1
|
Dai X, Le JQ, Ma D, Rosbash M. Four SpsP neurons are an integrating sleep regulation hub in Drosophila. SCIENCE ADVANCES 2024; 10:eads0652. [PMID: 39576867 PMCID: PMC11584021 DOI: 10.1126/sciadv.ads0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Sleep is essential and highly conserved, yet its regulatory mechanisms remain largely unknown. To identify sleep drive neurons, we imaged Drosophila brains with calcium-modulated photoactivatable ratiometric integrator (CaMPARI). The results indicate that the activity of the protocerebral bridge (PB) correlates with sleep drive. We further identified a key three-layer PB circuit, EPG-SpsP-PEcG, in which the four SpsP neurons in the PB respond to ellipsoid body (EB) signals from EPG neurons and send signals back to the EB through PEcG neurons. This circuit is strengthened by sleep deprivation, indicating a plasticity response to sleep drive. SpsP neurons also receive inputs from the sensorimotor brain region, suggesting that they may encode sleep drive by integrating sensorimotor and navigation cues. Together, our experiments show that the four SpsP neurons and their sleep regulatory circuit play an important and dynamic role in sleep regulation.
Collapse
Affiliation(s)
- Xihuimin Dai
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| |
Collapse
|
2
|
Liu PC, Wang ZY, Qi M, Hu HY. The Chromosome-level Genome Provides Insights into the Evolution and Adaptation of Extreme Aggression. Mol Biol Evol 2024; 41:msae195. [PMID: 39271164 PMCID: PMC11427683 DOI: 10.1093/molbev/msae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Extremely aggressive behavior, as the special pattern, is rare in most species and characteristic as contestants severely injured or killed ending the combat. Current studies of extreme aggression are mainly from the perspectives of behavioral ecology and evolution, while lacked the aspects of molecular evolutionary biology. Here, a high-quality chromosome-level genome of the parasitoid Anastatus disparis was provided, in which the males exhibit extreme mate-competition aggression. The integrated multiomics analysis highlighted that neurotransmitter dopamine overexpression, energy metabolism (especially from lipid), and antibacterial activity are likely major aspects of evolutionary formation and adaptation for extreme aggression in A. disparis. Conclusively, our study provided new perspectives for molecular evolutionary studies of extreme aggression as well as a valuable genomic resource in Hymenoptera.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| | - Zi-Yin Wang
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| | - Mei Qi
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| | - Hao-Yuan Hu
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| |
Collapse
|
3
|
Zhang J, Tang T, Zhang R, Wen L, Deng X, Xu X, Yang W, Jin F, Cao Y, Lu Y, Yu XQ. Maintaining Toll signaling in Drosophila brain is required to sustain autophagy for dopamine neuron survival. iScience 2024; 27:108795. [PMID: 38292423 PMCID: PMC10825691 DOI: 10.1016/j.isci.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ting Tang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruonan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Liang Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojuan Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Wanying Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yang Cao
- Guangdong Laboratory for Lingnan Modern Agriculture, Laboratory of Insect Molecular Biology and Biotechnology, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
4
|
Yadav RSP, Ansari F, Bera N, Kent C, Agrawal P. Lessons from lonely flies: Molecular and neuronal mechanisms underlying social isolation. Neurosci Biobehav Rev 2024; 156:105504. [PMID: 38061597 DOI: 10.1016/j.neubiorev.2023.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Animals respond to changes in the environment which affect their internal state by adapting their behaviors. Social isolation is a form of passive environmental stressor that alters behaviors across animal kingdom, including humans, rodents, and fruit flies. Social isolation is known to increase violence, disrupt sleep and increase depression leading to poor mental and physical health. Recent evidences from several model organisms suggest that social isolation leads to remodeling of the transcriptional and epigenetic landscape which alters behavioral outcomes. In this review, we explore how manipulating social experience of fruit fly Drosophila melanogaster can shed light on molecular and neuronal mechanisms underlying isolation driven behaviors. We discuss the recent advances made using the powerful genetic toolkit and behavioral assays in Drosophila to uncover role of neuromodulators, sensory modalities, pheromones, neuronal circuits and molecular mechanisms in mediating social isolation. The insights gained from these studies could be crucial for developing effective therapeutic interventions in future.
Collapse
Affiliation(s)
- R Sai Prathap Yadav
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Faizah Ansari
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Neha Bera
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India
| | - Clement Kent
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Pavan Agrawal
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Karnataka 576104, India.
| |
Collapse
|
5
|
Kato A, Ohta K, Okanoya K, Kazama H. Dopaminergic neurons dynamically update sensory values during olfactory maneuver. Cell Rep 2023; 42:113122. [PMID: 37757823 DOI: 10.1016/j.celrep.2023.113122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 07/29/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Dopaminergic neurons (DANs) drive associative learning to update the value of sensory cues, but their contribution to the assessment of sensory values outside the context of association remains largely unexplored. Here, we show in Drosophila that DANs in the mushroom body encode the innate value of odors and constantly update the current value by inducing plasticity during olfactory maneuver. Our connectome-based network model linking all the way from the olfactory neurons to DANs reproduces the characteristics of DAN responses, proposing a concrete circuit mechanism for computation. Downstream of DANs, odors alone induce value- and dopamine-dependent changes in the activity of mushroom body output neurons, which store the current value of odors. Consistent with this neural plasticity, specific sets of DANs bidirectionally modulate flies' steering in a virtual olfactory environment. Thus, the DAN circuit known for discrete, associative learning also continuously updates odor values in a nonassociative manner.
Collapse
Affiliation(s)
- Ayaka Kato
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuo Okanoya
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
6
|
Pantalia M, Lin Z, Tener SJ, Qiao B, Tang G, Ulgherait M, O'Connor R, Delventhal R, Volpi J, Syed S, Itzhak N, Canman JC, Fernández MP, Shirasu-Hiza M. Drosophila mutants lacking the glial neurotransmitter-modifying enzyme Ebony exhibit low neurotransmitter levels and altered behavior. Sci Rep 2023; 13:10411. [PMID: 37369755 PMCID: PMC10300103 DOI: 10.1038/s41598-023-36558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Inhibitors of enzymes that inactivate amine neurotransmitters (dopamine, serotonin), such as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), are thought to increase neurotransmitter levels and are widely used to treat Parkinson's disease and psychiatric disorders, yet the role of these enzymes in regulating behavior remains unclear. Here, we investigated the genetic loss of a similar enzyme in the model organism Drosophila melanogaster. Because the enzyme Ebony modifies and inactivates amine neurotransmitters, its loss is assumed to increase neurotransmitter levels, increasing behaviors such as aggression and courtship and decreasing sleep. Indeed, ebony mutants have been described since 1960 as "aggressive mutants," though this behavior has not been quantified. Using automated machine learning-based analyses, we quantitatively confirmed that ebony mutants exhibited increased aggressive behaviors such as boxing but also decreased courtship behaviors and increased sleep. Through tissue-specific knockdown, we found that ebony's role in these behaviors was specific to glia. Unexpectedly, direct measurement of amine neurotransmitters in ebony brains revealed that their levels were not increased but reduced. Thus, increased aggression is the anomalous behavior for this neurotransmitter profile. We further found that ebony mutants exhibited increased aggression only when fighting each other, not when fighting wild-type controls. Moreover, fights between ebony mutants were less likely to end with a clear winner than fights between controls or fights between ebony mutants and controls. In ebony vs. control fights, ebony mutants were more likely to win. Together, these results suggest that ebony mutants exhibit prolonged aggressive behavior only in a specific context, with an equally dominant opponent.
Collapse
Affiliation(s)
- Meghan Pantalia
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Zhi Lin
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Samantha J Tener
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bing Qiao
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Grace Tang
- Department of Neuroscience and Behavior, Barnard College, New York, NY, 10027, USA
| | - Matthew Ulgherait
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Reed O'Connor
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | | | - Julia Volpi
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sheyum Syed
- Department of Physics, University of Miami, Coral Gables, FL, 33146, USA
| | - Nissim Itzhak
- Division of Human Genetics and Metabolic Disease, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - María Paz Fernández
- Department of Neuroscience and Behavior, Barnard College, New York, NY, 10027, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Wang R, Ma B, Shi K, Wu F, Zhou C. Effects of lithium on aggression in Drosophila. Neuropsychopharmacology 2023; 48:754-763. [PMID: 36253547 PMCID: PMC10066353 DOI: 10.1038/s41386-022-01475-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/15/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Lithium is a common medication used to treat mania and bipolar disorder, but the mechanisms by which lithium stabilizes mood and modifies aggression are still not fully understood. Here we found that acute but not chronic lithium significantly suppresses aggression without affecting locomotion in Drosophila melanogaster. Male flies treated with acute lithium are also less competitive than control males in establishing dominance. We also provided evidence that glycogen synthase kinase-3 (GSK-3), a well-known target of lithium, plays an important role in the anti-aggressive effect of lithium in Drosophila. Our genetic data showed that acute knockdown of GSK-3 in neurons can mimic the inhibitory effect of acute lithium on aggression, while specific overexpression of GSK-3 in a subset of P1 neurons profoundly promotes aggression which can be partially rescued by acute lithium application. Thus, these findings revealed the inhibitory effect of lithium on aggression in Drosophila and laid a groundwork for using Drosophila as a powerful model to investigate the mechanisms by which lithium reduces aggression.
