1
|
Rice AJ, Sword TT, Chengan K, Mitchell DA, Mouncey NJ, Moore SJ, Bailey CB. Cell-free synthetic biology for natural product biosynthesis and discovery. Chem Soc Rev 2025; 54:4314-4352. [PMID: 40104998 PMCID: PMC11920963 DOI: 10.1039/d4cs01198h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Indexed: 03/20/2025]
Abstract
Natural products have applications as biopharmaceuticals, agrochemicals, and other high-value chemicals. However, there are challenges in isolating natural products from their native producers (e.g. bacteria, fungi, plants). In many cases, synthetic chemistry or heterologous expression must be used to access these important molecules. The biosynthetic machinery to generate these compounds is found within biosynthetic gene clusters, primarily consisting of the enzymes that biosynthesise a range of natural product classes (including, but not limited to ribosomal and nonribosomal peptides, polyketides, and terpenoids). Cell-free synthetic biology has emerged in recent years as a bottom-up technology applied towards both prototyping pathways and producing molecules. Recently, it has been applied to natural products, both to characterise biosynthetic pathways and produce new metabolites. This review discusses the core biochemistry of cell-free synthetic biology applied to metabolite production and critiques its advantages and disadvantages compared to whole cell and/or chemical production routes. Specifically, we review the advances in cell-free biosynthesis of ribosomal peptides, analyse the rapid prototyping of natural product biosynthetic enzymes and pathways, highlight advances in novel antimicrobial discovery, and discuss the rising use of cell-free technologies in industrial biotechnology and synthetic biology.
Collapse
Affiliation(s)
- Andrew J Rice
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Tien T Sword
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Douglas A Mitchell
- Department of Biochemistry, School of Medicine - Basic Sciences, Vanderbilt University Medical Research Building-IV, Nashville, Tennessee, 37232, USA
- Department of Chemistry, Vanderbilt University, Medical Research Building-IV, Nashville, Tennessee, 37232, USA
| | - Nigel J Mouncey
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Simon J Moore
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Constance B Bailey
- School of Chemistry, University of Sydney, Camperdown, NSW, 2001, Australia.
| |
Collapse
|
2
|
Fan Z, Li Y, Fan X, Wang P, Yang R, Xie C. Simultaneous Determination of Three Active Forms of Vitamin B12 In Situ Produced During Fermentation by LC-MS/MS. Foods 2025; 14:309. [PMID: 39856975 PMCID: PMC11764900 DOI: 10.3390/foods14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The in situ fortification of vitamin B12 (VB12) in foods through fermentation is an effective strategy to address the deficiency of this micronutrient, and precise monitoring of VB12 production is crucial for developing VB12-fortified functional foods. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is advantageous for analyzing trace substances in food due to its high sensitivity. In the present study, an LC-MS/MS method capable of rapidly and accurately quantifying three active forms of VB12, namely adenosylcobalamin (AdoCbl), methylcobalamin (MeCbl), hydroxocobalamin (OHCbl), in 8 min were developed. Meanwhile, the quantitative result of this method is not affected by pseudo-VB12 because the selected ion channels include fragments of active VB12. Maintaining light-shielding during extraction and purification is essential, as light exposure during the process can decrease the content of detected VB12 by about 30%. At last, the developed method was applied for the determination of VB12 in fermented rice bran and the cell mass of Propionibacterium freudenreichii. The results showed that AdoCbl was the predominant form of VB12 during fermentation, and the addition of cobalt did not influence the proportions of the three VB12 types. The present study reported a rapid and accurate method for the simultaneous determination of three active forms of VB12, which can effectively support the development of foods with VB12 fortification.
Collapse
Affiliation(s)
| | | | | | | | | | - Chong Xie
- Whole Grain Food Engineering Research Center, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.F.); (Y.L.); (X.F.); (P.W.); (R.Y.)
