1
|
Kou G, Zhou Y, Han H, Liu Z, Lai Y, Gao S. Comparative Analysis of Transcriptome Data of Wings from Different Developmental Stages of the Gynaephora qinghaiensis. Int J Mol Sci 2025; 26:3562. [PMID: 40332056 PMCID: PMC12026863 DOI: 10.3390/ijms26083562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 05/08/2025] Open
Abstract
Gynaephora qinghaiensis is a major pest in the alpine meadow regions of China. While the females are unable to fly, the males can fly and cause widespread damage. The aim of this study was to use transcriptome analysis to identify and verify genes expressed at different developmental stages of Gynaephora qinghaiensis, with particular emphasis on genes associated with wing development. High-throughput sequencing was performed on an Illumina HiSeqTM2000 platform to assess transcriptomic differences in the wings of male and female pupa and male and female adults of Gynaephora qinghaiensis, and the expression levels of the differentially expressed genes (DEGs) were verified by real-time fluorescence quantitative PCR (RT-qPCR). A total of 60,536 unigenes were identified from the transcriptome data, and 25,162 unigenes were obtained from a comparison with four major databases. Further analysis identified 18 DEGs associated with wing development in Gynaephora qinghaiensis. RT-qPCR verification of the expression levels showed consistency with the RNA sequencing results. Spatio-temporal expression profiling of the 18 genes indicated different levels of expression in the thoraces of male and female pupa, as well as between the wing buds of adult females and the wings of adult males. GO annotation analysis showed that the DEGs were associated with similar categories with no significant enrichment and were involved in cellular processes, cellular anatomical entities, and binding. KEGG analysis indicated that the DEGs were associated with endocytosis and metabolic pathways. The results of this study expand the information on genes associated with Gynaephora qinghaiensis wing development and provide support for further investigations of wing development at the molecular level.
Collapse
Affiliation(s)
- Guixiang Kou
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (G.K.); (H.H.)
- Institute of Plant Protection, Qinghai Academy of Agriculture and Forestry, Xining 810016, China
| | - Yuantao Zhou
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.Z.); (Z.L.)
| | - Haibing Han
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (G.K.); (H.H.)
| | - Zhanling Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (Y.Z.); (Z.L.)
| | - Youpeng Lai
- Institute of Plant Protection, Qinghai Academy of Agriculture and Forestry, Xining 810016, China
| | - Shujing Gao
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (G.K.); (H.H.)
| |
Collapse
|
2
|
Dou F, Ji W, Xie Q, Wang J, Cao Y, Shi J. Transcriptome analysis and temporal expression patterns of wing development-related genes in Lymantria dispar (Lepidoptera: Erebidae). ENVIRONMENTAL ENTOMOLOGY 2025:nvae111. [PMID: 40172523 DOI: 10.1093/ee/nvae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 04/04/2025]
Abstract
Spongy moth, Lymantria dispar Linnaeus (Lepidoptera: Erebidae), stands as a pervasive international threat, marked by its designation as one of the "world's 100 worst invasive species" by IUCN, owing to its voracious leaf-eating habits encompassing over 500 plant species. Its strong flight ability facilitates its spread and invasion. The present study aims to uncover differential gene expression, utilizing the Illumina Novaseq6000 sequencing platform for comprehensive transcriptome sequencing and bioinformatic analysis of total RNA extracted from larvae and pupae. Results revealed pivotal processes of protein functional structure conformation, transport, and signal transduction in functional gene annotation during the 2 developmental stages of spongy moth. 18 functional genes, namely, Distal-less (Dll), Wingless (Wg), Decapentaplegic (Dpp), Hedgehog (Hh), Cubitus interruptus (Ci), Patched (Ptc), Apterous (Ap), Serrate (Ser), Fringe (Fng), Achaete (Ac), Engrailed (En), Vestigial (Vg), Scute (Sc), Invected (Inv), Scalloped (Sd), Ultrabithorax (Ubx), Serum Response Factor (SRF), and Spalt-major, associated with wing development were identified, and their expression levels were meticulously assessed through real-time quantitative PCR (RT-qPCR) in 1st-6th instar larvae and male and female pupae wing discs. The results showed that 18 genes exhibited expression. Furthermore, the relative expression values of wing development-related genes were significantly higher in the pupae stage than in the larval stage. The relative expression values of male and female pupae were also significantly different. The RT-qPCR results were in general agreement with the results of transcriptome analysis. This study establishes a foundational understanding of the developmental mechanisms governing the formation of spongy moth wings.
Collapse
Affiliation(s)
- Fengrui Dou
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Wenzhuai Ji
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Qing Xie
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Jingyu Wang
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| | - Yixia Cao
- Biomedical Department, China Certification & Inspection (Group) Inspection Co., Ltd. (CCIC), Beijing, People's Republic of China
| | - Juan Shi
- Beijing Key Laboratory for Forest Pest Control and Sino-French Joint Laboratory for Invasive Forest Pests in Eurasia, College of Forestry, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
3
|
Ohde T, Prokop J. The transition to flying insects: lessons from evo-devo and fossils. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101332. [PMID: 39837411 DOI: 10.1016/j.cois.2025.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Insects are the only arthropod group to achieve powered flight, which facilitated their explosive radiation on land. It remains a significant challenge to understand the evolutionary transition from nonflying (apterygote) to flying (pterygote) insects due to the large gap in the fossil record. Under such a situation, ontogenic information has historically been used to compensate for fossil evidence. Recent evo-devo studies support and refine a paleontology-based classical hypothesis that an ancestral exite incorporated into the body wall contributed to the origin of insect wings. The modern hypothesis locates an ancestral precoxa leg segment with an exite within the hexapod lateral tergum, reframing the long-standing debate on the insect wing origin. A current focus is on the contributions of the incorporated exite homolog and surrounding tissues, such as the pleuron and the medial bona fide tergum, to wing evolution. In parallel, recent analyses of Paleozoic fossils have confirmed thoracic and abdominal lateral body outgrowths as transitional wing precursors and suggested their possible role as respiratory organs in aquatic or semiaquatic environments. These recent studies have revised our understanding of the transition to flying insects. This review highlights recent progress in both evo-devo and paleontology, and discusses future challenges, including the evolution of metamorphic development.
Collapse
Affiliation(s)
- Takahiro Ohde
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Jakub Prokop
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 00 Praha, Czech Republic.
| |
Collapse
|
4
|
Moczek AP. Taking flight! Dev Biol 2025; 517:24-27. [PMID: 39278390 DOI: 10.1016/j.ydbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Understanding the origins of novel complex traits, the evolutionary transitions they enabled, and how those shaped the subsequent course of evolution, are all foundational objectives of evolutionary biology. Yet how developmental systems may transform to yield the first eye, limb, or placenta remains poorly understood. Seminal work by Courtney Clark-Hachtel, David Linz, and Yoshinori Tomoyasu published in the Proceedings of the National Academy of Sciences in 2013 used the origins of insect wings - one of the most impactful innovations of animal life on Earth - to provide both a case study and a new way of thinking of how novel complex traits may come into being. This paradigm-setting study not only transformed the way we view insect wings, their origins, and their affinities to other morphological structures; even more importantly, it created entryways to envision innovation as emerging gradually, not somehow divorced from ancestral homology, but through it via the differential modification, fusion, and elaboration of ancestral component parts. In a conceptual universe of descent with modification, where everything new must ultimately emerge from the old, this work thereby established a powerful bridge connecting ancestral homology and novelty through a gradual process of innovation, sparking much creative and groundbreaking work to follow since its publication just a little over a decade ago.
Collapse
Affiliation(s)
- Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
5
|
Lu JM, Shang F, Ding BY, Wang L, Li QC, Wang JJ, Dou W. Characterization of two Bursicon genes and their association with wing development in the brown citrus aphid, Aphis citricidus. INSECT SCIENCE 2024; 31:1684-1696. [PMID: 38339808 DOI: 10.1111/1744-7917.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
The tanning hormone, Bursicon, is a neuropeptide secreted by the insect nervous system that functions as a heterodimer composed of Burs-α and Burs-β subunits. It plays a critical role in the processes of cuticle tanning and wing expansion in insects. In this study, we successfully identified the AcBurs-α and AcBurs-β genes in Aphis citricidus. The open reading frames of AcBurs-α and AcBurs-β were 480 and 417 bp in length, respectively. Both AcBurs-α and AcBurs-β exhibited 11 conserved cysteine residues. AcBurs-α and AcBurs-β were expressed during all developmental stages of A. citricidus and showed high expression levels in the winged aphids. To investigate the potential role of AcBurs-α and AcBurs-β in wing development, we employed RNA interference (RNAi) techniques. With the efficient silencing of AcBurs-α (44.90%) and AcBurs-β (52.31%), malformed wings were induced in aphids. The proportions of malformed wings were 22.50%, 25.84%, and 38.34% in dsAcBurs-α-, dsAcBur-β-, and dsAcBurs-α + dsAcBur-β-treated groups, respectively. Moreover, feeding protein kinase A inhibitors (H-89) also increased the proportion of malformed wings to 30.00%. Feeding both double-stranded RNA and inhibitors (H-89) significantly downregulated the wing development-related genes nubbin, vestigial, notch and spalt major. Silence of vestigial through RNAi also led to malformed wings. Meanwhile, the exogenous application of 3 hormones that influence wing development did not affect the expression level of AcBursicon genes. These findings indicate that AcBursicon genes plays a crucial role in wing development in A. citricidus; therefore, it represents a potential molecular target for the control of this pest through RNAi-based approaches.
