1
|
Tian F, Lv L, Liu Z, Guan S, Jiang F, Wang Q, Kalvakolanu DV, Jiang S, Sun W. Low Expression of GRIM-19 Correlates with Poor Prognosis in Patients with Upper Urinary Tract Urothelial Carcinoma. Curr Cancer Drug Targets 2025; 25:401-411. [PMID: 38847244 DOI: 10.2174/0115680096299093240516163839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2025]
Abstract
PURPOSE This study aimed to clarify the expression of a gene associated with Retinoid- Interferon-Induced Mortality-19 (GRIM-19) in Upper Urinary Tract Urothelial Carcinoma (UUTUC) and its prognostic significance for UUTUC patients. MATERIALS AND METHODS Immunohistochemical (IHC) staining was used to determine the GRIM-19 expression in 70 paired samples. Progression-Free Survival (PFS) and Cancer-Specific Survival (CSS) were assessed using the Kaplan-Meier method. The independent prognostic factors for PFS and CSS were analyzed by multivariable Cox regression models. RESULTS IHC staining showed that GRIM-19 expression was significantly decreased in UUTUC, and its cellular location changed from being both cytoplasmic and nuclear to only cytoplasmic. Kaplan- Meier analysis revealed that the patients with tumors expressing low GRIM-19 had a significantly higher risk for tumor progression (P = 0.002) and cancer-specific mortality (P < 0.001) compared to those with high GRIM-19 levels. The Cox regression showed that both GRIM-19 expression (P = 0.025) and lymph node metastasis (LN) (P = 0.007) were independent predictors of progression in the muscle-invasive (MIC) subgroup. GRIM-19 expressions (entire cohort: P = 0.011; MIC subgroup: P = 0.025), LN (entire cohort: P = 0.019; MIC subgroup: P = 0.007), and progression (entire cohort: P < 0.001; MIC subgroup: P < 0.001) were independent predictors of cancer-specific survival. CONCLUSION Low expression of GRIM-19 in patients with UUTUC had significantly shorter PFS or CSS compared to those with high GRIM-19-expressing tumors. High GRIM-19 expression was also strongly associated with longer PFS in MIC patients. It indicates that GRIM-19 might serve as a promising prognostic biomarker for UUTUC patients.
Collapse
Affiliation(s)
- Feng Tian
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Long Lv
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Zonglin Liu
- Department of Urology, Anshan Tumor Hospital, Anshan, 114000, Liaoning, China
| | - Sheng Guan
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Fengze Jiang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Qi Wang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD21201, USA
| | - Sixiong Jiang
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Weibing Sun
- Key Laboratory of Microenvironment Regulation and Immunotherapy of Urinary Tumors of Liaoning Province, Department of Urology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| |
Collapse
|
2
|
Xu X, Feng J, Wang X, Zeng X, Luo Y, He X, Yang M, Lv T, Feng Z, Bao L, Zhao L, Huang D, Huang Y. Mitochondrial GRIM19 Loss Induces Liver Fibrosis through NLRP3/IL33 Activation via Reactive Oxygen Species/NF-кB Signaling. J Clin Transl Hepatol 2024; 12:539-550. [PMID: 38974954 PMCID: PMC11224902 DOI: 10.14218/jcth.2023.00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 07/09/2024] Open
Abstract
Background and Aims Hepatic fibrosis (HF) is a critical step in the progression of hepatocellular carcinoma (HCC). Gene associated with retinoid-IFN-induced mortality 19 (GRIM19), an essential component of mitochondrial respiratory chain complex I, is frequently attenuated in various human cancers, including HCC. Here, we aimed to investigate the potential relationship and underlying mechanism between GRIM19 loss and HF pathogenesis. Methods GRIM19 expression was evaluated in normal liver tissues, hepatitis, hepatic cirrhosis, and HCC using human liver disease spectrum tissue microarrays. We studied hepatocyte-specific GRIM19 knockout mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) lentivirus-mediated GRIM19 gene-editing in murine hepatocyte AML12 cells in vitro and in vivo. We performed flow cytometry, immunofluorescence, immunohistochemistry, western blotting, and pharmacological intervention to uncover the potential mechanisms underlying GRIM19 loss-induced HF. Results Mitochondrial GRIM19 was progressively downregulated in chronic liver disease tissues, including hepatitis, cirrhosis, and HCC tissues. Hepatocyte-specific GRIM19 heterozygous deletion induced spontaneous hepatitis and subsequent liver fibrogenesis in mice. In addition, GRIM19 loss caused chronic liver injury through reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation via an IKK/IкB partner in hepatocytes. Furthermore, GRIM19 loss activated NLRP3-mediated IL33 signaling via the ROS/NF-кB pathway in hepatocytes. Intraperitoneal administration of the NLRP3 inhibitor MCC950 dramatically alleviated GRIM19 loss-driven HF in vivo. Conclusions The mitochondrial GRIM19 loss facilitates liver fibrosis through NLRP3/IL33 activation via ROS/NF-кB signaling, providing potential therapeutic approaches for earlier HF prevention.
Collapse
Affiliation(s)
- Xiaohui Xu
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Key Cardiovascular Specialty, Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Jinmei Feng
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
- Department of Laboratory Medicine, Chongqing Western Hospital, Chongqing, China
| | - Xin Wang
- Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, China
| | - Xin Zeng
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Luo
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Xinyu He
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Meihua Yang
- Departments of Neurology, Epilepsy Center, Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Tiewei Lv
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Key Cardiovascular Specialty, Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
| | - Zijuan Feng
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Liming Bao
- Department of Clinical Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Li Zhao
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Daochao Huang
- Institute of Pediatrics, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Yi Huang
- Department of Cardiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Key Cardiovascular Specialty, Laboratory of Children’s Important Organ Development and Diseases of Chongqing Municipal Health Commission, Chongqing, China
- Departments of Medicine (Oncology), Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Zeng X, Yang M, Ye T, Feng J, Xu X, Yang H, Wang X, Bao L, Li R, Xue B, Zang J, Huang Y. Mitochondrial GRIM-19 loss in parietal cells promotes spasmolytic polypeptide-expressing metaplasia through NLR family pyrin domain-containing 3 (NLRP3)-mediated IL-33 activation via a reactive oxygen species (ROS) -NRF2- Heme oxygenase-1(HO-1)-NF-кB axis. Free Radic Biol Med 2023; 202:46-61. [PMID: 36990300 DOI: 10.1016/j.freeradbiomed.2023.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Spasmolytic polypeptide-expressing metaplasia (SPEM), as a pre-neoplastic precursor of intestinal metaplasia (IM), plays critical roles in the development of chronic atrophic gastritis (CAG) and gastric cancer (GC). However, the pathogenetic targets responsible for the SPEM pathogenesis remain poorly understood. Gene associated with retinoid-IFN-induced mortality 19 (GRIM-19), an essential subunit of the mitochondrial respiratory chain complex I, was progressively lost along with malignant transformation of human CAG, little is known about the potential link between GRIM-19 loss and CAG pathogenesis. Here, we show that lower GRIM-19 is associated with higher NF-кB RelA/p65 and NLR family pyrin domain-containing 3 (NLRP3) levels in CAG lesions. Functionally, GRIM-19 deficiency fails to drive direct differentiation of human GES-1 cells into IM or SPEM-like cell lineages in vitro, whereas parietal cells (PCs)-specific GRIM-19 knockout disturbs gastric glandular differentiation and promotes spontaneous gastritis and SPEM pathogenesis without intestinal characteristics in mice. Mechanistically, GRIM-19 loss causes chronic mucosal injury and aberrant NRF2 (Nuclear factor erythroid 2-related factor 2)- HO-1 (Heme oxygenase-1) activation via reactive oxygen species (ROS)-mediated oxidative stress, resulting in aberrant NF-кB activation by inducing p65 nuclear translocation via an IKK/IкB partner, while NRF2-HO-1 activation contributes to GRIM-19 loss-driven NF-кB activation via a positive feedback NRF2-HO-1 loop. Furthermore, GRIM-19 loss did not cause obvious PCs loss but triggers NLRP3 inflammasome activation in PCs via a ROS-NRF2-HO-1-NF-кB axis, leading to NLRP3-dependent IL-33 expression, a key mediator for SPEM formation. Moreover, intraperitoneal administration of NLRP3 inhibitor MCC950 drastically attenuates GRIM-19 loss-driven gastritis and SPEM in vivo. Our study suggests that mitochondrial GRIM-19 maybe a potential pathogenetic target for the SPEM pathogenesis, and its deficiency promotes SPEM through NLRP3/IL-33 pathway via a ROS-NRF2-HO-1-NF-кB axis. This finding not only provides a causal link between GRIM-19 loss and SPEM pathogenesis, but offers potential therapeutic strategies for the early prevention of intestinal GC.