| |
Collapse
|
3
|
Oyamada Y, Ogawa S, Fujishiro T. Nickel-chelatase activity of SirB variants mimicking the His arrangement in the naturally occurring nickel-chelatase CfbA. FEBS Open Bio 2024; 14:1291-1302. [PMID: 38923868 PMCID: PMC11301274 DOI: 10.1002/2211-5463.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Metal-tetrapyrrole cofactors are involved in multiple cellular functions, and chelatases are key enzymes for the biosynthesis of these cofactors. CfbA is an ancestral, homodimeric-type class II chelatase which is able to use not only Ni2+ as a physiological metal substrate, but also Co2+ as a nonphysiological substrate with higher activity than for Ni2+. The Ni/Co-chelatase function found in CfbA is also observed in SirB, a descendant, monomeric-type class II chelatase. This is despite the distinct active site structure of CfbA and SirB; specifically, CfbA shows a unique four His residue arrangement, unlike other monomeric class II chelatases such as SirB. Herein, we studied the Ni-chelatase activity of SirB variants R134H, L200H, and R134H/L200H, the latter of which mimics the His alignment of CfbA. Our results showed that the SirB R134H variant exhibited the highest Ni-chelatase activity among the SirB enzymes, which in turn suggests that the position of His134 could be more important for the Ni-chelatase activity than that of His200. The SirB R134H/L200H variant showed lower activity than R134H, despite the four His residues found in SirB R134H/L200H. CD spectroscopy showed secondary structure denaturation and a slight difficulty in Ni-binding of SirB R134H/L200H, which may be related to its lower activity. Finally, a docking simulation suggested that the His134 of the SirB R134H variant could function as a base catalyst for the Ni-chelatase reaction in a class II chelatase architecture.
Collapse
Affiliation(s)
- Yuuma Oyamada
- Department of Biochemistry and Molecular Biology, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Shoko Ogawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| |
Collapse
|
4
|
Chi R, Li M, Zhang M, Zhang N, Zhang G, Cui L, Ma G. Exploring the Association between Anxiety, Depression, and Gut Microbiota during Pregnancy: Findings from a Pregnancy Cohort Study in Shijiazhuang, Hebei Province, China. Nutrients 2024; 16:1460. [PMID: 38794698 PMCID: PMC11123899 DOI: 10.3390/nu16101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Negative emotions and gut microbiota during pregnancy both bear significant public health implications. However, the relationship between them has not been fully elucidated. This study, utilizing data from a pregnancy cohort, employed metagenomic sequencing to elucidate the relationship between anxiety, depression, and gut microbiota's diversity, composition, species, and functional pathways. Data from 87 subjects, spanning 225 time points across early, mid, and late pregnancy, were analyzed. The results revealed that anxiety and depression significantly corresponded to lower alpha diversity (including the Shannon entropy and the Simpson index). Anxiety and depression scores, along with categorical distinctions of anxiety/non-anxiety and depression/non-depression, were found to account for 0.723%, 0.731%, 0.651%, and 0.810% of the variance in gut-microbiota composition (p = 0.001), respectively. Increased anxiety was significantly positively associated with the abundance of Oscillibacter sp. KLE 1745, Oscillibacter sp. PEA192, Oscillibacter sp. KLE 1728, Oscillospiraceae bacterium VE202 24, and Treponema socranskii. A similar association was significantly noted for Oscillibacter sp. KLE 1745 with elevated depression scores. While EC.3.5.3.1: arginase appeared to be higher in the anxious group than in the non-anxious group, vitamin B12-related enzymes appeared to be lower in the depression group than in the non-depression group. The changes were found to be not statistically significant after post-multiple comparison adjustment.
Collapse
Affiliation(s)
- Ruixin Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (R.C.); (N.Z.)
| | - Muxia Li
- Department of Scientific Research, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China;
| | - Man Zhang
- School of Nursing, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China;
| | - Na Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (R.C.); (N.Z.)
| | - Guohua Zhang
- The Third Department of Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China;
| | - Lijun Cui
- The Seventh Department of Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang 050011, China;
| | - Guansheng Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China; (R.C.); (N.Z.)
- Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xue Yuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
5
|
Lee H, Yu SH, Shim JE, Yong D. Use of a combined antibacterial synergy approach and the ANNOgesic tool to identify novel targets within the gene networks of multidrug-resistant Klebsiella pneumoniae. mSystems 2024; 9:e0087723. [PMID: 38349171 PMCID: PMC10949472 DOI: 10.1128/msystems.00877-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/13/2024] [Indexed: 03/20/2024] Open
Abstract
Since the 1980s, the development of new drug classes for the treatment of multidrug-resistant Klebsiella pneumoniae has become limited, highlighting the urgent need for novel antibiotics. To address this challenge, this study aimed to explore the synergistic interactions between chemical compounds and representative antibiotics, such as carbapenem and colistin. The primary objective of this study was not only to mitigate the adverse impact of multidrug-resistant K. pneumoniae on public health but also to establish a sustainable balance among humans, animals, and the environment. Phenotypical measurements were conducted using the broth microdilution technique to determine the drug sensitivity of bacterial strains. Additionally, a genotypical approach was employed, involving traditional RNA sequencing analysis to identify differentially expressed genes and the computational ANNOgesic tool to detect noncoding RNAs. This study revealed the existence of various pathways and regulatory RNA elements that form a functional network. These pathways, characterized by the expression of specific genes, contribute to the combined treatment effect and bacterial survival strategies. The connections between pathways are facilitated by regulatory RNA elements that respond to environmental changes. These findings suggest an adaptive response of bacteria to harsh environmental conditions.IMPORTANCENoncoding RNAs were identified as key players in post-transcriptional regulation. Moreover, this study predicted the presence of novel small regulatory RNAs that interact with target genes, as well as the involvement of riboswitches and RNA thermometers in conjunction with associated genes. These findings will contribute to the discovery of potential antimicrobial therapeutic candidates. Overall, this study offers valuable insights into the synergistic effects of chemical compounds and antibiotics, highlighting the role of regulatory RNA elements in bacterial response, and survival strategies. The identification of novel noncoding RNAs and their interactions with target genes, riboswitches, and RNA thermometers holds promise for the development of antimicrobial therapies.