Collapse
Affiliation(s)
- Jin-Ming Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qing-Chun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Eshghi S, Rajabi H, Matushkina N, Claußen L, Poser J, Büscher TH, Gorb SN. WingAnalogy: a computer vision-based tool for automated insect wing asymmetry and morphometry analysis. Sci Rep 2024; 14:22155. [PMID: 39333336 PMCID: PMC11437043 DOI: 10.1038/s41598-024-73411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
WingAnalogy is a computer tool for automated insect wing morphology and asymmetry analysis. It facilitates project management, enabling users to import pairs of wing images obtained from individual insects, such as left and right, fore- and hindwings. WingAnalogy employs image processing and computer vision to segment wing structures and extract cell boundaries, and junctions. It quantifies essential metrics encompassing cell and wing characteristics, including area, length, width, circularity, and centroid positions. It enables users to scale and superimpose wing images utilizing Particle Swarm Optimization (PSO). WingAnalogy computes regression, Normalized Root Mean Square Error (NRMSE), various cell-based parameters, and distances between cell centroids and junctions. The software generates informative visualizations, aiding researchers in comprehending and interpreting asymmetry patterns. WingAnalogy allows for dividing wings into up to five distinct wing cell sets, facilitating localized comparisons. The software excels in report generation, providing detailed asymmetry measurements in PDF, CSV, and TXT formats.
Collapse
Affiliation(s)
- Shahab Eshghi
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany.
| | - Hamed Rajabi
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK
- Mechanical Intelligence Research Group, School of Engineering, London South Bank University, London, UK
| | - Natalia Matushkina
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Lisa Claußen
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Johannes Poser
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
7
|
Treidel LA, Deem KD, Salcedo MK, Dickinson MH, Bruce HS, Darveau CA, Dickerson BH, Ellers O, Glass JR, Gordon CM, Harrison JF, Hedrick TL, Johnson MG, Lebenzon JE, Marden JH, Niitepõld K, Sane SP, Sponberg S, Talal S, Williams CM, Wold ES. Insect Flight: State of the Field and Future Directions. Integr Comp Biol 2024; 64:icae106. [PMID: 38982327 PMCID: PMC11406162 DOI: 10.1093/icb/icae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight. Here, we revisit this history from an interdisciplinary perspective, discussing recent discoveries regarding the developmental origins, physiology, biomechanics, and neurobiology and sensory control of flight in a diverse set of insect models. We also identify major outstanding questions yet to be addressed and provide recommendations for overcoming current methodological challenges faced when studying insect flight, which will allow the field to continue to move forward in new and exciting directions. By integrating mechanistic work into ecological and evolutionary contexts, we hope that this synthesis promotes and stimulates new interdisciplinary research efforts necessary to close the many existing gaps about the causes and consequences of insect flight evolution.
Collapse
Affiliation(s)
- Lisa A Treidel
- School of Biological Sciences, University of Nebraska, Lincoln, Lincoln NE, 68588, USA
| | - Kevin D Deem
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| | - Mary K Salcedo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Michael H Dickinson
- Department of Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | | | - Charles-A Darveau
- Department of Biology, University of Ottawa, Ottawa Ontario, K1N 6N5, Canada
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Olaf Ellers
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jordan R Glass
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82070, USA
| | - Caleb M Gordon
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Tyson L Hedrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meredith G Johnson
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Jacqueline E Lebenzon
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - James H Marden
- Department of Biology, Pennsylvania State University, University Park, PA 16803, USA
| | | | - Sanjay P Sane
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065 India
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Stav Talal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Caroline M Williams
- Department of Integrative Biology, University of California, Berkeley, Berkeley CA, 94720, USA
| | - Ethan S Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Deem KD, Halfon MS, Tomoyasu Y. A new suite of reporter vectors and a novel landing site survey system to study cis-regulatory elements in diverse insect species. Sci Rep 2024; 14:10078. [PMID: 38698030 PMCID: PMC11066043 DOI: 10.1038/s41598-024-60432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.
Collapse
Affiliation(s)
- Kevin D Deem
- Department of Biology, Miami University, Oxford, OH, 45056, USA
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, 14203, USA
| | | |
Collapse
|
9
|
Khong H, Hattley KB, Suzuki Y. The BTB transcription factor, Abrupt, acts cooperatively with Chronologically inappropriate morphogenesis (Chinmo) to repress metamorphosis and promotes leg regeneration. Dev Biol 2024; 509:70-84. [PMID: 38373692 DOI: 10.1016/j.ydbio.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Many insects undergo the process of metamorphosis when larval precursor cells begin to differentiate to create the adult body. The larval precursor cells retain stem cell-like properties and contribute to the regenerative ability of larval appendages. Here we demonstrate that two Broad-complex/Tramtrack/Bric-à-brac Zinc-finger (BTB) domain transcription factors, Chronologically inappropriate morphogenesis (Chinmo) and Abrupt (Ab), act cooperatively to repress metamorphosis in the flour beetle, Tribolium castaneum. Knockdown of chinmo led to precocious development of pupal legs and antennae. We show that although topical application of juvenile hormone (JH) prevents the decrease in chinmo expression in the final instar, chinmo and JH act in distinct pathways. Another gene encoding the BTB domain transcription factor, Ab, was also necessary for the suppression of broad (br) expression in T. castaneum in a chinmo RNAi background, and simultaneous knockdown of ab and chinmo led to the precocious onset of metamorphosis. Furthermore, knockdown of ab led to the loss of regenerative potential of larval legs independently of br. In contrast, chinmo knockdown larvae exhibited pupal leg regeneration when a larval leg was ablated. Taken together, our results show that both ab and chinmo are necessary for the maintenance of the larval tissue identity and, apart from its role in repressing br, ab acts as a crucial regulator of larval leg regeneration. Our findings indicate that BTB domain proteins interact in a complex manner to regulate larval and pupal tissue homeostasis.
Collapse
Affiliation(s)
- Hesper Khong
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Kayli B Hattley
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA.
| |
Collapse
|
10
|
Farfán-Pira KJ, Martínez-Cuevas TI, Evans TA, Nahmad M. A cis-regulatory sequence of the selector gene vestigial drives the evolution of wing scaling in Drosophila species. J Exp Biol 2023; 226:jeb244692. [PMID: 37078652 PMCID: PMC10234621 DOI: 10.1242/jeb.244692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Scaling between specific organs and overall body size has long fascinated biologists, being a primary mechanism by which organ shapes evolve. Yet, the genetic mechanisms that underlie the evolution of scaling relationships remain elusive. Here, we compared wing and fore tibia lengths (the latter as a proxy of body size) in Drosophila melanogaster, Drosophila simulans, Drosophila ananassae and Drosophila virilis, and show that the first three of these species have roughly a similar wing-to-tibia scaling behavior. In contrast, D. virilis exhibits much smaller wings relative to their body size compared with the other species and this is reflected in the intercept of the wing-to-tibia allometry. We then asked whether the evolution of this relationship could be explained by changes in a specific cis-regulatory region or enhancer that drives expression of the wing selector gene, vestigial (vg), whose function is broadly conserved in insects and contributes to wing size. To test this hypothesis directly, we used CRISPR/Cas9 to replace the DNA sequence of the predicted Quadrant Enhancer (vgQE) from D. virilis for the corresponding vgQE sequence in the genome of D. melanogaster. Strikingly, we discovered that D. melanogaster flies carrying the D. virilis vgQE sequence have wings that are significantly smaller with respect to controls, partially shifting the intercept of the wing-to-tibia scaling relationship towards that observed in D. virilis. We conclude that a single cis-regulatory element in D. virilis contributes to constraining wing size in this species, supporting the hypothesis that scaling could evolve through genetic variations in cis-regulatory elements.