Collapse
Affiliation(s)
- Xin Zeng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Meihua Yang
- Departments of Neurology, Washington University School of Medicine and Barnes-Jewish Hospital, Saint Louis, 63110, MO, USA
| | - Tingbo Ye
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinmei Feng
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohui Xu
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Huaan Yang
- Department of Urologic Surgery, Yubei District People's Hospital, Chongqing, 401120, China
| | - Xin Wang
- Ministry of Education Key Laboratory of Molecular Biology for Infectious Diseases, Chongqing Medical University, Chongqing, 40016, China
| | - Liming Bao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College of Cornell University, New York, NY, 10065, USA
| | - Rui Li
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Bingqian Xue
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Jinbao Zang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Huang
- Institute of Paediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
4
|
Grim-19 plays a key role in mitochondrial steroidogenic acute regulatory protein stability and ligand-binding properties in Leydig cells. J Biol Chem 2022; 298:102671. [PMID: 36334625 PMCID: PMC9768377 DOI: 10.1016/j.jbc.2022.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Grim-19 (gene associated with retinoid-IFN-induced mortality 19), the essential component of complex I of mitochondrial respiratory chain, functions as a noncanonical tumor suppressor by controlling apoptosis and energy metabolism. However, additional biological actions of Grim-19 have been recently suggested in male reproduction. We investigated here the expression and functional role of Grim-19 in murine testis. Testicular Grim-19 expression was detected from mouse puberty and increased progressively thereafter, and GRIM-19 protein was observed to be expressed exclusively in interstitial Leydig cells (LCs), with a prominent mitochondrial localization. In vivo lentiviral vector-mediated knockdown of Grim-19 resulted in a significant decrease in testosterone production and triggered aberrant oxidative stress in testis, thus impairing male fertility by inducing germ cell apoptosis and oligozoospermia. The control of testicular steroidogenesis by GRIM-19 was validated using the in vivo knockdown model with isolated primary LCs and in vitro experiments with MA-10 mouse Leydig tumor cells. Mechanistically, we suggest that the negative regulation exerted by GRIM-19 deficiency-induced oxidative stress on steroidogenesis may be the result of two phenomena: a direct effect through inhibition of phosphorylation of steroidogenic acute regulatory protein (StAR) and subsequent impediment to StAR localization in mitochondria and an indirect pathway that is to facilitate the inhibiting role exerted by the extracellular matrix on the steroidogenic capacity of LCs via promotion of integrin activation. Altogether, our observations suggest that Grim-19 plays a potent role in testicular steroidogenesis and that its alterations may contribute to testosterone deficiency-related disorders linked to metabolic stress and male infertility.
Collapse
|
5
|
Xie Y, Zhang J, Li M, Zhang Y, Li Q, Zheng Y, Lai W. Identification of Lactate-Related Gene Signature for Prediction of Progression and Immunotherapeutic Response in Skin Cutaneous Melanoma. Front Oncol 2022; 12:818868. [PMID: 35265521 PMCID: PMC8898832 DOI: 10.3389/fonc.2022.818868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/02/2022] [Indexed: 12/28/2022] Open
Abstract
Skin cutaneous melanoma (SKCM) is a skin cancer type characterized by a high degree of immune cell infiltration. The potential function of lactate, a main metabolic product in the tumor microenvironment (TME) of SKCM, remains unclear. In this study, we systemically analyzed the predictive value of lactate-related genes (LRGs) for prognosis and response to immune checkpoint inhibitors (ICIs) in SKCM patients included from The Cancer Genome Atlas (TCGA) database. Cluster 3, by consensus clustering for 61 LRGs, manifested a worse clinical outcome, attributed to the overexpression of malignancy marks. In addition, we created a prognostic prediction model for high- and low-risk patients and verified its performance in a validation cohort, GSE65904. Between TME and the risk model, we found a negative relation of the immunocyte infiltration levels with patients’ risk scores. The low-risk cases had higher ICI expression and could benefit better from ICIs relative to the high-risk cases. Thus, the lactate-related prognosis risk signature may comprehensively provide a basis for future investigations on immunotherapeutic treatment for SKCM.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Zheng
- *Correspondence: Wei Lai, ; Yue Zheng,
| | - Wei Lai
- *Correspondence: Wei Lai, ; Yue Zheng,
| |
Collapse
|
6
|
Liu H, Zhao Y, Yang Y, Huang W, Chao L. GRIM19 downregulation-induced pyroptosis of macrophages through NLRP3 pathway in adenomyosis. Reprod Biomed Online 2021; 44:211-219. [PMID: 34906422 DOI: 10.1016/j.rbmo.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
RESEARCH QUESTION Does the absence of GRIM19 affect pyroptosis of macrophages? Is the release of IL-1β caused by pyroptosis a relevant factor in the regulation of adenomyosis progression? DESIGN Endometrial tissues were collected from patients with (n = 12) and without (n = 12) adenomyosis. GRIM19 expression of adenomyosis tissues was analysed by western blot and real-time polymerase chain reaction (RT-PCR). In GRIM19 knockdown macrophages, pyroptosis-related factors expressions were also measured by western blot and RT-PCR. The human endometrial stromal cells (HESC) were co-cultured with GRIM19-depleted macrophages and IL-1β neutralizing antibody to detect the effects of pyroptosis of macrophages on apoptosis, proliferation and migration of HESC. RESULTS The expression of GRIM19 was significantly lower in adenomyosis (P = 0.0002). In THP-1-derived macrophages, the expression of NLRP3 (P < 0.0001), ASC (P = 0.0176), caspase-1 (P = 0.0368), GSDMD (P = 0.0453) and IL-1β (P = 0.0208) are increased after downregulation of GRIM19. GRIM19 knockdown induced the release of IL-1β (P = 0.0195) in THP-1-derived macrophages. The apoptosis of HESC co-cultured with GRIM19 knockdown macrophages was significantly inhibited (P < 0.0001), the proliferation (P = 0.0254) and migration (P < 0.0001) were markedly promoted. Existence of IL-1β neutralizing antibody in supernatants recovered the effects (P < 0.0001) of GRIM19 knockdown macrophages on HESC. CONCLUSIONS GRIM19 downregulation induces pyroptosis of macrophages through NLRP3 pathway, increases the secretion of IL-1β and promotes adenomyosis progression.
Collapse
Affiliation(s)
- Haoran Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yue Zhao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yang Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Wenqian Huang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Lan Chao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
7
|
Wang D, Wei X, Chen X, Wang Q, Zhang J, Kalvakolanu DV, Guo B, Zhang L. GRIM-19 inhibits proliferation and induces apoptosis in a p53-dependent manner in colorectal cancer cells through the SIRT7/PCAF/MDM2 axis. Exp Cell Res 2021; 407:112799. [PMID: 34461110 DOI: 10.1016/j.yexcr.2021.112799] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Colorectal cancer (CRC) is the leading deadly cancer worldwide. Gene associated with retinoid-IFN-induced mortality-19 (GRIM-19), a novel tumor suppressor, has been reported to be expressed at low levels in human CRC. However, the role of GRIM-19 in CRC progression and the corresponding detailed mechanisms are unclear. The results of this study indicated that GRIM-19 expression is related to CRC progression. Overexpression of GRIM-19 was found to inhibit CRC cell proliferation and induce apoptosis in vitro and in vivo. Our results demonstrated that GRIM-19 suppresses CRC through posttranslational regulation of p53, in which SIRT7 is activated by GRIM-19 and triggers PCAF-mediated MDM2 ubiquitination, eventually stabilizing the p53 protein. We also observed that GRIM-19 enhances the effect of oxaliplatin against CRC. In conclusion, GRIM-19 plays an important role in CRC development and is a potential biomarker and therapeutic target for clinical treatment of CRC.
Collapse
Affiliation(s)
- Ding Wang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Qian Wang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Jinghua Zhang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, MD, USA
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, PR China.
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, And Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|
8
|
徐 小, 曾 欣, 李 锐, 冯 金, 黄 道, 黄 轶. [Mechanism of hepatocyte mitochondrial NDUFA13 deficiency-induced liver fibrogenesis: the role of abnormal hepatic stellate cell activation]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:529-535. [PMID: 33963711 PMCID: PMC8110444 DOI: 10.12122/j.issn.1673-4254.2021.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of hepatocyte mitochondrial NDUFA13 loss in the liver fibrogenesis in mice and explore the possible mechanisms. OBJECTIVE We used liver-specific NDUFA13 heterozygous knockout mouse models (NDUFA13fl/-; Alb-Cre) established previously by intercrossing NDUFA13fl/fl and Alb-Cre mice, with their littermate control NDUFA13fl/fl mice as the control (n=8). The mice were euthanized at the age of 4 weeks and 2 years, and the liver tissues were collected for HE and Masson staining to observe the pathological changes and fibrosis phenotypes. Western blotting was performed to detect the expression of NDUFA13 protein in the liver tissues, and the infiltration of F4/80+ macrophages and the expressions of TGF-β1, TNF-α and IL-1β were analyzed by immunofluorescence assay. The expression levels of α-SMA, matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteases 1 (TIMP-1), collagen-Ⅰ and collagen-Ⅲ were assayed by immunohistochemistry. OBJECTIVE HE and Masson staining showed obvious inflammatory infiltration but no significant fibrosis in the liver tissues of 4-week-old NDUFA13fl/- mice, but severe liver damage with massive fibrosis was observed in 2-year-old NDUFA13fl/- mice. NDUFA13 expression in 2-year-old NDUFA13fl/- mice markedly decreased compared with that in the control NDUFA13fl/fl mice as shown by Western blotting (P < 0.05). Immunohistochemistry showed obvious infiltration of F4/80+ macrophages in the liver tissue with a large amount of TGF-β1 production (P < 0.05) and TNF-α and IL-1β secretions in NDUFA13fl/- mice (P < 0.05). NDUFA13 knockout obviously promoted α-SMA expression (P < 0.05) and collagen-Ⅰ and collagen-Ⅲ deposition (P < 0.05) while significantly decreased MMP-9 and increased TIMP-1 expression in the liver (P < 0.05). OBJECTIVE Hepatocytes-specific NDUFA13 deficiency can trigger spontaneous and chronic liver fibrosis phenotypes in mice probably in association with abnormal activation of hepatic stellate cells induced by macrophages and inflammatory factors.
