1
|
Bhardwaj I, Singh S, Ansari AH, Rai SP, Singh D. Effect of stress on neuronal cell: Morphological to molecular approach. PROGRESS IN BRAIN RESEARCH 2025; 291:469-502. [PMID: 40222791 DOI: 10.1016/bs.pbr.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Stress can be characterized as any perceived or actual threat that necessitates compensatory actions to maintain homeostasis. It can alter an organism's behavior over time by permanently altering the composition and functionality of brain circuitry. The amygdala and prefrontal cortex are two interrelated brain regions that have been the focus of initial research on stress and brain structural and functional plasticity, with the hippocampus serving as the entry point for most of this knowledge. Prolonged stress causes significant morphological alterations in important brain regions such as the hippocampus, amygdala, and prefrontal cortex. Memory, learning, and emotional regulation are among the cognitive functions that are adversely affected by these changes, including neuronal shrinkage, dendritic retraction, and synaptic malfunction. Stress perturbs the equilibrium of neurotransmitters, neuronal plasticity, and mitochondrial function at the molecular level. On the other hand, chronic stress negatively impacts physiology and can result in neuropsychiatric diseases. Recent molecular research has linked various epigenetic processes, such as DNA methylation, histone modifications, and noncoding RNAs, to the dysregulation of genes in the impacted brain circuits responsible for the pathophysiology of chronic stress. Numerous disorders, including neurodegenerative diseases (NDDs) including Alzheimer's, amyotrophic lateral sclerosis, Friedreich's ataxia, Huntington's disease, multiple sclerosis, and Parkinson's disease, have been linked to oxidative stress as a possible cause.
Collapse
Affiliation(s)
- Ishita Bhardwaj
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Sippy Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Atifa Haseeb Ansari
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Swayam Prabha Rai
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India
| | - Durgesh Singh
- Department of Zoology, S.S. Khanna Girls' Degree College, Prayagraj (A Constituent College of University of Allahabad, Prayagraj), Uttar Pradesh, India.
| |
Collapse
|
2
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
3
|
Armirola-Ricaurte C, Morant L, Adant I, Hamed SA, Pipis M, Efthymiou S, Amor-Barris S, Atkinson D, Van de Vondel L, Tomic A, de Vriendt E, Zuchner S, Ghesquiere B, Hanna M, Houlden H, Lunn MP, Reilly MM, Rasic VM, Jordanova A. Biallelic variants in COX18 cause a mitochondrial disorder primarily manifesting as peripheral neuropathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.03.24309787. [PMID: 39006432 PMCID: PMC11245062 DOI: 10.1101/2024.07.03.24309787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.
Collapse
|
4
|
Ali A, Esmaeil A, Behbehani R. Mitochondrial Chronic Progressive External Ophthalmoplegia. Brain Sci 2024; 14:135. [PMID: 38391710 PMCID: PMC10887352 DOI: 10.3390/brainsci14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia (CPEO) is a rare disorder that can be at the forefront of several mitochondrial diseases. This review overviews mitochondrial CPEO encephalomyopathies to enhance accurate recognition and diagnosis for proper management. METHODS This study is conducted based on publications and guidelines obtained by selective review in PubMed. Randomized, double-blind, placebo-controlled trials, Cochrane reviews, and literature meta-analyses were particularly sought. DISCUSSION CPEO is a common presentation of mitochondrial encephalomyopathies, which can result from alterations in mitochondrial or nuclear DNA. Genetic sequencing is the gold standard for diagnosing mitochondrial encephalomyopathies, preceded by non-invasive tests such as fibroblast growth factor-21 and growth differentiation factor-15. More invasive options include a muscle biopsy, which can be carried out after uncertain diagnostic testing. No definitive treatment option is available for mitochondrial diseases, and management is mainly focused on lifestyle risk modification and supplementation to reduce mitochondrial load and symptomatic relief, such as ptosis repair in the case of CPEO. Nevertheless, various clinical trials and endeavors are still at large for achieving beneficial therapeutic outcomes for mitochondrial encephalomyopathies. KEY MESSAGES Understanding the varying presentations and genetic aspects of mitochondrial CPEO is crucial for accurate diagnosis and management.
Collapse
Affiliation(s)
| | | | - Raed Behbehani
- Neuro-Ophthalmology Unit, Ibn Sina Hospital, Al-Bahar Ophthalmology Center, Kuwait City 70035, Kuwait; (A.A.); (A.E.)
| |
Collapse
|
5
|
Mishra G, Coyne LP, Chen XJ. Adenine nucleotide carrier protein dysfunction in human disease. IUBMB Life 2023; 75:911-925. [PMID: 37449547 PMCID: PMC10592433 DOI: 10.1002/iub.2767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Adenine nucleotide translocase (ANT) is the prototypical member of the mitochondrial carrier protein family, primarily involved in ADP/ATP exchange across the inner mitochondrial membrane. Several carrier proteins evolutionarily related to ANT, including SLC25A24 and SLC25A25, are believed to promote the exchange of cytosolic ATP-Mg2+ with phosphate in the mitochondrial matrix. They allow a net accumulation of adenine nucleotides inside mitochondria, which is essential for mitochondrial biogenesis and cell growth. In the last two decades, mutations in the heart/muscle isoform 1 of ANT (ANT1) and the ATP-Mg2+ transporters have been found to cause a wide spectrum of human diseases by a recessive or dominant mechanism. Although loss-of-function recessive mutations cause a defect in oxidative phosphorylation and an increase in oxidative stress which drives the pathology, it is unclear how the dominant missense mutations in these proteins cause human diseases. In this review, we focus on how yeast was productively used as a model system for the understanding of these dominant diseases. We also describe the relationship between the structure and function of ANT and how this may relate to various pathologies. Particularly, mutations in Aac2, the yeast homolog of ANT, were recently found to clog the mitochondrial protein import pathway. This leads to mitochondrial precursor overaccumulation stress (mPOS), characterized by the toxic accumulation of unimported mitochondrial proteins in the cytosol. We anticipate that in coming years, yeast will continue to serve as a useful model system for the mechanistic understanding of mitochondrial protein import clogging and related pathologies in humans.
Collapse
Affiliation(s)
- Gargi Mishra
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Liam P Coyne
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Xin Jie Chen
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
6
|
Zhang A, Liu Y, Pan J, Pontanari F, Chia-Hao Chang A, Wang H, Gao S, Wang C, Chang AC. Delivery of mitochondria confers cardioprotection through mitochondria replenishment and metabolic compliance. Mol Ther 2023; 31:1468-1479. [PMID: 36805084 PMCID: PMC10188643 DOI: 10.1016/j.ymthe.2023.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/15/2022] [Accepted: 02/16/2023] [Indexed: 02/21/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of heart failure. Mitochondrial transplantation has been demonstrated to be able to restore heart function, but its mechanism of action remains unresolved. Using an in-house optimized mitochondrial isolation method, we tested efficacy of mitochondria transplantation in two different heart failure models. First, using a doxorubicin-induced heart failure model, we demonstrate that mitochondrial transplantation before doxorubicin challenge protects cardiac function in vivo and prevents myocardial apoptosis, but contraction improvement relies on the metabolic compatibility between transplanted mitochondria and treated cardiomyocytes. Second, using a mutation-driven dilated cardiomyopathic human induced pluripotent stem cell-derived cardiomyocyte model, we demonstrate that mitochondrial transplantation preferentially boosts contraction in the ventricular myocytes. Last, using single-cell RNA-seq, we show that mitochondria transplantation boosts contractility in dystrophic cardiomyocytes with few transcriptomic alterations. Together, we provide evidence that mitochondria transplantation confers myocardial protection and may serve as a potential therapeutic option for heart failure.
Collapse
Affiliation(s)
- Alian Zhang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yangyang Liu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Jianan Pan
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Francesca Pontanari
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Andrew Chia-Hao Chang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Honghui Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuang Gao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Department of Clinical Medicine, Jining Medical University, Jining 272000, China
| | - Changqian Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Alex Cy Chang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| |
Collapse
|
7
|
Morciano G, Boncompagni C, Ramaccini D, Pedriali G, Bouhamida E, Tremoli E, Giorgi C, Pinton P. Comprehensive Analysis of Mitochondrial Dynamics Alterations in Heart Diseases. Int J Mol Sci 2023; 24:ijms24043414. [PMID: 36834825 PMCID: PMC9961104 DOI: 10.3390/ijms24043414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The most common alterations affecting mitochondria, and associated with cardiac pathological conditions, implicate a long list of defects. They include impairments of the mitochondrial electron transport chain activity, which is a crucial element for energy formation, and that determines the depletion of ATP generation and supply to metabolic switches, enhanced ROS generation, inflammation, as well as the dysregulation of the intracellular calcium homeostasis. All these signatures significantly concur in the impairment of cardiac electrical characteristics, loss of myocyte contractility and cardiomyocyte damage found in cardiac diseases. Mitochondrial dynamics, one of the quality control mechanisms at the basis of mitochondrial fitness, also result in being dysregulated, but the use of this knowledge for translational and therapeutic purposes is still in its infancy. In this review we tried to understand why this is, by summarizing methods, current opinions and molecular details underlying mitochondrial dynamics in cardiac diseases.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| | | | | | - Gaia Pedriali
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Esmaa Bouhamida
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Elena Tremoli
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy
- Correspondence: (G.M.); (P.P.); Tel.: +05-32-455-802 (G.M. & P.P.)
| |
Collapse
|
8
|
Targeting mitochondrial impairment for the treatment of cardiovascular diseases: From hypertension to ischemia-reperfusion injury, searching for new pharmacological targets. Biochem Pharmacol 2023; 208:115405. [PMID: 36603686 DOI: 10.1016/j.bcp.2022.115405] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Mitochondria and mitochondrial proteins represent a group of promising pharmacological target candidates in the search of new molecular targets and drugs to counteract the onset of hypertension and more in general cardiovascular diseases (CVDs). Indeed, several mitochondrial pathways result impaired in CVDs, showing ATP depletion and ROS production as common traits of cardiac tissue degeneration. Thus, targeting mitochondrial dysfunction in cardiomyocytes can represent a successful strategy to prevent heart failure. In this context, the identification of new pharmacological targets among mitochondrial proteins paves the way for the design of new selective drugs. Thanks to the advances in omics approaches, to a greater availability of mitochondrial crystallized protein structures and to the development of new computational approaches for protein 3D-modelling and drug design, it is now possible to investigate in detail impaired mitochondrial pathways in CVDs. Furthermore, it is possible to design new powerful drugs able to hit the selected pharmacological targets in a highly selective way to rescue mitochondrial dysfunction and prevent cardiac tissue degeneration. The role of mitochondrial dysfunction in the onset of CVDs appears increasingly evident, as reflected by the impairment of proteins involved in lipid peroxidation, mitochondrial dynamics, respiratory chain complexes, and membrane polarization maintenance in CVD patients. Conversely, little is known about proteins responsible for the cross-talk between mitochondria and cytoplasm in cardiomyocytes. Mitochondrial transporters of the SLC25A family, in particular, are responsible for the translocation of nucleotides (e.g., ATP), amino acids (e.g., aspartate, glutamate, ornithine), organic acids (e.g. malate and 2-oxoglutarate), and other cofactors (e.g., inorganic phosphate, NAD+, FAD, carnitine, CoA derivatives) between the mitochondrial and cytosolic compartments. Thus, mitochondrial transporters play a key role in the mitochondria-cytosol cross-talk by leading metabolic pathways such as the malate/aspartate shuttle, the carnitine shuttle, the ATP export from mitochondria, and the regulation of permeability transition pore opening. Since all these pathways are crucial for maintaining healthy cardiomyocytes, mitochondrial carriers emerge as an interesting class of new possible pharmacological targets for CVD treatments.