Collapse
Affiliation(s)
- Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
8
|
Ma D, Herndon N, Le JQ, Abruzzi KC, Zinn K, Rosbash M. Neural connectivity molecules best identify the heterogeneous clock and dopaminergic cell types in the Drosophila adult brain. SCIENCE ADVANCES 2023; 9:eade8500. [PMID: 36812309 PMCID: PMC9946362 DOI: 10.1126/sciadv.ade8500] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/26/2023] [Indexed: 05/25/2023]
Abstract
Our recent single-cell sequencing of most adult Drosophila circadian neurons indicated notable and unexpected heterogeneity. To address whether other populations are similar, we sequenced a large subset of adult brain dopaminergic neurons. Their gene expression heterogeneity is similar to that of clock neurons, i.e., both populations have two to three cells per neuron group. There was also unexpected cell-specific expression of neuron communication molecule messenger RNAs: G protein-coupled receptor or cell surface molecule (CSM) transcripts alone can define adult brain dopaminergic and circadian neuron cell type. Moreover, the adult expression of the CSM DIP-beta in a small group of clock neurons is important for sleep. We suggest that the common features of circadian and dopaminergic neurons are general, essential for neuronal identity and connectivity of the adult brain, and that these features underlie the complex behavioral repertoire of Drosophila.
Collapse
Affiliation(s)
- Dingbang Ma
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Nicholas Herndon
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| |
Collapse
|
9
|
Kato YS, Tomita J, Kume K. Interneurons of fan-shaped body promote arousal in Drosophila. PLoS One 2022; 17:e0277918. [PMID: 36409701 PMCID: PMC9678257 DOI: 10.1371/journal.pone.0277918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/06/2022] [Indexed: 11/22/2022] Open
Abstract
Sleep is required to maintain physiological functions and is widely conserved across species. To understand the sleep-regulatory mechanisms, sleep-regulating genes and neuronal circuits are studied in various animal species. In the sleep-regulatory neuronal circuits in Drosophila melanogaster, the dorsal fan-shaped body (dFB) is a major sleep-promoting region. However, other sleep-regulating neuronal circuits were not well identified. We recently found that arousal-promoting T1 dopamine neurons, interneurons of protocerebral bridge (PB) neurons, and PB neurons innervating the ventral part of the FB form a sleep-regulatory circuit, which we named "the PB-FB pathway". In the exploration of other sleep-regulatory circuits, we found that activation of FB interneurons, also known as pontine neurons, promoted arousal. We then found that FB interneurons had possible connections with the PB-FB pathway and dFB neurons. Ca2+ imaging revealed that FB interneurons received excitatory signals from the PB-FB pathway. We also demonstrated the possible role of FB interneurons to regulate dFB neurons. These results suggested the role of FB interneurons in sleep regulation.
Collapse
Affiliation(s)
- Yoshiaki S. Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- * E-mail: ,
| |
Collapse
|
10
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
11
|
Kannan K, Galizia CG, Nouvian M. Olfactory Strategies in the Defensive Behaviour of Insects. INSECTS 2022; 13:470. [PMID: 35621804 PMCID: PMC9145661 DOI: 10.3390/insects13050470] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Most animals must defend themselves in order to survive. Defensive behaviour includes detecting predators or intruders, avoiding them by staying low-key or escaping or deterring them away by means of aggressive behaviour, i.e., attacking them. Responses vary across insect species, ranging from individual responses to coordinated group attacks in group-living species. Among different modalities of sensory perception, insects predominantly use the sense of smell to detect predators, intruders, and other threats. Furthermore, social insects, such as honeybees and ants, communicate about danger by means of alarm pheromones. In this review, we focus on how olfaction is put to use by insects in defensive behaviour. We review the knowledge of how chemical signals such as the alarm pheromone are processed in the insect brain. We further discuss future studies for understanding defensive behaviour and the role of olfaction.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - C. Giovanni Galizia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Morgane Nouvian
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
- Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
12
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
13
|
Jois S, Chan YB, Fernandez MP, Pujari N, Janz LJ, Parker S, Leung AKW. Sexually dimorphic peripheral sensory neurons regulate copulation duration and persistence in male Drosophila. Sci Rep 2022; 12:6177. [PMID: 35418584 PMCID: PMC9007984 DOI: 10.1038/s41598-022-10247-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
Peripheral sensory neurons are the gateway to the environment across species. In Drosophila, olfactory and gustatory senses are required to initiate courtship, as well as for the escalation of courtship patterns that lead to copulation. To be successful, copulation must last long enough to ensure the transfer of sperm and seminal fluid that ultimately leads to fertilization. The peripheral sensory information required to regulate copulation duration is unclear. Here, we employed genetic manipulations that allow driving gene expression in the male genitalia as a tool to uncover the role of these genitalia specific neurons in copulation. The fly genitalia contain sex-specific bristle hairs innervated by mechanosensory neurons. To date, the role of the sensory information collected by these peripheral neurons in male copulatory behavior is unknown. We confirmed that these MSNs are cholinergic and co-express both fru and dsx. We found that the sensory information received by the peripheral sensory neurons from the front legs (GRNs) and mechanosensory neurons (MSNs) at the male genitalia contribute to the regulation of copulation duration. Moreover, our results show that their function is required for copulation persistence, which ensures copulation is undisrupted in the presence of environmental stress before sperm transfer is complete.
Collapse
Affiliation(s)
- Shreyas Jois
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Yick-Bun Chan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Paz Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, NY, 10027, USA
| | - Narsimha Pujari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Lea Joline Janz
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Sarah Parker
- Centre for Applied Epidemiology, Large Animal Clinical Science, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Adelaine Kwun-Wai Leung
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
14
|
Nässel DR, Wu SF. Cholecystokinin/sulfakinin peptide signaling: conserved roles at the intersection between feeding, mating and aggression. Cell Mol Life Sci 2022; 79:188. [PMID: 35286508 PMCID: PMC8921109 DOI: 10.1007/s00018-022-04214-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/27/2022]
Abstract
Neuropeptides are the most diverse messenger molecules in metazoans and are involved in regulation of daily physiology and a wide array of behaviors. Some neuropeptides and their cognate receptors are structurally and functionally well conserved over evolution in bilaterian animals. Among these are peptides related to gastrin and cholecystokinin (CCK). In mammals, CCK is produced by intestinal endocrine cells and brain neurons, and regulates gall bladder contractions, pancreatic enzyme secretion, gut functions, satiety and food intake. Additionally, CCK plays important roles in neuromodulation in several brain circuits that regulate reward, anxiety, aggression and sexual behavior. In invertebrates, CCK-type peptides (sulfakinins, SKs) are, with a few exceptions, produced by brain neurons only. Common among invertebrates is that SKs mediate satiety and regulate food ingestion by a variety of mechanisms. Also regulation of secretion of digestive enzymes has been reported. Studies of the genetically tractable fly Drosophila have advanced our understanding of SK signaling mechanisms in regulation of satiety and feeding, but also in gustatory sensitivity, locomotor activity, aggression and reproductive behavior. A set of eight SK-expressing brain neurons plays important roles in regulation of these competing behaviors. In males, they integrate internal state and external stimuli to diminish sex drive and increase aggression. The same neurons also diminish sugar gustation, induce satiety and reduce feeding. Although several functional roles of CCK/SK signaling appear conserved between Drosophila and mammals, available data suggest that the underlying mechanisms differ.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Shun-Fan Wu
- College of Plant Protection/Laboratory of Bio-Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Rahul, Siddique YH. Drosophila: A Model to Study the Pathogenesis of Parkinson's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:259-277. [PMID: 35040399 DOI: 10.2174/1871527320666210809120621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/15/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022]
Abstract
Human Central Nervous System (CNS) is the complex part of the human body, which regulates multiple cellular and molecular events taking place simultaneously. Parkinsons Disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). The pathological hallmarks of PD are loss of dopaminergic neurons in the substantianigra (SN) pars compacta (SNpc) and accumulation of misfolded α-synuclein, in intra-cytoplasmic inclusions called Lewy bodies (LBs). So far, there is no cure for PD, due to the complexities of molecular mechanisms and events taking place during the pathogenesis of PD. Drosophila melanogaster is an appropriate model organism to unravel the pathogenicity not only behind PD but also other NDs. In this context as numerous biological functions are preserved between Drosophila and humans. Apart from sharing 75% of human disease-causing genes homolog in Drosophila, behavioral responses like memory-based tests, negative geotaxis, courtship and mating are also well studied. The genetic, as well as environmental factors, can be studied in Drosophila to understand the geneenvironment interactions behind the disease condition. Through genetic manipulation, mutant flies can be generated harboring human orthologs, which can prove to be an excellent model to understand the effect of the mutant protein on the pathogenicity of NDs.