Collapse
Affiliation(s)
- 小惠 徐
- />重庆医科大学附属儿童医院儿科研究所//国家儿童健康与疾病临床医学研究中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿童感染免疫重庆市重点实验室,重庆 400014Pediatrics Research Institute, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - 欣 曾
- />重庆医科大学附属儿童医院儿科研究所//国家儿童健康与疾病临床医学研究中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿童感染免疫重庆市重点实验室,重庆 400014Pediatrics Research Institute, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - 锐 李
- />重庆医科大学附属儿童医院儿科研究所//国家儿童健康与疾病临床医学研究中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿童感染免疫重庆市重点实验室,重庆 400014Pediatrics Research Institute, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - 金梅 冯
- />重庆医科大学附属儿童医院儿科研究所//国家儿童健康与疾病临床医学研究中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿童感染免疫重庆市重点实验室,重庆 400014Pediatrics Research Institute, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - 道超 黄
- />重庆医科大学附属儿童医院儿科研究所//国家儿童健康与疾病临床医学研究中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿童感染免疫重庆市重点实验室,重庆 400014Pediatrics Research Institute, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| | - 轶 黄
- />重庆医科大学附属儿童医院儿科研究所//国家儿童健康与疾病临床医学研究中心//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿童感染免疫重庆市重点实验室,重庆 400014Pediatrics Research Institute, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Child Infection and Immunity, Chongqing 400014, China
| |
Collapse
|
9
|
Knockdown of Gastrin Promotes Apoptosis of Gastric Cancer Cells by Decreasing ROS Generation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5590037. [PMID: 33937399 PMCID: PMC8062189 DOI: 10.1155/2021/5590037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Overexpressed gastrin is reported to promote oncogenesis and development of gastric cancer by inhibiting apoptosis of cancer cells; however, the underlying mechanism remains unclear. Our study is aimed at revealing the mechanism underlying the effect of gastrin on apoptosis of gastric cancer cells. Gastrin-interfering cell line was constructed by stably transfecting gastrin-specific pshRNA plasmid to gastric cancer cell line BGC-823. Then, differentially expressed proteins between untreated BGC-823 and gastrin-interfering BGC-823 cell lines were detected by the iTRAQ technique. GO and KEGG analysis was used to analyze the differentially expressed genes that code these differentially expressed proteins. The Annexin V-FITC staining assay was used to detect gastric cancer cell apoptosis. The DCFH-DA fluorescent probe staining assay was used to measure intracellular ROS. Mitochondrial membrane potential was detected by flow cytometry. Western blot was used to analyze the mitochondria respiratory chain proteins and apoptosis-related proteins. A total of 107 differentially expressed proteins were identified by iTRAQ. GO and KEGG analysis showed that proteins coded by the corresponding differentially expressed genes were mainly enriched in the mitochondrial oxidative respiratory chain, and the expression of three proteins (COX17, COX5B, ATP5J) was upregulated. The three proteins with higher scores were verified by Western blot. The apoptosis rate of the gastrin knockdown cancer cell was significantly increased; meanwhile, gastrin knockdown leads to increase of membrane potential and decrease of intracellular ROS production. Additionally, Bax was significantly increased, whereas NF-κB-p65 and Bcl-2 were downregulated after knockdown of gastrin. Concomitantly, pretreatment with NAC reversed the effect of gastrin on the Bax and Bcl-2 expression. Gastrin promotes the production of ROS from mitochondria, activates NF-κB, and inhibits apoptosis via modulating the expression level of Bcl-2 and Bax.
Collapse
|
10
|
徐 小, 李 锐, 曾 欣, 王 欣, 薛 炳, 黄 道, 黄 轶. [Pathogenic role of NDUFA13 inactivation in spontaneous hepatitis in mice and the mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:55-63. [PMID: 33509753 PMCID: PMC7867491 DOI: 10.12122/j.issn.1673-4254.2021.01.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the role of NDUFA13 inactivation in the pathogenesis of spontaneous hepatitis in mice and explore the possible mechanisms. METHODS Hepatocyte-specific NDUFA13 knockout (NDUFA13fl/-) mice were generated by intercrossing NDUFA13fl/fl and Alb-Cre mice based on Cre/loxP transgenic technology, and tail and liver DNA of the mice was genotyped by PCR analysis. Ten NDUFA13fl/- mice and 10 littermate control NDUFA13fl/fl mice were housed, and in each group, 5 mice were euthanized at the age of 4 weeks and the other 5 at two years for pathological examination of the liver tissues with HE staining. Immunohistochemistry was used to verify the expression levels of NDUFA13, NF-κB/p65, NF-κB/p-p65 and inflammasome NLRP3. The total intracellular ROS and mitochondrial ROS levels were measured with a ROS staining kit. The expressions of the inflammatory cell markers (CD45, MPO, and F4/80) and inflammatory cytokines (IL1β and IL33) in the liver were detected with immunohistochemistry and immunofluorescence assay. RESULTS Liver-specific NDUFA13 heterozygous knockout mice were successfully constructed as verified by PCR results. HE staining revealed severe liver damage in both 4- week-old and 2-year-old NDUFA13fl/- mice as compared with their littermate controls. Immunohistochemistry showed a significant decrease of NDUFA13 expression in both 4-week-old and 2-year-old NDUFA13fl/- mice (P < 0.05). The expression levels of NF-κB signals p65, p-p65 and NLRP3 inflammasomes were all significantly increased in NDUFA13fl/- mice (P < 0.05). The total intracellular ROS and mitochondrial ROS levels in NDUFA13fl/- mice were also significantly increased. NDUFA13 knockout obviously promoted the expression of the inflammatory cell markers (CD45, MPO and F4/80) and the secretion of IL-1β and IL-33 in the liver tissue of the mice (P < 0.05). CONCLUSIONS Hepatocytes-specific NDUFA13 ablation can trigger spontaneous hepatitis in mice possibly mediated by the activation of ROS/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- 小惠 徐
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - 锐 李
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - 欣 曾
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - 欣 王
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - 炳乾 薛
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - 道超 黄
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - 轶 黄
- />重庆医科大学附属儿童医院儿科研究所//重庆市儿童感染与免疫重点实验室//儿童发育疾病研究教育部重点 实验室//国家儿童健康与疾病临床医学研究中心//儿童发育重大疾病国家国际科技合作基地,重庆 400014Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| |
Collapse
|
11
|
GRIM19 Impedes Obesity by Regulating Inflammatory White Fat Browning and Promoting Th17/Treg Balance. Cells 2021; 10:cells10010162. [PMID: 33467683 PMCID: PMC7829987 DOI: 10.3390/cells10010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, a condition characterized by excessive accumulation of body fat, is a metabolic disorder related to an increased risk of chronic inflammation. Obesity is mediated by signal transducer and activator of transcription (STAT) 3, which is regulated by genes associated with retinoid-interferon-induced mortality (GRIM) 19, a protein ubiquitously expressed in various human tissues. In this study, we investigated the role of GRIM19 in diet-induced obese C57BL/6 mice via intravenous or intramuscular administration of a plasmid encoding GRIM19. Splenocytes from wild-type and GRIM19-overexpressing mice were compared using enzyme-linked immunoassay, real-time polymerase chain reaction, Western blotting, flow cytometry, and histological analyses. GRIM19 attenuated the progression of obesity by regulating STAT3 activity and enhancing brown adipose tissue (BAT) differentiation. GRIM19 regulated the differentiation of mouse-derived 3T3-L1 preadipocytes into adipocytes, while modulating gene expression in white adipose tissue (WAT) and BAT. GRIM19 overexpression reduced diet-induced obesity and enhanced glucose and lipid metabolism in the liver. Moreover, GRIM19 overexpression reduced WAT differentiation and induced BAT differentiation in obese mice. GRIM19-transgenic mice exhibited reduced mitochondrial superoxide levels and a reciprocal balance between Th17 and Treg cells. These results suggest that GRIM19 attenuates the progression of obesity by controlling adipocyte differentiation.