Collapse
|
9
|
Sturm G, Karan KR, Monzel AS, Santhanam B, Taivassalo T, Bris C, Ware SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing J, Grassi B, Levine M, Horvath S, Haller RG, Lenaers G, Wallace DC, St-Onge MP, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano M, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol 2023; 6:22. [PMID: 36635485 PMCID: PMC9837150 DOI: 10.1038/s42003-022-04303-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/26/2022] [Indexed: 01/13/2023] Open
Abstract
Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.
Collapse
Affiliation(s)
- Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Kalpita R Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna S Monzel
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Balaji Santhanam
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, Clinical and Translational Research Building, University of Florida, Gainesville, FL, USA
| | - Céline Bris
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Sarah A Ware
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marissa Cross
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Atif Towheed
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Internal Medicine-Pediatrics Residency Program, University of Pittsburgh Medical Centre, Pittsburgh, PA, USA
| | - Albert Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Meagan J McManus
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, and Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Ronald G Haller
- Neuromuscular Center, Institute for Exercise and Environmental Medicine of Texas Health Resources and Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guy Lenaers
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marie-Pierre St-Onge
- Center of Excellence for Sleep & Circadian Research and Division of General Medicine, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Saeed Tavazoie
- Departments of Biological Sciences, Systems Biology, and Biochemistry and Molecular Biophysics, Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Vincent Procaccio
- Department of Genetics and Neurology, Angers Hospital, Angers, France
- UMR CNRS 6015, INSERM U1083, MITOVASC, SFR ICAT, Université d'Angers, Angers, France
| | - Brett A Kaufman
- Department of Medicine, Vascular Medicine Institute and Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erin L Seifert
- Department of Pathology and Genomic Medicine, and MitoCare Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michio Hirano
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, USA.
- New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
10
|
Schwartz B, Gjini P, Gopal DM, Fetterman JL. Inefficient Batteries in Heart Failure: Metabolic Bottlenecks Disrupting the Mitochondrial Ecosystem. JACC Basic Transl Sci 2022; 7:1161-1179. [PMID: 36687274 PMCID: PMC9849281 DOI: 10.1016/j.jacbts.2022.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Mitochondrial abnormalities have long been described in the setting of cardiomyopathies and heart failure (HF), yet the mechanisms of mitochondrial dysfunction in cardiac pathophysiology remain poorly understood. Many studies have described HF as an energy-deprived state characterized by a decline in adenosine triphosphate production, largely driven by impaired oxidative phosphorylation. However, impairments in oxidative phosphorylation extend beyond a simple decline in adenosine triphosphate production and, in fact, reflect pervasive metabolic aberrations that cannot be fully appreciated from the isolated, often siloed, interrogation of individual aspects of mitochondrial function. With the application of broader and deeper examinations into mitochondrial and metabolic systems, recent data suggest that HF with preserved ejection fraction is likely metabolically disparate from HF with reduced ejection fraction. In our review, we introduce the concept of the mitochondrial ecosystem, comprising intricate systems of metabolic pathways and dynamic changes in mitochondrial networks and subcellular locations. The mitochondrial ecosystem exists in a delicate balance, and perturbations in one component often have a ripple effect, influencing both upstream and downstream cellular pathways with effects enhanced by mitochondrial genetic variation. Expanding and deepening our vantage of the mitochondrial ecosystem in HF is critical to identifying consistent metabolic perturbations to develop therapeutics aimed at preventing and improving outcomes in HF.
Collapse
Key Words
- ADP, adenosine diphosphate
- ANT1, adenine translocator 1
- ATP, adenosine triphosphate
- CVD, cardiovascular disease
- DCM, dilated cardiomyopathy
- DRP-1, dynamin-related protein 1
- EET, epoxyeicosatrienoic acid
- FADH2/FAD, flavin adenine dinucleotide
- HETE, hydroxyeicosatetraenoic acid
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HIF1α, hypoxia-inducible factor 1α
- LV, left ventricle
- LVAD, left ventricular assist device
- LVEF, left ventricular ejection fraction
- NADH/NAD+, nicotinamide adenine dinucleotide
- OPA1, optic atrophy protein 1
- OXPHOS, oxidative phosphorylation
- PGC1-α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- SIRT1-7, sirtuins 1-7
- cardiomyopathy
- heart failure
- iPLA2γ, Ca2+-independent mitochondrial phospholipase
- mPTP, mitochondrial permeability transition pore
- metabolism
- mitochondria
- mitochondrial ecosystem
- mtDNA, mitochondrial DNA
Collapse
Affiliation(s)
- Brian Schwartz
- Evans Department of Medicine, Section of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Petro Gjini
- Evans Department of Medicine, Section of Internal Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Deepa M Gopal
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jessica L Fetterman
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Flierl A, Schriner SE, Hancock S, Coskun PE, Wallace DC. The mitochondrial adenine nucleotide transporters in myogenesis. Free Radic Biol Med 2022; 188:312-327. [PMID: 35714845 DOI: 10.1016/j.freeradbiomed.2022.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023]
Abstract
Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.
Collapse
Affiliation(s)
- Adrian Flierl
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Samuel E Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Saege Hancock
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
12
|
Roy A, Kandettu A, Ray S, Chakrabarty S. Mitochondrial DNA replication and repair defects: Clinical phenotypes and therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148554. [PMID: 35341749 DOI: 10.1016/j.bbabio.2022.148554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria is a unique cellular organelle involved in multiple cellular processes and is critical for maintaining cellular homeostasis. This semi-autonomous organelle contains its circular genome - mtDNA (mitochondrial DNA), that undergoes continuous cycles of replication and repair to maintain the mitochondrial genome integrity. The majority of the mitochondrial genes, including mitochondrial replisome and repair genes, are nuclear-encoded. Although the repair machinery of mitochondria is quite efficient, the mitochondrial genome is highly susceptible to oxidative damage and other types of exogenous and endogenous agent-induced DNA damage, due to the absence of protective histones and their proximity to the main ROS production sites. Mutations in replication and repair genes of mitochondria can result in mtDNA depletion and deletions subsequently leading to mitochondrial genome instability. The combined action of mutations and deletions can result in compromised mitochondrial genome maintenance and lead to various mitochondrial disorders. Here, we review the mechanism of mitochondrial DNA replication and repair process, key proteins involved, and their altered function in mitochondrial disorders. The focus of this review will be on the key genes of mitochondrial DNA replication and repair machinery and the clinical phenotypes associated with mutations in these genes.
Collapse
Affiliation(s)
- Abhipsa Roy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Swagat Ray
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
13
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Wu H, Gong G. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis 2022; 13:444. [PMID: 35534453 PMCID: PMC9085840 DOI: 10.1038/s41419-022-04906-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria are highly dynamic organelles that participate in ATP generation and involve calcium homeostasis, oxidative stress response, and apoptosis. Dysfunctional or damaged mitochondria could cause serious consequences even lead to cell death. Therefore, maintaining the homeostasis of mitochondria is critical for cellular functions. Mitophagy is a process of selectively degrading damaged mitochondria under mitochondrial toxicity conditions, which plays an essential role in mitochondrial quality control. The abnormal mitophagy that aggravates mitochondrial dysfunction is closely related to the pathogenesis of many diseases. As the myocardium is a highly oxidative metabolic tissue, mitochondria play a central role in maintaining optimal performance of the heart. Dysfunctional mitochondria accumulation is involved in the pathophysiology of cardiovascular diseases, such as myocardial infarction, cardiomyopathy and heart failure. This review discusses the most recent progress on mitophagy and its role in cardiovascular disease.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Huayan Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
14
|
Abstract
Primary mitochondrial diseases (PMDs) are the most prevalent inborn metabolic disorders, affecting an estimated 1 in 4,200 individuals. Endurance exercise is generally known to improve mitochondrial function, but its indication in the heterogeneous group of PMDs is unclear. We determined the relationship between mitochondrial mutations, endurance exercise response, and the underlying molecular pathways in mice with distinct mitochondrial mutations. This revealed that mitochondria are crucial regulators of exercise capacity and exercise response. Endurance exercise proved to be mostly beneficial across the different mitochondrial mutant mice with the exception of a worsened dilated cardiomyopathy in ANT1-deficient mice. Thus, therapeutic exercises, especially in patients with PMDs, should take into account the physical and mitochondrial genetic status of the patient. Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders. However, in PMDs the benefit of endurance exercise is unclear, and exercise might be beneficial for some mitochondrial disorders but contraindicated in others. Here we investigate the effect of an endurance exercise regimen in mouse models for PMDs harboring distinct mitochondrial mutations. We show that while an mtDNA ND6 mutation in complex I demonstrated improvement in response to exercise, mice with a CO1 mutation affecting complex IV showed significantly fewer positive effects, and mice with an ND5 complex I mutation did not respond to exercise at all. For mice deficient in the nDNA adenine nucleotide translocase 1 (Ant1), endurance exercise actually worsened the dilated cardiomyopathy. Correlating the gene expression profile of skeletal muscle and heart with the physiologic exercise response identified oxidative phosphorylation, amino acid metabolism, matrisome (extracellular matrix [ECM]) structure, and cell cycle regulation as key pathways in the exercise response. This emphasizes the crucial role of mitochondria in determining the exercise capacity and exercise response. Consequently, the benefit of endurance exercise in PMDs strongly depends on the underlying mutation, although our results suggest a general beneficial effect.