Collapse
Affiliation(s)
- Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh,India
| |
Collapse
|
16
|
GABA transmission from mAL interneurons regulates aggression in Drosophila males. Proc Natl Acad Sci U S A 2022; 119:2117101119. [PMID: 35082150 PMCID: PMC8812560 DOI: 10.1073/pnas.2117101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Aggression is dependent on the sex of the conspecific in almost all animal species. But the neuronal basis of how sex-specific chemosensory signals regulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we demonstrate that activation of a group of GABAergic central brain neurons, known to respond to sex-specific pheromonal stimuli, enhances aggression in dyadic male encounters. Inactivation of this neuronal group decreases aggression and increases the reciprocal social behavior of courtship. Our results can help trace the neural circuit from pheromone processing in the sensory neurons to behavior integration in the central brain and ultimately help understand how neurons encode the behavior of aggression. Aggression is known to be regulated by pheromonal information in many species. But how central brain neurons processing this information modulate aggression is poorly understood. Using the fruit fly model of Drosophila melanogaster, we systematically characterize the role of a group of sexually dimorphic GABAergic central brain neurons, popularly known as mAL, in aggression regulation. The mAL neurons are known to be activated by male and female pheromones. In this report, we show that mAL activation robustly increases aggression, whereas its inactivation decreases aggression and increases intermale courtship, a behavior considered reciprocal to aggression. GABA neurotransmission from mAL is crucial for this behavior regulation. Exploiting the genetic toolkit of the fruit fly model, we also find a small group of approximately three to five GABA+ central brain neurons with anatomical similarities to mAL. Activation of the mAL resembling group of neurons is necessary for increasing intermale aggression. Overall, our findings demonstrate how changes in activity of GABA+ central brain neurons processing pheromonal information, such as mAL in Drosophila melanogaster, directly modulate the social behavior of aggression in male–male pairings.
Collapse
|
17
|
Karam CS, Williams BL, Jones SK, Javitch JA. The Role of the Dopamine Transporter in the Effects of Amphetamine on Sleep and Sleep Architecture in Drosophila. Neurochem Res 2022; 47:177-189. [PMID: 33630236 PMCID: PMC8384956 DOI: 10.1007/s11064-021-03275-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
The dopamine transporter (DAT) mediates the inactivation of released dopamine (DA) through its reuptake, and thereby plays an important homeostatic role in dopaminergic neurotransmission. Amphetamines exert their stimulant effects by targeting DAT and inducing the reverse transport of DA, leading to a dramatic increase of extracellular DA. Animal models have proven critical to investigating the molecular and cellular mechanisms underlying transporter function and its modulation by psychostimulants such as amphetamine. Here we establish a behavioral model for amphetamine action using adult Drosophila melanogaster. We use it to characterize the effects of amphetamine on sleep and sleep architecture. Our data show that amphetamine induces hyperactivity and disrupts sleep in a DA-dependent manner. Flies that do not express a functional DAT (dDAT null mutants) have been shown to be hyperactive and to exhibit significantly reduced sleep at baseline. Our data show that, in contrast to its action in control flies, amphetamine decreases the locomotor activity of dDAT null mutants and restores their sleep by modulating distinct aspects of sleep structure. To begin to explore the circuitry involved in the actions of amphetamine on sleep, we also describe the localization of dDAT throughout the fly brain, particularly in neuropils known to regulate sleep. Together, our data establish Drosophila as a robust model for studying the regulatory mechanisms that govern DAT function and psychostimulant action.
Collapse
Affiliation(s)
- Caline S Karam
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Brenna L Williams
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Sandra K Jones
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Dr, Unit 19, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Gregor KM, Becker SC, Hellhammer F, Baumgärtner W, Puff C. Immunohistochemical Characterization of the Nervous System of Culex pipiens (Diptera, Culicidae). BIOLOGY 2022; 11:57. [PMID: 35053056 PMCID: PMC8772823 DOI: 10.3390/biology11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/24/2022]
Abstract
Arthropod-borne diseases represent one of the greatest infection-related threats as a result of climate change and globalization. Repeatedly, arbovirus-infected mosquitoes show behavioral changes whose underlying mechanisms are still largely unknown, but might help to develop control strategies. However, in contrast to well-characterized insects such as fruit flies, little is known about neuroanatomy and neurotransmission in mosquitoes. To overcome this limitation, the study focuses on the immunohistochemical characterization of the nervous system of Culex pipiens biotype molestus in comparison to Drosophila melanogaster using 13 antibodies labeling nervous tissue, neurotransmitters or neurotransmitter-related enzymes. Antibodies directed against γ-aminobutyric acid, serotonin, tyrosine-hydroxylase and glutamine synthetase were suitable for investigations in Culex pipiens and Drosophila melanogaster, albeit species-specific spatial differences were observed. Likewise, similar staining results were achieved for neuronal glycoproteins, axons, dendrites and synaptic zones in both species. Interestingly, anti-phosphosynapsin and anti-gephyrin appear to represent novel markers for synapses and glial cells, respectively. In contrast, antibodies directed against acetylcholine, choline acetyltransferase, elav and repo failed to produce a signal in Culex pipiens comparable to that in Drosophila melanogaster. In summary, present results enable a detailed investigation of the nervous system of mosquitoes, facilitating further studies of behavioral mechanisms associated with arboviruses in the course of vector research.
Collapse
Affiliation(s)
- Katharina M. Gregor
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (S.C.B.); (F.H.)
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, Lower Saxony, 30559 Hannover, Germany; (K.M.G.); (C.P.)
| |
Collapse
|
19
|
van Rhijn JR, Shi Y, Bormann M, Mossink B, Frega M, Recaioglu H, Hakobjan M, Klein Gunnewiek T, Schoenmaker C, Palmer E, Faivre L, Kittel-Schneider S, Schubert D, Brunner H, Franke B, Nadif Kasri N. Brunner syndrome associated MAOA mutations result in NMDAR hyperfunction and increased network activity in human dopaminergic neurons. Neurobiol Dis 2021; 163:105587. [PMID: 34923109 DOI: 10.1016/j.nbd.2021.105587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 01/15/2023] Open
Abstract
Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.
Collapse
Affiliation(s)
- Jon-Ruben van Rhijn
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yan Shi
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Maren Bormann
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Britt Mossink
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Monica Frega
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical neurophysiology, University of Twente, 7522 NB Enschede, Netherlands
| | - Hatice Recaioglu
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Teun Klein Gunnewiek
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Anatomy, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Chantal Schoenmaker
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Elizabeth Palmer
- Genetics of Learning Disability Service, Hunter Genetics, Waratah, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - Laurence Faivre
- Centre de Référence Anomalies du développement et Syndromes malformatifs and FHU TRANSLAD, Hôpital d'Enfants, Dijon, France; INSERM UMR1231 GAD, Faculté de Médecine, Université de Bourgogne, Dijon, France
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe-University, Frankfurt, Germany; Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Han Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Clinical Genetics, MUMC+, GROW School of Oncology and Developmental Biology, and MHeNS School of Neuroscience and Maastricht University, Maastricht, the Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Devlin BA, Smith CJ, Bilbo SD. Sickness and the social brain: How the immune system regulates behavior across species. BRAIN, BEHAVIOR AND EVOLUTION 2021; 97:197-210. [PMID: 34915474 DOI: 10.1159/000521476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/10/2021] [Indexed: 11/19/2022]
Abstract
Many instances of sickness critically involve the immune system. The immune system talks to the brain in a bi-directional loop. This discourse affords the immune system immense control, such that it can influence behavior and optimize recovery from illness. These behavioral responses to infection are called sickness behaviors and can manifest in many ways, including changes in mood, motivation, or energy. Fascinatingly, most of these changes are conserved across species, and most organisms demonstrate some form of sickness behaviors. One of the most interesting sickness behaviors, and not immediately obvious, is altered sociability. Here, we discuss how the immune system impacts social behavior, by examining the brain regions and immune mediators involved in this process. We first outline how social behavior changes in response to infection in various species. Next, we explore which brain regions control social behavior and their evolutionary origins. Finally, we describe which immune mediators establish the link between illness and social behavior, in the context of both normal development and infection. Overall, we hope to make clear the striking similarities between the mechanisms that facilitate changes in sociability in derived and ancestral vertebrate, as well as invertebrate, species.