Collapse
Affiliation(s)
- Hyunsook Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung-Huan Yu
- Institute of Precision Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Jung Eun Shim
- Bioinformatics Collaboration Unit, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. BIOLOGY 2023; 12:1335. [PMID: 37887045 PMCID: PMC10604320 DOI: 10.3390/biology12101335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
7
|
Halczuk K, Kaźmierczak-Barańska J, Karwowski BT, Karmańska A, Cieślak M. Vitamin B12-Multifaceted In Vivo Functions and In Vitro Applications. Nutrients 2023; 15:2734. [PMID: 37375638 PMCID: PMC10305463 DOI: 10.3390/nu15122734] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Vitamin B12 plays a key role in DNA stability. Research indicates that vitamin B12 deficiency leads to indirect DNA damage, and vitamin B12 supplementation may reverse this effect. Vitamin B12 acts as a cofactor for enzymes such as methionine synthase and methylmalonyl-CoA mutase, which are involved in DNA methylation and nucleotide synthesis. These processes are essential for DNA replication and transcription, and any impairment can result in genetic instability. In addition, vitamin B12 has antioxidant properties that help protect DNA from damage caused by reactive oxygen species. This protection is achieved by scavenging free radicals and reducing oxidative stress. In addition to their protective functions, cobalamins can also generate DNA-damaging radicals in vitro that can be useful in scientific research. Research is also being conducted on the use of vitamin B12 in medicine as vectors for xenobiotics. In summary, vitamin B12 is an essential micronutrient that plays a vital role in DNA stability. It acts as a cofactor for enzymes involved in the synthesis of nucleotides, has antioxidant properties and has potential value as a generator of DNA-damaging radicals and drug transporters.
Collapse
Affiliation(s)
| | | | | | | | - Marcin Cieślak
- Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.H.); (J.K.-B.); (B.T.K.); (A.K.)
| |
Collapse
|
8
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
9
|
Mathur Y, Hazra AB. Methylations in vitamin B 12 biosynthesis and catalysis. Curr Opin Struct Biol 2022; 77:102490. [PMID: 36371846 DOI: 10.1016/j.sbi.2022.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Vitamin B12 is an essential biomolecule that assists in the catalysis of methyl transfer and radical-based reactions in cellular metabolism. The structure of B12 is characterized by a tetrapyrrolic corrin ring with a central cobalt ion coordinated with an upper ligand, and a lower ligand anchored via a nucleotide loop. Multiple methyl groups decorate B12, and their presence (or absence) have structural and functional consequences. In this minireview, we focus on the methyl groups that distinguish vitamin B12 from other tetrapyrrolic biomolecules and from its own naturally occurring analogues called cobamides. We draw information from recent advances in the field to understand the origins of these methyl groups and the enzymes that incorporate them, and discuss their biological significance.