Collapse
|
15
|
Zhang H, Yan M, Liu T, Wei P, Chai N, Li L, Wang J, Yu X, Lin Y, Qiu B, Zhao Y. Dynamic Mitochondrial Proteome Under Polyamines Treatment in Cardiac Aging. Front Cell Dev Biol 2022; 10:840389. [PMID: 35372351 PMCID: PMC8965055 DOI: 10.3389/fcell.2022.840389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related alteration of mitochondria causes impaired cardiac function, along with cellular and molecular changes. Polyamines can extend the life span in mice. However, whether polyamines can affect the dynamic mitochondrial proteome, thereby preventing age-related changes in cardiac function and cardiac aging, remains unclear. In this study, we found that spermine (Spm) and spermidine (Spd) injection for 6 weeks could prevent 24-month-old rats heart dysfunction, improve mitochondrial function, and downregulate apoptosis. Using iTRAQ tools, we identify 75 mitochondrial proteins of statistically significant alteration in aging hearts, which mainly participate in important mitochondrial physiological activity, such as metabolism, translation, transport, apoptosis, and oxidative phosphorylation. Moreover, four proteins of differential expression, pyruvate dehydrogenase kinase (PDK4), trifunctional enzyme subunit alpha (HADHA), nicotinamide nucleotide transhydrogenase (NNT), and Annexin6, which were significantly associated with heart aging, were validated by Western blotting. In vitro, we further demonstrated polyamines could retard cardiomyocytes aging through downregulating the expression of PDK4 and thereby inhibiting cell apoptosis. In summary, the distinct mitochondrial proteins identified in this study suggested some candidates involved in the anti-aging of the heart after polyamines treatment, and PDK4 may provide molecular clues for polyamines to inhibit apoptosis and thus retard aging-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Meng Yan
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ting Liu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Peiling Wei
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Nannan Chai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- College of Nursing, Medical School of Chifeng University, Chifeng, China
| | - Lingxu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Nephrology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junying Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- Department of Medical Technology, Beijing Health Vocational College, Beijing, China
| | - Xue Yu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
| | - Yan Lin
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar, China
| | - Bintao Qiu
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yajun Zhao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Harbin, China
- *Correspondence: Yajun Zhao,
| |
Collapse
|
16
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
17
|
Proust B, Radić M, Vidaček NŠ, Cottet C, Attia S, Lamarche F, Ačkar L, Mikulčić VG, Tokarska-Schlattner M, Ćetković H, Schlattner U, Bosnar MH. NME6 is a phosphotransfer-inactive, monomeric NME/NDPK family member and functions in complexes at the interface of mitochondrial inner membrane and matrix. Cell Biosci 2021; 11:195. [PMID: 34789336 PMCID: PMC8597243 DOI: 10.1186/s13578-021-00707-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background NME6 is a member of the nucleoside diphosphate kinase (NDPK/NME/Nm23) family which has key roles in nucleotide homeostasis, signal transduction, membrane remodeling and metastasis suppression. The well-studied NME1-NME4 proteins are hexameric and catalyze, via a phospho-histidine intermediate, the transfer of the terminal phosphate from (d)NTPs to (d)NDPs (NDP kinase) or proteins (protein histidine kinase). For the NME6, a gene/protein that emerged early in eukaryotic evolution, only scarce and partially inconsistent data are available. Here we aim to clarify and extend our knowledge on the human NME6. Results We show that NME6 is mostly expressed as a 186 amino acid protein, but that a second albeit much less abundant isoform exists. The recombinant NME6 remains monomeric, and does not assemble into homo-oligomers or hetero-oligomers with NME1-NME4. Consequently, NME6 is unable to catalyze phosphotransfer: it does not generate the phospho-histidine intermediate, and no NDPK activity can be detected. In cells, we could resolve and extend existing contradictory reports by localizing NME6 within mitochondria, largely associated with the mitochondrial inner membrane and matrix space. Overexpressing NME6 reduces ADP-stimulated mitochondrial respiration and complex III abundance, thus linking NME6 to dysfunctional oxidative phosphorylation. However, it did not alter mitochondrial membrane potential, mass, or network characteristics. Our screen for NME6 protein partners revealed its association with NME4 and OPA1, but a direct interaction was observed only with RCC1L, a protein involved in mitochondrial ribosome assembly and mitochondrial translation, and identified as essential for oxidative phosphorylation. Conclusions NME6, RCC1L and mitoribosomes localize together at the inner membrane/matrix space where NME6, in concert with RCC1L, may be involved in regulation of the mitochondrial translation of essential oxidative phosphorylation subunits. Our findings suggest new functions for NME6, independent of the classical phosphotransfer activity associated with NME proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00707-0.
Collapse
Affiliation(s)
- Bastien Proust
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Martina Radić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Nikolina Škrobot Vidaček
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia.,Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Cécile Cottet
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Stéphane Attia
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Frédéric Lamarche
- Laboratory of Fundamental and Applied Bioenergetics, Univ. Grenoble Alpes and Inserm U1055, Grenoble, France
| | - Lucija Ačkar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Vlatka Godinić Mikulčić
- The Miroslav Krleža Institute of Lexicography, 10000, Zagreb, Croatia.,Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | | | - Helena Ćetković
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Uwe Schlattner
- Univ. Grenoble Alpes and Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France, and Institut Universitaire de France (IUF), Paris, France
| | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
18
|
Puffenberger EG. Mendelian disease research in the Plain populations of Lancaster County, Pennsylvania. Am J Med Genet A 2021; 185:3322-3333. [PMID: 34532947 DOI: 10.1002/ajmg.a.62489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 11/07/2022]
Abstract
Founder populations have long contributed to our knowledge of rare disease genes and phenotypes. From the pioneering work of Dr. Victor McKusick to today, research in these groups has shed light on rare recessive phenotypes, expanded the clinical spectrum of disease, and facilitated disease gene identification. Current clinical and research studies in these special groups augment the wealth of knowledge already gained, provide new insights into emerging problems such as variant interpretation and reduced penetrance, and contribute to the development of novel therapies for rare genetic diseases. Clinical developments over the past 30 years have altered the fundamental relationship with the Lancaster Plain communities: research has become more collaborative, and the knowledge imparted by these studies is now being harnessed to provide cutting-edge translational medicine to the very community of vulnerable individuals who need it most.
Collapse
|
19
|
Elorza AA, Soffia JP. mtDNA Heteroplasmy at the Core of Aging-Associated Heart Failure. An Integrative View of OXPHOS and Mitochondrial Life Cycle in Cardiac Mitochondrial Physiology. Front Cell Dev Biol 2021; 9:625020. [PMID: 33692999 PMCID: PMC7937615 DOI: 10.3389/fcell.2021.625020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
The most common aging-associated diseases are cardiovascular diseases which affect 40% of elderly people. Elderly people are prone to suffer aging-associated diseases which are not only related to health and medical cost but also to labor, household productivity and mortality cost. Aging is becoming a world problem and it is estimated that 21.8% of global population will be older than 65 years old in 2050; and for the first time in human history, there will be more elderly people than children. It is well accepted that the origin of aging-associated cardiovascular diseases is mitochondrial dysfunction. Mitochondria have their own genome (mtDNA) that is circular, double-stranded, and 16,569 bp long in humans. There are between 500 to 6000 mtDNA copies per cell which are tissue-specific. As a by-product of ATP production, reactive oxygen species (ROS) are generated which damage proteins, lipids, and mtDNA. ROS-mutated mtDNA co-existing with wild type mtDNA is called mtDNA heteroplasmy. The progressive increase in mtDNA heteroplasmy causes progressive mitochondrial dysfunction leading to a loss in their bioenergetic capacity, disruption in the balance of mitochondrial fusion and fission events (mitochondrial dynamics, MtDy) and decreased mitophagy. This failure in mitochondrial physiology leads to the accumulation of depolarized and ROS-generating mitochondria. Thus, besides attenuated ATP production, dysfunctional mitochondria interfere with proper cellular metabolism and signaling pathways in cardiac cells, contributing to the development of aging-associated cardiovascular diseases. In this context, there is a growing interest to enhance mitochondrial function by decreasing mtDNA heteroplasmy. Reduction in mtDNA heteroplasmy is associated with increased mitophagy, proper MtDy balance and mitochondrial biogenesis; and those processes can delay the onset or progression of cardiovascular diseases. This has led to the development of mitochondrial therapies based on the application of nutritional, pharmacological and genetic treatments. Those seeking to have a positive impact on mtDNA integrity, mitochondrial biogenesis, dynamics and mitophagy in old and sick hearts. This review covers the current knowledge of mitochondrial physiopathology in aging, how disruption of OXPHOS or mitochondrial life cycle alter mtDNA and cardiac cell function; and novel mitochondrial therapies to protect and rescue our heart from cardiovascular diseases.
Collapse
Affiliation(s)
- Alvaro A Elorza
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Juan Pablo Soffia
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
20
|
Muresanu C, Somasundaram SG, Neganova ME, Bovina EV, Vissarionov SV, Ofodile ON, Fisenko VP, Bragin V, Minyaeva NN, Chubarev VN, Klochkov SG, Tarasov VV, Mikhaleva LM, Kirkland CE, Aliev G. Updated Understanding of the Degenerative Disc Diseases - Causes Versus Effects - Treatments, Studies and Hypothesis. Curr Genomics 2020; 21:464-477. [PMID: 33093808 PMCID: PMC7536794 DOI: 10.2174/1389202921999200407082315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 03/16/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND In this review we survey medical treatments and research strategies, and we discuss why they have failed to cure degenerative disc diseases or even slow down the degenerative process. OBJECTIVE We seek to stimulate discussion with respect to changing the medical paradigm associated with treatments and research applied to degenerative disc diseases. METHOD PROPOSAL We summarize a Biological Transformation therapy for curing chronic inflammations and degenerative disc diseases, as was previously described in the book Biological Transformations controlled by the Mind Volume 1. PRELIMINARY STUDIES A single-patient case study is presented that documents complete recovery from an advanced lumbar bilateral discopathy and long-term hypertrophic chronic rhinitis by application of the method proposed. CONCLUSION Biological transformations controlled by the mind can be applied by men and women in order to improve their quality of life and cure degenerative disc diseases and chronic inflammations illnesses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gjumrakch Aliev
- Address correspondence to this author at the GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229 USA; Tel: +440-263-7461; E-mails: and
| |
Collapse
|
21
|
Bayona-Bafaluy MP, Iglesias E, López-Gallardo E, Emperador S, Pacheu-Grau D, Labarta L, Montoya J, Ruiz-Pesini E. Genetic aspects of the oxidative phosphorylation dysfunction in dilated cardiomyopathy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108334. [PMID: 33339579 DOI: 10.1016/j.mrrev.2020.108334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy is a frequent and extremely heterogeneous medical condition. Deficits in the oxidative phosphorylation system have been described in patients suffering from dilated cardiomyopathy. Hence, mutations in proteins related to this biochemical pathway could be etiological factors for some of these patients. Here, we review the clinical phenotypes of patients harboring pathological mutations in genes related to the oxidative phosphorylation system, either encoded in the mitochondrial or in the nuclear genome, presenting with dilated cardiomyopathy. In addition to the clinical heterogeneity of these patients, the large genetic heterogeneity has contributed to an improper allocation of pathogenicity for many candidate mutations. We suggest criteria to avoid incorrect assignment of pathogenicity to newly found mutations and discuss possible therapies targeting the oxidative phosphorylation function.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain.