Collapse
Affiliation(s)
- Benjamin A Devlin
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
- Department of Neurobiology, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
21
|
Tomita J, Ban G, Kato YS, Kume K. Protocerebral Bridge Neurons That Regulate Sleep in Drosophila melanogaster. Front Neurosci 2021; 15:647117. [PMID: 34720844 PMCID: PMC8554056 DOI: 10.3389/fnins.2021.647117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
The central complex is one of the major brain regions that control sleep in Drosophila. However, the circuitry details of sleep regulation have not been elucidated yet. Here, we show a novel sleep-regulating neuronal circuit in the protocerebral bridge (PB) of the central complex. Activation of the PB interneurons labeled by the R59E08-Gal4 and the PB columnar neurons with R52B10-Gal4 promoted sleep and wakefulness, respectively. A targeted GFP reconstitution across synaptic partners (t-GRASP) analysis demonstrated synaptic contact between these two groups of sleep-regulating PB neurons. Furthermore, we found that activation of a pair of dopaminergic (DA) neurons projecting to the PB (T1 DA neurons) decreased sleep. The wake-promoting T1 DA neurons and the sleep-promoting PB interneurons formed close associations. Dopamine 2-like receptor (Dop2R) knockdown in the sleep-promoting PB interneurons increased sleep. These results indicated that the neuronal circuit in the PB, regulated by dopamine signaling, mediates sleep-wakefulness.
Collapse
Affiliation(s)
- Jun Tomita
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Gosuke Ban
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yoshiaki S Kato
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
22
|
Liu XJ, Wang HJ, Wang XY, Ning YX, Gao J. GABABR1 in DRN mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Neurochem Int 2021; 150:105180. [PMID: 34509561 DOI: 10.1016/j.neuint.2021.105180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022]
Abstract
The identity of the mechanism that controls aggressive behavior in rodents is unclear. Serotonin (5-HT) and GABA are associated with aggressive behavior in rodents. However, the regulatory relationship between these chemicals in the different brain regions of rats has not been fully defined. This study aimed to clarify the role of GABABR1 in DRN-mediated GABA to regulate 5-HT expression in multiple brain regions in male rats with high and low aggressive behavior. Rat models of highly and less aggressive behavior were established through social isolation plus resident intruder. On this basis, GABA content in the DRN and 5-HT contents in the PFC, hypothalamus, hippocampus and DRN were detected using ELISA. Co-expression of 5-HT and GB1 in the DRN was detected by immunofluorescence and immunoelectron microscopy at the tissue and subcellular levels, respectively. GB1-specific agonist baclofen and GB1-specific inhibitor CGP35348 were injected into the DRN by stereotaxic injection. Changes in 5-HT levels in the PFC, hypothalamus and hippocampus were detected afterward. After modeling, rats with highly aggressive behavior exhibited higher aggressive behavior scores, shorter latencies of aggression, and higher total distances in the open field test than rats with less aggressive behavior. The contents of 5-HT in the PFC, hypothalamus and hippocampus of rats with high and low aggressive behavior (no difference between the two groups) were significantly decreased, but the change in GABA content in the DRN was the opposite. GB1 granules could be found on synaptic membranes containing 5-HT granules, which indicated that 5-HT neurons in the DRN co-expressed with GB1, which also occurred in double immunofluorescence results. At the same time, we found that the expression of GB1 in the DRN of rats with high and low aggressive behavior was significantly increased, and the expression of GB1 in the DRN of rats with low aggressive behavior was significantly higher than that in rats with high aggressive behavior. Nevertheless, the expression of 5-HT in DRN was opposite in these two groups. After microinjection of baclofen into the DRN, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group decreased significantly. In contrast, the 5-HT contents in the PFC, hypothalamus and hippocampus of rats in each group increased significantly after injection with CGP35348. The significant increase in GABA in the DRN combined with the significant increase in GB1 in the DRN further mediated the synaptic inhibition effect, which reduced the 5-HT level of 5-HT neurons in the DRN, resulting in a significant decrease in 5-HT levels in the PFC, hypothalamus and hippocampus. Therefore, GB1-mediated GABA regulation of 5-HT levels in the PFC, hypothalamus and hippocampus is one of the mechanisms of highly and less aggressive behavior originating in the DRN. The increased GB1 level in the DRN of LA-behavior rats exhibited a greater degree of change than in the HA-group rats, which indicated that differently decreased 5-HT levels in the DRN may be the internal mechanisms of high and low aggression behaviors.
Collapse
Affiliation(s)
- Xiao-Ju Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Hai-Juan Wang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Xiao-Yu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Yin-Xia Ning
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jie Gao
- Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China.
| |
Collapse
|
23
|
Cunningham CB, Khana D, Carter A, McKinney EC, Moore AJ. Survey of neurotransmitter receptor gene expression into and out of parental care in the burying beetle Nicrophorus vespilloides. Ecol Evol 2021; 11:14282-14292. [PMID: 34707854 PMCID: PMC8525115 DOI: 10.1002/ece3.8144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this "precursor hypothesis" for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co-opted during the evolution of parent-offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes.
Collapse
Affiliation(s)
| | - Daven Khana
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | - Annika Carter
- Department of GeneticsUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Allen J. Moore
- Department of EntomologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
24
|
Ibuchi K, Nagayama T. Opposing effects of dopamine on agonistic behaviour in crayfish. J Exp Biol 2021; 224:269155. [PMID: 34128529 DOI: 10.1242/jeb.242057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/29/2021] [Indexed: 01/27/2023]
Abstract
The effects of dopamine on the agonistic behaviour of crayfish were analysed. When dopamine concentrations of 1 μmol l-1 were injected into large crayfish, individuals were beaten by smaller opponents, despite their physical advantage. Injection of 10 μmol l-1 dopamine into small animals increased their rate of winning against larger opponents. Injection of a D1 receptor antagonist prohibited the onset of a 'loser' effect in subordinate animals, suggesting that the inhibitory effect of dopamine on larger animals is mediated by D1 receptors. Similarly, injection of a D2 receptor antagonist prohibited the onset of a 'winner' effect in dominant animals, suggesting that the facilitating effect of dopamine on small animals is mediated by D2 receptors. Since the inhibitory effect of 1 μmol l-1 dopamine was similar to that seen with 1 μmol l-1 octopamine and the facilitating effect of 10 μmol l-1 dopamine was similar to that of 1 μmol l-1 serotonin, functional interactions among dopamine, octopamine and serotonin were analyzed by co-injection of amines with their receptor antagonists in various combinations. The inhibitory effect of 1 μmol l-1 dopamine disappeared when administered with D1 receptor antagonist, but remained when combined with octopamine receptor antagonist. Octopamine effects disappeared when administered with either D1 receptor antagonist or octopamine receptor antagonist, suggesting that the dopamine system is downstream of octopamine. The facilitating effect of 10 μmol l-1 dopamine disappeared when combined with serotonin 5HT1 receptor antagonist or D2 receptor antagonist. Serotonin effects also disappeared when combined with D2 receptor antagonist, suggesting that dopamine and serotonin activate each other through parallel pathways.
Collapse
Affiliation(s)
- Kengo Ibuchi
- Division of Biology, Graduate School of Science and Engineering, Yamagata University, 990-8560 Yamagata, Japan
| | - Toshiki Nagayama
- Department of Biology, Faculty of Science, Yamagata University, 990-8560 Yamagata, Japan
| |
Collapse
|
25
|
Liao S, Amcoff M, Nässel DR. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103495. [PMID: 33171202 DOI: 10.1016/j.ibmb.2020.103495] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/01/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of high-fat diet (HFD) is likely to result in obesity and increases the predisposition to associated health disorders. Drosophila melanogaster has emerged as an important model to study the effects of HFD on metabolism, gut function, behavior, and ageing. In this study, we investigated the effects of HFD on physiology and behavior of female flies at different time-points over several weeks. We found that HFD decreases lifespan, and also with age leads to accelerated decline of climbing ability in both virgins and mated flies. In virgins HFD also increased sleep fragmentation with age. Furthermore, long-term exposure to HFD results in elevated adipokinetic hormone (AKH) transcript levels and an enlarged crop with increased lipid stores. We detected no long-term effects of HFD on body mass, or levels of triacylglycerides (TAG), glycogen or glucose, although fecundity was diminished. However, one week of HFD resulted in decreased body mass and elevated TAG levels in mated flies. Finally, we investigated the role of AKH in regulating effects of HFD during aging. Both with normal diet (ND) and HFD, Akh mutant flies displayed increased longevity compared to control flies. However, both mutants and controls showed shortened lifespan on HFD compared to ND. In flies exposed to ND, fecundity is decreased in Akh mutants compared to controls after one week, but increased after three weeks. However, HFD leads to a similar decrease in fecundity in both genotypes after both exposure times. Thus, long-term exposure to HFD increases AKH signaling, impairs lifespan and fecundity and augments age-related behavioral senescence.