Collapse
Affiliation(s)
- Keity J. Farfán-Pira
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Teresa I. Martínez-Cuevas
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| | - Timothy A. Evans
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Marcos Nahmad
- Department of Physiology, Biophysics and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City 07360, Mexico
| |
Collapse
|
11
|
Liu XZ, Guo H, Long GJ, Ma YF, Gong LL, Zhang MQ, Hull JJ, Dewer Y, Liu LW, He M, He P. Functional characterization of five developmental signaling network genes in the white-backed planthopper: Potential application for pest management. PEST MANAGEMENT SCIENCE 2023. [PMID: 36942746 DOI: 10.1002/ps.7464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/14/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The white-backed planthopper (WBPH, Sogatella furcifera) is a major rice pest that exhibits condition dependent wing dimorphisms - a macropterous (long wing) form and a brachypterous (short wing) form. Although, the gene cascade that regulates wing development and dimorphic differentiation has been largely defined, the utility of these genes as targets for pest control has yet to be fully explored. RESULTS Five genes typically associated with the developmental signaling network, armadillo (arm), apterous A (apA), scalloped (sd), dachs (d), and yorkie (yki) were identified from the WBPH genome and their roles in wing development assessed following RNA interference (RNAi)-mediated knockdown. At 5 days-post injection, transcript levels for all five targets were substantially decreased compared with the dsGFP control group. Among the treatment groups, those injected with dsSfarm had the most pronounced effects on transcript reduction, mortality (95 ± 3%), and incidence (45 ± 3%) of wing deformities, whereas those injected with dsSfyki had the lowest incidence (6.7 ± 4%). To assess the utility of topical RNAi for Sfarm, we used a spray-based approach that complexed a large-scale, bacteria-based double-stranded RNA (dsRNA) expression pipeline with star polycation (SPc) nanoparticles. Rice seedlings infested with third and fourth instar nymphs were sprayed with SPc-dsRNA formulations and RNAi phenotypic effects were assessed over time. At 2 days post-spray, Sfarm transcript levels decreased by 86 ± 9.5% compared with dsGFP groups, and the subsequent incidences of mortality and wing defects were elevated in the treatment group. CONCLUSIONS This study characterized five genes in the WBPH developmental signaling cascade, assessed their impact on survival and wing development via RNAi, and developed a nanoparticle-dsRNA spray approach for potential field control of WBPH. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan-Zheng Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Huan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Gui-Jun Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Yun-Feng Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Lang-Lang Gong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Meng-Qi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, Arizona, USA
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki, Giza, Egypt
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Ming He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| | - Peng He
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyan, People's Republic of China
| |
Collapse
|
12
|
Goczał J, Beutel RG. Beetle elytra: evolution, modifications and biological functions. Biol Lett 2023; 19:20220559. [PMID: 36855857 PMCID: PMC9975656 DOI: 10.1098/rsbl.2022.0559] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Conversion of forewings into hardened covers, elytra, was a ground-breaking morphological adaptation that has contributed to the extraordinary evolutionary success of beetles. Nevertheless, the knowledge of the functional aspects of these structures is still fragmentary and scattered across a large number of studies. Here, we have synthesized the presently available information on the evolution, development, modifications and biological functions of this crucial evolutionary novelty. The formation of elytra took place in the earliest evolution of Coleoptera, very likely already in the Carboniferous, and was achieved through the gradual process of progressive forewing sclerotization and the formation of inward directed epipleura and a secluded sub-elytral space. In many lineages of modern beetles, the elytra have been distinctly modified. This includes multiple surface modifications, a rigid connection or fusion of the elytra, or partial or complete reduction. Beetle elytra can be involved in a very broad spectrum of functions: mechanical protection of hind wings and body, anti-predator strategies, thermoregulation and water saving, water harvesting, flight, hind wing folding, diving and swimming, self-cleaning and burrow cleaning, phoresy of symbiotic organisms, mating and courtship, and acoustic communication. We postulate that the potential of the elytra to take over multiple tasks has enormously contributed to the unparalleled diversification of beetles.
Collapse
Affiliation(s)
- Jakub Goczał
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
| | - Rolf G. Beutel
- Friedrich-Schiller-Universität Jena, Institut für Zoologie und Evolutionsforschung, 07743 Jena, Germany
| |
Collapse
|
13
|
Linz DM, Hara Y, Deem KD, Kuraku S, Hayashi S, Tomoyasu Y. Transcriptomic exploration of the Coleopteran wings reveals insight into the evolution of novel structures associated with the beetle elytron. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:197-213. [PMID: 36617687 PMCID: PMC10107685 DOI: 10.1002/jez.b.23188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023]
Abstract
The acquisition of novel traits is central to organismal evolution, yet the molecular mechanisms underlying this process are elusive. The beetle forewings (elytra) are evolutionarily modified to serve as a protective shield, providing a unique opportunity to study these mechanisms. In the past, the orthologs of genes within the wing gene network from Drosophila studies served as the starting point when studying the evolution of elytra (candidate genes). Although effective, candidate gene lists are finite and only explore genes conserved across species. To go beyond candidate genes, we used RNA sequencing and explored the wing transcriptomes of two Coleopteran species, the red flour beetle (Tribolium castaneum) and the Japanese stag beetle (Dorcus hopei). Our analysis revealed sets of genes enriched in Tribolium elytra (57 genes) and genes unique to the hindwings, which possess more "typical" insect wing morphologies (29 genes). Over a third of the hindwing-enriched genes were "candidate genes" whose functions were previously analyzed in Tribolium, demonstrating the robustness of our sequencing. Although the overlap was limited, transcriptomic comparison between the beetle species found a common set of genes, including key wing genes, enriched in either elytra or hindwings. Our RNA interference analysis for elytron-enriched genes in Tribolium uncovered novel genes with roles in forming various aspects of morphology that are unique to elytra, such as pigmentation, hardening, sensory development, and vein formation. Our analyses deepen our understanding of how gene network evolution facilitated the emergence of the elytron, a unique structure critical to the evolutionary success of beetles.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Yuichiro Hara
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Kevin D Deem
- Department of Biology, Miami University, Oxford, Ohio, USA
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Hyogo, Japan.,Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | | |
Collapse
|
14
|
Jiao Y, Palli SR. Mitochondria dysfunction impairs Tribolium castaneum wing development during metamorphosis. Commun Biol 2022; 5:1252. [PMID: 36380075 PMCID: PMC9666433 DOI: 10.1038/s42003-022-04185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
The disproportionate growth of insect appendages such as facultative growth of wings and exaggeration of beetle horns are examples of phenotypic plasticity. Insect metamorphosis is the critical stage for development of pupal and adult structures and degeneration of the larval cells. How the disproportionate growth of external appendages is regulated during tissue remodeling remains unanswered. Tribolium castaneum is used as a model to study the function of mitochondria in metamorphosis. Mitochondrial dysfunction is achieved by the knockdown of key mitochondrial regulators. Here we show that mitochondrial function is not required for metamorphosis except that severe mitochondrial dysfunction blocks ecdysis. Surprisingly, various abnormal wing growth, including short and wingless phenotypes, are induced after knocking down mitochondrial regulators. Mitochondrial activity is regulated by IIS (insulin/insulin-like growth factor signaling)/FOXO (forkhead box, sub-group O) pathway through TFAM (transcription factor A, mitochondrial). RNA sequencing and differential gene expression analysis show that wing-patterning and insect hormone response genes are downregulated, while programmed cell death and immune response genes are upregulated in insect wing discs with mitochondrial dysfunction. These studies reveal that mitochondria play critical roles in regulating insect wing growth by targeting wing development during metamorphosis, thus showing a novel molecular mechanism underlying developmental plasticity.
Collapse
Affiliation(s)
- Yaoyu Jiao
- grid.266539.d0000 0004 1936 8438Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| | - Subba Reddy Palli
- grid.266539.d0000 0004 1936 8438Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
15
|
Temporal changes in the physical and mechanical properties of beetle elytra during maturation. Acta Biomater 2022; 151:457-467. [PMID: 35933099 DOI: 10.1016/j.actbio.2022.07.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/30/2022]
Abstract
Changes in physical properties of Tenebrio molitor and Tribolium castaneum elytra (hardened forewings) were studied to understand how the development of microstructure and chemical interactions determine cuticle mechanical properties. Analysis of these properties supports a model in which cuticular material is continuously secreted from epidermal cells to produce an extracellular matrix so that the outermost layers mature first. It is hypothesized that enzymatic crosslinking and pigmentation reactions along with dehydration help to stabilize the protein-chitin network within the initial layers of cuticle shortly after eclosion. Mature layers are proposed to bear most of the mechanical loads. The frequency dependence of the storage modulus and the tan δ values decreased during the beginning of maturation, reaching constant values after 48 h post-eclosion. A decrease of tan δ indicates an increase in crosslinking of the material. The water content declined from 75% to 31%, with a significant portion lost from within the open spaces between the dorsal and ventral cuticular layers. Dehydration had a less significant influence than protein crosslinking on the mechanical properties of the elytron during maturation. When Tribolium cuticular protein TcCP30 expression was decreased by RNAi, the tan δ and frequency dependence of E' of the elytron did not change during maturation. This indicates that TcCP30 plays a role in the crosslinking process of the beetle's exoskeleton. This study was inspired by previous work on biomimetic multicomponent materials and helps inform future work on creating robust lightweight materials derived from natural sources. STATEMENT OF SIGNIFICANCE: Examination of changes in the physical properties of the elytra (hardened forewings) of two beetle species advanced understanding of how the molecular interactions influence the mechanical properties of the elytra. Physical characterization, including dynamic mechanical analysis, determined that the outer portion of the elytra matured first, while epidermal cells continued to secrete reactive components until the entire structure reached maturation. RNA interference was used to identify the role of a key protein in the elytra. Suppression of its expression reduced the formation of crosslinked polymeric components in the elytra. Identifying the molecular interactions in the matrix of proteins and polysaccharides in the elytra together with their hierarchical architecture provides important design concepts in the development of biomimetic materials.