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center, Georg-August University,Humboldtalle, 23., 37073, Göttingen, Germany.
| | - Lorenzo Labarta
- Unidad de Cuidados Intensivos, Hospital San Jorge, Av. Martínez de Velasco, 36., 22004, Huesca, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Fundación ARAID, Av. de Ranillas, 1-D., 50018, Zaragoza, Spain.
| |
Collapse
|
22
|
Suryawanshi H, Clancy R, Morozov P, Halushka MK, Buyon JP, Tuschl T. Cell atlas of the foetal human heart and implications for autoimmune-mediated congenital heart block. Cardiovasc Res 2020; 116:1446-1457. [PMID: 31589297 PMCID: PMC7314636 DOI: 10.1093/cvr/cvz257] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 01/01/2023] Open
Abstract
AIMS Investigating human heart development and applying this to deviations resulting in disease is incomplete without molecular characterization of the cell types required for normal functioning. We investigated foetal human heart single-cell transcriptomes from mid-gestational healthy and anti-SSA/Ro associated congenital heart block (CHB) samples. METHODS AND RESULTS Three healthy foetal human hearts (19th to 22nd week of gestation) and one foetal heart affected by autoimmune-associated CHB (21st week of gestation) were subjected to enzymatic dissociation using the Langendorff preparation to obtain single-cell suspensions followed by 10× Genomics- and Illumina-based single-cell RNA-sequencing (scRNA-seq). In addition to the myocytes, fibroblasts, immune cells, and other minor cell types, previously uncharacterized diverse sub-populations of endothelial cells were identified in the human heart. Differential gene expression analysis revealed increased and heterogeneous interferon responses in varied cell types of the CHB heart compared with the healthy controls. In addition, we also identified matrisome transcripts enriched in CHB stromal cells that potentially contribute to extracellular matrix deposition and subsequent fibrosis. CONCLUSION These data provide an information-rich resource to further our understanding of human heart development, which, as illustrated by comparison to a heart exposed to a maternal autoimmune environment, can be leveraged to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Hemant Suryawanshi
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Robert Clancy
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Pavel Morozov
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jill P Buyon
- Division of Rheumatology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, NY 10065, USA
| |
Collapse
|
23
|
Chung H, Kim Y, Cho SM, Lee HJ, Park CH, Kim JY, Lee SH, Min PK, Yoon YW, Lee BK, Kim WS, Hong BK, Kim TH, Rim SJ, Kwon HM, Choi EY, Lee KA. Differential contributions of sarcomere and mitochondria-related multigene variants to the endophenotype of hypertrophic cardiomyopathy. Mitochondrion 2020; 53:48-56. [PMID: 32380161 DOI: 10.1016/j.mito.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/20/2020] [Accepted: 04/29/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a multigenic disease that occurs due to various genetic modifiers. We investigated phenotype-based clinical and genetic characteristics of HCM patients using comprehensive genetic tests and rare variant association analysis. METHODS A comprehensive HCM-specific panel, consisting of 82 nuclear DNAs (nDNAs: 33 sarcomere-associated genes, 5 phenocopy genes, and 44 nuclear genes linked to mitochondrial cardiomyopathy) and 37 mitochondrial DNAs (mtDNAs), was analyzed. Rare variant analysis was performed to determine the association of specific genes with different phenotypes. RESULTS Among the 212 patients, pathogenic variants in sarcomere-associated genes were more prevalent in non-apical HCM (41.4%, 46/111; P = 0.001) than apical HCM (20.8%, 21/101). Apical HCM exhibits mild phenotypes than non-apical HCM, and it showed fewer numbers of sarcomere mutations than non-apical HCM. Interestingly, inverted mutation frequency of TNNI3 (35%) and MYH7 (9%) was observed in apical HCM. In a rare variant analysis, MT-RNR2 positively correlated with apical HCM (OR: 1.37, P = 0.025). And, MYBPC3 (sarcomere gene) negatively contributed to apical HCM (OR: 0.54, P = 0.027). On the other hand, both pathogenic mutation (P < 0.05) and rare variants in sarcomere-associated genes (OR: 2.78-3.47, P < 0.05) were related to diastolic dysfunction and left atrium remodeling, which correlated with poor prognosis in HCM patients. CONCLUSIONS Our results provide a clue towards explaining the difference between the prevalence and phenotype of apical HCM in Asian populations, and a foundation for genetics-based approaches that may enable individualized risk stratification for HCM patients.
Collapse
Affiliation(s)
- Hyemoon Chung
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul 02447, South Korea; Department of Internal Medicine, the Graduate School of Yonsei University, Seoul 03722, Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Sun-Mi Cho
- Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University, Sungnam 13496, South Korea
| | - Ho-Joon Lee
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chul-Hwan Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Jong-Youn Kim
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Pil-Ki Min
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Young Won Yoon
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Byoung Kwon Lee
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Woo-Shik Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul 02447, South Korea
| | - Bum-Kee Hong
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Tae Hoon Kim
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Se-Joong Rim
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Hyuck Moon Kwon
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea
| | - Eui-Young Choi
- Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea.
| | - Kyung-A Lee
- Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, South Korea.
| |
Collapse
|
24
|
Hagen CM, Elson JL, Hedley PL, Aidt FH, Havndrup O, Jensen MK, Kanters JK, Atherton JJ, McGaughran J, Bundgaard H, Christiansen M. Evolutionary dissection of mtDNA hg H: a susceptibility factor for hypertrophic cardiomyopathy. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:238-244. [PMID: 32602800 DOI: 10.1080/24701394.2020.1782897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial DNA (mtDNA) haplogroup (hg) H has been reported as a susceptibility factor for hypertrophic cardiomyopathy (HCM). This was established in genetic association studies, however, the SNP or SNP's that are associated with the increased risk have not been identified. Hg H is the most frequent European mtDNA hg with greater than 80 subhaplogroups (subhgs) each defined by specific SNPs. We tested the hypothesis that the distribution of H subhgs might differ between HCM patients and controls. The subhg H distribution in 55 HCM index cases was compared to that of two Danish mtDNA hg H control groups (n = 170 and n = 908, respectively). In the HCM group, H and 12 different H subhgs were found. All these, except subhgs H73, were also found in both control groups. The HCM group was also characterized by a higher proportion of H3 compared to H2. In the HCM group the H3/H2 proportion was 1.7, whereas it was 0.45 and 0.54 in the control groups. This tendency was replicated in an independent group of Hg H HCM index cases (n = 39) from Queensland, Australia, where the H3/H2 ratio was 1.5. In conclusion, the H subhgs distribution differs between HCM cases and controls, but the difference is subtle, and the understanding of the pathogenic significance is hampered by the lack of functional studies on the subhgs of H.
Collapse
Affiliation(s)
- Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joanna L Elson
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Frederik H Aidt
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark
| | - Ole Havndrup
- Department of Cardiology, Roskilde Hospital, Roskilde, Denmark
| | - Morten K Jensen
- Department of Medicine B, The Heart Center, Copenhagen, Denmark
| | - Jørgen K Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - John J Atherton
- Department of Cardiology, Royal Brisbane Hospital and School of Medicine, University of Queensland, Brisbane, Australia
| | - Julie McGaughran
- Queensland Clinical Genetics Service, Royal Children's Hospital and School of Medicine, Brisbane, Australia
| | | | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Pellegrino-Coppola D. Regulation of the mitochondrial permeability transition pore and its effects on aging. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:222-233. [PMID: 32904375 PMCID: PMC7453641 DOI: 10.15698/mic2020.09.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
Aging is an evolutionarily conserved process and is tightly connected to mitochondria. To uncover the aging molecular mechanisms related to mitochondria, different organisms have been extensively used as model systems. Among these, the budding yeast Saccharomyces cerevisiae has been reported multiple times as a model of choice when studying cellular aging. In particular, yeast provides a quick and trustworthy system to identify shared aging genes and pathway patterns. In this viewpoint on aging and mitochondria, I will focus on the mitochondrial permeability transition pore (mPTP), which has been reported and proposed as a main player in cellular aging. I will make several parallelisms with yeast to highlight how this unicellular organism can be used as a guidance system to understand conserved cellular and molecular events in multicellular organisms such as humans. Overall, a thread connecting the preservation of mitochondrial functionality with the activity of the mPTP emerges in the regulation of cell survival and cell death, which in turn could potentially affect aging and aging-related diseases.
Collapse
|
26
|
Rego-Pérez I, Durán-Sotuela A, Ramos-Louro P, Blanco FJ. Mitochondrial Genetics and Epigenetics in Osteoarthritis. Front Genet 2020; 10:1335. [PMID: 32010192 PMCID: PMC6978735 DOI: 10.3389/fgene.2019.01335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/06/2019] [Indexed: 12/30/2022] Open
Abstract
During recent years, the significant influence of mitochondria on osteoarthritis (OA), the most common joint disease, has been consistently demonstrated. Not only mitochondrial dysfunction but also mitochondrial genetic polymorphisms, specifically the mitochondrial DNA haplogroups, have been shown to have an important influence on different OA-related features, including the prevalence, severity, incidence, and progression of the disease. This influence could probably be mediated by the role of mitochondria in the regulation of different processes involved in the pathogenesis of OA, such as energy production, the generation of reactive oxygen and nitrogen species, apoptosis, and inflammation. The regulation of these processes is at least partially controlled by the bi-directional communication between the nucleus and mitochondria, which permits the regulation of adaptation to a wide range of stressors and the maintenance of cellular homeostasis. This bi-directional communication consists of an “anterograde regulation” by which the nucleus regulates mitochondrial biogenesis and activity and a “retrograde regulation” by which both mitochondria and mitochondrial genetic variation exert a regulatory signaling control over the nuclear epigenome, which leads to the modulation of nuclear genes. Throughout this mini review, we will describe the evidence that demonstrates the profound influence of the mitochondrial genetic background in the pathogenesis of OA, as well as its influence on the nuclear DNA methylome of the only cell type present in the articular cartilage, the chondrocyte. This evidence leads to serious consideration of the mitochondrion as an important therapeutic target in OA.