Collapse
|
12
|
Correia M, Lima AR, Batista R, Máximo V, Sobrinho-Simões M. Inherited Thyroid Tumors With Oncocytic Change. Front Endocrinol (Lausanne) 2021; 12:691979. [PMID: 34177813 PMCID: PMC8220141 DOI: 10.3389/fendo.2021.691979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Familial non-medullary thyroid carcinoma (FNMTC) corresponds to 5-10% of all follicular cell-derived carcinoma (FCDTC). Oncocytic thyroid tumors have an increased incidence in the familial context in comparison with sporadic FCDTC, encompassing benign and malignant tumors in the same family presenting with some extent of cell oxyphilia. This has triggered the interest of our and other groups to clarify the oncocytic change, looking for genetic markers that could explain the emergence of this phenotype in thyroid benign and malignant lesions, focusing on familial aggregation. Despite some advances regarding the identification of the gene associated with retinoic and interferon-induced mortality 19 (GRIM-19), as one of the key candidate genes affected in the "Tumor with Cell Oxyphilia" (TCO) locus, most of the mutations follow a pattern of "private mutations", almost exclusive to one family. Moreover, no causative genetic alterations were identified so far in most families. The incomplete penetrance of the disease, the diverse benign and malignant phenotypes in the affected familial members and the variable syndromic associations create an additional layer of complexity for studying the genetic alterations in oncocytic tumors. In the present review, we summarized the available evidence supporting genomic-based mechanisms for the oncocytic change, particularly in the context of FNMTC. We have also addressed the challenges and gaps in the aforementioned mechanisms, as well as molecular clues that can explain, at least partially, the phenotype of oncocytic tumors and the respective clinico-pathological behavior. Finally, we pointed to areas of further investigation in the field of oncocytic (F)NMTC with translational potential in terms of therapy.
Collapse
Affiliation(s)
- Marcelo Correia
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- *Correspondence: Marcelo Correia,
| | - Ana Rita Lima
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Cancer Signalling and Metabolism, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Department of Pathology, Centro Hospitalar e Universitário São João (CHUSJ), Porto, Portugal
| |
Collapse
|
13
|
Wang X, Ye T, Xue B, Yang M, Li R, Xu X, Zeng X, Tian N, Bao L, Huang Y. Mitochondrial GRIM-19 deficiency facilitates gastric cancer metastasis through oncogenic ROS-NRF2-HO-1 axis via a NRF2-HO-1 loop. Gastric Cancer 2021; 24:117-132. [PMID: 32770429 DOI: 10.1007/s10120-020-01111-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/26/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND NRF2, a prime target of cellular defense against oxidative stress, has shown a dark side profile in cancer progression. GRIM-19, an essential subunit of the mitochondrial MRC complex I, was recently identified as a suppressive role in tumorigenesis of human gastric cancer (GC). However, little information is available on the role of GRIM-19 and its cross-talk with NRF2 in GC metastasis. METHODS Online GC database was used to investigate DNA methylation and survival outcomes of GRIM-19. CRISPR/Cas9 lentivirus-mediated gene editing, metastasis mice models and pharmacological intervention were applied to investigate the role of GRIM-19 deficiency in GC metastasis. Quantitative RT-PCR, FACS, Western blot, IHC, IF and reporter gene assay were performed to explore underlying mechanisms. RESULTS Low GRIM-19 is correlated with poor survival outcome of GC patients while DNA hypermethylation is associated with GRIM-19 downregulation. GRIM-19 deficiency facilitates GC metastasis and triggers aberrant oxidative stress as well as ROS-dependent NRF2-HO-1 activation. Experimental interventions of specific ROS, NRF2 or HO-1 inhibitor significantly abrogate GRIM-19 deficiency-driven GC metastasis in vitro and in vivo. Moreover, HO-1 inhibition not only reverses GRIM-19 deficiency-driven NRF2 activation, but also feedback blocks NRF2 activator-induced NRF2 signaling, resulting in decreased metastasis-associated genes. CONCLUSIONS Our data suggest that GRIM-19 deficiency accelerates GC metastasis through the oncogenic ROS-NRF2-HO-1 axis via a positive-feedback NRF2-HO-1 loop. Therefore, this study not only offers novel insights into the role of oncogenic NRF2 in tumor progression, but also provides new strategies to alleviate the dark side of NRF2 by targeting HO-1.
Collapse
Affiliation(s)
- Xin Wang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
| | - Tingbo Ye
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
- The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Bingqian Xue
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
| | - Meihua Yang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Rui Li
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
| | - Xiaohui Xu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
| | - Xin Zeng
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
| | - Na Tian
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China
| | - Liming Bao
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Yi Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, No. 136 Zhongshan Erd Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
14
|
Rai NK, Mathur S, Singh SK, Tiwari M, Singh VK, Haque R, Tiwari S, Kumar Sharma L. Differential regulation of mitochondrial complex I and oxidative stress based on metastatic potential of colorectal cancer cells. Oncol Lett 2020; 20:313. [PMID: 33093922 PMCID: PMC7573887 DOI: 10.3892/ol.2020.12176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Mitochondria serve a vital role in cellular homeostasis as they regulate cell proliferation and death pathways, which are attributed to mitochondrial bioenergetics, free radicals and metabolism. Alterations in mitochondrial functions have been reported in various diseases, including cancer. Colorectal cancer (CRC) is one of the most common metastatic cancer types with high mortality rates. Although mitochondrial oxidative stress has been associated with CRC, its specific mechanism and contribution to metastatic progression remain poorly understood. Therefore, the aims of the present study were to investigate the role of mitochondria in CRC cells with low and high metastatic potential and to evaluate the contribution of mitochondrial respiratory chain (RC) complexes in oncogenic signaling pathways. The present results demonstrated that cell lines with low metastatic potential were resistant to mitochondrial complex I (C-I)-mediated oxidative stress, and had C-I inhibition with impaired mitochondrial functions. These adaptations enabled cells to cope with higher oxidative stress. Conversely, cells with high metastatic potential demonstrated functional C-I with improved mitochondrial function due to coordinated upregulation of mitochondrial biogenesis and metabolic reprogramming. Pharmacological inhibition of C-I in high metastatic cells resulted in increased sensitivity to cell death and decreased metastatic signaling. The present findings identified the differential regulation of mitochondrial functions in CRC cells, based on CRC metastatic potential. Specifically, it was suggested that a functional C-I is required for high metastatic features of cancer cells, and the role of C-I could be further examined as a potential target in the development of novel therapies for diagnosing high metastatic cancer types.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Shashank Mathur
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Suraj Kumar Singh
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences-Patna, Patna, Bihar 801507, India
| | - Meenakshi Tiwari
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences-Patna, Patna, Bihar 801507, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
15
|
Moon J, Lee SH, Lee SY, Ryu J, Jhun J, Choi J, Kim GN, Roh S, Park SH, Cho ML. GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells. Immune Netw 2020; 20:e40. [PMID: 33163248 PMCID: PMC7609166 DOI: 10.4110/in.2020.20.e40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/05/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023] Open
Abstract
The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM19 OVN. GRIM-19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21 PLUS Dental Life Science, Seoul National University School of Dentistry, Seoul 08826, Korea
| | - Seung Hoon Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jaeyoon Ryu
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Jooyeon Jhun
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gyoung Nyun Kim
- College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21 PLUS Dental Life Science, Seoul National University School of Dentistry, Seoul 08826, Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Mi-La Cho
- Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
16
|
Kim JC, Hwang SN, Kim SY. Alteration of Gene Associated with Retinoid-interferon-induced Mortality-19-expressing Cell Types in the Mouse Hippocampus Following Pilocarpine-induced Status Epilepticus. Neuroscience 2020; 425:49-58. [PMID: 31790668 DOI: 10.1016/j.neuroscience.2019.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
The gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) plays several significant roles in cellular processes, including ATP synthesis, reactive oxygen species formation, and the regulation of glycolytic enzyme activity, which are closely related to the pathophysiological mechanisms of epilepsy. Therefore, we investigated the expression pattern of GRIM-19 in the CA1 area of the hippocampus in 8-week-old male C57BL/6 mice following pilocarpine-induced status epilepticus (SE). Neuronal death in the hippocampal CA1 area was prominently observed at 4 and 7 days after SE, and astrocytes and microglia became progressively activated beginning at 1 day after SE. GRIM-19 immunoreactivity was decreased in the damaged pyramidal cell layer but markedly increased in the stratum radiatum and stratum lacunosum-moleculare of the hippocampus at 4 and 7 days after SE. In addition, the cell types of GRIM-19-expressing cells in the epileptic hippocampus were identified. GRIM-19 was mainly co-localized in neurons but only slightly expressed in glia in the normal hippocampus. Most of the GRIM-19-positive cells induced by SE in the stratum radiatum and stratum lacunosum-moleculare were glial fibrillary acidic protein-expressing reactive astrocytes. Moreover, we observed that both GRIM-19 and pyruvate kinase isozyme M2, a glycolytic enzyme, were highly expressed in reactive astrocytes after SE. These results indicate that expression of GRIM-19 in the hippocampus is mainly observed in neurons under normal conditions but is altered in the SE mouse model as evidenced by its increased expression in reactive astrocytes. The possible role of GRIM-19 in the glycolytic activity of reactive astrocytes is also discussed.