Collapse
|
16
|
Klingler M, Bucher G. The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo 2022; 13:14. [PMID: 35854352 PMCID: PMC9295526 DOI: 10.1186/s13227-022-00201-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The red flour beetle Tribolium castaneum has emerged as an important insect model system for a variety of topics. With respect to studying gene function, it is second only to the vinegar fly D. melanogaster. The RNAi response in T. castaneum is exceptionally strong and systemic, and it appears to target all cell types and processes. Uniquely for emerging model organisms, T. castaneum offers the opportunity of performing time- and cost-efficient large-scale RNAi screening, based on commercially available dsRNAs targeting all genes, which are simply injected into the body cavity. Well established transgenic and genome editing approaches are met by ease of husbandry and a relatively short generation time. Consequently, a number of transgenic tools like UAS/Gal4, Cre/Lox, imaging lines and enhancer trap lines are already available. T. castaneum has been a genetic experimental system for decades and now has become a workhorse for molecular and reverse genetics as well as in vivo imaging. Many aspects of development and general biology are more insect-typical in this beetle compared to D. melanogaster. Thus, studying beetle orthologs of well-described fly genes has allowed macro-evolutionary comparisons in developmental processes such as axis formation, body segmentation, and appendage, head and brain development. Transgenic approaches have opened new ways for in vivo imaging. Moreover, this emerging model system is the first choice for research on processes that are not represented in the fly, or are difficult to study there, e.g. extraembryonic tissues, cryptonephridial organs, stink gland function, or dsRNA-based pesticides.
Collapse
Affiliation(s)
- Martin Klingler
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058, Erlangen, Germany.
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
17
|
Bruce HS, Patel NH. The Daphnia carapace and other novel structures evolved via the cryptic persistence of serial homologs. Curr Biol 2022; 32:3792-3799.e3. [PMID: 35858617 DOI: 10.1016/j.cub.2022.06.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/13/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Understanding how novel structures arise is a central question in evolution. Novel structures are often defined as structures that are not derived from (homologous to) any structure in the ancestor.1 The carapace of the crustacean Daphnia magna is a bivalved "cape" of exoskeleton. Shiga et al.2 proposed that the carapace of crustaceans like Daphnia and many other plate-like outgrowths in arthropods are novel structures that arose through the repeated co-option of genes like vestigial that also pattern insect wings.2-4 To determine whether the Daphnia carapace is a novel structure, we compare previous functional work2 with the expression of genes known to pattern the proximal leg region (pannier, araucan, and vestigial)5,6 between Daphnia, Parhyale, and Tribolium. Our results suggest that the Daphnia carapace did not arise by co-option but instead derived from an exite (lateral leg lobe) that emerges from an ancestral proximal leg segment that was incorporated into the Daphnia body wall. The Daphnia carapace, therefore, appears to be homologous to the Parhyale tergal plate and the insect wing.5 Remarkably, the vestigial-positive tissue that gives rise to the Daphnia carapace appears to be present in Parhyale7 and Tribolium as a small, inconspicuous protrusion. Thus, rather than a novel structure resulting from gene co-option, the Daphnia carapace appears to have arisen from a shared, ancestral tissue (morphogenetic field) that persists in a cryptic state in other arthropod lineages. Cryptic persistence of unrecognized serial homologs may thus be a general solution for the origin of novel structures.
Collapse
Affiliation(s)
- Heather S Bruce
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| | - Nipam H Patel
- Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA; University of Chicago, Organismal Biology & Anatomy, 1027 E 57(th) Street, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Farfán-Pira KJ, Martínez-Cuevas TI, Reyes R, Evans TA, Nahmad M. The vestigial Quadrant Enhancer is dispensable for pattern formation and development of the Drosophila wing. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000585. [PMID: 35783575 PMCID: PMC9242444 DOI: 10.17912/micropub.biology.000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
In Drosophila , the pattern of the wing selector gene, vestigial ( vg ), is established by at least two enhancers: the Boundary Enhancer, which drives expression along the disc's Dorsal-Ventral boundary; and the Quadrant Enhancer (QE) that patterns the rest of the wing pouch. Using CRISPR/Cas9 editing, we deleted DNA fragments around the reported QE sequence and found that the full Vg pattern is formed. Furthermore, adult wings arising from these gene-edited animals are normal in shape and pattern, but slightly smaller in size, although this reduction is not wing-specific in males. We suggest that other enhancers act redundantly to establish the vg pattern and rescue wing development.
Collapse
Affiliation(s)
- Keity J Farfán-Pira
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN)
| | - Teresa I Martínez-Cuevas
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN)
| | - Rosalio Reyes
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN)
| | | | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN)
,
Correspondence to: Marcos Nahmad (
)
| |
Collapse
|
19
|
Zhang YH, Ma ZZ, Zhou H, Chao ZJ, Yan S, Shen J. Nanocarrier-delivered dsRNA suppresses wing development of green peach aphids. INSECT SCIENCE 2022; 29:669-682. [PMID: 34288425 DOI: 10.1111/1744-7917.12953] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) has developed rapidly as a potential "green" pest management strategy. At present, most studies have focused on the screening of aphid lethal genes, whereas only a few studies have been conducted on wing development, which is crucial for aphid migration and plant-virus dissemination. Here, the Myzus persicae genes vestigial (vg) and Ultrabithorax (Ubx) related to wing development, were cloned. These two genes were expressed in various tissues of 3rd-instar winged aphids. The mRNA level of vg was high in 3rd-instar nymphs, whereas the expression level of Ubx was high in adults. The nanocarrier-mediated delivery system delivered double-stranded RNAs for aphid RNAi using topical and root applications. The expression levels of vg and Ubx were downregulated by 44.0% and 36.5%, respectively, using the topical application. The simultaneous RNAi of the two target genes caused 63.3% and 32.2% wing aberration rates using topical and root applications, respectively. The current study provided a promising method for controlling aphid migration to alleviate the spread of insect transmitted plant diseases.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhong-Zheng Ma
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zi-Jian Chao
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shuo Yan
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Long GY, Yang JP, Jin DC, Yang H, Zhou C, Wang Z, Yang XB. Silencing of Decapentaplegic (Dpp) gene inhibited the wing expansion in the white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera: Delphacidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21879. [PMID: 35247285 DOI: 10.1002/arch.21879] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/21/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
The Decapentaplegic gene controls wing patterning and spreading by regulating downstream genes in many insect species. However, the molecular characteristics, expression, and biological function of Dpp in Sogatella furcifera remain poorly understood. In this study, we cloned the Dpp gene from S. furcifera and examined its expression levels in different development stages, wing typed adults, and tissues. Then, the function of SfDpp gene was analyzed using an RNA interference (RNAi)-based approach. The results showed that the full-length complementary DNA of the SfDpp gene consists of 1034 bp and contains a 954-bp open reading frame encoding 317 amino acids. SfDpp has a transforming growth factor-β (TGF-β) propeptide superfamily domain and a TGF-β superfamily domain, typical of members of the TGF-β superfamily. Quantitative real-time polymerase chain reaction showed that the expression of SfDpp reached its highest expression level 40 min after eclosion. RNAi-based gene silencing inhibited transcript levels of the corresponding messenger RNA in S. furcifera nymphs injected with double-stranded RNA of SfDpp and resulted in death of 29.17% and 26.67% of 4th and 5th instar nymphs, respectively. The wing deformity rate of the adults was 74.12% and 3.41% after SfDpp gene silencing in 4th and 5th instar nymphs, respectively. Examining wing development-associated genes showed that two target genes of Dpp (Vestigial and Spalt) were both dramatically downregulated after SfDpp was silenced. Our results demonstrate that downregulated SfDpp in early development causes wing expansion failure in S. furcifera. Thus, Dpp may be a target gene for restricting the migration of rice-damaging planthoppers.
Collapse
Affiliation(s)
- Gui-Yun Long
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Jia-Peng Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Tobacco Science of Guizhou University, Guiyang, China
| | - Cao Zhou
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zhao Wang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
- College of Environment and Life Sciences, Kaili University, Kaili, China
| | - Xi-Bin Yang
- Institute of Entomology, Guizhou University; Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, China
| |
Collapse
|
21
|
DiFrisco J, Wagner GP, Love AC. Reframing research on evolutionary novelty and co-option: Character identity mechanisms versus deep homology. Semin Cell Dev Biol 2022; 145:3-12. [PMID: 35400563 DOI: 10.1016/j.semcdb.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/31/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022]
Abstract
A central topic in research at the intersection of development and evolution is the origin of novel traits. Despite progress on understanding how developmental mechanisms underlie patterns of diversity in the history of life, the problem of novelty continues to challenge researchers. Here we argue that research on evolutionary novelty and the closely associated phenomenon of co-option can be reframed fruitfully by: (1) specifying a conceptual model of mechanisms that underwrite character identity, (2) providing a richer and more empirically precise notion of co-option that goes beyond common appeals to "deep homology", and (3) attending to the nature of experimental interventions that can determine whether and how the co-option of identity mechanisms can help to explain novel character origins. This reframing has the potential to channel future investigation to make substantive progress on the problem of evolutionary novelty. To illustrate this potential, we apply our reframing to two case studies: treehopper helmets and beetle horns.