Collapse
Affiliation(s)
- Ignacio Rego-Pérez
- Grupo de Investigación en Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Alejandro Durán-Sotuela
- Grupo de Investigación en Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Paula Ramos-Louro
- Grupo de Investigación en Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación en Reumatología. Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
27
|
Nogueira M, De Craene M, Sanchez-Martinez S, Chowdhury D, Bijnens B, Piella G. Analysis of nonstandardized stress echocardiography sequences using multiview dimensionality reduction. Med Image Anal 2019; 60:101594. [PMID: 31785508 DOI: 10.1016/j.media.2019.101594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/22/2019] [Accepted: 10/25/2019] [Indexed: 11/25/2022]
Abstract
Alternative stress echocardiography protocols such as handgrip exercise are potentially more favorable towards large-scale screening scenarios than those currently adopted in clinical practice. However, these are still underexplored because the maximal exercise levels are not easily quantified and regulated, requiring the analysis of the complete data sequences (thousands of images), which represents a challenging task for the clinician. We propose a framework for the analysis of these complex datasets, and illustrate it on a handgrip exercise dataset including complete acquisitions of 10 healthy controls and 5 ANT1 mutation patients (1377 cardiac cycles). The framework is based on an unsupervised formulation of multiple kernel learning, which is used to integrate information coming from myocardial velocity traces and heart rate to obtain a lower-dimensional representation of the data. Such simplified representation is then explored to discriminate groups of response and understand the underlying pathophysiological mechanisms. The analysis pipeline involves the reconstruction of population-specific signatures using multiscale kernel regression, and the clustering of subjects based on the trajectories defined by their projected sequences. The results confirm that the proposed framework is able to detect distinctive clusters of response and to provide insight regarding the underlying pathophysiology.
Collapse
Affiliation(s)
- Mariana Nogueira
- Medisys, Philips Research Paris, France; PhySense, ETIC, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | - Bart Bijnens
- PhySense, ETIC, Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Gemma Piella
- SIMBIOsys, ETIC, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
28
|
Nguyen BY, Ruiz‐Velasco A, Bui T, Collins L, Wang X, Liu W. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol 2019; 176:4302-4318. [PMID: 29968316 PMCID: PMC6887906 DOI: 10.1111/bph.14431] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is considered as a crucial contributory factor in cardiac pathology. This has highlighted the therapeutic potential of targeting mitochondria to prevent or treat cardiac disease. Mitochondrial dysfunction is associated with aberrant electron transport chain activity, reduced ATP production, an abnormal shift in metabolic substrates, ROS overproduction and impaired mitochondrial dynamics. This review will cover the mitochondrial functions and how they are altered in various disease conditions. Furthermore, the mechanisms that lead to mitochondrial defects and the protective mechanisms that prevent mitochondrial damage will be discussed. Finally, potential mitochondrial targets for novel therapeutic intervention will be explored. We will highlight the development of small molecules that target mitochondria from different perspectives and their current progress in clinical trials. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Binh Yen Nguyen
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Andrea Ruiz‐Velasco
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Thuy Bui
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Lucy Collins
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Xin Wang
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| | - Wei Liu
- Faculty of Biology, Medicine and HealthThe University of ManchesterManchesterUK
| |
Collapse
|
29
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
30
|
Cruz-Topete D, Oakley RH, Carroll NG, He B, Myers PH, Xu X, Watts MN, Trosclair K, Glasscock E, Dominic P, Cidlowski JA. Deletion of the Cardiomyocyte Glucocorticoid Receptor Leads to Sexually Dimorphic Changes in Cardiac Gene Expression and Progression to Heart Failure. J Am Heart Assoc 2019; 8:e011012. [PMID: 31311395 PMCID: PMC6761632 DOI: 10.1161/jaha.118.011012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The contribution of glucocorticoids to sexual dimorphism in the heart is essentially unknown. Therefore, we sought to determine the sexually dimorphic actions of glucocorticoid signaling in cardiac function and gene expression. To accomplish this goal, we conducted studies on mice lacking glucocorticoid receptors (GR) in cardiomyocytes (cardioGRKO mouse model). Methods and Results Deletion of cardiomyocyte GR leads to an increase in mortality because of the development of spontaneous cardiac pathology in both male and female mice; however, females are more resistant to GR signaling inactivation in the heart. Male cardioGRKO mice had a median survival age of 6 months. In contrast, females had a median survival age of 10 months. Transthoracic echocardiography data showed phenotypic differences between male and female cardioGRKO hearts. By 3 months of age, male cardioGRKO mice exhibited left ventricular systolic dysfunction. Conversely, no significant functional deficits were observed in female cardioGRKO mice at the same time point. Functional sensitivity of male hearts to the loss of cardiomyocyte GR was reversed following gonadectomy. RNA‐Seq analysis showed that deleting GR in the male hearts leads to a more profound dysregulation in the expression of genes implicated in heart rate regulation (calcium handling). In agreement with these gene expression data, cardiomyocytes isolated from male cardioGRKO hearts displayed altered intracellular calcium responses. In contrast, female GR‐deficient cardiomyocytes presented a response comparable with controls. Conclusions These data suggest that GR regulates calcium responses in a sex‐biased manner, leading to sexually distinct responses to stress in male and female mice hearts, which may contribute to sex differences in heart disease, including the development of ventricular arrhythmias that contribute to heart failure and sudden death.
Collapse
Affiliation(s)
- Diana Cruz-Topete
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - Robert H Oakley
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Natalie G Carroll
- Department of Molecular and Cellular Physiology LSU Health Sciences Center Shreveport LA
| | - Bo He
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Page H Myers
- Comparative Medicine Branch National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Xiaojiang Xu
- Laboratory of Integrative Bioinformatics National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| | - Megan N Watts
- Department of Cardiology LSU Health Sciences Center Shreveport LA
| | - Krystle Trosclair
- Department of Cellular Biology and Anatomy LSU Health Sciences Center Shreveport LA
| | - Edward Glasscock
- Department of Cellular Biology and Anatomy LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - Paari Dominic
- Department of Cardiology LSU Health Sciences Center Shreveport LA.,Center for Cardiovascular Diseases and Sciences LSU Health Sciences Center Shreveport LA
| | - John A Cidlowski
- Signal Transduction Laboratory National Institute of Environmental Health Sciences National Institutes of Health Department of Health and Human Services Research Triangle Park NC
| |
Collapse
|
31
|
Coyne LP, Chen XJ. Consequences of inner mitochondrial membrane protein misfolding. Mitochondrion 2019; 49:46-55. [PMID: 31195097 DOI: 10.1016/j.mito.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 02/04/2023]
Abstract
Proteins embedded in the inner mitochondrial membrane (IMM) perform essential cellular functions. Maintaining the folding state of these proteins is therefore of the utmost importance, and this is ensured by IMM chaperones and proteases that refold and degrade unassembled and misfolded proteins. However, the physiological consequences specific to IMM protein misfolding remain obscure because deletion of these chaperones/proteases (the typical experimental strategy) often affects many mitochondrial processes other than protein folding and turnover. Thus, novel experimental systems are needed to evaluate the direct effects of misfolded protein on the membrane. Such a system has been developed in recent years. Studies suggest that numerous pathogenic mutations in isoform 1 of adenine nucleotide translocase (Ant1) cause its misfolding on the IMM. In this review, we first discuss potential mechanisms by which dominant Ant1 mutations may cause disease, highlighting IMM protein misfolding, per se, as a likely pathological factor. Then we discuss the intramitochondrial effects of Ant1 misfolding such as IMM proteostatic stress, respiratory chain dysfunction, and mtDNA instability. Finally, we summarize the mounting evidence that IMM proteostatic stress can perturb mitochondrial protein import to cause the toxic accumulation of mitochondrial proteins in the cytosol: a cell stress mechanism termed mitochondrial Precursor Overaccumulation Stress (mPOS).
Collapse
Affiliation(s)
- Liam P Coyne
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Xin Jie Chen
- Departments of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
32
|
Abstract
BACKGROUND The integration of biological, psychological, and social factors in medicine has benefited from increasingly precise stress response biomarkers. Mitochondria, a subcellular organelle with its own genome, produce the energy required for life and generate signals that enable stress adaptation. An emerging concept proposes that mitochondria sense, integrate, and transduce psychosocial and behavioral factors into cellular and molecular modifications. Mitochondrial signaling might in turn contribute to the biological embedding of psychological states. METHODS A narrative literature review was conducted to evaluate evidence supporting this model implicating mitochondria in the stress response, and its implementation in behavioral and psychosomatic medicine. RESULTS Chronically, psychological stress induces metabolic and neuroendocrine mediators that cause structural and functional recalibrations of mitochondria, which constitutes mitochondrial allostatic load. Clinically, primary mitochondrial defects affect the brain, the endocrine system, and the immune systems that play a role in psychosomatic processes, suggesting a shared underlying mechanistic basis. Mitochondrial function and dysfunction also contribute to systemic physiological regulation through the release of mitokines and other metabolites. At the cellular level, mitochondrial signaling influences gene expression and epigenetic modifications, and modulates the rate of cellular aging. CONCLUSIONS This evidence suggests that mitochondrial allostatic load represents a potential subcellular mechanism for transducing psychosocial experiences and the resulting emotional responses-both adverse and positive-into clinically meaningful biological and physiological changes. The associated article in this issue of Psychosomatic Medicine presents a systematic review of the effects of psychological stress on mitochondria. Integrating mitochondria into biobehavioral and psychosomatic research opens new possibilities to investigate how psychosocial factors influence human health and well-being across the life-span.