Collapse
Affiliation(s)
- Yamini Mathur
- Department of Biology, Indian Institute of Science Education and Research, Pune, India. https://twitter.com/yaminipmathur
| | - Amrita B Hazra
- Department of Biology, Indian Institute of Science Education and Research, Pune, India; Department of Chemistry, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
10
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
11
|
Cobalamin Riboswitches Are Broadly Sensitive to Corrinoid Cofactors to Enable an Efficient Gene Regulatory Strategy. mBio 2022; 13:e0112122. [PMID: 35993747 PMCID: PMC9600662 DOI: 10.1128/mbio.01121-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In bacteria, many essential metabolic processes are controlled by riboswitches, gene regulatory RNAs that directly bind and detect metabolites. Highly specific effector binding enables riboswitches to respond to a single biologically relevant metabolite. Cobalamin riboswitches are a potential exception because over a dozen chemically similar but functionally distinct cobalamin variants (corrinoid cofactors) exist in nature. Here, we measured cobalamin riboswitch activity in vivo using a Bacillus subtilis fluorescent reporter system and found, among 38 tested riboswitches, a subset responded to corrinoids promiscuously, while others were semiselective. Analyses of chimeric riboswitches and structural models indicate, unlike other riboswitch classes, cobalamin riboswitches indirectly differentiate among corrinoids by sensing differences in their structural conformation. This regulatory strategy aligns riboswitch-corrinoid specificity with cellular corrinoid requirements in a B. subtilis model. Thus, bacteria can employ broadly sensitive riboswitches to cope with the chemical diversity of essential metabolites. IMPORTANCE Some bacterial mRNAs contain a region called a riboswitch which controls gene expression by binding to a metabolite in the cell. Typically, riboswitches sense and respond to a limited range of cellular metabolites, often just one type. In this work, we found the cobalamin (vitamin B12) riboswitch class is an exception, capable of sensing and responding to multiple variants of B12-collectively called corrinoids. We found cobalamin riboswitches vary in corrinoid specificity with some riboswitches responding to each of the corrinoids we tested, while others responding only to a subset of corrinoids. Our results suggest the latter class of riboswitches sense intrinsic conformational differences among corrinoids in order to support the corrinoid-specific needs of the cell. These findings provide insight into how bacteria sense and respond to an exceptionally diverse, often essential set of enzyme cofactors.
Collapse
|
12
|
Biosynthesis of cobamides: Methods for the detection, analysis and production of cobamides and biosynthetic intermediates. Methods Enzymol 2022; 668:3-23. [PMID: 35589198 DOI: 10.1016/bs.mie.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin B12, cobalamin, belongs to the broader cobamide family whose members are characterized by the presence of a cobalt-containing corrinoid ring. The ability to detect, isolate and characterize cobamides and their biosynthetic intermediates is an important prerequisite when attempting to study the synthesis of this remarkable group of compounds that play diverse roles across the three kingdoms of life. The synthesis of cobamides is restricted to only certain prokaryotes and their structural complexity entails an equally complex synthesis orchestrated through a multi-step biochemical pathway. In this chapter, we have outlined methods that we have found extremely helpful in the characterization of the biochemical pathway, including a plate microbiological assay, a corrinoid affinity extraction method, LCMS characterization and a multigene cloning strategy.
Collapse
|
13
|
Halliwell T, Fisher K, Rigby SEJ, Leys D. Heterologous production and biophysical characterization of catabolic Nitratireductor pacificus pht-3B reductive dehalogenase. Methods Enzymol 2022; 668:327-347. [PMID: 35589200 DOI: 10.1016/bs.mie.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reductive dehalogenases provide a possible route to the biotechnological remediation of widespread anthropogenic environmental organohalide contamination. These bacterial enzymes employ cobalamin and an internal electron transfer chain of two [4Fe-4S] clusters to remove halide ions from organohalides, leaving an organic molecule more amenable to further transformations. Detailed protocols for the cloning, heterologous expression, purification, crystallization and characterization of the catabolic dehalogenase from Nitratireductor pacificus pht-3B (NpRdhA) are presented, together with insight into enzyme turnover, substrate selectivity and the use of electron paramagnetic resonance (EPR) spectroscopy as an active site probe.