Collapse
Affiliation(s)
- Jae-Cheon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun-Nyoung Hwang
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Yun Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
17
|
Hwang SN, Kim JC, Kim SY. Heterogeneity of GRIM-19 Expression in the Adult Mouse Brain. Cell Mol Neurobiol 2019; 39:935-951. [PMID: 31111264 PMCID: PMC11457830 DOI: 10.1007/s10571-019-00689-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/14/2019] [Indexed: 02/04/2023]
Abstract
Gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) is a subunit of the mitochondrial respiratory chain complex I that has a significant effect on ATP production. The brain is particularly susceptible to ATP deficiency due to its limited energy storage capability and its high rate of oxygen consumption. Thus, GRIM-19 might be involved in regulating ATP level in the brain or cell death caused by several neurological disorders. To understand the physiological and pathophysiological roles of GRIM-19 in the brain, a thorough investigation of the neuroanatomic distribution of GRIM-19 in the normal brain is necessary. Therefore, the present study examined the distribution patterns of GRIM-19 in the adult C57BL/6 mouse brain using immunohistochemistry and identified cell types expressing GRIM-19 using double immunofluorescence staining. We found that GRIM-19 was ubiquitously but not homogenously expressed throughout the brain. GRIM-19 immunoreactivity was predominantly observed in neurons, but not in astrocytes, microglia, or oligodendrocytes under normal physiological conditions. Following transient global cerebral ischemia, GRIM-19-positive immunoreactivity was, however, observed in neurons as well as glial cells including astrocytes in the hippocampus. Furthermore, GRIM-19 was weakly expressed in the hippocampal subgranular zone, in which neural stem and progenitor cells are abundant, but highly expressed in the immature and mature neuronal cells in the granular cell layer of the normal brain, suggesting an inverse correlation between expression of GRIM-19 and stemness activity. Collectively, our study demonstrating widespread and differential distribution of GRIM-19 in the adult mouse brain contributes to investigating the functional and pathophysiological roles of this protein.
Collapse
Affiliation(s)
- Sun-Nyoung Hwang
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jae-Cheon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seong Yun Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
18
|
Lin H, Lin T, Lin J, Yang M, Shen Z, Liu H, Zou Z, Zheng Z. Inhibition of miR-423-5p suppressed prostate cancer through targeting GRIM-19. Gene 2019; 688:93-97. [PMID: 30415005 DOI: 10.1016/j.gene.2018.11.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the effect of miR-423-5p on the progression of prostate cancer (PC). METHODS miR-423-5p and GRIM-19 expressions were detected by qRT-PCR and western blot. PC cell proliferation was measured by MTT assay. PC cell apoptosis was detected by flow cytometry. Dual luciferase reporter assay was used to confirm the interaction between miR-423-5p and GRIM-19. RESULTS Compared with normal prostate tissues and prostate epithelial cell HPrEC, miR-423-5p was up-regulated in human PC tissues and PC3 cells, whereas GRIM-19 expression was decreased. Inhibition of miR-423-5p suppressed PC3 cell proliferation, promoted PC3 cell apoptosis, and decreased anti-apoptosis protein BCL-2 expression. GRIM-19 was a target of miR-423-5p, and GRIM-19 was negatively regulated by miR-423-5p in PC3 cells. In addition, miR-423-5p knockdown inhibited the proliferation and promoted the apoptosis of PC3 cells through GRIM-19. In vivo experiments showed that miR-423-5p inhibitor administration reduced tumor volume, down-regulated miR-423-5p and GRIM-19 expressions in PC tissues of nude mice. CONCLUSION Inhibition of miR-423-5p suppressed PC through targeting GRIM-19.
Collapse
Affiliation(s)
- Haili Lin
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China.
| | - Tianqi Lin
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Jiangui Lin
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Minggen Yang
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Zaixiong Shen
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Hongjie Liu
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Zongkai Zou
- Department of Pathology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Zhouda Zheng
- Department of Urology, Zhangzhou Hospital Affiliated to Fujian Medical University, Zhangzhou 363000, Fujian, China
| |
Collapse
|
19
|
Early loss of mitochondrial complex I and rewiring of glutathione metabolism in renal oncocytoma. Proc Natl Acad Sci U S A 2018; 115:E6283-E6290. [PMID: 29915083 PMCID: PMC6142220 DOI: 10.1073/pnas.1711888115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Renal oncocytomas are benign kidney tumors with numerous mitochondria. Here, we analyze the mitochondrial (mtDNA) and nuclear genomes of these tumors. Our analysis finds mtDNA mutations in complex I (the first step in mitochondrial respiration) to be early genetic events that likely contribute to tumor formation. Since mtDNA mutations can lead to severe degenerative disorders, the cellular responses allowing renal oncocytoma cells to grow are important to consider. To properly understand authentic gene expression changes in tumors, we found it important to consider the gene expression pattern of the tumor’s cell of origin, the distal nephron. By doing so, we uncover alterations in glutathione synthesis and turnover that likely represent an adaptive metabolic response in renal oncocytoma. Renal oncocytomas are benign tumors characterized by a marked accumulation of mitochondria. We report a combined exome, transcriptome, and metabolome analysis of these tumors. Joint analysis of the nuclear and mitochondrial (mtDNA) genomes reveals loss-of-function mtDNA mutations occurring at high variant allele fractions, consistent with positive selection, in genes encoding complex I as the most frequent genetic events. A subset of these tumors also exhibits chromosome 1 loss and/or cyclin D1 overexpression, suggesting they follow complex I loss. Transcriptome data revealed that many pathways previously reported to be altered in renal oncocytoma were simply differentially expressed in the tumor’s cell of origin, the distal nephron, compared with other nephron segments. Using a heuristic approach to account for cell-of-origin bias we uncovered strong expression alterations in the gamma-glutamyl cycle, including glutathione synthesis (increased GCLC) and glutathione degradation. Moreover, the most striking changes in metabolite profiling were elevations in oxidized and reduced glutathione as well as γ-glutamyl-cysteine and cysteinyl-glycine, dipeptide intermediates in glutathione biosynthesis, and recycling, respectively. Biosynthesis of glutathione appears adaptive as blockade of GCLC impairs viability in cells cultured with a complex I inhibitor. Our data suggest that loss-of-function mutations in complex I are a candidate driver event in renal oncocytoma that is followed by frequent loss of chromosome 1, cyclin D1 overexpression, and adaptive up-regulation of glutathione biosynthesis.
Collapse
|
20
|
The Oncojanus Paradigm of Respiratory Complex I. Genes (Basel) 2018; 9:genes9050243. [PMID: 29735924 PMCID: PMC5977183 DOI: 10.3390/genes9050243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/09/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial respiratory function is now recognized as a pivotal player in all the aspects of cancer biology, from tumorigenesis to aggressiveness and chemotherapy resistance. Among the enzymes that compose the respiratory chain, by contributing to energy production, redox equilibrium and oxidative stress, complex I assumes a central role. Complex I defects may arise from mutations in mitochondrial or nuclear DNA, in both structural genes or assembly factors, from alteration of the expression levels of its subunits, or from drug exposure. Since cancer cells have a high-energy demand and require macromolecules for proliferation, it is not surprising that severe complex I defects, caused either by mutations or treatment with specific inhibitors, prevent tumor progression, while contributing to resistance to certain chemotherapeutic agents. On the other hand, enhanced oxidative stress due to mild complex I dysfunction drives an opposite phenotype, as it stimulates cancer cell proliferation and invasiveness. We here review the current knowledge on the contribution of respiratory complex I to cancer biology, highlighting the double-edged role of this metabolic enzyme in tumor progression, metastasis formation, and response to chemotherapy.
Collapse
|
21
|
Ezzat S, Wang R, Pintilie M, Asa SL. FGFR4 polymorphic alleles modulate mitochondrial respiration: A novel target for somatostatin analog action in pituitary tumors. Oncotarget 2018; 8:3481-3494. [PMID: 27966451 PMCID: PMC5356897 DOI: 10.18632/oncotarget.13843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/16/2016] [Indexed: 01/09/2023] Open
Abstract
We reported that a single nucleotide polymorphism (SNP) at codon 388 of the fibroblast growth factor receptor 4 (FGFR4-Gly388Arg) can result in distinct proteins that alter pituitary cell growth and function. Here, we examined the differential properties of the available therapeutic somatostatin analogs, octreotide and pasireotide, in pituitary tumor cells expressing the different FGFR4 isoforms. Consistent with their enhanced growth properties, FGFR4-R388-expressing cells show higher mitochondrial STAT3 serine phosphorylation driving basal and maximal oxygen consumption rate (OCR) than pituitary cells expressing the more common FGFR4-G388 isoform. While both somatostatin analogs reduce the OCR in FGFR4-G388 cells, pasireotide was more effective in decreasing OCR in cells expressing the variant FGFR4-R388 isoform. Down-regulation of somatostatin receptor 5 (SSTR5) abrogated the effect of pasireotide, demonstrating its involvement in mediating this action. The effects on OCR were recapitulated by introducing a constitutively active serine STAT3 but not by a tyrosine-active mutant. Moreover, pharmacologic inhibition demonstrated the role for the phosphatase PP2A in mediating the dephosphorylation of STAT3-S727 by pasireotide. Our data indicate that FGFR4 polymorphic isoforms mediate signaling that yields mitochondrial therapeutic targets of relevance to the actions of different somatostatin analogs.
