1
|
Scherer U, Laskowski KL, Kressler MM, Ehlman SM, Wolf M, Bierbach D. Predator exposure early in life shapes behavioral development and individual variation in a clonal fish. Sci Rep 2024; 14:21668. [PMID: 39289453 PMCID: PMC11408663 DOI: 10.1038/s41598-024-72550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Predation risk is one of the most important factors generating behavioral differences among populations. In addition, recent attention focusses on predation as a potential driver of patterns of individual behavioral variation within prey populations. Previous studies provide mixed results, reporting either increased or decreased among-individual variation in response to risk. Here, we take an explicit developmental approach to documenting how among-individual variation develops over time in response to predator exposure, controlling for both genetic and experiential differences among individuals. We reared juveniles of naturally clonal Amazon mollies, Poecilia formosa, either with or without a predator visible during feedings over 4 weeks and analyzed activity during feedings, time spent feeding and number of visits to the feeding spot. (I) Predator-exposed fish did not differ from control fish in average feeding behavior, but they were less active during feeding trials. (II) In the absence of the predator, substantial changes in among-individual variation over time were detected: among-individual differences in feeding duration increased whereas differences in activity decreased, but there were no changes in feeder visits. In contrast, in the presence of a predator, among-individual variation in all three behaviors was stable over time and often lower compared to control conditions. Our work suggests that predation risk may have an overall stabilizing effect on the development of individual variation and that differences in predation risk may well lead to population-wide differences in among-individual behavioral variation.
Collapse
Affiliation(s)
- U Scherer
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany.
- Faculty of Life Sciences, Humboldt-Universität Zu Berlin, 10117, Berlin, Germany.
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany.
| | - K L Laskowski
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - M M Kressler
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - S M Ehlman
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität Zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - M Wolf
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| | - D Bierbach
- SCIoI Excellence Cluster, Technische Universität Berlin, 10587, Berlin, Germany
- Faculty of Life Sciences, Humboldt-Universität Zu Berlin, 10117, Berlin, Germany
- Department of Fish Biology, Fisheries, and Aquaculture, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587, Berlin, Germany
| |
Collapse
|
2
|
Lu M, Zhou L, Gui JF. Evolutionary mechanisms and practical significance of reproductive success and clonal diversity in unisexual vertebrate polyploids. SCIENCE CHINA. LIFE SCIENCES 2024; 67:449-459. [PMID: 38198030 DOI: 10.1007/s11427-023-2486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 01/11/2024]
Abstract
Unisexual reproduction is generally relevant to polyploidy, and unisexual vertebrates are often considered an evolutionary "dead end" due to the accumulation of deleterious mutations and absence of genetic diversity. However, some unisexual polyploids have developed strategies to avoid genomic decay, and thus provide ideal models to unveil unexplored evolutionary mechanisms, from the reproductive success to clonal diversity creation. This article reviews the evolutionary mechanisms for overcoming meiotic barrier and generating genetic diversity in unisexual vertebrates, and summarizes recent research advancements in the polyploid Carassius complex. Gynogenetic gibel carp (Carassius gibelio) is a unique amphitriploid that has undergone a recurrent autotriploidy and has overcome the bottleneck of triploid sterility via gynogenesis. Recently, an efficient strategy in which ploidy changes, including from amphitriploid to amphitetraploid, then from amphitetraploid to novel amphitriploid, drive unisexual-sexual-unisexual reproduction transition and clonal diversity has been revealed. Based on this new discovery, multigenomic reconstruction biotechnology has been used to breed a novel strain with superior growth and stronger disease resistance. Moreover, a unique reproduction mode that combines both abilities of ameiotic oogenesis and sperm-egg fusion, termed as ameio-fusiongensis, has been discovered, and it provides an efficient approach to synthesize sterile allopolyploids. In order to avoid ecological risks upon escape and protect the sustainable property rights of the aquaculture seed industry, a controllable fertility biotechnology approach for precise breeding is being developed by integrating sterile allopolyploid synthesis and gene-editing techniques. This review provides novel insights into the origin and evolution of unisexual vertebrates and into the attempts being made to exploit new breeding biotechnologies in aquaculture.