Collapse
Affiliation(s)
- Sifang Liao
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
26
|
Xu T, Chen L. Chemical communication in ant-hemipteran mutualism: potential implications for ant invasions. CURRENT OPINION IN INSECT SCIENCE 2021; 45:121-129. [PMID: 33901733 DOI: 10.1016/j.cois.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Ant-hemipteran mutualism is one of the most frequently observed food-for-protection associations in nature, and is recently found to contribute to the invasions of several of the most destructive invasive ants. Chemical communication underlies establishment and maintenance of such associations, in which a multitude of semiochemicals, such as pheromones, cuticular hydrocarbons, honeydew sugars and bacteria-produced honeydew volatiles mediate location, recognition, selection, learning of mutualistic partners. Here, we review what is known about the chemical communication between ants and honeydew-producing hemipterans, and discuss how invasive ants can rapidly recognize and establish a mutualistic relationship with the hemipterans with which they have never coevolved. We also highlight some future directions for a clearer understanding of the chemical communication in ant-hemipteran mutualism and its role in ant invasions.
Collapse
Affiliation(s)
- Tian Xu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li Chen
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
27
|
Timm J, Scherner M, Matschke J, Kern M, Homberg U. Tyrosine hydroxylase immunostaining in the central complex of dicondylian insects. J Comp Neurol 2021; 529:3131-3154. [PMID: 33825188 DOI: 10.1002/cne.25151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Dopamine acts as a neurohormone and neurotransmitter in the insect nervous system and controls a variety of physiological processes. Dopaminergic neurons also innervate the central complex (CX), a multisensory center of the insect brain involved in sky compass navigation, goal-directed locomotion and sleep control. To infer a possible influence of evolutionary history and lifestyle on the neurochemical architecture of the CX, we have studied the distribution of neurons immunoreactive to tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Analysis of representatives from 12 insect orders ranging from firebrats to flies revealed high conservation of immunolabeled neurons. One type of TH-immunoreactive neuron was found in all species studied. The neurons have somata in the pars intercerebralis, arborizations in the lateral accessory lobes, and axonal ramifications in the central body and noduli. In all pterygote species, a second type of tangential neuron of the upper division of the central body was TH-immunoreactive. The neurons have cell bodies near the calyces and arborizations in the superior protocerebrum. Both types of neuron showed species-specific variations in cell number and in the innervated areas outside and inside the CX. Additional neurons were found in only two taxa: one type of columnar neuron showed TH immunostaining in the water strider Gerris lacustris, but not in other Heteroptera, and a tritocerebral neuron innervating the protocerebral bridge was immunolabeled in Diptera. The data show largely taxon-specific variations of a common ground pattern of putatively dopaminergic neurons that may be commonly involved in state-dependent modulation of CX function.
Collapse
Affiliation(s)
- Josephine Timm
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Mara Scherner
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Jannik Matschke
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Martina Kern
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
28
|
Liu PC, Hao DJ, Hu W, Wei JR, Wang JJ. Life history of aggression in Anastatus disparis (Hymenoptera: Eupelmidae) with extreme male-male combat. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:146-152. [PMID: 32677606 DOI: 10.1017/s0007485320000413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aggressive behaviour is common in animals and typically has lifetime consequences. As younger males have higher residual reproductive value than older males and lose more from injuries than older males do, the propensity for fighting tends to increase with age in many empirical reports and species. However, fighting patterns in those empirical reports cannot confirm the hypothesis that individuals cannot readily inflict injuries on their opponents. To address this shortcoming, a parasitoid wasp species, Anastatus disparis (Hymenoptera: Eupelmidae), was used as an experimental model to explore the characteristics of aggression from a life-history perspective; this wasp exhibits extreme fighting, resulting in contestants experiencing injury and death. Results showed that the energetic costs of fighting to injury significantly shortened life and caused the loss of most mating ability. Inconsistent with general predictions, the frequency and intensity of fighting in A. disparis significantly decreased with male age. Further study results showed significantly more young males were received by and successfully mated with virgin females, and most genes related to energy metabolism were downregulated in aged males. Our study provided supporting evidence that young A. disparis males show more aggression likely because of their resource holding potential and sexual attractiveness decline with age.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The College of Ecology and Environment, Anhui Normal University, Anhui Province, China
| | - De-Jun Hao
- The College of Forestry, Nanjing Forestry University, Jiangsu Province, China
| | - Wei Hu
- The College of Ecology and Environment, Anhui Normal University, Anhui Province, China
| | - Jian-Rong Wei
- The College of Life Science, Hebei University, Hebei Province, China
| | - Jian-Jun Wang
- Liaoning Academy of Forestry Science, Shenyang Province, China
| |
Collapse
|
29
|
Monyak RE, Golbari NM, Chan YB, Pranevicius A, Tang G, Fernández MP, Kravitz EA. Masculinized Drosophila females adapt their fighting strategies to their opponent. J Exp Biol 2021; 224:jeb.238006. [PMID: 33568440 DOI: 10.1242/jeb.238006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/02/2021] [Indexed: 11/20/2022]
Abstract
Many animal species show aggression to gain mating partners and to protect territories and other resources from competitors. Both male and female fruit flies of the species Drosophila melanogaster exhibit aggression in same-sex pairings, but the strategies used are sexually dimorphic. We have begun to explore the biological basis for the differing aggression strategies, and the cues promoting one form of aggression over the other. Here, we describe a line of genetically masculinized females that switch between male and female aggression patterns based on the sexual identity of their opponents. When these masculinized females are paired with more aggressive opponents, they increase the amount of male-like aggression they use, but do not alter the level of female aggression. This suggests that male aggression may be more highly responsive to behavioral cues than female aggression. Although the masculinized females of this line show opponent-dependent changes in aggression and courtship behavior, locomotor activity and sleep are unaffected. Thus, the driver line used may specifically masculinize neurons involved in social behavior. A discussion of possible different roles of male and female aggression in fruit flies is included here. These results can serve as precursors to future experiments aimed at elucidating the circuitry and triggering cues underlying sexually dimorphic aggressive behavior.
Collapse
Affiliation(s)
- Rachel E Monyak
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole M Golbari
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Yick-Bun Chan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ausra Pranevicius
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA
| | - Grace Tang
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA
| | - Maria Paz Fernández
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA
| | - Edward A Kravitz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Inoshita T, Takemoto D, Imai Y. Analysis of Dopaminergic Functions in Drosophila. Methods Mol Biol 2021; 2322:185-193. [PMID: 34043204 DOI: 10.1007/978-1-0716-1495-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dopaminergic (DA) neurons regulate various physiological functions, including motor function, emotion, learning, sleep, and arousal. Degeneration of DA neurons in the substantia nigra of the midbrain causes motor disturbance in Parkinson's disease (PD). Studies on familial PD have revealed that a subset of PD genes encode proteins that regulate mitochondrial function and synaptic dynamics. Drosophila is a powerful model of PD, whereby genetic interactions of PD genes with well-conserved cellular signaling can be evaluated. Morphological changes in mitochondria, along with dysfunction and degeneration of DA neurons, have been reported in many studies using Drosophila PD models. In this chapter, we will describe imaging methods to visualize mitochondria in DA neurons and to evaluate spontaneous neural activity of DA neurons in the Drosophila brain.
Collapse
Affiliation(s)
- Tsuyoshi Inoshita
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisaku Takemoto
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
31
|
Siju KP, De Backer JF, Grunwald Kadow IC. Dopamine modulation of sensory processing and adaptive behavior in flies. Cell Tissue Res 2021; 383:207-225. [PMID: 33515291 PMCID: PMC7873103 DOI: 10.1007/s00441-020-03371-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022]
Abstract
Behavioral flexibility for appropriate action selection is an advantage when animals are faced with decisions that will determine their survival or death. In order to arrive at the right decision, animals evaluate information from their external environment, internal state, and past experiences. How these different signals are integrated and modulated in the brain, and how context- and state-dependent behavioral decisions are controlled are poorly understood questions. Studying the molecules that help convey and integrate such information in neural circuits is an important way to approach these questions. Many years of work in different model organisms have shown that dopamine is a critical neuromodulator for (reward based) associative learning. However, recent findings in vertebrates and invertebrates have demonstrated the complexity and heterogeneity of dopaminergic neuron populations and their functional implications in many adaptive behaviors important for survival. For example, dopaminergic neurons can integrate external sensory information, internal and behavioral states, and learned experience in the decision making circuitry. Several recent advances in methodologies and the availability of a synaptic level connectome of the whole-brain circuitry of Drosophila melanogaster make the fly an attractive system to study the roles of dopamine in decision making and state-dependent behavior. In particular, a learning and memory center-the mushroom body-is richly innervated by dopaminergic neurons that enable it to integrate multi-modal information according to state and context, and to modulate decision-making and behavior.