Collapse
Affiliation(s)
- Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Neurology, The H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY 10032, USA
- Columbia Aging Center, Columbia University, New York, NY 10032, USA
| | - Bruce S. McEwen
- Laboratory for Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
33
|
Dobler R, Dowling DK, Morrow EH, Reinhardt K. A systematic review and meta-analysis reveals pervasive effects of germline mitochondrial replacement on components of health. Hum Reprod Update 2019; 24:519-534. [PMID: 29757366 DOI: 10.1093/humupd/dmy018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/03/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Mitochondrial replacement, a form of nuclear transfer, has been proposed as a germline therapy to prevent the transmission of mitochondrial diseases. Mitochondrial replacement therapy has been licensed for clinical application in the UK, and already carried out in other countries, but little is known about negative or unintended effects on the health of offspring born using this technique. OBJECTIVE AND RATIONALE Studies in invertebrate models have used techniques that achieve mitochondrial replacement to create offspring with novel combinations of mitochondrial and nuclear genotype. These have demonstrated that the creation of novel mitochondrial-nuclear interactions can lead to alterations in offspring characteristics, such as development rates, fertility and longevity. However, it is currently unclear whether such interactions could similarly affect the outcomes of vertebrate biomedical studies, which have sought to assess the efficacy of the replacement therapy. SEARCH METHODS This systematic review addresses whether the effects of mitochondrial replacement on offspring characteristics differ in magnitude between biological (conducted on invertebrate models, with an ecological or evolutionary focus) and biomedical studies (conducted on vertebrate models, with a clinical focus). Studies were selected based on a key-word search in 'Web of Science', complemented by backward searches of reviews on the topic of mitochondrial-nuclear (mito-nuclear) interactions. In total, 43 of the resulting 116 publications identified in the search contained reliable data to estimate effect sizes of mitochondrial replacement. We found no evidence of publication bias when examining effect-size estimates across sample sizes. OUTCOMES Mitochondrial replacement consistently altered the phenotype, with significant effects at several levels of organismal performance and health, including gene expression, anatomy, metabolism and life-history. Biomedical and biological studies, while differing in the methods used to achieve mitochondrial replacement, showed only marginally significant differences in effect-size estimates (-0.233 [CI: -0.495 to -0.011]), with larger effect-size estimates in biomedical studies (0.697 [CI: 0.450-0.956]) than biological studies (0.462 [CI: 0.287-0.688]). Humans showed stronger effects than other species. Effects of mitochondrial replacement were also stronger in species with a higher basal metabolic rate. Based on our results, we conducted the first formal risk analysis of mitochondrial replacement, and conservatively estimate negative effects in at least one in every 130 resulting offspring born to the therapy. WIDER IMPLICATIONS Our findings suggest that mitochondrial replacement may routinely affect offspring characteristics across a wide array of animal species, and that such effects are likely to extend to humans. Studies in invertebrate models have confirmed mito-nuclear interactions as the underpinning cause of organismal effects following mitochondrial replacement. This therefore suggests that mito-nuclear interactions are also likely to be contributing to effects seen in biomedical studies, on vertebrate models, whose effect sizes exceeded those of biological studies. Our results advocate the use of safeguards that could offset any negative effects (defining any unintended effect as being negative) mediated by mito-nuclear interactions following mitochondrial replacement in humans, such as mitochondrial genetic matching between donor and recipient. Our results also suggest that further research into the molecular nature of mito-nuclear interactions would be beneficial in refining the clinical application of mitochondrial replacement, and in establishing what degree of variation between donor and patient mitochondrial DNA haplotypes is acceptable to ensure 'haplotype matching'.
Collapse
Affiliation(s)
- Ralph Dobler
- Applied Zoology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, Germany
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Vic., Australia
| | - Edward H Morrow
- Evolution, Behaviour and Environment Group, School of Life Sciences, University of Sussex, Brighton, UK
| | - Klaus Reinhardt
- Applied Zoology, Technische Universität Dresden, Zellescher Weg 20b, Dresden, Germany
| |
Collapse
|
34
|
McManus MJ, Picard M, Chen HW, De Haas HJ, Potluri P, Leipzig J, Towheed A, Angelin A, Sengupta P, Morrow RM, Kauffman BA, Vermulst M, Narula J, Wallace DC. Mitochondrial DNA Variation Dictates Expressivity and Progression of Nuclear DNA Mutations Causing Cardiomyopathy. Cell Metab 2019; 29:78-90.e5. [PMID: 30174309 PMCID: PMC6717513 DOI: 10.1016/j.cmet.2018.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 02/01/2018] [Accepted: 08/01/2018] [Indexed: 02/03/2023]
Abstract
Nuclear-encoded mutations causing metabolic and degenerative diseases have highly variable expressivity. Patients sharing the homozygous mutation (c.523delC) in the adenine nucleotide translocator 1 gene (SLC25A4, ANT1) develop cardiomyopathy that varies from slowly progressive to fulminant. This variability correlates with the mitochondrial DNA (mtDNA) lineage. To confirm that mtDNA variants can modulate the expressivity of nuclear DNA (nDNA)-encoded diseases, we combined in mice the nDNA Slc25a4-/- null mutation with a homoplasmic mtDNA ND6P25L or COIV421A variant. The ND6P25L variant significantly increased the severity of cardiomyopathy while the COIV421A variant was phenotypically neutral. The adverse Slc25a4-/- and ND6P25L combination was associated with impaired mitochondrial complex I activity, increased oxidative damage, decreased l-Opa1, altered mitochondrial morphology, sensitization of the mitochondrial permeability transition pore, augmented somatic mtDNA mutation levels, and shortened lifespan. The strikingly different phenotypic effects of these mild mtDNA variants demonstrate that mtDNA can be an important modulator of autosomal disease.
Collapse
Affiliation(s)
- Meagan J McManus
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA; Departments of Psychiatry and Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hsiao-Wen Chen
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Hans J De Haas
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Jeremy Leipzig
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Atif Towheed
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Partho Sengupta
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - Ryan M Morrow
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Brett A Kauffman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Marc Vermulst
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA
| | - Jagat Narula
- Department of Medicine, Mount Sinai Hospital, New York, NY 10029, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Colket Translational Research Building, Room 6060, 3501 Civic Center Boulevard, Philadelphia, PA 19104-4302, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Morava E, Kozicz T, Wallace DC. The phenotype modifier: is the mitochondrial DNA background responsible for individual differences in disease severity. J Inherit Metab Dis 2019; 42:3-4. [PMID: 30740738 DOI: 10.1002/jimd.12050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eva Morava
- Department of Clinical Genomics, Center of Individualized Medicine, Rochester, Minnesota
| | - Tamas Kozicz
- Department of Clinical Genomics, Center of Individualized Medicine, Rochester, Minnesota
| | - Douglas C Wallace
- Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Cho HY, Miller-DeGraff L, Blankenship-Paris T, Wang X, Bell DA, Lih F, Deterding L, Panduri V, Morgan DL, Yamamoto M, Reddy AJ, Talalay P, Kleeberger SR. Sulforaphane enriched transcriptome of lung mitochondrial energy metabolism and provided pulmonary injury protection via Nrf2 in mice. Toxicol Appl Pharmacol 2018; 364:29-44. [PMID: 30529165 DOI: 10.1016/j.taap.2018.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Nrf2 is essential to antioxidant response element (ARE)-mediated host defense. Sulforaphane (SFN) is a phytochemical antioxidant known to affect multiple cellular targets including Nrf2-ARE pathway in chemoprevention. However, the role of SFN in non-malignant airway disorders remain unclear. To test if pre-activation of Nrf2-ARE signaling protects lungs from oxidant-induced acute injury, wild-type (Nrf2+/+) and Nrf2-deficient (Nrf2-/-) mice were given SFN orally or as standardized broccoli sprout extract diet (SBE) before hyperoxia or air exposure. Hyperoxia-induced pulmonary injury and oxidation indices were significantly reduced by SFN or SBE in Nrf2+/+ mice but not in Nrf2-/- mice. SFN upregulated a large cluster of basal lung genes that are involved in mitochondrial oxidative phosphorylation, energy metabolism, and cardiovascular protection only in Nrf2+/+ mice. Bioinformatic analysis elucidated ARE-like motifs on these genes. Transcript abundance of the mitochondrial machinery genes remained significantly higher after hyperoxia exposure in SFN-treated Nrf2+/+ mice than in SFN-treated Nrf2-/- mice. Nuclear factor-κB was suggested to be a central molecule in transcriptome networks affected by SFN. Minor improvement of hyperoxia-caused lung histopathology and neutrophilia by SFN in Nrf2-/- mice implies Nrf2-independent or alternate effector mechanisms. In conclusion, SFN is suggested to be as a preventive intervention in a preclinical model of acute lung injury by linking mitochondria and Nrf2. Administration of SFN alleviated acute lung injury-like pathogenesis in a Nrf2-dependent manner. Potential AREs in the SFN-inducible transcriptome for mitochondria bioenergetics provided a new insight into the downstream mechanisms of Nrf2-mediated pulmonary protection.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| | - Laura Miller-DeGraff
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Terry Blankenship-Paris
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xuting Wang
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Douglas A Bell
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Fred Lih
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Leesa Deterding
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Vijayalakshmi Panduri
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Daniel L Morgan
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | - Anita J Reddy
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Paul Talalay
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, MD 21205, USA
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
37
|
Serrano-Teruel ME, Garcia-Vieites M, Rego-Perez I, Domenech-Garcia N, Blanco-Garcia F, Cuenca-Castillo JJ, Bautista-Hernandez V. Mitochondrial DNA haplogroups influence the risk of aortic stenosis. Asian Cardiovasc Thorac Ann 2018; 27:5-10. [PMID: 30409026 DOI: 10.1177/0218492318813220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIM The underlying pathophysiologic mechanisms of aortic stenosis are not clear. Mitochondrial dysfunction plays a role in many pathological conditions including cardiac diseases. We aimed to analyze the mitochondrial DNA haplogroups in a group of patients undergoing valve replacement surgery due to severe aortic stenosis. METHODS Mitochondrial DNA haplogroups were assessed in 176 patients with severe aortic stenosis and 308 control subjects. Cardiovascular risk factors and demographics were similar in both groups. RESULTS Patients carrying haplogroup Uk had a lower risk of developing aortic stenosis, especially compared to patients carrying haplogroup H (odds ratio = 0.507; 95% confidence interval: 0.270-0.952, p = 0.035). CONCLUSIONS Mitochondrial DNA haplogroups could be involved in the development of severe aortic stenosis. Specifically, haplogroup H could be a risk factor and Uk a protective factor for severe aortic stenosis in a population from Spain.
Collapse
Affiliation(s)
- Maria E Serrano-Teruel
- 1 Congenital & Structural Heart Disease, A Coruña Biomedical Research Institute (INIBIC) A Coruña, Spain
| | - Maria Garcia-Vieites
- 1 Congenital & Structural Heart Disease, A Coruña Biomedical Research Institute (INIBIC) A Coruña, Spain.,2 Department of Cardiovascular Surgery. University Hospital Complex A Coruña (CHUAC), A Coruña, Spain
| | - Ignacio Rego-Perez
- 3 Genomic Group. A Coruña Biomedical Research Institute (INIBIC), A Coruña, Spain
| | | | | | - Jose J Cuenca-Castillo
- 2 Department of Cardiovascular Surgery. University Hospital Complex A Coruña (CHUAC), A Coruña, Spain
| | - Victor Bautista-Hernandez
- 1 Congenital & Structural Heart Disease, A Coruña Biomedical Research Institute (INIBIC) A Coruña, Spain.,2 Department of Cardiovascular Surgery. University Hospital Complex A Coruña (CHUAC), A Coruña, Spain
| |
Collapse
|
38
|
Finsterer J, Zarrouk-Mahjoub S. Phenotypic spectrum of SLC25A4 mutations. Biomed Rep 2018; 9:119-122. [PMID: 30013777 DOI: 10.3892/br.2018.1115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/15/2018] [Indexed: 01/22/2023] Open
Abstract
There is no comprehensive overview concerning the phenotypic variability in patients carrying SLC25A4 mutations available. Therefore, the aim of the present review was to summarise and discuss recent findings concerning the clinical presentation and phenotypic heterogeneity of SLC25A4 mutations. The study was conducted by systematically reviewing the literature using the search terms 'mitochondrial', "myopathy', 'nuclear DNA', 'mitochondrial DNA', in combination with 'SLC25A4' or 'AAC1'. The results indicated that the phenotypic heterogeneity in patients carrying a SLC25A4 mutation is broader than so far anticipated. Patients carrying a SLC25A4 mutation not only manifest as encephalo-myo-cardiomyopathy but also with scoliosis, cataract, depression, headache, hydrocephalus or arterial hypertension. SLC25A4 mutations may result in mtDNA depletion or multiple mitochondrial (mt)DNA deletions. SLC25A4-associated mtDNA depletion presents with the more severe phenotype and the worse outcome than patients with multiple mtDNA deletions. Depletion syndrome due to SLC25A4 mutations is associated with congenital respiratory insufficiency requiring mechanical ventilation with poor prognosis in the majority of the cases. Mutations in the SLC25A4 gene manifest phenotypically with multiorgan abnormalities in addition to encephalo-myo-cardiomyopathy. SLC25A4 mutations, causing mtDNA depletion, present with a more severe phenotype, including respiratory insufficiency and more widespread cerebral disease than mutations causing multiple mtDNA deletions.