Collapse
Affiliation(s)
- Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, the Innovation Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Marta A, Tichopád T, Bartoš O, Klíma J, Shah MA, Bohlen VŠ, Bohlen J, Halačka K, Choleva L, Stöck M, Dedukh D, Janko K. Genetic and karyotype divergence between parents affect clonality and sterility in hybrids. eLife 2023; 12:RP88366. [PMID: 37930936 PMCID: PMC10627513 DOI: 10.7554/elife.88366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Asexual reproduction can be triggered by interspecific hybridization, but its emergence is supposedly rare, relying on exceptional combinations of suitable genomes. To examine how genomic and karyotype divergence between parental lineages affect the incidence of asexual gametogenesis, we experimentally hybridized fishes (Cobitidae) across a broad phylogenetic spectrum, assessed by whole exome data. Gametogenic pathways generally followed a continuum from sexual reproduction in hybrids between closely related evolutionary lineages to sterile or inviable crosses between distant lineages. However, most crosses resulted in a combination of sterile males and asexually reproducing females. Their gametes usually experienced problems in chromosome pairing, but females also produced a certain proportion of oocytes with premeiotically duplicated genomes, enabling their development into clonal eggs. Interspecific hybridization may thus commonly affect cell cycles in a specific way, allowing the formation of unreduced oocytes. The emergence of asexual gametogenesis appears tightly linked to hybrid sterility and constitutes an inherent part of the extended speciation continuum.
Collapse
Affiliation(s)
- Anatolie Marta
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CASLibechovCzech Republic
| | - Tomáš Tichopád
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CASLibechovCzech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical AgencyPragueCzech Republic
| | - Jiří Klíma
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics of the CASLiběchovCzech Republic
| | - Mujahid Ali Shah
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske BudejoviceVodnanyCzech Republic
| | - Vendula Šlechtová Bohlen
- Laboratory of Fish genetics, Institute of Animal Physiology and Genetics of the CASLiběchovCzech Republic
| | - Joerg Bohlen
- Laboratory of Fish genetics, Institute of Animal Physiology and Genetics of the CASLiběchovCzech Republic
| | - Karel Halačka
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CASLibechovCzech Republic
| | - Lukáš Choleva
- Department of Biology and Ecology, Faculty of Science, University of OstravaOstravaCzech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGBBerlinGermany
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CASLibechovCzech Republic
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics of the CASLibechovCzech Republic
- Department of Biology and Ecology, Faculty of Science, University of OstravaOstravaCzech Republic
| |
Collapse
|
4
|
Wharton D. Backcrossing as a species restoration technique. Zoo Biol 2023; 42:490-508. [PMID: 36967628 DOI: 10.1002/zoo.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2023] [Accepted: 03/12/2023] [Indexed: 08/15/2023]
Abstract
An investigation was conducted on the phenotypic results of mouse hybridization and seven generations of backcrossing, observing reciprocal F1 hybrids and backcrosses of Mus spretus and a laboratory strain of Mus domesticus C57BL/6J. F1 hybrids, backcrosses, and pure control specimens were measured for 6 body characteristics, 4 pelage coloration characteristics, 14 behaviors, and reproduction as reflected in litter size. Backcrossing was pursued for seven generations to FBC7 (i.e., "Backcross 7" or seven generations from commencement of backcrossing from an F1 hybrid female) where species restoration is mathematically calculated to be at 99.7%. Except for a minority of FBC7 M. spretus specimens failing to conform completely to one pelage characteristic, FBC7 specimens were indistinguishable from controls both subjectively and in all areas of measurement. The M. spretus backcross line was followed generation by generation and was largely conforming to controls by FBC4 at latest. The same effect was observed in the reciprocal M. domesticus backcross line. Fertility was negatively affected in F1 hybrids but restored or improved in backcross generations. Discussion is offered on hybridization and backcrossing as it occurs in nature and how it has been used or could be used as an additional ex situ tool in wildlife conservation efforts. It is concluded that conservation-oriented backcrossing is a practical species/subspecies restoration technique and has the potential to make genetic rescue feasible with minimal gene flow at the binomial level. Backcrossing is most applicable in closely monitored ex situ settings (1) where only one sex remains of a given taxon; and (2) where inbreeding depression seriously threatens a remnant taxon's ability to recover, and the only gene flow option is from another distinct species.
Collapse
Affiliation(s)
- Dan Wharton
- Conservation Science (Emeritus), Chicago Zoological Society, Brookfield, Illinois, USA
- City Zoos (retired), Wildlife Conservation Society, Bronx, New York, USA
| |
Collapse
|
5
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Geographic patterns of genomic variation in the threatened Salado salamander, Eurycea chisholmensis. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Gabor CR, Kivlin SN, Hua J, Bickford N, Reiskind MOB, Wright TF. Understanding Organismal Capacity to Respond to Anthropogenic Change: Barriers and Solutions. Integr Comp Biol 2021; 61:2132-2144. [PMID: 34279616 DOI: 10.1093/icb/icab162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
Global environmental changes induced by human activities are forcing organisms to respond at an unprecedented pace. At present we have only a limited understanding of why some species possess the capacity to respond to these changes while others do not. We introduce the concept of multidimensional phenospace as an organizing construct to understanding organismal evolutionary responses to environmental change. We then describe five barriers that currently challenge our ability to understand these responses: 1) Understanding the parameters of environmental change and their fitness effects, 2) Mapping and integrating phenotypic and genotypic variation, 3) Understanding whether changes in phenospace are heritable, 4) Predicting consistency of genotype to phenotype patterns across space and time, and 5) Determining which traits should be prioritized to understand organismal response to environmental change. For each we suggest one or more solutions that would help us surmount the barrier and improve our ability to predict, and eventually manipulate, organismal capacity to respond to anthropogenic change. Additionally, we provide examples of target species that could be useful to examine interactions between phenotypic plasticity and adaptive evolution in changing phenospace.