Collapse
Affiliation(s)
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA; Yale Systems Biology Institute, Yale University, New Haven, CT, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Medical School, New Haven, CT, USA; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Alan C Love
- Department of Philosophy, University of Minnesota, Minneapolis, MN, USA; Minnesota Center for Philosophy of Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
22
|
Ohde T, Mito T, Niimi T. A hemimetabolous wing development suggests the wing origin from lateral tergum of a wingless ancestor. Nat Commun 2022; 13:979. [PMID: 35190538 PMCID: PMC8861169 DOI: 10.1038/s41467-022-28624-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 01/24/2022] [Indexed: 11/26/2022] Open
Abstract
The origin and evolution of the novel insect wing remain enigmatic after a century-long discussion. The mechanism of wing development in hemimetabolous insects, in which the first functional wings evolved, is key to understand where and how insect wings evolutionarily originate. This study explored the developmental origin and the postembryonic dramatic growth of wings in the cricket Gryllus bimaculatus. We find that the lateral tergal margin, which is homologous between apterygote and pterygote insects, comprises a growth organizer to expand the body wall to form adult wing blades in Gryllus. We also find that Wnt, Fat-Dachsous, and Hippo pathways are involved in the disproportional growth of Gryllus wings. These data provide insights into where and how insect wings originate. Wings evolved from the pre-existing lateral terga of a wingless insect ancestor, and the reactivation or redeployment of Wnt/Fat-Dachsous/Hippo-mediated feed-forward circuit might have expanded the lateral terga. Here, the authors investigate wing development in cricket and find support for evolution of the novel insect wing from the pre-existing dorsal body wall of a wingless ancestor by activation of an evolutionarily conserved growth mechanism.
Collapse
|
23
|
Ye ZF, Zhang P, Gai TT, Lou JH, Dai FY, Tong XL. Sob gene is critical to wing development in Bombyx mori and Tribolium castaneum. INSECT SCIENCE 2022; 29:65-77. [PMID: 33822467 DOI: 10.1111/1744-7917.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
The development of insect appendages requires the expression of multiple genes in a strict spatial and temporal order. The odd-skipped family genes are vital transcriptional factors involved in embryonic development. The development and morphogenesis of the insect wing requires multiple transcription factors to regulate the expression of wing patterning genes at the transcriptional level. However, the function of odd-related genes in insect wing morphogenesis and development during postembryonic stages is unclear. We focused on the roles of the sister of odd and bowl (sob) gene, a member of odd-skipped family genes, during the wing morphopoiesis in Bombyx mori using the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 system and in Tribolium castaneum by RNA interference. The results showed that the wings were significantly smaller and degenerated, and wing veins were indistinct in the sob gene loss-of-function group in both B. mori and T. castaneum. Quantitative real-time polymerase chain reaction revealed that the Tcsob gene regulated the expression of wing development genes, such as the cht 7 and the vg gene. The findings suggest the importance of sob gene in insect wing morphology formation during postembryonic stages.
Collapse
Affiliation(s)
- Zhan-Feng Ye
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Pan Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Ting-Ting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Jing-Hou Lou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Fang-Yin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiao-Ling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Fisher CR, Kratovil JD, Angelini DR, Jockusch EL. Out from under the wing: reconceptualizing the insect wing gene regulatory network as a versatile, general module for body-wall lobes in arthropods. Proc Biol Sci 2021; 288:20211808. [PMID: 34933597 PMCID: PMC8692954 DOI: 10.1098/rspb.2021.1808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus. Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization.
Collapse
Affiliation(s)
- Cera R. Fisher
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Justin D. Kratovil
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | | | - Elizabeth L. Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
25
|
Shang F, Ding BY, Zhang YT, Wu JJ, Pan ST, Wang JJ. Genome-wide analysis of long non-coding RNAs and their association with wing development in Aphis citricidus (Hemiptera: Aphididae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103666. [PMID: 34619323 DOI: 10.1016/j.ibmb.2021.103666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) play critical roles in the various physiological processes of insects. The wing is a successful adaptation allowing insects to escape from unfavorable environments, while information on lncRNAs related to wing development is limited. In this study, we constructed 12 libraries from two RNA-seq comparisons: 4th instar winged nymphs versus winged adults and 4th instar wingless nymphs versus wingless adults in the brown citrus aphid Aphis citricidus, to identify the wing development-associated lncRNAs. A total of 2914 lncRNAs were identified and 50 lncRNAs were differentially expressed during the 4th instar winged nymphs to winged adults transition, and 28 lncRNAs changed during the 4th instar wingless nymphs to wingless adults transition. The differentially expressed lncRNAs were grouped into six clusters according to the expression patterns in the combined two-winged morphs. lncRNA Ac_lnc54106.1 was up-regulated during 4th instar winged nymphs to winged adults transition, but a lack of change during the 4th instar wingless nymphs to wingless adults transition implied a critical role in the specific regulation of wing development. RNA interference of Ac_lnc54106.1 resulted in malformed wings. Targets prediction, expression patterns, and RNAi assay results showed that Ac_lnc54106.1 may target the PiggyBac transposable element-derived protein 4 (PGBD4) gene, decrease expression of the canonical wing development-related genes, and finally regulate wing development. The systematic identification of lncRNAs in an aphid increases our understanding of how non-coding RNA mediates the wing plasticity of insects.
Collapse
Affiliation(s)
- Feng Shang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Bi-Yue Ding
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Yong-Te Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Jin-Jin Wu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Si-Tong Pan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
26
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
27
|
Ariza-Marín ER, Amat-García G. Morphometric changes in wings of bess beetles (Coleoptera: Passalidae) related to elevation: a case of study in the Colombian Andes. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2021. [DOI: 10.1080/01650521.2021.1936882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Germán Amat-García
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
28
|
Yang YM, Sun Q, Xiu JF, Yang M. Comparisons of Respiratory Pupal Gill Development in Black Flies (Diptera: Simuliidae) Shed Light on the Origin of Dipteran Prothoracic Dorsal Appendages. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:588-598. [PMID: 33073846 DOI: 10.1093/jme/tjaa208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 06/11/2023]
Abstract
During the transformation of immature aquatic dipteran insects to terrestrial adults, the prothoracic pupal respiratory organ enables pupae to cope with flood-drought alternating environments. Despite its obvious importance, the biology of the organ, including its development, is poorly understood. In this study, the developing gills of several Simulium Latreille (Diptera: Simuliidae) spp. were observed using serial histological sections and compared with data on those of other dipteran families published previously. The formation of some enigmatic features that made the Simulium gill unique is detailed. Through comparisons between taxa, we describe a common developmental pattern in which the prothoracic dorsal disc cells not only morph into the protruding respiratory organ, which is partially or entirely covered with a cuticle layer of plastron, but also invaginate to form a multipart internal chamber that in part gives rise to the anterior spiracle of adult flies. The gill disc resembles wing and leg discs and undergoes cell proliferation, axial outgrowth, and cuticle sheath formation. The overall appendage-like characteristics of the dipteran pupal respiratory organ suggest an ancestral form that gave rise to its current forms, which added more dimensions to the ways that arthropods evolved through appendage adaptation. Our observations provide important background from which further studies into the evolution of the respiratory organ across Diptera can be carried out.
Collapse
Affiliation(s)
- Yao Ming Yang
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Qian Sun
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiang-Fan Xiu
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ming Yang
- Department of Biology and Key Laboratory of Medical Entomology, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
29
|
Tomoyasu Y. What crustaceans can tell us about the evolution of insect wings and other morphologically novel structures. Curr Opin Genet Dev 2021; 69:48-55. [PMID: 33647834 DOI: 10.1016/j.gde.2021.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
Acquisition of novel structures often has a profound impact on the adaptation of organisms. The wing of insects is one such example, facilitating their massive success and enabling them to become the dominant clade on this planet. However, its evolutionary origin as well as the mechanisms underpinning its evolution remain elusive. Studies in crustaceans, a wingless sister group of insects, have played a pivotal role in the wing origin debate. Three recent investigations into the genes related to insect wings and legs in crustaceans provided intriguing insights into how and where insect wings evolved. Interestingly, each study proposes a distinct mechanism as a key process underlying insect wing evolution. Here, I discuss what we can learn about the evolution of insect wings and morphological novelty in general by synthesizing the outcomes of these studies.
Collapse
|
30
|
Clark-Hachtel C, Fernandez-Nicolas A, Belles X, Tomoyasu Y. Tergal and pleural wing-related tissues in the German cockroach and their implication to the evolutionary origin of insect wings. Evol Dev 2021; 23:100-116. [PMID: 33503322 DOI: 10.1111/ede.12372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 01/03/2023]
Abstract
The acquisition of wings has facilitated the massive evolutionary success of pterygotes (winged insects), which now make up nearly three-quarters of described metazoans. However, our understanding of how this crucial structure has evolved remains quite elusive. Historically, two ideas have dominated in the wing origin debate, one placing the origin in the dorsal body wall (tergum) and the other in the lateral pleural plates and the branching structures associated with these plates. Through studying wing-related tissues in the wingless segments (such as wing serial homologs) of the beetle, Tribolium castaneum, we obtained several crucial pieces of evidence that support a third idea, the dual origin hypothesis, which proposes that wings evolved from a combination of tergal and pleural tissues. Here, we extended our analysis outside of the beetle lineage and sought to identify wing-related tissues from the wingless segments of the cockroach, Blattella germanica. Through detailed functional and expression analyses for a critical wing gene, vestigial (vg), along with re-evaluating the homeotic transformation of a wingless segment induced by an improved RNA interference protocol, we demonstrate that B. germanica possesses two distinct tissues in their wingless segments, one with tergal and one with pleural nature, that might be evolutionarily related to wings. This outcome appears to parallel the reports from other insects, which may further support a dual origin of insect wings. However, we also identified a vg-independent tissue that contributes to wing formation upon homeotic transformation, as well as vg-dependent tissues that do not appear to participate in wing formation, in B. germanica, indicating a more complex evolutionary history of the tissues that contributed to the emergence of insect wings.