Collapse
Affiliation(s)
- Josef Finsterer
- Department of Neurology, Municipal Hospital Rudolfstiftung, A-1180 Vienna, Austria
| | - Sinda Zarrouk-Mahjoub
- University of Tunis El Manar and Genomics Platform, Pasteur Institute of Tunis, Tunis 1068, Tunisia
| |
Collapse
|
39
|
King MS, Thompson K, Hopton S, He L, Kunji ERS, Taylor RW, Ortiz-Gonzalez XR. Expanding the phenotype of de novo SLC25A4-linked mitochondrial disease to include mild myopathy. Neurol Genet 2018; 4:e256. [PMID: 30046662 PMCID: PMC6055355 DOI: 10.1212/nxg.0000000000000256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the disease relevance of a novel de novo dominant variant in the SLC25A4 gene, encoding the muscle mitochondrial adenosine diphosphate (ADP)/adenosine triphosphate (ATP) carrier, identified in a child presenting with a previously unreported phenotype of mild childhood-onset myopathy. METHODS Immunohistochemical and western blot analysis of the patient's muscle tissue were used to assay for the evidence of mitochondrial myopathy and for complex I-V protein levels. To determine the effect of a putative pathogenic p.Lys33Gln variant on ADP/ATP transport, the mutant protein was expressed in Lactococcus lactis and its transport activity was assessed with fused membrane vesicles. RESULTS Our data demonstrate that the heterozygous c.97A>T (p.Lys33Gln) SLC25A4 variant is associated with classic muscle biopsy findings of mitochondrial myopathy (cytochrome c oxidase [COX]-deficient and ragged blue fibers), significantly impaired ADP/ATP transport in Lactococcus lactis and decreased complex I, III, and IV protein levels in patient's skeletal muscle. Nonetheless, the expression levels of the total ADP/ATP carrier (AAC) content in the muscle biopsy was largely unaffected. CONCLUSIONS This report further expands the clinical phenotype of de novo dominant SLC25A4 mutations to a childhood-onset, mild skeletal myopathy, without evidence of previously reported clinical features associated with SLC25A4-associated disease, such as cardiomyopathy, encephalopathy or ophthalmoplegia. The most likely reason for the milder disease phenotype is that the overall AAC expression levels were not affected, meaning that expression of the wild-type allele and other isoforms may in part have compensated for the impaired mutant variant.
Collapse
Affiliation(s)
- Martin S King
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Kyle Thompson
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Sila Hopton
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Langping He
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Robert W Taylor
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| | - Xilma R Ortiz-Gonzalez
- Medical Research Council Mitochondrial Biology Unit (M.S.K., E.R.S.K.), University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, UK; Wellcome Centre for Mitochondrial Research (K.T., S.H., L.H., R.W.D.), Institute of Neuroscience, Newcastle University, UK; and Department of Neurology (X.R.O.), Perelman School of Medicine, Division of Neurology and Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania
| |
Collapse
|
40
|
Mitochondrial DNA replication: clinical syndromes. Essays Biochem 2018; 62:297-308. [PMID: 29950321 DOI: 10.1042/ebc20170101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/17/2018] [Accepted: 05/23/2018] [Indexed: 02/08/2023]
Abstract
Each nucleated cell contains several hundreds of mitochondria, which are unique organelles in being under dual genome control. The mitochondria contain their own DNA, the mtDNA, but most of mitochondrial proteins are encoded by nuclear genes, including all the proteins required for replication, transcription, and repair of mtDNA. MtDNA replication is a continuous process that requires coordinated action of several enzymes that are part of the mtDNA replisome. It also requires constant supply of deoxyribonucleotide triphosphates(dNTPs) and interaction with other mitochondria for mixing and unifying the mitochondrial compartment. MtDNA maintenance defects are a growing list of disorders caused by defects in nuclear genes involved in different aspects of mtDNA replication. As a result of defects in these genes, mtDNA depletion and/or multiple mtDNA deletions develop in affected tissues resulting in variable manifestations that range from adult-onset mild disease to lethal presentation early in life.
Collapse
|
41
|
Woidy M, Muntau AC, Gersting SW. Inborn errors of metabolism and the human interactome: a systems medicine approach. J Inherit Metab Dis 2018; 41:285-296. [PMID: 29404805 PMCID: PMC5959957 DOI: 10.1007/s10545-018-0140-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/01/2018] [Accepted: 01/10/2018] [Indexed: 12/14/2022]
Abstract
The group of inborn errors of metabolism (IEM) displays a marked heterogeneity and IEM can affect virtually all functions and organs of the human organism; however, IEM share that their associated proteins function in metabolism. Most proteins carry out cellular functions by interacting with other proteins, and thus are organized in biological networks. Therefore, diseases are rarely the consequence of single gene mutations but of the perturbations caused in the related cellular network. Systematic approaches that integrate multi-omics and database information into biological networks have successfully expanded our knowledge of complex disorders but network-based strategies have been rarely applied to study IEM. We analyzed IEM on a proteome scale and found that IEM-associated proteins are organized as a network of linked modules within the human interactome of protein interactions, the IEM interactome. Certain IEM disease groups formed self-contained disease modules, which were highly interlinked. On the other hand, we observed disease modules consisting of proteins from many different disease groups in the IEM interactome. Moreover, we explored the overlap between IEM and non-IEM disease genes and applied network medicine approaches to investigate shared biological pathways, clinical signs and symptoms, and links to drug targets. The provided resources may help to elucidate the molecular mechanisms underlying new IEM, to uncover the significance of disease-associated mutations, to identify new biomarkers, and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Mathias Woidy
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Søren W Gersting
- Department of Molecular Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Lindwurmstrasse 4, 80336, Munich, Germany.
| |
Collapse
|
42
|
Fetterman JL, Liu C, Mitchell GF, Vasan RS, Benjamin EJ, Vita JA, Hamburg NM, Levy D. Relations of mitochondrial genetic variants to measures of vascular function. Mitochondrion 2018; 40:51-57. [PMID: 28993255 PMCID: PMC5858959 DOI: 10.1016/j.mito.2017.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
Mitochondrial genetic variation with resultant alterations in oxidative phosphorylation may influence vascular function and contribute to cardiovascular disease susceptibility. We assessed relations of peptide-encoding variants in the mitochondrial genome with measures of vascular function in Framingham Heart Study participants. Of 258 variants assessed, 40 were predicted to have functional consequences by bioinformatics programs. A maternal pattern of heritability was estimated to contribute to the variability of aortic stiffness. A putative association with a microvascular function measure was identified that requires replication. The methods we have developed can be applied to assess the relations of mitochondrial genetic variation to other phenotypes.
Collapse
Affiliation(s)
- Jessica L Fetterman
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States.
| | - Chunyu Liu
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, United States; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MA, United States
| | - Gary F Mitchell
- Cardiovascular Engineering, Inc., Norwood, MA, United States
| | - Ramachandran S Vasan
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States; Preventive Medicine Section, Boston University School of Medicine, Boston, MA, United States; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Emelia J Benjamin
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States; Preventive Medicine Section, Boston University School of Medicine, Boston, MA, United States; Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States
| | - Joseph A Vita
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Naomi M Hamburg
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Daniel Levy
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, MA, United States; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MA, United States
| |
Collapse
|
43
|
von Renesse A, Morales-Gonzalez S, Gill E, Salomons GS, Stenzel W, Schuelke M. Muscle Weakness, Cardiomyopathy, and L-2-Hydroxyglutaric Aciduria Associated with a Novel Recessive SLC25A4 Mutation. JIMD Rep 2018; 43:27-35. [PMID: 29654543 DOI: 10.1007/8904_2018_93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Mutations in SLC25A4 (syn. ANT1, Adenine nucleotide translocase, type 1) are known to cause either autosomal dominant progressive external ophthalmoplegia (adPEO) or recessive mitochondrial myopathy, hypertrophic cardiomyopathy, and lactic acidosis. METHODS AND RESULTS Whole exome sequencing in a young man with myopathy, subsarcolemmal mitochondrial aggregations, cardiomyopathy, lactic acidosis, and L-2-hydroxyglutaric aciduria (L-2-HGA) revealed a new homozygous mutation in SLC25A4 [c.653A>C, NM_001151], leading to the replacement of a highly conserved glutamine by proline [p.(Q218P); NP_001142] that most likely affects the folding of the ANT1 protein. No pathogenic mutation was found in L2HGDH, which is associated with "classic" L-2-HGA. Furthermore, L-2-HGDH enzymatic activity in the patient fibroblasts was normal. Long-range PCR and Southern blot confirmed absence of mtDNA-deletions in blood and muscle. CONCLUSION The disturbed ADP/ATP transport across the inner mitochondrial membrane may lead to an accumulation of different TCA-cycle intermediates such as 2-ketoglutarate (2-KG) in our patient. As L-2-HG is generated from 2-KG we hypothesize that the L-2-HG increase is a secondary effect of 2-KG accumulation. Hence, our report expands the spectrum of laboratory findings in ANT1-related diseases and hints towards a connection with organic acidurias.
Collapse
Affiliation(s)
- Anja von Renesse
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Susanne Morales-Gonzalez
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Esther Gill
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Schuelke
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
44
|
Loewen CA, Ganetzky B. Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a Drosophila Model of Leigh Syndrome. Genetics 2018; 208:1535-1552. [PMID: 29496745 PMCID: PMC5887147 DOI: 10.1534/genetics.118.300818] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23, a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23, including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease.