Collapse
Affiliation(s)
- Caitlin R Gabor
- Department of Biology, Population and Conservation Biology Group, Texas State University, San Marcos, TX, 78666, USA.,The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, 78666, USA
| | - Stephanie N Kivlin
- Department of Ecology and Evolutionary Biology, University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY, 13902, USA
| | - Nate Bickford
- Biology Department, Colorado State University Pueblo, Pueblo, CO 81003, USA
| | | | - Timothy F Wright
- Biology Department, New Mexico State University, Las Cruces, NM, 88003, USA
| |
Collapse
|
8
|
Muraco JJ, Monroe DJ, Aspbury AS, Gabor CR. Do Females in a Unisexual-Bisexual Species Complex Differ in Their Behavioral Syndromes and Cortisol Production? BIOLOGY 2021; 10:biology10030186. [PMID: 33802259 PMCID: PMC8001229 DOI: 10.3390/biology10030186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In many species, including humans, individuals in a population have personalities: collections of correlated behaviors that are consistent across different environments (i.e., mating, eating). Personalities are affected by competitors for food or mates and the hormones produced by individuals). Competitors can include other individuals of the same species or closely related species. The all-female, Amazon molly is a hybrid species, and needs to coexist with one of its bisexual (males and females), parent species, to reproduce. One parent species of the Amazon molly is the sailfin molly. Female sailfin and Amazon mollies compete for access to males for mating and food which could affect the personalities of individuals of each species. We found that both species have similar personalities consisting of a correlation between exploration and activity. We did not detect a relationship between a stress response hormone, cortisol, and individual personality. However, the all-female Amazons had higher cortisol release rates than sailfins. Personalities may be similar due to genetic constraints that link these behaviors, and might benefit Amazons if this causes male sailfin mollies to mismate with them. However, the differences in cortisol release rates may be a useful mate identification cue for males to offset such mating mistakes. Abstract Studies of suites of correlated behavioral traits (i.e., behavioral syndromes) aid in understanding the adaptive importance of behavioral evolution. Behavioral syndromes may be evolutionarily constrained, preventing behaviors from evolving independently, or they may be an adaptive result of selection on the correlation itself. We tested these hypotheses by characterizing the behavioral syndromes in two sympatric, closely related species and testing for differences between the species. We studied the unisexual Amazon molly (Poecilia formosa) and one of its bisexual, parent species, the sailfin molly (P. latipinna). Sympatric female sailfin and Amazon mollies compete for mating which could affect the behavioral syndromes found in each species. We identified a behavioral syndrome between exploration and activity in both species that did not differ between species. Additionally, we explored the relationship between a stress response hormone, cortisol, and behavioral type, and did not detect a relationship. However, P. formosa differed from P. latipinna in their cortisol release rates. Behavioral syndromes may be constrained in this complex, aiding in mate acquisition for P. formosa by virtue of having a similar behavioral type to P. latipinna. The difference between the females in cortisol release rates may be a useful mate identification cue for males to offset higher mating mistakes associated with the similar behavioral types.
Collapse
Affiliation(s)
- James J. Muraco
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
| | - Dillon J. Monroe
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
| | - Andrea S. Aspbury
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
| | - Caitlin R. Gabor
- Population and Conservation Biology Group, Department of Biology, Texas State University, San Marcos, TX 78666, USA; (J.J.M.J.); (D.J.M.); (A.S.A.)
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
- Correspondence:
| |
Collapse
|
9
|
Connelly AD, Ryan MJ. Phenotypic Variation in an Asexual-Sexual Fish System: Visual Lateralization. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.605943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sexual reproduction is nearly ubiquitous in the vertebrate world, yet its evolution and maintenance remain a conundrum due to the cost of males. Conversely, asexually reproducing species should enjoy a twofold population increase and thus replace sexual species all else being equal, but the prevalence of asexual species is rare. However, stable coexistence between asexuals and sexuals does occur and can shed light on the mechanisms asexuals may use in order to persist in this sex-dominated world. The asexual Amazon molly (Poecilia formosa) is required to live in sympatry with one of its sexual sperm hosts –sailfin molly (Poecilia latipinna) and Atlantic molly (Poecilia mexicana)—and are ecological equivalents to their host species in nearly every way except for reproductive method. Here, we compare the visual lateralization between Amazon mollies and sailfin mollies from San Marcos, Texas. Neither Amazon mollies nor sailfin mollies exhibited a significant eye bias. Additionally, Amazon mollies exhibited similar levels of variation in visual lateralization compared to the sailfin molly. Further investigation into the source of this variation –clonal lineages or plasticity—is needed to better understand the coexistence of this asexual-sexual system.