Collapse
Affiliation(s)
- K. P. Siju
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Jean-Francois De Backer
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ilona C. Grunwald Kadow
- School of Life Sciences, Department of Molecular Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
32
|
Sasaki K, Harada M. Dopamine production in the brain is associated with caste-specific morphology and behavior in an artificial intermediate honey bee caste. PLoS One 2020; 15:e0244140. [PMID: 33332426 PMCID: PMC7746283 DOI: 10.1371/journal.pone.0244140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
Caste polymorphism in eusocial insects is based on morphological plasticity and linked to physiological and behavioral characteristics. To test the possibility that dopamine production in the brain is associated with the caste-specific morphology and behavior in female honey bees, an intermediate caste was produced via artificial rearing using different amounts of diet, before quantifying the dopamine levels and conducting behavioral tests. In field colonies, individual traits such as mandibular shape, number of ovarioles, diameter of spermatheca, and dopamine levels in the brain differed significantly between workers and queens. Females given 1.5 times the amount of artificial diet that control worker receives during the larval stage in the laboratory had characteristics intermediate between castes. The dopamine levels in the brain were positively correlated with the mandibular shape indexes, number of ovarioles, and spermatheca diameter among artificially reared females. The dopamine levels were significantly higher in females with mandibular notches than those without. In fighting experiments with the intermediate caste females, the winners had significantly higher dopamine levels in the brain than the losers. Brain levels of tyrosine were positively correlated with those of catecholamines but not phenolamines, thereby suggesting a strong metabolic relationship between tyrosine and dopamine. Thus, the caste-specific characteristics of the honey bee are potentially continuous in the same manner as those in primitively eusocial species. Dopamine production in the brain is associated with the continuous caste-specific morphology, as well as being linked to the amount of tyrosine taken from food, and it supports the aggressive behavior of queen-type females.
Collapse
Affiliation(s)
- Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
- * E-mail:
| | - Mariko Harada
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
33
|
Chvilicek MM, Titos I, Rothenfluh A. The Neurotransmitters Involved in Drosophila Alcohol-Induced Behaviors. Front Behav Neurosci 2020; 14:607700. [PMID: 33384590 PMCID: PMC7770116 DOI: 10.3389/fnbeh.2020.607700] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alcohol is a widely used and abused substance with numerous negative consequences for human health and safety. Historically, alcohol's widespread, non-specific neurobiological effects have made it a challenge to study in humans. Therefore, model organisms are a critical tool for unraveling the mechanisms of alcohol action and subsequent effects on behavior. Drosophila melanogaster is genetically tractable and displays a vast behavioral repertoire, making it a particularly good candidate for examining the neurobiology of alcohol responses. In addition to being experimentally amenable, Drosophila have high face and mechanistic validity: their alcohol-related behaviors are remarkably consistent with humans and other mammalian species, and they share numerous conserved neurotransmitters and signaling pathways. Flies have a long history in alcohol research, which has been enhanced in recent years by the development of tools that allow for manipulating individual Drosophila neurotransmitters. Through advancements such as the GAL4/UAS system and CRISPR/Cas9 mutagenesis, investigation of specific neurotransmitters in small subsets of neurons has become ever more achievable. In this review, we describe recent progress in understanding the contribution of seven neurotransmitters to fly behavior, focusing on their roles in alcohol response: dopamine, octopamine, tyramine, serotonin, glutamate, GABA, and acetylcholine. We chose these small-molecule neurotransmitters due to their conservation in mammals and their importance for behavior. While neurotransmitters like dopamine and octopamine have received significant research emphasis regarding their contributions to behavior, others, like glutamate, GABA, and acetylcholine, remain relatively unexplored. Here, we summarize recent genetic and behavioral findings concerning these seven neurotransmitters and their roles in the behavioral response to alcohol, highlighting the fitness of the fly as a model for human alcohol use.
Collapse
Affiliation(s)
- Maggie M. Chvilicek
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, United States
- Neuroscience Graduate Program, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Moulin TC, Covill LE, Itskov PM, Williams MJ, Schiöth HB. Rodent and fly models in behavioral neuroscience: An evaluation of methodological advances, comparative research, and future perspectives. Neurosci Biobehav Rev 2020; 120:1-12. [PMID: 33242563 DOI: 10.1016/j.neubiorev.2020.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/25/2020] [Accepted: 11/12/2020] [Indexed: 01/31/2023]
Abstract
The assessment of behavioral outcomes is a central component of neuroscientific research, which has required continuous technological innovations to produce more detailed and reliable findings. In this article, we provide an in-depth review on the progress and future implications for three model organisms (mouse, rat, and Drosophila) essential to our current understanding of behavior. By compiling a comprehensive catalog of popular assays, we are able to compare the diversity of tasks and usage of these animal models in behavioral research. This compilation also allows for the evaluation of existing state-of-the-art methods and experimental applications, including optogenetics, machine learning, and high-throughput behavioral assays. We go on to discuss novel apparatuses and inter-species analyses for centrophobism, feeding behavior, aggression and mating paradigms, with the goal of providing a unique view on comparative behavioral research. The challenges and recent advances are evaluated in terms of their translational value, ethical procedures, and trustworthiness for behavioral research.
Collapse
Affiliation(s)
- Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Laura E Covill
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pavel M Itskov
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Department of Pharmacology, Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia; Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael J Williams
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
35
|
Sun Y, Qiu R, Li X, Cheng Y, Gao S, Kong F, Liu L, Zhu Y. Social attraction in Drosophila is regulated by the mushroom body and serotonergic system. Nat Commun 2020; 11:5350. [PMID: 33093442 PMCID: PMC7582864 DOI: 10.1038/s41467-020-19102-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/24/2020] [Indexed: 01/18/2023] Open
Abstract
Sociality is among the most important motivators of human behaviour. However, the neural mechanisms determining levels of sociality are largely unknown, primarily due to a lack of suitable animal models. Here, we report the presence of a surprising degree of general sociality in Drosophila. A newly-developed paradigm to study social approach behaviour in flies reveal that social cues perceive through both vision and olfaction converged in a central brain region, the γ lobe of the mushroom body, which exhibite activation in response to social experience. The activity of these γ neurons control the motivational drive for social interaction. At the molecular level, the serotonergic system is critical for social affinity. These results demonstrate that Drosophila are highly sociable, providing a suitable model system for elucidating the mechanisms underlying the motivation for sociality. Robust social attraction in fruit flies relies on two prominent senses, vision and olfaction, which converge to central brain neurons. The neurons of the γ lobe of the mushroom bodies integrate sensory information and modulate social affinity.
Collapse
Affiliation(s)
- Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Qiu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,New England Biolabs (Beijing) LTD., No.1 Wang Zhuang Road, Beijing, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaxin Cheng
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shenzhen Science Museum, Shangbu Road, 1003, Shenzhen, China
| | - Shan Gao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fanchen Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
36
|
Duhart JM, Baccini V, Zhang Y, Machado DR, Koh K. Modulation of sleep-courtship balance by nutritional status in Drosophila. eLife 2020; 9:60853. [PMID: 33084567 PMCID: PMC7609064 DOI: 10.7554/elife.60853] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
Sleep is essential but incompatible with other behaviors, and thus sleep drive competes with other motivations. We previously showed Drosophila males balance sleep and courtship via octopaminergic neurons that act upstream of courtship-regulating P1 neurons (Machado et al., 2017). Here, we show nutrition modulates the sleep-courtship balance and identify sleep-regulatory neurons downstream of P1 neurons. Yeast-deprived males exhibited attenuated female-induced nighttime sleep loss yet normal daytime courtship, which suggests male flies consider nutritional status in deciding whether the potential benefit of pursuing female partners outweighs the cost of losing sleep. Trans-synaptic tracing and calcium imaging identified dopaminergic neurons projecting to the protocerebral bridge (DA-PB) as postsynaptic partners of P1 neurons. Activation of DA-PB neurons led to reduced sleep in normally fed but not yeast-deprived males. Additional PB-projecting neurons regulated male sleep, suggesting several groups of PB-projecting neurons act downstream of P1 neurons to mediate nutritional modulation of the sleep-courtship balance.