Collapse
Affiliation(s)
- Carin A Loewen
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706-1580
| | - Barry Ganetzky
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706-1580
| |
Collapse
|
45
|
Kato TM, Kubota-Sakashita M, Fujimori-Tonou N, Saitow F, Fuke S, Masuda A, Itohara S, Suzuki H, Kato T. Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Mol Psychiatry 2018; 23:2039-2049. [PMID: 29892051 PMCID: PMC6250678 DOI: 10.1038/s41380-018-0074-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/26/2018] [Accepted: 03/26/2018] [Indexed: 01/30/2023]
Abstract
Although mitochondrial and serotonergic dysfunctions have been implicated in the etiology of bipolar disorder (BD), the relationship between these unrelated pathways has not been elucidated. A family of BD and chronic progressive external ophthalmoplegia (CPEO) caused by a mutation of the mitochondrial adenine nucleotide translocator 1 (ANT1, SLC25A4) implicated that ANT1 mutations confer a risk of BD. Here, we sequenced ANT1 in 324 probands of NIMH bipolar disorder pedigrees and identified two BD patients carrying heterozygous loss-of-function mutations. Behavioral analysis of brain specific Ant1 heterozygous conditional knockout (cKO) mice using lntelliCage showed a selective diminution in delay discounting. Delay discounting is the choice of smaller but immediate reward than larger but delayed reward and an index of impulsivity. Diminution of delay discounting suggests an increase in serotonergic activity. This finding was replicated by a 5-choice serial reaction time test. An anatomical screen showed accumulation of COX (cytochrome c oxidase) negative cells in dorsal raphe. Dorsal raphe neurons in the heterozygous cKO showed hyperexcitability, along with enhanced serotonin turnover in the nucleus accumbens and upregulation of Maob in dorsal raphe. These findings altogether suggest that mitochondrial dysfunction as the genetic risk of BD may cause vulnerability to BD by altering serotonergic neurotransmission.
Collapse
Affiliation(s)
- Tomoaki M. Kato
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan ,0000 0004 0372 2033grid.258799.8Present Address: Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mie Kubota-Sakashita
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Fujimori-Tonou
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Fumihito Saitow
- 0000 0001 2173 8328grid.410821.eDepartment of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Satoshi Fuke
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Akira Masuda
- grid.474690.8Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Shigeyoshi Itohara
- grid.474690.8Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hidenori Suzuki
- 0000 0001 2173 8328grid.410821.eDepartment of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
46
|
Venter M, van der Westhuizen FH, Elson JL. The aetiology of cardiovascular disease: a role for mitochondrial DNA? Cardiovasc J Afr 2017; 29:122-132. [PMID: 28906532 PMCID: PMC6009096 DOI: 10.5830/cvja-2017-037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a world-wide cause of mortality in humans and its incidence is on the rise in Africa. In this review, we discuss the putative role of mitochondrial dysfunction in the aetiology of CVD and consequently identify mitochondrial DNA (mtDNA) variation as a viable genetic risk factor to be considered. We then describe the contribution and pitfalls of several current approaches used when investigating mtDNA in relation to complex disease. We also propose an alternative approach, the adjusted mutational load hypothesis, which would have greater statistical power with cohorts of moderate size, and is less likely to be affected by population stratification. We therefore address some of the shortcomings of the current haplogroup association approach. Finally, we discuss the unique challenges faced by studies done on African populations, and recommend the most viable methods to use when investigating mtDNA variation in CVD and other common complex disease.
Collapse
Affiliation(s)
- Marianne Venter
- Human Metabolomics, North-West University, Potchefstroom, South Africa.
| | | | - Joanna L Elson
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Institute of Genetic Medicine, Newcastle University, United Kingdom
| |
Collapse
|
47
|
Palmer CJ, Bruckner RJ, Paulo JA, Kazak L, Long JZ, Mina AI, Deng Z, LeClair KB, Hall JA, Hong S, Zushin PJH, Smith KL, Gygi SP, Hagen S, Cohen DE, Banks AS. Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue. Mol Metab 2017; 6:1212-1225. [PMID: 29031721 PMCID: PMC5641635 DOI: 10.1016/j.molmet.2017.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/03/2023] Open
Abstract
Objectives Understanding how loci identified by genome wide association studies (GWAS) contribute to pathogenesis requires new mechanistic insights. Variants within CDKAL1 are strongly linked to an increased risk of developing type 2 diabetes and obesity. Investigations in mouse models have focused on the function of Cdkal1 as a tRNALys modifier and downstream effects of Cdkal1 loss on pro-insulin translational fidelity in pancreatic β−cells. However, Cdkal1 is broadly expressed in other metabolically relevant tissues, including adipose tissue. In addition, the Cdkal1 homolog Cdk5rap1 regulates mitochondrial protein translation and mitochondrial function in skeletal muscle. We tested whether adipocyte-specific Cdkal1 deletion alters systemic glucose homeostasis or adipose mitochondrial function independently of its effects on pro-insulin translation and insulin secretion. Methods We measured mRNA levels of type 2 diabetes GWAS genes, including Cdkal1, in adipose tissue from lean and obese mice. We then established a mouse model with adipocyte-specific Cdkal1 deletion. We examined the effects of adipose Cdkal1 deletion using indirect calorimetry on mice during a cold temperature challenge, as well as by measuring cellular and mitochondrial respiration in vitro. We also examined brown adipose tissue (BAT) mitochondrial morphology by electron microscopy. Utilizing co-immunoprecipitation followed by mass spectrometry, we performed interaction mapping to identify new CDKAL1 binding partners. Furthermore, we tested whether Cdkal1 loss in adipose tissue affects total protein levels or accurate Lys incorporation by tRNALys using quantitative mass spectrometry. Results We found that Cdkal1 mRNA levels are reduced in adipose tissue of obese mice. Using adipose-specific Cdkal1 KO mice (A-KO), we demonstrated that mitochondrial function is impaired in primary differentiated brown adipocytes and in isolated mitochondria from A-KO brown adipose tissue. A-KO mice displayed decreased energy expenditure during 4 °C cold challenge. Furthermore, mitochondrial morphology was highly abnormal in A-KO BAT. Surprisingly, we found that lysine codon representation was unchanged in Cdkal1 A-KO adipose tissue. We identified novel protein interactors of CDKAL1, including SLC25A4/ANT1, an inner mitochondrial membrane ADP/ATP translocator. ANT proteins can account for the UCP1-independent basal proton leak in BAT mitochondria. Cdkal1 A-KO mice had increased ANT1 protein levels in their white adipose tissue. Conclusions Cdkal1 is necessary for normal mitochondrial morphology and function in adipose tissue. These results suggest that the type 2 diabetes susceptibility gene CDKAL1 has novel functions in regulating mitochondrial activity. Cdkal1 is a gene most strongly expressed in tissues with high mitochondrial content. Cdkal1 is required for normal mitochondrial morphology and function. Deletion of Cdkal1 in adipose tissue impairs the thermogenic response to a cold challenge. Cdkal1 interacts with ANT1, a mitochondrial ATP/ADP transporter. Loss of Cdkal1 does not affect protein translation as predicted for a tRNA modifying enzyme.
Collapse
Affiliation(s)
- Colin J Palmer
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Raphael J Bruckner
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lawrence Kazak
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Jonathan Z Long
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Amir I Mina
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zhaoming Deng
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Katherine B LeClair
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jessica A Hall
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shangyu Hong
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter-James H Zushin
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kyle L Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Susan Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - David E Cohen
- Division of Gastroenterology & Hepatology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Alexander S Banks
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Caporali L, Maresca A, Capristo M, Del Dotto V, Tagliavini F, Valentino ML, La Morgia C, Carelli V. Incomplete penetrance in mitochondrial optic neuropathies. Mitochondrion 2017; 36:130-137. [PMID: 28716668 DOI: 10.1016/j.mito.2017.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 06/27/2017] [Accepted: 07/13/2017] [Indexed: 01/06/2023]
Abstract
Incomplete penetrance characterizes the two most frequent inherited optic neuropathies, Leber's Hereditary Optic Neuropathy (LHON) and dominant optic atrophy (DOA), due to genetic errors in the mitochondrial DNA (mtDNA) and the nuclear DNA (nDNA), respectively. For LHON, compelling evidence has accumulated on the complex interplay of mtDNA haplogroups and environmental interacting factors, whereas the nDNA remains essentially non informative. However, a compensatory mechanism of activated mitochondrial biogenesis and increased mtDNA copy number, possibly driven by a permissive nDNA background, is documented in LHON; when successful it maintains unaffected the mutation carriers, but in some individuals it might be hampered by tobacco smoking or other environmental factors, resulting in disease onset. In females, mitochondrial biogenesis is promoted and maintained within the compensatory range by estrogens, partially explaining the gender bias in LHON. Concerning DOA, none of the above mechanisms has been fully explored, thus mtDNA haplogroups, environmental factors such as tobacco and alcohol, and further nDNA variants may all participate as protective factors or, on the contrary, favor disease expression and severity. Next generation sequencing, complemented by transcriptomics and proteomics, may provide some answers in the next future, even if the multifactorial model that seems to apply to incomplete penetrance in mitochondrial optic neuropathies remains problematic, and careful stratification of patients will play a key role for data interpretation. The deep understanding of which factors impinge on incomplete penetrance may shed light on the pathogenic mechanisms leading to optic nerve atrophy, on their possible compensation and, thus, on development of therapeutic strategies.
Collapse
Affiliation(s)
- Leonardo Caporali
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Alessandra Maresca
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | | | - Valentina Del Dotto
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Tagliavini
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Chiara La Morgia
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Valerio Carelli
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy.
| |
Collapse
|
49
|
Viscomi C, Zeviani M. MtDNA-maintenance defects: syndromes and genes. J Inherit Metab Dis 2017; 40:587-599. [PMID: 28324239 PMCID: PMC5500664 DOI: 10.1007/s10545-017-0027-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 02/02/2023]
Abstract
A large group of mitochondrial disorders, ranging from early-onset pediatric encephalopathic syndromes to late-onset myopathy with chronic progressive external ophthalmoplegia (CPEOs), are inherited as Mendelian disorders characterized by disturbed mitochondrial DNA (mtDNA) maintenance. These errors of nuclear-mitochondrial intergenomic signaling may lead to mtDNA depletion, accumulation of mtDNA multiple deletions, or both, in critical tissues. The genes involved encode proteins belonging to at least three pathways: mtDNA replication and maintenance, nucleotide supply and balance, and mitochondrial dynamics and quality control. In most cases, allelic mutations in these genes may lead to profoundly different phenotypes associated with either mtDNA depletion or multiple deletions.
Collapse
Affiliation(s)
- Carlo Viscomi
- MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Massimo Zeviani
- MRC-Mitochondrial Biology Unit, MRC MBU, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
50
|
Morrow EH, Camus MF. Mitonuclear epistasis and mitochondrial disease. Mitochondrion 2017; 35:119-122. [PMID: 28603048 DOI: 10.1016/j.mito.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Edward H Morrow
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|