Collapse
|
10
|
Tarkhnishvili D, Yanchukov A, Şahin MK, Gabelaia M, Murtskhvaladze M, Candan K, Galoyan E, Arakelyan M, Iankoshvili G, Kumlutaş Y, Ilgaz Ç, Matur F, Çolak F, Erdolu M, Kurdadze S, Barateli N, Anderson CL. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins. BMC Evol Biol 2020; 20:122. [PMID: 32938384 PMCID: PMC7493426 DOI: 10.1186/s12862-020-01690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The majority of parthenogenetic vertebrates derive from hybridization between sexually reproducing species, but the exact number of hybridization events ancestral to currently extant clonal lineages is difficult to determine. Usually, we do not know whether the parental species are able to contribute their genes to the parthenogenetic vertebrate lineages after the initial hybridization. In this paper, we address the hypothesis, whether some genotypes of seven phenotypically distinct parthenogenetic rock lizards (genus Darevskia) could have resulted from back-crosses of parthenogens with their presumed parental species. We also tried to identify, as precise as possible, the ancestral populations of all seven parthenogens. RESULTS We analysed partial mtDNA sequences and microsatellite genotypes of all seven parthenogens and their presumed ansectral species, sampled across the entire geographic range of parthenogenesis in this group. Our results confirm the previous designation of the parental species, but further specify the maternal populations that are likely ancestral to different parthenogenetic lineages. Contrary to the expectation of independent hybrid origins of the unisexual taxa, we found that genotypes at multiple loci were shared frequently between different parthenogenetic species. The highest proportions of shared genotypes were detected between (i) D. sapphirina and D. bendimahiensis and (ii) D. dahli and D. armeniaca, and less often between other parthenogens. In case (ii), genotypes at the remaining loci were notably distinct. CONCLUSIONS We suggest that both observations (i-ii) can be explained by two parthenogenetic forms tracing their origin to a single initial hybridization event. In case (ii), however, occasional gene exchange between the unisexual and the parental bisexual species could have taken place after the onset of parthenogenetic reproduction. Indeed, backcrossed polyploid hybrids are relatively frequent in Darevskia, although no direct evidence of recent gene flow has been previously documented. Our results further suggest that parthenogens are losing heterozygosity as a result of allelic conversion, hence their fitness is expected to decline over time as genetic diversity declines. Backcrosses with the parental species could be a rescue mechanism which might prevent this decline, and therefore increase the persistance of unisexual forms.
Collapse
Affiliation(s)
| | | | - Mehmet Kürşat Şahin
- Faculty of Science, Department of Biology, Hacettepe University, Ankara, Turkey
| | - Mariam Gabelaia
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | | | - Kamil Candan
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | | | | | | | - Yusuf Kumlutaş
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Çetin Ilgaz
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Ferhat Matur
- Faculty of Science, Department of Biology, Dokuz Eylül University, İzmir, Turkey
| | - Faruk Çolak
- Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Meriç Erdolu
- Middle East Technical University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Sofiko Kurdadze
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Natia Barateli
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| | - Cort L Anderson
- Institute of Ecology, Ilia State University, Tbilisi, Georgia
| |
Collapse
|
11
|
Dalziel AC, Tirbhowan S, Drapeau HF, Power C, Jonah LS, Gbotsyo YA, Dion‐Côté A. Using asexual vertebrates to study genome evolution and animal physiology: Banded ( Fundulus diaphanus) x Common Killifish ( F. heteroclitus) hybrid lineages as a model system. Evol Appl 2020; 13:1214-1239. [PMID: 32684956 PMCID: PMC7359844 DOI: 10.1111/eva.12975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of Fundulus diaphanus x F. heteroclitus to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of F. diaphanus and F. heteroclitus karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of F. diaphanus x F. heteroclitus has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from F. diaphanus ♀ x F. heteroclitus ♂ crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
Collapse
Affiliation(s)
| | - Svetlana Tirbhowan
- Department of BiologySaint Mary's UniversityHalifaxNSCanada
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | - Claude Power
- Département de biologieUniversité de MonctonMonctonNBCanada
| | | | | | | |
Collapse
|
12
|
Costa GC, Schlupp I. Placing the hybrid origin of the asexual Amazon molly (Poecilia formosa) based on historical climate data. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Asexual hybrids are important model organisms for addressing questions in evolution and ecology, especially for understanding the role of hybridization in speciation. They are rare in nature and several hypotheses have been suggested to explain this. We use an asexual fish, the Amazon molly (Poecilia formosa), to establish the area in which it was formed via hybridization 125 000 years ago. Using species distribution models and climate models for the Last Interglacial (LIG) we found that model projections to the LIG show a similar map to the present climate model and parental species potentially overlapped in a relatively small area near Tampico, Mexico. This makes P. formosa one of a few hybrid species for which we know the parental species, the time of hybridization, and likely the place of hybridization. Based on the small area of overlap, our data is in agreement with the idea that asexual hybrids may be rare not because they are evolutionary dead ends but are formed rarely.