Collapse
Affiliation(s)
| | | | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | | |
Collapse
|
31
|
Hu Y, Moczek AP. Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles. Proc Biol Sci 2021; 288:20202828. [PMID: 33467999 DOI: 10.1098/rspb.2020.2828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of serially homologous structures is a common avenue towards functional innovation in developmental evolution, yet ancestral affinities among serial homologues may be obscured as structure-specific modifications accumulate over time. We sought to assess the degree of homology to wings of three types of body wall projections commonly observed in scarab beetles: (i) the dorsomedial support structures found on the second and third thoracic segments of pupae, (ii) the abdominal support structures found bilaterally in most abdominal segments of pupae, and (iii) the prothoracic horns which depending on species and sex may be restricted to pupae or also found in adults. We functionally investigated 14 genes within, as well as two genes outside, the canonical wing gene regulatory network to compare and contrast their role in the formation of each of the three presumed wing serial homologues. We found 11 of 14 wing genes to be functionally required for the proper formation of lateral and dorsal support structures, respectively, and nine for the formation of prothoracic horns. At the same time, we document multiple instances of divergence in gene function across our focal structures. Collectively, our results support the hypothesis that dorsal and lateral support structures as well as prothoracic horns share a developmental origin with insect wings. Our findings suggest that the morphological and underlying gene regulatory diversification of wing serial homologues across species, life stages and segments has contributed significantly to the extraordinary diversity of arthropod appendages and outgrowths.
Collapse
Affiliation(s)
- Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
32
|
|
33
|
Bruce HS, Patel NH. Knockout of crustacean leg patterning genes suggests that insect wings and body walls evolved from ancient leg segments. Nat Ecol Evol 2020; 4:1703-1712. [PMID: 33262517 DOI: 10.1038/s41559-020-01349-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/15/2020] [Indexed: 01/06/2023]
Abstract
The origin of insect wings has long been debated. Central to this debate is whether wings are a novel structure on the body wall resulting from gene co-option, or evolved from an exite (outgrowth; for example, a gill) on the leg of an ancestral crustacean. Here, we report the phenotypes for the knockout of five leg patterning genes in the crustacean Parhyale hawaiensis and compare these with their previously published phenotypes in Drosophila and other insects. This leads to an alignment of insect and crustacean legs that suggests that two leg segments that were present in the common ancestor of insects and crustaceans were incorporated into the insect body wall, moving the proximal exite of the leg dorsally, up onto the back, to later form insect wings. Our results suggest that insect wings are not novel structures, but instead evolved from existing, ancestral structures.
Collapse
Affiliation(s)
- Heather S Bruce
- University of California, Berkeley, Berkeley, CA, USA. .,Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
34
|
Monteiro A. Distinguishing serial homologs from novel traits: Experimental limitations and ideas for improvements. Bioessays 2020; 43:e2000162. [PMID: 33118632 DOI: 10.1002/bies.202000162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
One of the central but yet unresolved problems in evolutionary biology concerns the origin of novel complex traits. One hypothesis is that complex traits derive from pre-existing gene regulatory networks (GRNs) reused and modified to specify a novel trait somewhere else in the body. This simple explanation encounters problems when the novel trait that emerges in a body is in a region that is known to harbor a latent or repressed trait that has been silent for millions of years. Is the novel trait merely a re-emerged de-repressed trait or a truly novel trait that emerged via a novel deployment of an old GRN? A couple of new studies sided on opposite sides of this question when investigating the origin of horns in dung beetles and helmets in treehoppers that develop in the first thoracic segment (T1) of their bodies, a segment known to harbor a pair of repressed/modified wings in close relatives. Here, I point to some key limitations of the experimental approaches used and highlight additional experiments that could be done in future to resolve the developmental origin of these and other traits.
Collapse
Affiliation(s)
- Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Science Division, Yale-NUS College, Singapore, Singapore
| |
Collapse
|
35
|
Linz DM, Hu Y, Moczek AP. From descent with modification to the origins of novelty. ZOOLOGY 2020; 143:125836. [PMID: 32911265 DOI: 10.1016/j.zool.2020.125836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023]
Abstract
Descent with modification is the foundational framework of all of evolution. Yet evolutionary novelties are defined as lacking affinities to structures that already existed in the ancestral state, i.e. to somehow emerge in the absence of homology. We posit that reconciling both perspectives necessitates the existence of a type of innovation gradient that allows descent with modification to seed the initiation of a novel trait, which once in existence can then diversify into its variant forms. Recent work on diverse, textbook examples of morphological novelties illustrate the value of the innovation gradient concept. Innovations as profound and diverse as insect wings, beetle horns, and treehopper helmets derive from homologous source tissues instructed in their development by homologous gene regulatory networks. Yet rather than rendering these traits no longer novel, we posit that discoveries such as these call for a reassessment of the usefulness of defining evolutionary novelty as necessitating the absence of homology. Instead, we need to redirect our attention to how ancestral homologies scaffold and bias the innovation gradient to facilitate hotspots of innovation in some places, and deep conservation elsewhere.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States.
| | - Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, United States
| |
Collapse
|
36
|
Deshmukh R, Lakhe D, Kunte K. Tissue-specific developmental regulation and isoform usage underlie the role of doublesex in sex differentiation and mimicry in Papilio swallowtails. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200792. [PMID: 33047041 PMCID: PMC7540742 DOI: 10.1098/rsos.200792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Adaptive phenotypes often arise by rewiring existing developmental networks. Co-option of transcription factors in novel contexts has facilitated the evolution of ecologically important adaptations. doublesex (dsx) governs fundamental sex differentiation during embryonic stages and has been co-opted to regulate diverse secondary sexual dimorphisms during pupal development of holometabolous insects. In Papilio polytes, dsx regulates female-limited mimetic polymorphism, resulting in mimetic and non-mimetic forms. To understand how a critical gene such as dsx regulates novel wing patterns while maintaining its basic function in sex differentiation, we traced its expression through metamorphosis in P. polytes using developmental transcriptome data. We found three key dsx expression peaks: (i) eggs in pre- and post-ovisposition stages; (ii) developing wing discs and body in final larval instar; and (iii) 3-day pupae. We identified potential dsx targets using co-expression and differential expression analysis, and found distinct, non-overlapping sets of genes-containing putative dsx-binding sites-in developing wings versus abdominal tissue and in mimetic versus non-mimetic individuals. This suggests that dsx regulates distinct downstream targets in different tissues and wing colour morphs and has perhaps acquired new, previously unknown targets, for regulating mimetic polymorphism. Additionally, we observed that the three female isoforms of dsx were differentially expressed across stages (from eggs to adults) and tissues and differed in their protein structure. This may promote differential protein-protein interactions for each isoform and facilitate sub-functionalization of dsx activity across its isoforms. Our findings suggest that dsx employs tissue-specific downstream effectors and partitions its functions across multiple isoforms to regulate primary and secondary sexual dimorphism through insect development.
Collapse
|
37
|
Clark-Hachtel CM, Tomoyasu Y. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings. Nat Ecol Evol 2020; 4:1694-1702. [PMID: 32747770 DOI: 10.1038/s41559-020-1257-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The origin of insect wings is a biological mystery that has fascinated scientists for centuries. Identification of tissues homologous to insect wings from lineages outside of Insecta will provide pivotal information to resolve this conundrum. Here, through expression and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) functional analyses in Parhyale, we show that a gene network similar to the insect wing gene network (preWGN) operates both in the crustacean terga and in the proximal leg segments, suggesting that the evolution of a preWGN precedes the emergence of insect wings, and that from an evo-devo perspective, both of these tissues qualify as potential crustacean wing homologues. Combining these results with recent wing origin studies in insects, we discuss the possibility that both tissues are crustacean wing homologues, which supports a dual evolutionary origin of insect wings (that is, novelty through a merger of two distinct tissues). These outcomes have a crucial impact on the course of the intellectual battle between the two historically competing wing origin hypotheses.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Department of Biology, Miami University, Oxford, OH, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
38
|
Ma ZZ, Zhou H, Wei YL, Yan S, Shen J. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing. PEST MANAGEMENT SCIENCE 2020; 76:2505-2512. [PMID: 32077251 DOI: 10.1002/ps.5792] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND RNA interference (RNAi)-based pest management requires efficient delivery and large-batch production of double-stranded (ds)RNA. We previously developed a nanocarrier-mediated dsRNA delivery system that could penetrate an insect's body and efficiently silence gene expression. However, there is a great need to improve the plasmid-Escherichia coli system for the mass production of dsRNA. Here, for efficient dsRNA production, we removed the rnc gene encoding endoribonuclease RNase III in E. coli BL21(DE3) and matched with the RNAi expression vector containing a single T7 promoter. RESULTS The novel pET28-BL21(DE3) RNase III-system was successfully constructed to express vestigial (vg)-dsRNA against Harmonia axyridis. dsRNA was extracted and purified from cell cultures in four E. coil systems, and the yields of dsRNA in pET28-BL21(DE3) RNase III-, pET28-HT115(DE3), L4440-BL21(DE3) RNase III- and L4440-HT115(DE3) were 4.23, 2.75, 0.88 and 1.30 μg mL-1 respectively. The dsRNA expression efficiency of our novel E. coil system was three times that of L4440-HT115(DE3), a widely used dsRNA production system. The RNAi efficiency of dsRNA produced by our system and by biochemical synthesis was comparable when injected into Harmonia axyridis. CONCLUSION Our system expressed dsRNA more efficiently than the widely used L4440-HT115(DE3) system, and the produced dsRNA showed a high gene-silencing effect. Notably, our pET28-BL21(DE3) RNase III-system provides a novel method for the mass production of dsRNA at low cost and high efficiency, which may promote gene function analysis and RNAi-based pest management. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Zheng Ma
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hang Zhou
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan-Long Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shuo Yan
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Entomology, MOA Key Lab of pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Chafino S, Ureña E, Casanova J, Casacuberta E, Franch-Marro X, Martín D. Upregulation of E93 Gene Expression Acts as the Trigger for Metamorphosis Independently of the Threshold Size in the Beetle Tribolium castaneum. Cell Rep 2020; 27:1039-1049.e2. [PMID: 31018122 DOI: 10.1016/j.celrep.2019.03.094] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022] Open
Abstract
Body size in holometabolous insects is determined by the size at which the juvenile larva undergoes metamorphosis to the pupal stage. To undergo larva-pupa transition, larva must reach a critical developmental checkpoint, the threshold size (TS); however, the molecular mechanisms through which the TS cues this transition remain to be fully characterized. Here, we use the flour beetle Tribolium castaneum to characterize the molecular mechanisms underlying entry into metamorphosis. We found that T. castaneum reaches a TS at the beginning of the last larval instar, which is associated with the downregulation of TcKr-h1 and the upregulation of TcE93 and TcBr-C. Unexpectedly, we found that while there is an association between TS and TcE93 upregulation, it is the latter that constitutes the molecular trigger for metamorphosis initiation. In light of our results, we evaluate the interactions that control the larva-pupa transition and suggest alternative models.