Collapse
Affiliation(s)
- Shereen Ezzat
- Department of Medicine, The Endocrine Oncology Site Group, Princes Margaret Cancer Centre, and the Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Ri Wang
- Department of Statistics, University of Waterloo, Toronto, Canada
| | - Melania Pintilie
- Department of Biostatistics, University of Toronto, Toronto, Canada
| | - Sylvia L Asa
- Department of Pathology, University Health Network, Toronto, Canada
| |
Collapse
|
22
|
Song J, Shi W, Wang W, Zhang Y, Zheng S. Grim-19 expressed by recombinant adenovirus for esophageal neoplasm target therapy. Mol Med Rep 2018; 17:6667-6674. [PMID: 29488605 DOI: 10.3892/mmr.2018.8638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/06/2017] [Indexed: 11/05/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) are the two most common types of esophageal cancer, which is the sixth highest cause of cancer‑associated mortality and the eighth most common cancer worldwide. Gene associated with retinoid‑interferon (IFN)‑induced mortality‑19 (Grim‑19) is reported to be a cell death activator that may be used to define mechanisms involved in IFN‑β‑ and retinoic acid‑induced cell death and apoptosis in a number of tumor cell lines. The present study constructed a recombinant adenovirus expressing Grim‑19 (rAd‑Grim‑19) and investigated its therapeutic outcomes in ESCC cells and tumor‑bearing mice. Grim‑19 expression was detected in EC‑109 (ESCC) cells by reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Tumor cell death and apoptosis induced by rAd‑Grim‑19 in EC‑109 cells were analyzed by flow cytometry. The inhibitory effects of rAd‑Grim‑19 on EC‑109 growth were determined by MTT assays. Furthermore, the therapeutic effects of rAd‑Grim‑19 were investigated in EC‑109‑bearing mice. The results demonstrated that Grim‑19 mRNA and protein expression was downregulated in EC‑109 esophageal carcinoma cells compared with Het‑1A normal esophageal epithelial cells. In addition, EC‑109 cells exhibited a significant reduction in tumor cell growth in the rAd‑Grim‑19 group compared with the control groups. Furthermore, rAd‑Grim‑19 increased EC‑109 cell apoptosis compared with the control group. These results indicated that rAd-Grim-19 may regulate tumor cell growth and apoptosis. Additionally, the results demonstrated that rAd‑Grim‑19 led to beneficial outcomes and prolonged the survival of esophageal tumor‑bearing mice. In conclusion, the present study demonstrated that rAd‑Grim‑19 may have potential as an antitumor agent for esophageal neoplasms and may therefore be beneficial for patients with esophageal neoplasms.
Collapse
Affiliation(s)
- Jianxiang Song
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Woda Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wencai Wang
- Department of Cardiothoracic Surgery, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Yajun Zhang
- Department of Cardiothoracic Surgery, The Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China
| | - Shiying Zheng
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
23
|
Ilangumaran S, Williams BRG, Kalvakolanu DV. Meeting summary: 2nd Aegean Conference on Cytokine Signaling in Cancer. Cytokine 2017; 108:225-231. [PMID: 29102683 DOI: 10.1016/j.cyto.2017.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 10/25/2017] [Indexed: 11/26/2022]
Abstract
Cytokines and chemokines are intricately connected to cancer initiation, progression and metastasis as well as to innate and adaptive host defense mechanisms against transformed cells. The Aegean Conference on Cytokine Signaling in Cancer (ACCSC) aims to bring together researchers in this highly targeted area of cancer research in a lovely and relaxing Greek-Mediterranean backdrop to discuss latest developments. Being small in size with about one hundred participants, this conference fosters scientific and social interactions among established and emerging scientists in clinical and basic research in diverse fields of oncology, biochemistry, biophysics, genetics and immunology. The 2nd ACCSC held at Heraklion on the Greek island of Crete was organized by Serge Fuchs (University of Pennsylvania), Mathias Muller (University of Veterinary Medicine Vienna), Leonidas Platanias (Northwestern University, Chicago) and Belinda Parker (La Trobe University, Melbourne) between May 30 and June 04, 2017, was a great success in every single aspect of a high level scientific meeting. Signaling within cancer cells as well as in stromal and immune cells is the common thread of this conference series. An outline of the research topics discussed at this conference is presented here to emphasize its high quality and to stimulate interest among cytokine researchers to participate in future ACCSC meetings.
Collapse
Affiliation(s)
- Subburaj Ilangumaran
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Bryan R G Williams
- Department of Molecular and Translational Science, Monash University Faculty of Medicine, Nursing and Health Sciences, Melbourne, Australia.
| | - Dhan V Kalvakolanu
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
GRIM-19 represses the proliferation and invasion of cutaneous squamous cell carcinoma cells associated with downregulation of STAT3 signaling. Biomed Pharmacother 2017; 95:1169-1176. [DOI: 10.1016/j.biopha.2017.09.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/28/2017] [Accepted: 09/12/2017] [Indexed: 12/28/2022] Open
|
25
|
Electron leak from NDUFA13 within mitochondrial complex I attenuates ischemia-reperfusion injury via dimerized STAT3. Proc Natl Acad Sci U S A 2017; 114:11908-11913. [PMID: 29078279 PMCID: PMC5692532 DOI: 10.1073/pnas.1704723114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species (ROS) generation due to electron leak from the mitochondria may be involved in physiological or pathological processes. NDUFA13 is an accessory subunit of mitochondria complex I with a unique molecular structure and is located close to FeS clusters with low electrochemical potentials. Here, we generated cardiac-specific conditional NDUFA13 heterozygous knockout mice. At the basal state, a moderate down-regulation of NDUFA13 created a leak within complex I, resulting in a mild increase in cytoplasm localized H2O2, but not superoxide. The resultant ROS served as a second messenger and was responsible for the STAT3 dimerization and, hence, the activation of antiapoptotic signaling, which eventually significantly suppressed the superoxide burst and decreased the infarct size during the ischemia-reperfusion process. The causative relationship between specific mitochondrial molecular structure and reactive oxygen species (ROS) generation has attracted much attention. NDUFA13 is a newly identified accessory subunit of mitochondria complex I with a unique molecular structure and a location that is very close to the subunits of complex I of low electrochemical potentials. It has been reported that down-regulated NDUFA13 rendered tumor cells more resistant to apoptosis. Thus, this molecule might provide an ideal opportunity for us to investigate the profile of ROS generation and its role in cell protection against apoptosis. In the present study, we generated cardiac-specific tamoxifen-inducible NDUFA13 knockout mice and demonstrated that cardiac-specific heterozygous knockout (cHet) mice exhibited normal cardiac morphology and function in the basal state but were more resistant to apoptosis when exposed to ischemia-reperfusion (I/R) injury. cHet mice showed a preserved capacity of oxygen consumption rate by complex I and II, which can match the oxygen consumption driven by electron donors of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD)+ascorbate. Interestingly, at basal state, cHet mice exhibited a higher H2O2 level in the cytosol, but not in the mitochondria. Importantly, increased H2O2 served as a second messenger and led to the STAT3 dimerization and, hence, activation of antiapoptotic signaling, which eventually significantly suppressed the superoxide burst and decreased the infarct size during the I/R process in cHet mice.
Collapse
|
26
|
Correia M, Pinheiro P, Batista R, Soares P, Sobrinho-Simões M, Máximo V. Etiopathogenesis of oncocytomas. Semin Cancer Biol 2017; 47:82-94. [PMID: 28687249 DOI: 10.1016/j.semcancer.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023]
Abstract
Oncocytomas are distinct tumors characterized by an abnormal accumulation of defective and (most probably) dysfunctional mitochondria in cell cytoplasm of such tumors. This particular phenotype has been studied for the last decades and the clarification of the etiopathogenic causes are still needed. Several mechanisms involved in the formation and maintenance of oncocytomas are accepted as reasonable causes, but the relevance and contribution of each one for oncocytic transformation may depend on different cancer etiopathogenic contexts. In this review, we describe the current knowledge of the etiopathogenic events that may lead to oncocytic transformation and discuss their contribution for tumor progression and mitochondrial accumulation.
Collapse
Affiliation(s)
- Marcelo Correia
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Pedro Pinheiro
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Paula Soares
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism Research Group, Instituto de Investigação e Inovação em Saúde - i3S (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal; Cancer Signalling and Metabolism Research Group, Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal; Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal; Department of Pathology, Faculdade de Medicina da Universidade do Porto - FMUP (Medical Faculty of University of Porto), Porto, Portugal.