Collapse
Affiliation(s)
- Gabriel C Costa
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL, USA
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
13
|
Kim D, Aspbury AS, Zúñiga-Vega JJ, Gabor CR. Smaller rival males do not affect male mate choice or cortisol but do affect 11-ketotestosterone in a unisexual-bisexual mating complex of fish. Behav Processes 2019; 167:103916. [PMID: 31386887 DOI: 10.1016/j.beproc.2019.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
Male mate discrimination may be affected by the social environment (presence or absence of rival males or mates), which can also affect stress and sex hormones (e.g., cortisol and 11-ketotestosterone (11-KT)). The Amazon molly, Poecilia formosa, is an all-female fish species dependent on sperm from mating with male P. latipinna. We investigated male mate choice in P. latipinna between conspecific females and P. formosa with a rival male present and no rival male present. We measured cortisol and 11-KT release rates from all fish. The presence of a rival male had no effect on male mate choice for conspecific females nor overall mating effort. Male 11-KT decreased on the second day after exposure to a rival male on the first day. Focal male 11-KT is positively correlated with the size of the rival male. Both conspecific and heterospecific females released more 11-KT when in the rival male treatment than when not. Neither male nor female cortisol was affected by the presence or absence of the rival male. We did not find an effect of rival males on male mate choice in contrast to our prediction. Instead, our findings may indicate a hormonal response to social competition.
Collapse
Affiliation(s)
- Diana Kim
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Andrea S Aspbury
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - J Jaime Zúñiga-Vega
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Cuidad Universitaria 04510, Distrito Federal, Mexico
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
14
|
Pulido-Santacruz P, Aleixo A, Weir JT. Morphologically cryptic Amazonian bird species pairs exhibit strong postzygotic reproductive isolation. Proc Biol Sci 2019. [PMID: 29514967 DOI: 10.1098/rspb.2017.2081] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We possess limited understanding of how speciation unfolds in the most species-rich region of the planet-the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.
Collapse
Affiliation(s)
| | - Alexandre Aleixo
- Department of Zoology, Museu Paraense Emílio Goeldi, Belém, Brazil
| | - Jason T Weir
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada .,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| |
Collapse
|
15
|
Denton RD, Morales AE, Gibbs HL. Genome-specific histories of divergence and introgression between an allopolyploid unisexual salamander lineage and two ancestral sexual species. Evolution 2018; 72:1689-1700. [PMID: 29926914 DOI: 10.1111/evo.13528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Quantifying introgression between sexual species and polyploid lineages traditionally thought to be asexual is an important step in understanding what drives the longevity of putatively asexual groups. Here, we capitalize on three recent innovations-ultraconserved element (UCE) sequencing, bioinformatic techniques for identifying genome-specific variation in polyploids, and model-based methods for evaluating historical gene flow-to measure the extent and tempo of introgression over the evolutionary history of an allopolyploid lineage of all-female salamanders and two ancestral sexual species. Our analyses support a scenario in which the genomes sampled in unisexual salamanders last shared a common ancestor with genomes in their parental species ∼3.4 million years ago, followed by a period of divergence between homologous genomes. Recently, secondary introgression has occurred at different times with each sexual species during the last 500,000 years. Sustained introgression of sexual genomes into the unisexual lineage is the defining characteristic of their reproductive mode, but this study provides the first evidence that unisexual genomes have undergone long periods of divergence without introgression. Unlike other sperm-dependent taxa in which introgression is rare, the alternating periods of divergence and introgression between unisexual salamanders and their sexual relatives could explain why these salamanders are among the oldest described unisexual animals.
Collapse
Affiliation(s)
- Robert D Denton
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210
- Ohio Biodiversity Conservation Partnership, Columbus, Ohio 43210
- Current Address: Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Ariadna E Morales
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio 43210
- Ohio Biodiversity Conservation Partnership, Columbus, Ohio 43210
| |
Collapse
|
16
|
Schlupp I. Male mate choice in livebearing fishes: an overview. Curr Zool 2018; 64:393-403. [PMID: 30402080 PMCID: PMC6007348 DOI: 10.1093/cz/zoy028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/01/2018] [Indexed: 12/12/2022] Open
Abstract
Although the majority of studies on mate choice focus on female mate choice, there is growing recognition of the role of male mate choice too. Male mate choice is tightly linked to 2 other phenomena: female competition for males and ornamentation in females. In the current article, I review the existing literature on this in a group of fishes, Poeciliidae. In this group, male mate choice appears to be based on differences in female quality, especially female size, which is a proxy for fecundity. Some males also have to choose between heterospecific and conspecific females in the unusual mating system of the Amazon molly. In this case, they typically show a preference for conspecific females. Whereas male mate choice is relatively well documented for this family, female ornamentation and female competition are not.