Collapse
Affiliation(s)
- Silvia Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Enric Ureña
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Baldiri Reixac, 4, 08028 Barcelona, Spain; Institut de Recerca Biomèdica de Barcelona, (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
40
|
Tarasov S. The Invariant Nature of a Morphological Character and Character State: Insights from Gene Regulatory Networks. Syst Biol 2020; 69:392-400. [PMID: 31372653 DOI: 10.1093/sysbio/syz050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
What constitutes a discrete morphological character versus character state has been long discussed in the systematics literature but the consensus on this issue is still missing. Different methods of classifying organismal features into characters and character states (CCSs) can dramatically affect the results of phylogenetic analyses. Here, I show that, in the framework of Markov models, the modular structure of the gene regulatory network (GRN) underlying trait development, and the hierarchical nature of GRN evolution, essentially remove the distinction between morphological CCS, thus endowing the CCS with an invariant property with respect to each other. This property allows the states of one character to be represented as several individual characters and vice versa. In practice, this means that a phenotype can be encoded using a set of characters or just one complex character with numerous states. The representation of a phenotype using one complex character can be implemented in Markov models of trait evolution by properly structuring transition rate matrix.
Collapse
Affiliation(s)
- Sergei Tarasov
- Finnish Museum of Natural History, Pohjoinen Rautatiekatu 13, FI-00014 Helsinki, Finland.,Department of Biological Sciences, Virginia Tech, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA.,National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
41
|
Linz DM, Moczek AP. Integrating evolutionarily novel horns within the deeply conserved insect head. BMC Biol 2020; 18:41. [PMID: 32312271 PMCID: PMC7171871 DOI: 10.1186/s12915-020-00773-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND How novel traits integrate within ancient trait complexes without compromising ancestral functions is a foundational challenge in evo-devo. The insect head represents an ancient body region patterned by a deeply conserved developmental genetic network, yet at the same time constitutes a hot spot for morphological innovation. However, the mechanisms that facilitate the repeated emergence, integration, and diversification of morphological novelties within this body region are virtually unknown. Using horned Onthophagus beetles, we investigated the mechanisms that instruct the development of the dorsal adult head and the formation and integration of head horns, one of the most elaborate classes of secondary sexual weapons in the animal kingdom. RESULTS Using region-specific RNAseq and gene knockdowns, we (i) show that the head is compartmentalized along multiple axes, (ii) identify striking parallels between morphological and transcriptional complexity across regions, yet (iii) fail to identify a horn-forming gene module. Instead, (iv) our results support that sex-biased regulation of a shared transcriptional repertoire underpins the formation of horned and hornless heads. Furthermore, (v) we show that embryonic head patterning genes frequently maintain expression within the dorsal head well into late post-embryonic development, thereby possibly facilitating the repurposing of such genes within novel developmental contexts. Lastly, (vi) we identify novel functions for several genes including three embryonic head patterning genes in the integration of both posterior and anterior head horns. CONCLUSIONS Our results illuminate how the adult insect head is patterned and suggest mechanisms capable of integrating novel traits within ancient trait complexes in a sex- and species-specific manner. More generally, our work underscores how significant morphological innovation in developmental evolution need not require the recruitment of new genes, pathways, or gene networks but instead may be scaffolded by pre-existing developmental machinery.
Collapse
Affiliation(s)
- David M Linz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
42
|
Yang WJ, Xu KK, Yan Y, Li C, Jin DC. Role of Chitin Deacetylase 1 in the Molting and Metamorphosis of the Cigarette Beetle Lasioderma serricorne. Int J Mol Sci 2020; 21:ijms21072449. [PMID: 32244803 PMCID: PMC7177437 DOI: 10.3390/ijms21072449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/19/2023] Open
Abstract
Chitin deacetylases (CDAs) are chitin-modifying enzymes known to play vital roles in insect metamorphosis and development. In this study, we identified and characterized a chitin deacetylase1 gene (LsCDA1) from the cigarette beetle Lasioderma serricorne. LsCDA1 contains a 1614 bp open reading frame encoding a protein of 537 amino acids that includes domain structures typical of CDAs. LsCDA1 was mainly expressed in the late larval and late pupal stages. In larval tissues, the highest level of LsCDA1 was detected in the integument. The expression of LsCDA1 was induced by 20-hydroxyecdysone (20E) in vivo, and it was significantly suppressed by knocking down the expression of ecdysteroidogenesis genes and 20E signaling genes. RNA interference (RNAi)-aided silencing of LsCDA1 in fifth-instar larvae prevented the larval–pupal molt and caused 75% larval mortality. In the late pupal stage, depletion of LsCDA1 resulted in the inhibition of pupal growth and wing abnormalities, and the expression levels of four wing development-related genes (LsDY, LsWG, LsVG, and LsAP) were dramatically decreased. Meanwhile, the chitin contents of LsCDA1 RNAi beetles were significantly reduced, and expressions of three chitin synthesis pathway genes (LsTRE1, LsUAP1, and LsCHS1) were greatly decreased. The results suggest that LsCDA1 is indispensable for larval–pupal and pupal–adult molts, and that it is a potential target for the RNAi-based control of L. serricorne.
Collapse
Affiliation(s)
- Wen-Jia Yang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.-J.Y.); (K.-K.X.); (Y.Y.)
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Kang-Kang Xu
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.-J.Y.); (K.-K.X.); (Y.Y.)
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Yi Yan
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.-J.Y.); (K.-K.X.); (Y.Y.)
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
- Correspondence: (C.L.); (D.-C.J.)
| | - Dao-Chao Jin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Institute of Entomology, Guizhou University, Guiyang 550025, China; (W.-J.Y.); (K.-K.X.); (Y.Y.)
- Correspondence: (C.L.); (D.-C.J.)
| |
Collapse
|
43
|
Crabtree JR, Macagno ALM, Moczek AP, Rohner PT, Hu Y. Notch signaling patterns head horn shape in the bull-headed dung beetle Onthophagus taurus. Dev Genes Evol 2020; 230:213-225. [PMID: 31960122 DOI: 10.1007/s00427-020-00645-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Size and shape constitute fundamental aspects in the description of morphology. Yet while the developmental-genetic underpinnings of trait size, in particular with regard to scaling relationships, are increasingly well understood, those of shape remain largely elusive. Here we investigate the potential function of the Notch signaling pathway in instructing the shape of beetle horns, a highly diversified and evolutionarily novel morphological structure. We focused on the bull-headed dung beetle Onthophagus taurus due to the wide range of horn sizes and shapes present among males in this species, in order to assess the potential function of Notch signaling in the specification of horn shape alongside the regulation of shape changes with allometry. Using RNA interference-mediated transcript depletion of Notch and its ligands, we document a highly conserved role of Notch signaling in general appendage formation. By integrating our functional genetic approach with a geometric morphometric analysis, we find that Notch signaling moderately but consistently affects horn shape, and does so differently for the horns of minor, intermediate-sized, and major males. Our results suggest that the function of Notch signaling during head horn formation may vary in a complex manner across male morphs, and highlights the power of integrating functional genetic and geometric morphometric approaches in analyzing subtle but nevertheless biologically important phenotypes in the face of significant allometric variation.