| |
Collapse
|
27
|
Nallar SC, Kalvakolanu DV. GRIM-19: A master regulator of cytokine induced tumor suppression, metastasis and energy metabolism. Cytokine Growth Factor Rev 2016; 33:1-18. [PMID: 27659873 DOI: 10.1016/j.cytogfr.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/14/2016] [Indexed: 12/31/2022]
Abstract
Cytokines induce cell proliferation or growth suppression depending on the context. It is increasingly becoming clear that success of standard radiotherapy and/or chemotherapeutics to eradicate solid tumors is dependent on IFN signaling. In this review we discuss the molecular mechanisms of tumor growth suppression by a gene product isolated in our laboratory using a genome-wide expression knock-down strategy. Gene associated with retinoid-IFN-induced mortality -19 (GRIM-19) functions as non-canonical tumor suppressor by antagonizing oncoproteins. As a component of mitochondrial respiratory chain, GRIM-19 influences the degree of "Warburg effect" in cancer cells as many advanced and/or aggressive tumors show severely down-regulated GRIM-19 levels. In addition, GRIM-19 appears to regulate innate and acquired immune responses in mouse models. Thus, GRIM-19 is positioned at nodes that favor cell protection and/or prevent aberrant cell growth.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhan V Kalvakolanu
- Department of Microbiology and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
28
|
Park MJ, Lee SH, Lee SH, Kim EK, Lee EJ, Moon YM, La Cho M. GRIM19 ameliorates acute graft-versus-host disease (GVHD) by modulating Th17 and Treg cell balance through down-regulation of STAT3 and NF-AT activation. J Transl Med 2016; 14:206. [PMID: 27391226 PMCID: PMC4938933 DOI: 10.1186/s12967-016-0963-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/28/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND T helper (Th) 17 cells are a subset of T helper cells that express interleukin (IL)-17 and initiate the inflammatory response in autoimmune diseases. Regulatory T cells (Tregs) are a subpopulation of T cells that produce forkhead box P3 (FOXP3) and inhibit the immune response. Graft versus host disease (GVHD) is a complication of allogeneic tissue transplantation, and Th17 cells and their proinflammatory activity play a central role in the pathogenesis of GVHD. Gene associated with retinoid-interferon-induced mortality (GRIM) 19, originally identified as a nuclear protein, is expressed ubiquitously in various human tissues and regulate signal transducer and activator of transcription (STAT)3 activity. METHODS Splenoytes and bone marrow cells were transplanted into mice with GVHD. The alloresponse of T cells and GVHD clinical score was measured. Realtime-polymerase chain reaction (realtime-PCR) was used to examine mRNA level. Flow cytometry and enzyme linked immunosorbent assay (ELISA) was used to evaluate protein expression. RESULTS A GRIM19 transgenic cell transplant inhibited Th17 cell differentiation, alloreactive T cell responses, and STAT3 expression in mice with GVHD. On the other hand, the differentiation of Tregs and STAT5 production were enhanced by GRIM19. Overall, the severity of GVHD was decreased in mice that had received GRIM19 transgenic bone marrow and spleen transplants. Transplantation from GRIM19-overexpressing cells downregulated the expression of nuclear factor of activated T cells (NFATc1) but promoted the expression of regulator of calcineurin (RCAN)3 while downregulating NFAT-dependent cytokine gene expression. This complex mechanism underlies the therapeutic effect of GRIM19. CONCLUSIONS We observed that GRIM19 can reduce Th17 cell differentiation and alloreactive T cell responses in vitro and in vivo. Additionally, GRIM19 suppressed the severity of GVHD by modulating STAT3 activity and controlling Th17 and Treg cell differentiation. These results suggest that GRIM19 attenuates acute GVHD through the inhibition of the excessive inflammatory response mediated by T cell activation.
Collapse
Affiliation(s)
- Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Eun Jung Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Young-Mee Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Mi- La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea. .,Divison of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, 137-040, South Korea. .,Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Korea 505 Banpo-Dong, Seocho-Ku, Seoul, 137-040, Korea.
| |
Collapse
|
29
|
Huang Y, Yang M, Hu H, Zhao X, Bao L, Huang D, Song L, Li Y. Mitochondrial GRIM-19 as a potential therapeutic target for STAT3-dependent carcinogenesis of gastric cancer. Oncotarget 2016; 7:41404-41420. [PMID: 27167343 PMCID: PMC5173068 DOI: 10.18632/oncotarget.9167] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 04/11/2016] [Indexed: 01/05/2023] Open
Abstract
Aberrant STAT3 activation occurs in most human gastric cancers (GCs) and contributes to the malignant progression of GC, but mechanism(s) underlying aberrant STAT3 remain largely unknown. Here we demonstrated that the gene associated with retinoid interferon-induced mortality 19 (GRIM-19) was severely depressed or lost in GC and chronic atrophic gastritis (CAG) tissues and its loss contributed to GC tumorigenesis partly by activating STAT3 signaling. In primary human GC tissues, GRIM-19 was frequently depressed or lost and this loss correlated with advanced clinical stage, lymph node metastasis, H. pylori infection and poor overall survival of GC patients. In CAG tissues, GRIM-19 was progressively decreased along with its malignant transformation. Functionally, we indentified an oncogenic role of GRIM-19 loss in promoting GC tumorigenesis. Ectopic GRIM-19 expression suppressed GC tumor formation in vitro and in vivo by inducing cell cycle arrest and apoptosis. Moreover, we revealed that GRIM-19 inhibited STAT3 transcriptional activation and its downstream targets by reducing STAT3 nuclear distribution. Conversely, knockdown of GRIM-19 induced aberrant STAT3 activation and accelerated GC cell growth in vitro and in vivo, and this could be partly attenuated by the blockage of STAT3 activation. In addition, we observed subcellular redistributions of GRIM-19 characterized by peri-nuclear aggregates, non-mitochondria cytoplasmic distribution and nuclear invasion, which should be responsible for reduced STAT3 nuclear distribution. Our studies suggest that mitochondrial GRIM-19 could not only serve as an valuable prognostic biomarker for GC development, but also as a potential therapeutic target for STAT3-dependent carcinogenesis of GC.
Collapse
Affiliation(s)
- Yi Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
| | - Meihua Yang
- Department of Neurosurgery, Xinqiao Hospital of Third Military Medical University, Chongqing 400038, PR China
| | - Huajian Hu
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
| | - Liming Bao
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756, USA
| | - Daochao Huang
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Animal Care Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lihua Song
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
- Department of Gastroenterology, 416 Hospital of Nuclear Industry, Chengdu 610051, PR China
| | - Yang Li
- Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China
| |
Collapse
|
30
|
Grim19 Attenuates DSS Induced Colitis in an Animal Model. PLoS One 2016; 11:e0155853. [PMID: 27258062 PMCID: PMC4892643 DOI: 10.1371/journal.pone.0155853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/05/2016] [Indexed: 12/18/2022] Open
Abstract
DSS induced colitis is a chronic inflammatory disease characterized by inflammation in the gastrointestinal tract, which destabilizes the gut and induces an uncontrolled immune response. Although DSS induced colitis is generally thought to develop as a result of an abnormally active intestinal immune system, its pathogenesis remains unclear. Gene associated with retinoid interferon induced mortality (Grim) 19 is an endogenous specific inhibitor of STAT3, which regulates the expression of proinflammatory cytokines. In this study, we investigated the influence of GRIM19 in a DSS induced colitis mouse model. We hypothesized that Grim19 would ameliorate DSS induced colitis by altering STAT3 activity and intestinal inflammation. Grim19 ameliorated DSS induced colitis severity and protected intestinal tissue. The expression of STAT3 and proinflammatory cytokines such as IL-1β and TNF-α in colon and lymph nodes was decreased significantly by Grim19. Moreover, DSS induced colitis progression in a Grim19 transgenic mouse line was inhibited in association with a reduction in STAT3 and IL-17 expression. These results suggest that Grim19 attenuates DSS induced colitis by suppressing the excessive inflammatory response mediated by STAT3 activation.
Collapse
|
31
|
Li YG, Han BB, Li F, Yu JW, Dong ZF, Niu GM, Qing YW, Li JB, Wei M, Zhu W. High Glucose Induces Down-Regulated GRIM-19 Expression to Activate STAT3 Signaling and Promote Cell Proliferation in Cell Culture. PLoS One 2016; 11:e0153659. [PMID: 27101310 PMCID: PMC4839686 DOI: 10.1371/journal.pone.0153659] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 04/01/2016] [Indexed: 11/27/2022] Open
Abstract
Recent studies indicated that Gene Associated with Retinoid-IFN-Induced Mortality 19 (GRIM-19), a newly discovered mitochondria-related protein, can regulate mitochondrial function and modulate cell viability possibly via interacting with STAT3 signal. In the present study we sought to test: 1) whether GRIM-19 is involved in high glucose (HG) induced altered cell metabolism in both cancer and cardiac cells, 2) whether GRIM-19/STAT3 signaling pathway plays a role in HG induced biological effects, especially whether AMPK activity could be involved. Our data showed that HG enhanced cell proliferation of both HeLa and H9C2 cells, which was closely associated with down-regulated GRIM-19 expression and increased phosphorylated STAT3 level. We showed that GRIM-19 knock-down alone in normal glucose cultured cells can also result in an increase in phosphorylated STAT3 level and enhanced proliferation capability, whereas GRIM-19 over-expression can abolished HG induced STAT3 activation and enhanced cell proliferation. Importantly, both down-regulated or over-expression of GRIM-19 increased lactate production in both HeLa and H9C2 cells. The activated STAT3 was responsible for increased cell proliferation as either AG-490, an inhibitor of JAK2, or siRNA targeting STAT3 can attenuate cell proliferation increased by HG. In addition, HG increased lactate acid levels in HeLa cells, which was also observed when GRIM-19 was genetically manipulated. However, HG did not affect the lactate levels in H9C2 cells. Of note, over-expression of GRIM-19 and silencing of STAT3 both increased lactate production in H9C2 cells. As expected, HG resulted in significant decreases in phosphorylated AMPKα levels in H9C2 cells, but not in HeLa cells. Interestingy, activation of AMPKα by metformin was associated with a reversal of the suppressed GRIM-19 expression in H9C2 cells, the fold of changes in GRIM-19 expression by metformin were much less in HeLa cells. Metformin did not affect the phosphorylated STAT3 lelvels, however, decreased its levels in H9C2, especially in the setting of HG culture. Not like HG alone which resulted in no changes in lactate acid in H9C2 cells, metformin can increase lactate acid levels in H9C2 cells. Increased lactate induced by metformin was also observed in HeLa cells.