Collapse
Affiliation(s)
- Ingo Schlupp
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | | |
Collapse
|
17
|
Warren WC, García-Pérez R, Xu S, Lampert KP, Chalopin D, Stöck M, Loewe L, Lu Y, Kuderna L, Minx P, Montague MJ, Tomlinson C, Hillier LW, Murphy DN, Wang J, Wang Z, Garcia CM, Thomas GWC, Volff JN, Farias F, Aken B, Walter RB, Pruitt KD, Marques-Bonet T, Hahn MW, Kneitz S, Lynch M, Schartl M. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat Ecol Evol 2018; 2:669-679. [PMID: 29434351 PMCID: PMC5866774 DOI: 10.1038/s41559-018-0473-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/09/2018] [Indexed: 12/21/2022]
Abstract
The extreme rarity of asexual vertebrates in nature is generally explained by genomic decay due to absence of meiotic recombination, thus leading to extinction of such lineages. We explore features of a vertebrate asexual genome, the Amazon molly, Poecilia formosa, and find few signs of genetic degeneration but unique genetic variability and ongoing evolution. We uncovered a substantial clonal polymorphism and, as a conserved feature from its interspecific hybrid origin, a 10-fold higher heterozygosity than in the sexual parental species. These characteristics seem to be a principal reason for the unpredicted fitness of this asexual vertebrate. Our data suggest that asexual vertebrate lineages are scarce not because they are at a disadvantage, but because the genomic combinations required to bypass meiosis and to make up a functioning hybrid genome are rarely met in nature.
Collapse
Affiliation(s)
- Wesley C. Warren
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | | | - Sen Xu
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Kathrin P. Lampert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon I, Lyon, France
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Laurence Loewe
- Laboratory of Genetics and Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yuan Lu
- Texas State University, Department of Chemistry and Biochemistry, San Marcos, TX 78666, USA
| | - Lukas Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - LaDeana W. Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Daniel N. Murphy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - John Wang
- Biodiversity Research Center, Academica Sinica Taipei, Taiwan
| | - Zhongwei Wang
- Department of Physiological Chemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany; present address: Institute of Hydrobiology, Chinese Academy of Sciences, China
| | - Constantino Macias Garcia
- Instituto de Ecología, Universidad Nacional Autónoma de México, CP 04510, Ciudad Universitaria, México DF
| | | | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon I, Lyon, France
| | - Fabiana Farias
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Ronald B. Walter
- Texas State University, Department of Chemistry and Biochemistry, San Marcos, TX 78666, USA
| | - Kim D. Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, 08003 Barcelona, Spain
- Center for Genomic Regulation (CRG) Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, and Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Matthew W. Hahn
- Indiana University, Department of Biology, Bloomington, IN 47405, USA
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Michael Lynch
- Indiana University, Department of Biology, Bloomington, IN 47405, USA
| | - Manfred Schartl
- Department of Physiological Chemistry, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX 77843, USA, and Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
18
|
Sung C, Bell KL, Nice CC, Martin NH. Integrating Bayesian genomic cline analyses and association mapping of morphological and ecological traits to dissect reproductive isolation and introgression in a Louisiana Iris hybrid zone. Mol Ecol 2018; 27:959-978. [DOI: 10.1111/mec.14481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Cheng‐Jung Sung
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| | - Katherine L. Bell
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| | - Chris C. Nice
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| | - Noland H. Martin
- Population and Conservation Biology Program Department of Biology Texas State University San Marcos TX USA
| |
Collapse
|
19
|
Janko K, Pačes J, Wilkinson‐Herbots H, Costa RJ, Roslein J, Drozd P, Iakovenko N, Rídl J, Hroudová M, Kočí J, Reifová R, Šlechtová V, Choleva L. Hybrid asexuality as a primary postzygotic barrier between nascent species: On the interconnection between asexuality, hybridization and speciation. Mol Ecol 2018; 27:248-263. [PMID: 28987005 PMCID: PMC6849617 DOI: 10.1111/mec.14377] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
Although sexual reproduction is ubiquitous throughout nature, the molecular machinery behind it has been repeatedly disrupted during evolution, leading to the emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, little is known about what causes the switch from sexual reproduction to asexuality. Interspecific hybridization is one of the candidate explanations, but the reasons for the apparent association between hybridization and asexuality remain unclear. In this study, we combined cross-breeding experiments with population genetic and phylogenomic approaches to reveal the history of speciation and asexuality evolution in European spined loaches (Cobitis). Contemporary species readily hybridize in hybrid zones, but produce infertile males and fertile but clonally reproducing females that cannot mediate introgressions. However, our analysis of exome data indicates that intensive gene flow between species has occurred in the past. Crossings among species with various genetic distances showed that, while distantly related species produced asexual females and sterile males, closely related species produce sexually reproducing hybrids of both sexes. Our results suggest that hybridization leads to sexual hybrids at the initial stages of speciation, but as the species diverge further, the gradual accumulation of reproductive incompatibilities between species could distort their gametogenesis towards asexuality. Interestingly, comparative analysis of published data revealed that hybrid asexuality generally evolves at lower genetic divergences than hybrid sterility or inviability. Given that hybrid asexuality effectively restricts gene flow, it may establish a primary reproductive barrier earlier during diversification than other "classical" forms of postzygotic incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation process.
