greater increase in spore formation than the 012 codY mutant. To determine the role of CodY in the observed sporulation phenotypes, we examined several factors that are known to influence sporulation in C. difficile Using transcriptional reporter fusions and quantitative reverse transcription-PCR (qRT-PCR) analysis, we found that two loci associated with the initiation of sporulation, opp and sinR, are regulated by CodY. The data demonstrate that CodY is a repressor of sporulation in C. difficile and that the impact of CodY on sporulation and expression of specific genes is significantly influenced by the strain background. These results suggest that the variability of CodY-dependent regulation is an important contributor to virulence and sporulation in current epidemic isolates. This report provides further evidence that nutritional state, virulence, and sporulation are linked in C. difficile IMPORTANCE This study sought to examine the relationship between nutrition and sporulation in C. difficile by examining the global nutritional regulator CodY. CodY is a known virulence and nutritional regulator of C. difficile, but its role in sporulation was unknown. Here, we demonstrate that CodY is a negative regulator of sporulation in two different ribotypes of C. difficile We also demonstrate that CodY regulates known effectors of sporulation, Opp and SinR. These results support the idea that nutrient limitation is a trigger for sporulation in C. difficile and that the response to nutrient limitation is coordinated by CodY. Additionally, we demonstrate that CodY has an altered role in sporulation regulation for some strains.
Collapse
|
50
|
Regulation of Toxin Production in Clostridium perfringens. Toxins (Basel) 2016; 8:toxins8070207. [PMID: 27399773 PMCID: PMC4963840 DOI: 10.3390/toxins8070207] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/24/2016] [Indexed: 01/10/2023] Open
Abstract
The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here.
Collapse
|