Collapse
Affiliation(s)
- Jordan R Crabtree
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Anna L M Macagno
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Patrick T Rohner
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Yonggang Hu
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
44
|
Co-option of wing-patterning genes underlies the evolution of the treehopper helmet. Nat Ecol Evol 2019; 4:250-260. [DOI: 10.1038/s41559-019-1054-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
|
45
|
Hu Y, Linz DM, Moczek AP. Beetle horns evolved from wing serial homologs. Science 2019; 366:1004-1007. [DOI: 10.1126/science.aaw2980] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Understanding how novel complex traits originate is a foundational challenge in evolutionary biology. We investigated the origin of prothoracic horns in scarabaeine beetles, one of the most pronounced examples of secondary sexual traits in the animal kingdom. We show that prothoracic horns derive from bilateral source tissues; that diverse wing genes are functionally required for instructing this process; and that, in the absence of Hox input, prothoracic horn primordia transform to contribute to ectopic wings. Once induced, however, the transcriptional profile of prothoracic horns diverges markedly from that of wings and other wing serial homologs. Our results substantiate the serial homology between prothoracic horns and insects wings and suggest that other insect innovations may derive similarly from wing serial homologs and the concomitant establishment of structure-specific transcriptional landscapes.
Collapse
|
46
|
Yang WJ, Xu KK, Yan X, Li C. Knockdown of β- N-acetylglucosaminidase 2 Impairs Molting and Wing Development in Lasioderma serricorne (Fabricius). INSECTS 2019; 10:insects10110396. [PMID: 31717288 PMCID: PMC6921043 DOI: 10.3390/insects10110396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
β-N-acetylglucosaminidases (NAGs) are carbohydrate enzymes that degrade chitin oligosaccharides into N-acetylglucosamine monomers. This process is important for chitin degradation during insect development and metamorphosis. We identified and evaluated a β-N-acetylglucosaminidase 2 gene (LsNAG2) from the cigarette beetle, Lasioderma serricorne (Fabricius). The full-length open reading frame of LsNAG2 was 1776 bp and encoded a 591 amino acid protein. The glycoside hydrolase family 20 (GH20) catalytic domain and an additional GH20b domain of the LsNAG2 protein were highly conserved. Phylogenetic analysis revealed that LsNAG2 clustered with the group II NAGs. Quantitative real-time PCR analyses showed that LsNAG2 was expressed in all developmental stages and was most highly expressed in the late larval and late pupal stages. In the larval stage, LsNAG2 was predominantly expressed in the integument. Knockdown of LsNAG2 in fifth instar larvae disrupted larval-pupal molting and reduced the expression of four chitin synthesis genes (trehalase 1 (LsTRE1), UDP-N-acetylglucosamine pyrophosphorylase 1 and 2 (LsUAP1 and LsUAP2), and chitin synthase 1 (LsCHS1)). In late pupae, LsNAG2 depletion resulted in abnormal adult eclosion and wing deformities. The expression of five wing development-related genes (teashirt (LsTSH), vestigial (LsVG), wingless (LsWG), ventral veins lacking (LsVVL), and distal-less (LsDLL)) significantly declined in the LsNAG2-depleted beetles. These findings suggest that LsNAG2 is important for successful molting and wing development of L. serricorne.
Collapse
Affiliation(s)
| | | | | | - Can Li
- Correspondence: ; Tel.: +86-851-8540-5891
| |
Collapse
|
47
|
Tworzydlo W, Jaglarz MK, Pardyak L, Bilinska B, Bilinski SM. Evolutionary origin and functioning of pregenital abdominal outgrowths in a viviparous insect, Arixenia esau. Sci Rep 2019; 9:16090. [PMID: 31695096 PMCID: PMC6834671 DOI: 10.1038/s41598-019-52568-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 11/25/2022] Open
Abstract
Although pregenital abdominal outgrowths occur only rarely in pterygote insects, they are interesting from the evolutionary viewpoint because of their potential homology to wings. Our previous studies of early development of an epizoic dermapteran, Arixenia esau revealed that abdominal segments of the advanced embryos and larvae, growing inside a mother’s uterus, are equipped with paired serial outgrowths. Here, we focus on the origin and functioning of these outgrowths. We demonstrate that they bud from the lateral parts of the abdominal nota, persist till the end of intrauterine development, and remain in contact with the uterus wall. We also show that the bundles of muscle fibers associated with the abdominal outgrowths may facilitate flow of the haemolymph from the outgrowths’ lumen to the larval body cavity. Following completion of the intrauterine development, abdominal outgrowths are shed together with the larval cuticle during the first molt after the larva birth. Using immunohistochemical and biochemical approaches, we demonstrate that the Arixenia abdominal outgrowths represent an evolutionary novelty, presumably related to intrauterine development, and suggest that they are not related to serial wing homologs.
Collapse
Affiliation(s)
- Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
48
|
Tarasov S. Integration of Anatomy Ontologies and Evo-Devo Using Structured Markov Models Suggests a New Framework for Modeling Discrete Phenotypic Traits. Syst Biol 2019; 68:698-716. [PMID: 30668800 PMCID: PMC6701457 DOI: 10.1093/sysbio/syz005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 11/12/2022] Open
Abstract
Modeling discrete phenotypic traits for either ancestral character state reconstruction or morphology-based phylogenetic inference suffers from ambiguities of character coding, homology assessment, dependencies, and selection of adequate models. These drawbacks occur because trait evolution is driven by two key processes-hierarchical and hidden-which are not accommodated simultaneously by the available phylogenetic methods. The hierarchical process refers to the dependencies between anatomical body parts, while the hidden process refers to the evolution of gene regulatory networks (GRNs) underlying trait development. Herein, I demonstrate that these processes can be efficiently modeled using structured Markov models (SMM) equipped with hidden states, which resolves the majority of the problems associated with discrete traits. Integration of SMM with anatomy ontologies can adequately incorporate the hierarchical dependencies, while the use of the hidden states accommodates hidden evolution of GRNs and substitution rate heterogeneity. I assess the new models using simulations and theoretical synthesis. The new approach solves the long-standing "tail color problem," in which the trait is scored for species with tails of different colors or no tails. It also presents a previously unknown issue called the "two-scientist paradox," in which the nature of coding the trait and the hidden processes driving the trait's evolution are confounded; failing to account for the hidden process may result in a bias, which can be avoided by using hidden state models. All this provides a clear guideline for coding traits into characters. This article gives practical examples of using the new framework for phylogenetic inference and comparative analysis.
Collapse
Affiliation(s)
- Sergei Tarasov
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Virginia Tech, 4076 Derring Hall, 926 West Campus Drive, Blacksburg, VA 24061, USA
| |
Collapse
|
49
|
Truman JW, Riddiford LM. The evolution of insect metamorphosis: a developmental and endocrine view. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190070. [PMID: 31438820 PMCID: PMC6711285 DOI: 10.1098/rstb.2019.0070] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental, genetic and endocrine data from diverse taxa provide insight into the evolution of insect metamorphosis. We equate the larva–pupa–adult of the Holometabola to the pronymph–nymph–adult of hemimetabolous insects. The hemimetabolous pronymph is a cryptic embryonic stage with unique endocrinology and behavioural modifications that probably served as preadaptations for the larva. It develops in the absence of juvenile hormone (JH) as embryonic primordia undergo patterning and morphogenesis, the processes that were arrested for the evolution of the larva. Embryonic JH then drives tissue differentiation and nymph formation. Experimental treatment of pronymphs with JH terminates patterning and induces differentiation, mimicking the processes that occurred during the evolution of the larva. Unpatterned portions of primordia persist in the larva, becoming imaginal discs that form pupal and adult structures. Key transcription factors are associated with the holometabolous life stages: Krüppel-homolog 1 (Kr-h1) in the larva, broad in the pupa and E93 in the adult. Kr-h1 mediates JH action and is found whenever JH acts, while the other two genes direct the formation of their corresponding stages. In hemimetabolous forms, the pronymph has low Broad expression, followed by Broad expression through the nymphal moults, then a switch to E93 to form the adult. This article is part of the theme issue ‘The evolution of complete metamorphosis’.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
50
|
Bilinski SM, Tworzydlo W. Morphogenesis of serial abdominal outgrowths during development of the viviparous dermapteran, Arixenia esau (Insecta, Dermaptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 49:62-69. [PMID: 30445116 DOI: 10.1016/j.asd.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
The embryos and first instar larvae of the epizoic earwig, Arixenia esau, develop sequentially in two different compartments of the female reproductive system, that is ovarian follicles and the lateral oviducts (the uterus). Here we show that the second (intrauterine) phase of development consists of three physiologically disparate stages: early embryos (before dorsal closure, surrounded by an egg envelope), late embryos (after dorsal closure, surrounded by an egg envelope) and the first instar larvae (after "hatching" from an egg envelope). Early and late embryos float in the fluid filling the uterus, whereas the first instar larvae develop attached to the uterus wall. Our analyses revealed also that in Arixenia serial multilobed outgrowths develop on dorso-lateral aspects of all abdominal segments. At the onset of the third developmental stage and after liberation from an egg envelope, these outgrowths (or more precisely their lobes) adhere to the epithelium lining the uterus, forming a series of small contact sites, where the mother and embryo tissues are separated only by a thin, presumably permeable, embryonic cuticle. We suggest that all these contact sites collectively constitute a dispersed placenta-like organ involved in the nourishment of the embryo.
Collapse
Affiliation(s)
- Szczepan M Bilinski
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|