Collapse
Affiliation(s)
- José M Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| | - Victoria Baccini
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| | - Yanan Zhang
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| | - Daniel R Machado
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga, Portugal
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
37
|
Hu SW, Yang YT, Sun Y, Zhan YP, Zhu Y. Serotonin Signals Overcome Loser Mentality in Drosophila. iScience 2020; 23:101651. [PMID: 33117967 PMCID: PMC7581928 DOI: 10.1016/j.isci.2020.101651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 10/01/2020] [Indexed: 12/03/2022] Open
Abstract
Traumatic experiences generate stressful neurological effects in the exposed persons and animals. Previous studies have demonstrated that in many species, including Drosophila, the defeated animal has a higher probability of losing subsequent fights. However, the neural basis of this “loser effect” is largely unknown. We herein report that elevated serotonin (5-HT) signaling helps a loser to overcome suppressive neurological states. Coerced activation of 5-HT neurons increases aggression in males and promotes losers to both vigorously re-engage in fights and even defeat the previous winners and regain mating motivation. P1 neurons act upstream and 5-HT1B neurons in the ellipsoid body act downstream of 5-HT neurons to arouse losers. Our results demonstrate an ancient neural mechanism of regulating depressive behavioral states after distressing events. Activating a small subset of serotonin neurons promotes losers to fight Serotonin is necessary and sufficient for modulating aggression in losers The neural circuit for motivating losers includes P1, 5-HT, and 5-HT1B neurons Elevating 5-HT signaling overcomes the depressive behavioral state in losers
Collapse
Affiliation(s)
- Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Peng Zhan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
39
|
Trostnikov MV, Veselkina ER, Krementsova AV, Boldyrev SV, Roshina NV, Pasyukova EG. Modulated Expression of the Protein Kinase GSK3 in Motor and Dopaminergic Neurons Increases Female Lifespan in Drosophila melanogaster. Front Genet 2020; 11:668. [PMID: 32695143 PMCID: PMC7339944 DOI: 10.3389/fgene.2020.00668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Most eukaryotic genes express multiple transcripts and proteins, and a sophisticated gene expression strategy plays a crucial role in ensuring the cell-specificity of genetic information and the correctness of phenotypes. The Drosophila melanogaster gene shaggy encodes several isoforms of the conserved glycogen synthase kinase 3 (GSK3), which is vitally important for multiple biological processes. To characterize the phenotypic effects of differential shaggy expression, we explored how the multidirectional modulation of the expression of the main GSK3 isoform, Shaggy-PB, in different tissues and cells affects lifespan. To this end, we used lines with transgenic constructs that encode mutant variants of the protein. The effect of shaggy misexpression on lifespan depended on the direction of the presumed change in GSK3 activity and the type of tissue/cell. The modulation of GSK3 activity in motor and dopaminergic neurons improved female lifespan but caused seemingly negative changes in the structural (mitochondrial depletion; neuronal loss) and functional (perturbed locomotion) properties of the nervous system, indicating the importance of analyzing the relationship between lifespan and healthspan in invertebrate models. Our findings provide new insights into the molecular and cellular bases of lifespan extension, demonstrating that the fine-tuning of transcript-specific shaggy expression in individual groups of neurons is sufficient to provide a sex-specific increase in survival and slow aging.
Collapse
Affiliation(s)
- Mikhail V Trostnikov
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina R Veselkina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Krementsova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Kinetics and Mechanisms of Enzymatic and Catalytic Reactions, N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Boldyrev
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Roshina
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.,Laboratory of Genetic Basis of Biodiversity, N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elena G Pasyukova
- Laboratory of Genome Variation, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Liu PC, Hao DJ, Hu HY, Wei JR, Wu F, Shen J, Xu SJ, Xie QY. Effect of Winning Experience on Aggression Involving Dangerous Fighting Behavior in Anastatus disparis (Hymenoptera: Eupelmidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5847615. [PMID: 32458992 PMCID: PMC7251529 DOI: 10.1093/jisesa/ieaa038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Aggressive behavior is widely observed in animal species for acquiring important resources and usually includes both dangerous and nondangerous fighting patterns. Only a few species show dangerous fighting patterns that are defined by fights ending with contestants being severely injured or killed. Prior experience, an important factor in many species, has been demonstrated to affect a contestant's subsequent fighting behavior. Few studies have focused on the effect of experience on aggression involving dangerous fighting patterns. Here, an egg parasitoid wasp, Anastatus disparis, which shows extreme and dangerous fighting behavior to acquire mating opportunities, was used as an experimental model. Our results showed that the fighting intensity of the winning males significantly decreased subsequent fighting behavior, which was inconsistent with general predictions. Transcriptomic analyses showed that many genes related to energy metabolism were downregulated in winners, and winners increased their fighting intensity after dietary supplementation. Our study suggested that fighting in A. disparis is a tremendous drain on energy. Thus, although males won at combat, significant reductions in available energy constrained the intensity of subsequent fights and influenced strategic decisions. In addition, winners might improve their fighting skills and abilities from previous contests, and their fighting intensity after dietary supplementation was significantly higher than that of males without any fighting experience. Generally, in A. disparis, although winners increased their fighting ability with previous experience, the available energy in winners was likely to be a crucial factor affecting the intensity and strategic decisions in subsequent fights.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The College of Life Science, Anhui Normal University, Anhui Province, China
| | - De-Jun Hao
- The College of Forestry, Nanjing Forestry University, Jiangsu Province, China
| | - Hao-Yuan Hu
- The College of Life Science, Anhui Normal University, Anhui Province, China
| | - Jian-Rong Wei
- The College of Life Science, Hebei University, Hebei Province, China
| | - Fan Wu
- The College of Life Science, Anhui Normal University, Anhui Province, China
| | - Jie Shen
- The College of Life Science, Anhui Normal University, Anhui Province, China
| | - Shen-jia Xu
- The College of Life Science, Anhui Normal University, Anhui Province, China
| | - Qi-Yue Xie
- The College of Life Science, Anhui Normal University, Anhui Province, China
| |
Collapse
|
41
|
Wu F, Deng B, Xiao N, Wang T, Li Y, Wang R, Shi K, Luo DG, Rao Y, Zhou C. A neuropeptide regulates fighting behavior in Drosophila melanogaster. eLife 2020; 9:54229. [PMID: 32314736 PMCID: PMC7173970 DOI: 10.7554/elife.54229] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/11/2020] [Indexed: 11/13/2022] Open
Abstract
Aggressive behavior is regulated by various neuromodulators such as neuropeptides and biogenic amines. Here we found that the neuropeptide Drosulfakinin (Dsk) modulates aggression in Drosophila melanogaster. Knock-out of Dsk or Dsk receptor CCKLR-17D1 reduced aggression. Activation and inactivation of Dsk-expressing neurons increased and decreased male aggressive behavior, respectively. Moreover, data from transsynaptic tracing, electrophysiology and behavioral epistasis reveal that Dsk-expressing neurons function downstream of a subset of P1 neurons (P1a-splitGAL4) to control fighting behavior. In addition, winners show increased calcium activity in Dsk-expressing neurons. Conditional overexpression of Dsk promotes social dominance, suggesting a positive correlation between Dsk signaling and winning effects. The mammalian ortholog CCK has been implicated in mammal aggression, thus our work suggests a conserved neuromodulatory system for the modulation of aggressive behavior.
Collapse
Affiliation(s)
- Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangchun Life Sciences Park, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Na Xiao
- State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yining Li
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangchun Life Sciences Park, Beijing, China.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Dong-Gen Luo
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.,State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yi Rao
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangchun Life Sciences Park, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China.,Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Advanced Innovation Center for Genomics, Peking University School of Life Sciences, Beijing, China
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
42
|
Shiozaki HM, Ohta K, Kazama H. A Multi-regional Network Encoding Heading and Steering Maneuvers in Drosophila. Neuron 2020; 106:126-141.e5. [PMID: 32023429 DOI: 10.1016/j.neuron.2020.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 11/25/2022]
Abstract
An internal sense of heading direction is computed from various cues, including steering maneuvers of the animal. Although neurons encoding heading and steering have been found in multiple brain regions, it is unclear whether and how they are organized into neural circuits. Here we show that, in flying Drosophila, heading and turning behaviors are encoded by population dynamics of specific cell types connecting the subregions of the central complex (CX), a brain structure implicated in navigation. Columnar neurons in the fan-shaped body (FB) of the CX exhibit circular dynamics that multiplex information about turning behavior and heading. These dynamics are coordinated with those in the ellipsoid body, another CX subregion containing a heading representation, although only FB neurons flip turn preference depending on the visual environment. Thus, the navigational system spans multiple subregions of the CX, where specific cell types show coordinated but distinct context-dependent dynamics.