Collapse
Affiliation(s)
- Yong-Guang Li
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Bei-Bei Han
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Feng Li
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Jian-Wu Yu
- Division of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhi-Feng Dong
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Geng-Ming Niu
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Yan-Wei Qing
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Jing-Bo Li
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Meng Wei
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
- * E-mail: (WZ); (MW)
| | - Wei Zhu
- State Key Discipline Division, Heart Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
- Provincial Key Laboratory of Cardiovascular Research, Department of Cardiology, Zhejiang University School of Medicine 2nd Affiliated Hospital, Hangzhou, Zhejiang, People’s Republic of China
- * E-mail: (WZ); (MW)
| |
Collapse
|
32
|
Expression of GRIM-19 in adenomyosis and its possible role in pathogenesis. Fertil Steril 2016; 105:1093-101. [PMID: 26769301 DOI: 10.1016/j.fertnstert.2015.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To study the expression of the gene associated with retinoid-interferon (IFN)-induced mortality 19 (GRIM-19) in the endometrial tissue of patients with adenomyosis and to describe the possible pathogenic mechanisms of this phenomenon. DESIGN Experimental study using human samples and cell lines. SETTING University-affiliated hospital. PATIENT(S) Ectopic and eutopic endometrial tissues were obtained from 30 patients with adenomyosis, whereas normal endometrial specimens were obtained from 10 control patients without adenomyosis. INTERVENTION(S) Patients with rapid pathology report-confirmed adenomyosis were recruited, and eutopic and ectopic endometrial tissue samples were collected from patients who had undergone hysterectomies by either the transabdominal or laparoscopic method at Qilu Hospital. Normal endometrial tissue was collected from a group of control patients without adenomyosis. MAIN OUTCOME MEASURE(S) Immunohistochemistry (IHC) was performed to evaluate the expression of GRIM-19, phospho-signal transducer and activator of transcription 3 (Y705) (Y705) (pSTAT3(Y705)), and vascular endothelial growth factor (VEGF) in endometrial tissue samples. The protein levels of GRIM-19, pSTAT3(Y705), STAT3, and VEGF were detected by Western blot. Apoptosis in endometrial specimens was assayed by TUNEL. Immunohistochemistry with an antibody directed against CD34 was performed to detect new blood vessels in the endometrial tissue. GRIM-19 small interfering RNA and a recombinant plasmid carrying GRIM-19 were constructed to evaluate the effects of GRIM-19 on the downstream factors pSTAT3(Y705), STAT3, and VEGF in Ishikawa cells. RESULT(S) The expression of GRIM-19 was down-regulated in the eutopic endometria of patients with adenomyosis compared with the endometria of patients in the control group, and it was further reduced in the endometrial glandular epithelial cells of adenomyotic lesions. Apoptosis was reduced in the eutopic endometrium compared with the control group, and it was significantly reduced in ectopic endometrial tissues. In addition, the ectopic and eutopic endometria of patients with adenomyosis displayed a much higher microvessel density. In the eutopic and ectopic endometria of patients with adenomyosis, the expression levels of pSTAT3(Y705) and VEGF were significantly higher than in the controls. Furthermore, down-regulation of GRIM-19 in Ishikawa cells significantly promoted the activation of both pSTAT3(Y705) and its dependent gene VEGF. CONCLUSION(S) Aberrant expression of GRIM-19 may be associated with adenomyosis through the regulation of apoptosis and angiogenesis.
Collapse
|
33
|
Nallar SC, Kalvakolanu DV. Interferons, signal transduction pathways, and the central nervous system. J Interferon Cytokine Res 2015; 34:559-76. [PMID: 25084173 DOI: 10.1089/jir.2014.0021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interferon (IFN) family of cytokines participates in the development of innate and acquired immune defenses against various pathogens and pathogenic stimuli. Discovered originally as a proteinaceous substance secreted from virus-infected cells that afforded immunity to neighboring cells from virus infection, these cytokines are now implicated in various human pathologies, including control of tumor development, cell differentiation, and autoimmunity. It is now believed that the IFN system (IFN genes and the genes induced by them, and the factors that regulate these processes) is a generalized alarm of cellular stress, including DNA damage. IFNs exert both beneficial and deleterious effects on the central nervous system (CNS). Our knowledge of the IFN-regulated processes in the CNS is far from being clear. In this article, we reviewed the current understanding of IFN signal transduction pathways and gene products that might have potential relevance to diseases of the CNS.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology & Immunology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | |
Collapse
|
34
|
Yarham JW, Lamichhane TN, Pyle A, Mattijssen S, Baruffini E, Bruni F, Donnini C, Vassilev A, He L, Blakely EL, Griffin H, Santibanez-Koref M, Bindoff LA, Ferrero I, Chinnery PF, McFarland R, Maraia RJ, Taylor RW. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA. PLoS Genet 2014; 10:e1004424. [PMID: 24901367 PMCID: PMC4046958 DOI: 10.1371/journal.pgen.1004424] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/20/2014] [Indexed: 01/10/2023] Open
Abstract
Identifying the genetic basis for mitochondrial diseases is technically challenging given the size of the mitochondrial proteome and the heterogeneity of disease presentations. Using next-generation exome sequencing, we identified in a patient with severe combined mitochondrial respiratory chain defects and corresponding perturbation in mitochondrial protein synthesis, a homozygous p.Arg323Gln mutation in TRIT1. This gene encodes human tRNA isopentenyltransferase, which is responsible for i6A37 modification of the anticodon loops of a small subset of cytosolic and mitochondrial tRNAs. Deficiency of i6A37 was previously shown in yeast to decrease translational efficiency and fidelity in a codon-specific manner. Modelling of the p.Arg323Gln mutation on the co-crystal structure of the homologous yeast isopentenyltransferase bound to a substrate tRNA, indicates that it is one of a series of adjacent basic side chains that interact with the tRNA backbone of the anticodon stem, somewhat removed from the catalytic center. We show that patient cells bearing the p.Arg323Gln TRIT1 mutation are severely deficient in i6A37 in both cytosolic and mitochondrial tRNAs. Complete complementation of the i6A37 deficiency of both cytosolic and mitochondrial tRNAs was achieved by transduction of patient fibroblasts with wild-type TRIT1. Moreover, we show that a previously-reported pathogenic m.7480A>G mt-tRNASer(UCN) mutation in the anticodon loop sequence A36A37A38 recognised by TRIT1 causes a loss of i6A37 modification. These data demonstrate that deficiencies of i6A37 tRNA modification should be considered a potential mechanism of human disease caused by both nuclear gene and mitochondrial DNA mutations while providing insight into the structure and function of TRIT1 in the modification of cytosolic and mitochondrial tRNAs. Mitochondrial disorders are clinically diverse, and identifying the underlying genetic mutations is technically challenging due to the large number of mitochondrial proteins. Using high-throughput sequencing technology, we identified a disease-causing mutation in the TRIT1 gene. This gene encodes an enzyme, tRNA isopentenyltransferase, that adds an N6-isopentenyl modification to adenosine-37 (i6A37) in a small number of tRNAs, enabling them to function correctly during the synthesis of essential mitochondrial proteins. We show that this mutation leads to severe deficiency of tRNA-i6A37 in the patient's cells that can be rescued by introduction of the wild-type TRIT1 protein. A deficiency in oxidative phosphorylation, the process by which energy (ATP) is generated in the mitochondria, leads to a mitochondrial disease presentation. Introducing the mutant protein into model yeast species and measuring the resulting impairment provided further evidence of the pathogenic effect of the mutation. Additional studies investigating a previously reported pathogenic mutation in a mitochondrial tRNA gene demonstrated that a mutation in a substrate of TRIT1 can also cause a loss of the modification, providing evidence of a new mechanism causing mitochondrial disease in humans.
Collapse
Affiliation(s)
- John W. Yarham
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tek N. Lamichhane
- Intramural Research Program, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Angela Pyle
- Wellcome Trust Centre for Mitochondrial Research, Institute for Genetic Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandy Mattijssen
- Intramural Research Program, NICHD, NIH, Bethesda, Maryland, United States of America
| | | | - Francesco Bruni
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Claudia Donnini
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Alex Vassilev
- Intramural Research Program, NICHD, NIH, Bethesda, Maryland, United States of America
| | - Langping He
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emma L. Blakely
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen Griffin
- Wellcome Trust Centre for Mitochondrial Research, Institute for Genetic Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mauro Santibanez-Koref
- Wellcome Trust Centre for Mitochondrial Research, Institute for Genetic Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Laurence A. Bindoff
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ileana Ferrero
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Patrick F. Chinnery
- Wellcome Trust Centre for Mitochondrial Research, Institute for Genetic Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard J. Maraia
- Intramural Research Program, NICHD, NIH, Bethesda, Maryland, United States of America
- * E-mail: (RJM) (RM); (RWT) (RT)
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (RJM) (RM); (RWT) (RT)
| |
Collapse
|