Collapse
Affiliation(s)
- Karel Janko
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
- Department of Biology and EcologyFaculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Jan Pačes
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
- Institute of Molecular GeneticsLaboratory of Genomics and BioinformaticsThe Czech Academy of SciencesPragueCzech Republic
| | | | - Rui J. Costa
- Department of Statistical ScienceUniversity College LondonLondonUK
| | - Jan Roslein
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
- Department of Biology and EcologyFaculty of ScienceUniversity of OstravaOstravaCzech Republic
- Department of Fish EcologyInstitute of Vertebrate BiologyThe Czech Academy of SciencesBrnoCzech Republic
| | - Pavel Drozd
- Department of Biology and EcologyFaculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Nataliia Iakovenko
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
- Department of Biology and EcologyFaculty of ScienceUniversity of OstravaOstravaCzech Republic
- Schmalhausen Institute of Zoology of NAS of UkraineKyivUkraine
| | - Jakub Rídl
- Institute of Molecular GeneticsLaboratory of Genomics and BioinformaticsThe Czech Academy of SciencesPragueCzech Republic
| | - Miluše Hroudová
- Institute of Molecular GeneticsLaboratory of Genomics and BioinformaticsThe Czech Academy of SciencesPragueCzech Republic
| | - Jan Kočí
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
- Department of Biology and EcologyFaculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Radka Reifová
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Věra Šlechtová
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
| | - Lukáš Choleva
- Institute of Animal Physiology and GeneticsLaboratory of Fish GeneticsThe Czech Academy of SciencesLibechovCzech Republic
- Department of Biology and EcologyFaculty of ScienceUniversity of OstravaOstravaCzech Republic
| |
Collapse
|
20
|
Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc Natl Acad Sci U S A 2017; 115:E218-E225. [PMID: 29279398 DOI: 10.1073/pnas.1717319115] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hybrid speciation is rare in vertebrates, and reproductive isolation arising from hybridization is infrequently demonstrated. Here, we present evidence supporting a hybrid-speciation event involving the genetic admixture of the snow-capped (Lepidothrix nattereri) and opal-crowned (Lepidothrix iris) manakins of the Amazon basin, leading to the formation of the hybrid species, the golden-crowned manakin (Lepidothrix vilasboasi). We used a genome-wide SNP dataset together with analysis of admixture, population structure, and coalescent modeling to demonstrate that the golden-crowned manakin is genetically an admixture of these species and does not represent a hybrid zone but instead formed through ancient genetic admixture. We used spectrophotometry to quantify the coloration of the species-specific male crown patches. Crown patches are highly reflective white (snow-capped manakin) or iridescent whitish-blue to pink (opal-crowned manakin) in parental species but are a much less reflective yellow in the hybrid species. The brilliant coloration of the parental species results from nanostructural organization of the keratin matrix feather barbs of the crown. However, using electron microscopy, we demonstrate that the structural organization of this matrix is different in the two parental species and that the hybrid species is intermediate. The intermediate nature of the crown barbs, resulting from past admixture appears to have rendered a duller structural coloration. To compensate for reduced brightness, selection apparently resulted in extensive thickening of the carotenoid-laden barb cortex, producing the yellow crown coloration. The evolution of this unique crown-color signal likely culminated in premating isolation of the hybrid species from both parental species.