Collapse
Affiliation(s)
- Hiroshi M Shiozaki
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Kazumi Ohta
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; RIKEN CBS-KAO Collaboration Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
43
|
Auletta A, Rue MCP, Harley CM, Mesce KA. Tyrosine hydroxylase immunolabeling reveals the distribution of catecholaminergic neurons in the central nervous systems of the spiders Hogna lenta (Araneae: Lycosidae) and Phidippus regius (Araneae: Salticidae). J Comp Neurol 2020; 528:211-230. [PMID: 31343075 DOI: 10.1002/cne.24748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 11/12/2022]
Abstract
With over 48,000 species currently described, spiders (Arthropoda: Chelicerata: Araneae) comprise one of the most diverse groups of animals on our planet, and exhibit an equally wide array of fascinating behaviors. Studies of central nervous systems (CNSs) in spiders, however, are relatively sparse, and no reports have yet characterized catecholaminergic (dopamine [DA]- or norepinephrine-synthesizing) neurons in any spider species. Because these neuromodulators are especially important for sensory and motor processing across animal taxa, we embarked on a study to identify catecholaminergic neurons in the CNS of the wolf spider Hogna lenta (Lycosidae) and the jumping spider Phidippus regius (Salticidae). These neurons were most effectively labeled with an antiserum raised against tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis. We found extensive catecholamine-rich neuronal fibers in the first- and second-order optic neuropils of the supraesophageal mass (brain), as well as in the arcuate body, a region of the brain thought to receive visual input and which may be involved in higher order sensorimotor integration. This structure likely shares evolutionary origins with the DA-enriched central complex of the Mandibulata. In the subesophageal mass, we detected an extensive filigree of TH-immunoreactive (TH-ir) arborizations in the appendage neuromeres, as well as three prominent plurisegmental fiber tracts. A vast abundance of TH-ir somata were located in the opisthosomal neuromeres, the largest of which appeared to project to the brain and decorate the appendage neuromeres. Our study underscores the important roles that the catecholamines likely play in modulating spider vision, higher order sensorimotor processing, and motor patterning.
Collapse
Affiliation(s)
- Anthony Auletta
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Mara C P Rue
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Cynthia M Harley
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota
| | - Karen A Mesce
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota.,Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
44
|
Belmonte RL, Corbally MK, Duneau DF, Regan JC. Sexual Dimorphisms in Innate Immunity and Responses to Infection in Drosophila melanogaster. Front Immunol 2020; 10:3075. [PMID: 32076419 PMCID: PMC7006818 DOI: 10.3389/fimmu.2019.03075] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
The sexes show profound differences in responses to infection and the development of autoimmunity. Dimorphisms in immune responses are ubiquitous across taxa, from arthropods to vertebrates. Drosophila melanogaster shows strong sex dimorphisms in immune system responses at baseline, upon pathogenic challenge, and over aging. We have performed an exhaustive survey of peer-reviewed literature on Drosophila immunity, and present a database of publications indicating the sex(es) analyzed in each study. While we found a growing interest in the community in adult immunity and in reporting both sexes, the main body of work in this field uses only one sex, or does not stratify by sex. We synthesize evidence for sexually dimorphic responses to bacterial, viral, and fungal infections. Dimorphisms may be mediated by distinct immune compartments, and we review work on sex differences in behavioral, epithelial, cellular, and systemic (fat body-mediated) immunity. Emerging work on sexually dimorphic aging of immune tissues, immune senescence, and inflammation are examined. We consider evolutionary drivers for sex differences in immune investment, highlight the features of Drosophila biology that make it particularly amenable to studies of immune dimorphisms, and discuss areas for future exploration.
Collapse
Affiliation(s)
- Rebecca L. Belmonte
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mary-Kate Corbally
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - David F. Duneau
- Laboratoire Evolution & Diversite Biologique, UMR5174 EDB, CNRS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jennifer C. Regan
- Institute of Immunology & Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
45
|
Agrawal P, Kao D, Chung P, Looger LL. The neuropeptide Drosulfakinin regulates social isolation-induced aggression in Drosophila. J Exp Biol 2020; 223:jeb207407. [PMID: 31900346 PMCID: PMC7033730 DOI: 10.1242/jeb.207407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/19/2019] [Indexed: 01/09/2023]
Abstract
Social isolation strongly modulates behavior across the animal kingdom. We utilized the fruit fly Drosophila melanogaster to study social isolation-driven changes in animal behavior and gene expression in the brain. RNA-seq identified several head-expressed genes strongly responding to social isolation or enrichment. Of particular interest, social isolation downregulated expression of the gene encoding the neuropeptide Drosulfakinin (Dsk), the homologue of vertebrate cholecystokinin (CCK), which is critical for many mammalian social behaviors. Dsk knockdown significantly increased social isolation-induced aggression. Genetic activation or silencing of Dsk neurons each similarly increased isolation-driven aggression. Our results suggest a U-shaped dependence of social isolation-induced aggressive behavior on Dsk signaling, similar to the actions of many neuromodulators in other contexts.
Collapse
Affiliation(s)
- Pavan Agrawal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Damian Kao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Phuong Chung
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
46
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|
47
|
Neuromodulation of insect motion vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:125-137. [DOI: 10.1007/s00359-019-01383-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
48
|
Xie T, Ho MCW, Liu Q, Horiuchi W, Lin CC, Task D, Luan H, White BH, Potter CJ, Wu MN. A Genetic Toolkit for Dissecting Dopamine Circuit Function in Drosophila. Cell Rep 2019; 23:652-665. [PMID: 29642019 PMCID: PMC5962273 DOI: 10.1016/j.celrep.2018.03.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 01/23/2023] Open
Abstract
The neuromodulator dopamine (DA) plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay.
Collapse
Affiliation(s)
- Tingting Xie
- School of Life Sciences, Peking University, Beijing 100871, China; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Margaret C W Ho
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qili Liu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wakako Horiuchi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Chun-Chieh Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Darya Task
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Christopher J Potter
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
49
|
A small number of cholinergic neurons mediate hyperaggression in female Drosophila. Proc Natl Acad Sci U S A 2019; 116:17029-17038. [PMID: 31391301 DOI: 10.1073/pnas.1907042116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Drosophila model of aggression, males and females fight in same-sex pairings, but a wide disparity exists in the levels of aggression displayed by the 2 sexes. A screen of Drosophila Flylight Gal4 lines by driving expression of the gene coding for the temperature sensitive dTRPA1 channel, yielded a single line (GMR26E01-Gal4) displaying greatly enhanced aggression when thermoactivated. Targeted neurons were widely distributed throughout male and female nervous systems, but the enhanced aggression was seen only in females. No effects were seen on female mating behavior, general arousal, or male aggression. We quantified the enhancement by measuring fight patterns characteristic of female and male aggression and confirmed that the effect was female-specific. To reduce the numbers of neurons involved, we used an intersectional approach with our library of enhancer trap flp-recombinase lines. Several crosses reduced the populations of labeled neurons, but only 1 cross yielded a large reduction while maintaining the phenotype. Of particular interest was a small group (2 to 4 pairs) of neurons in the approximate position of the pC1 cluster important in governing male and female social behavior. Female brains have approximately 20 doublesex (dsx)-expressing neurons within pC1 clusters. Using dsx FLP instead of 357 FLP for the intersectional studies, we found that the same 2 to 4 pairs of neurons likely were identified with both. These neurons were cholinergic and showed no immunostaining for other transmitter compounds. Blocking the activation of these neurons blocked the enhancement of aggression.
Collapse
|
50
|
Brenman-Suttner DB, Yost RT, Frame AK, Robinson JW, Moehring AJ, Simon AF. Social behavior and aging: A fly model. GENES BRAIN AND BEHAVIOR 2019; 19:e12598. [PMID: 31286644 DOI: 10.1111/gbb.12598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
The field of behavioral genetics has recently begun to explore the effect of age on social behaviors. Such studies are particularly important, as certain neuropsychiatric disorders with abnormal social interactions, like autism and schizophrenia, have been linked to older parents. Appropriate social interaction can also have a positive impact on longevity, and is associated with successful aging in humans. Currently, there are few genetic models for understanding the effect of aging on social behavior and its potential transgenerational inheritance. The fly is emerging as a powerful model for identifying the basic molecular mechanisms underlying neurological and neuropsychiatric disorders. In this review, we discuss these recent advancements, with a focus on how studies in Drosophila melanogaster have provided insight into the effect of aging on aspects of social behavior, including across generations.
Collapse
Affiliation(s)
- Dova B Brenman-Suttner
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada.,Department of Biology, York University, Toronto, Ontario, Canada
| | - Ryley T Yost
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Ariel K Frame
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - J Wesley Robinson
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Amanda J Moehring
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| | - Anne F Simon
- Department of Biology, Faculty of Science, Western University, London, Ontario, Canada
| |
Collapse
|