Collapse
|
21
|
Gompert Z. A Continuous Correlated Beta Process Model for Genetic Ancestry in Admixed Populations. PLoS One 2016; 11:e0151047. [PMID: 26966908 PMCID: PMC4788345 DOI: 10.1371/journal.pone.0151047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/23/2016] [Indexed: 11/24/2022] Open
Abstract
Admixture and recombination create populations and genomes with genetic ancestry from multiple source populations. Analyses of genetic ancestry in admixed populations are relevant for trait and disease mapping, studies of speciation, and conservation efforts. Consequently, many methods have been developed to infer genome-average ancestry and to deconvolute ancestry into continuous local ancestry blocks or tracts within individuals. Current methods for local ancestry inference perform well when admixture occurred recently or hybridization is ongoing, or when admixture occurred in the distant past such that local ancestry blocks have fixed in the admixed population. However, methods to infer local ancestry frequencies in isolated admixed populations still segregating for ancestry do not exist. In the current paper, I develop and test a continuous correlated beta process model to fill this analytical gap. The method explicitly models autocorrelations in ancestry frequencies at the population-level and uses discriminant analysis of SNP windows to take advantage of ancestry blocks within individuals. Analyses of simulated data sets show that the method is generally accurate such that ancestry frequency estimates exhibited low root-mean-square error and were highly correlated with the true values, particularly when large (±10 or ±20) SNP windows were used. Along these lines, the proposed method outperformed post hoc inference of ancestry frequencies from a traditional hidden Markov model (i.e., the linkage model in structure), particularly when admixture occurred more distantly in the past with little on-going gene flow or was followed by natural selection. The reliability and utility of the method was further assessed by analyzing genetic ancestry in an admixed human population (Uyghur) and three populations from a hybrid zone between Mus domesticus and M. musculus. Considerable variation in ancestry frequencies was detected within and among chromosomes in the Uyghur, with a large region of excess French ancestry harboring a gene with a known disease association. Similar variation was detected in the mouse hybrid zone, with notable constancy in regions of excess ancestry among admixed populations. By filling what has been an analytical gap, the proposed method should be a useful tool for many biologists. A computer program (popanc), written in C++, has been developed based on the proposed method and is available on-line at http://sourceforge.net/projects/popanc/.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, United States of America
- * E-mail:
| |
Collapse
|
22
|
Majtánová Z, Choleva L, Symonová R, Ráb P, Kotusz J, Pekárik L, Janko K. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei). PLoS One 2016; 11:e0146872. [PMID: 26808475 PMCID: PMC4726494 DOI: 10.1371/journal.pone.0146872] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/25/2015] [Indexed: 12/23/2022] Open
Abstract
Interspecific hybridization, polyploidization and transitions from sexuality to asexuality considerably affect organismal genomes. Especially the last mentioned process has been assumed to play a significant role in the initiation of chromosomal rearrangements, causing increased rates of karyotype evolution. We used cytogenetic analysis and molecular dating of cladogenetic events to compare the rate of changes of chromosome morphology and karyotype in asexually and sexually reproducing counterparts in European spined loach fish (Cobitis). We studied metaphases of three sexually reproducing species and their diploid and polyploid hybrid clones of different age of origin. The material includes artificial F1 hybrid strains, representatives of lineage originated in Holocene epoch, and also individuals of an oldest known age to date (roughly 0.37 MYA). Thereafter we applied GISH technique as a marker to differentiate parental chromosomal sets in hybrids. Although the sexual species accumulated remarkable chromosomal rearrangements after their speciation, we observed no differences in chromosome numbers and/or morphology among karyotypes of asexual hybrids. These hybrids possess chromosome sets originating from respective parental species with no cytogenetically detectable recombinations, suggesting their integrity even in a long term. The switch to asexual reproduction thus did not provoke any significant acceleration of the rate of chromosomal evolution in Cobitis. Asexual animals described in other case studies reproduce ameiotically, while Cobitis hybrids described here produce eggs likely through modified meiosis. Therefore, our findings indicate that the effect of asexuality on the rate of chromosomal change may be context-dependent rather than universal and related to particular type of asexual reproduction.
Collapse
Affiliation(s)
- Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Lukáš Choleva
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Radka Symonová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Ladislav Pekárik
- Institute of Botany, SAS, Bratislava, Slovakia
- Department of Biology, Faculty of Education, Trnava University, Trnava, Slovakia
| | - Karel Janko
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, CAS, v.v.i, Liběchov, Czech Republic
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
23
|
Reding L, Cummings ME. Does sensory expansion benefit asexual species? An olfactory discrimination test in Amazon mollies. Behav Ecol 2015. [DOI: 10.1093/beheco/arv168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
|
25
|
Kim D, Waller J, Aspbury AS, Gabor CR. Mating Preferences of the Gynogenetic Amazon Molly Differ Between Populations Sympatric with Different Host Species. Ethology 2014. [DOI: 10.1111/eth.12278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Diana Kim
- Department of Biology; Texas State University; San Marcos TX USA
| | - John Waller
- Department of Biology, Experimental Evolution, Ecology & Behaviour; Lund University; Lund Sweden
| | | | - Caitlin R. Gabor
- Department of Biology; Texas State University; San Marcos TX USA
| |
Collapse
|