Collapse
Affiliation(s)
- Tom Halliwell
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Karl Fisher
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - Stephen E J Rigby
- School of Chemistry, University of Manchester, Manchester, United Kingdom
| | - David Leys
- School of Chemistry, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
14
|
Xu S, Xiao Z, Yu S, Zeng W, Zhu Y, Zhou J. Enhanced cobalamin biosynthesis in Ensifer adhaerens by regulation of key genes with gradient promoters. Synth Syst Biotechnol 2022; 7:941-948. [PMID: 35664931 PMCID: PMC9157374 DOI: 10.1016/j.synbio.2022.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 10/28/2022] Open
|
15
|
Euglena gracilis can grow in the mixed culture containing Cladosporium westerdijkiae, Lysinibacillus boronitolerans and Pseudobacillus badius without the addition of vitamins B1 and B12. J Biotechnol 2022; 351:50-59. [DOI: 10.1016/j.jbiotec.2022.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/15/2022]
|
16
|
Kyndt JA, Aviles FA, Imhoff JF, Künzel S, Neulinger SC, Meyer TE. Comparative Genome Analysis of the Photosynthetic Betaproteobacteria of the Genus Rhodocyclus: Heterogeneity within Strains Assigned to Rhodocyclus tenuis and Description of Rhodocyclus gracilis sp. nov. as a New Species. Microorganisms 2022; 10:microorganisms10030649. [PMID: 35336224 PMCID: PMC8954225 DOI: 10.3390/microorganisms10030649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/09/2023] Open
Abstract
The genome sequences for Rhodocyclus purpureus DSM 168T and four strains assigned to Rhodocyclus tenuis (DSM 110, DSM 111, DSM 112, and IM 230) have been determined. One of the strains studied (IM 230) has an average nucleotide identity (ANI) of 97% to the recently reported genome of the type strain DSM 109 of Rcy. tenuis and is regarded as virtually identical at the species level. The ANI of 80% for three other strains (DSM 110, DSM 111, DSM 112) to the type strain of Rcy. tenuis points to a differentiation of these at the species level. Rcy. purpureus is equidistant from Rcy. tenuis and the new species, based on both ANI (78–80%) and complete proteome comparisons (70% AAI). Strains DSM 110, DSM 111, and DSM 112 are very closely related to each other based on ANI, whole genome, and proteome comparisons but clearly distinct from the Rcy. tenuis type strain DSM 109. In addition to the whole genome differentiation, these three strains also contain unique genetic differences in cytochrome genes and contain genes for an anaerobic cobalamin synthesis pathway that is lacking from both Rcy. tenuis and Rcy. purpureus. Based on genomic and genetic differences, these three strains should be considered to represent a new species, which is distinctly different from both Rcy. purpureus and Rcy. tenuis, for which the new name Rhodocyclus gracilis sp. nov. is proposed.
Collapse
Affiliation(s)
- John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
- Correspondence:
| | - Fabiola A. Aviles
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Johannes F. Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Symbioses, Düsternbrooker Weg 20, 24105 Kiel, Germany;
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany;
| | | | - Terrance E. Meyer
- Department of Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
17
|
Hannibal L, Jacobsen DW. Intracellular processing of vitamin B 12 by MMACHC (CblC). VITAMINS AND HORMONES 2022; 119:275-298. [PMID: 35337623 DOI: 10.1016/bs.vh.2022.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitamin B12 (cobalamin, Cbl, B12) is a water-soluble micronutrient synthesized exclusively by a group of microorganisms. Human beings are unable to make B12 and thus obtain the vitamin via intake of animal products, fermented plant-based foods or supplements. Vitamin B12 obtained from the diet comprises three major chemical forms, namely hydroxocobalamin (HOCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl). The most common form of B12 present in supplements is cyanocobalamin (CNCbl). Yet, these chemical forms cannot be utilized directly as they come, but instead, they undergo chemical processing by the MMACHC protein, also known as CblC. Processing of dietary B12 by CblC involves removal of the upper-axial ligand (beta-ligand) yielding the one-electron reduced intermediate cob(II)alamin. Newly formed cob(II)alamin undergoes trafficking and delivery to the two B12-dependent enzymes, cytosolic methionine synthase (MS) and mitochondrial methylmalonyl-CoA mutase (MUT). The catalytic cycles of MS and MUT incorporate cob(II)alamin as a precursor to regenerate the coenzyme forms MeCbl and AdoCbl, respectively. Mutations and epimutations in the MMACHC gene result in cblC disease, the most common inborn error of B12 metabolism, which manifests with combined homocystinuria and methylmalonic aciduria. Elevation of metabolites homocysteine and methylmalonic acid occurs because the lack of an active CblC blocks formation of the indispensable precursor cob(II)alamin that is necessary to activate MS and MUT. Thus, in patients with cblC disease, vitamin B12 is absorbed and present in circulation in normal to high concentrations, yet, cells are unable to make use of it. Mutations in seemingly unrelated genes that modify MMACHC gene expression also result in clinical phenotypes that resemble cblC disease. We review current knowledge on structural and functional aspects of intracellular processing of vitamin B12 by the versatile protein CblC, its partners and possible regulators.
Collapse
Affiliation(s)
- Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Donald W Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
18
|
Morris JA, Lickey BS, Liptak MD. Insertion of cobalt into tetrapyrroles. VITAMINS AND HORMONES 2022; 119:1-22. [PMID: 35337616 DOI: 10.1016/bs.vh.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vitamin B12 is one of the most complex cofactors known, and this chapter will discuss current understanding with regards to the cobalt insertion step of its syntheses. Two total syntheses of vitamin B12 were reported in the 1970s, which remain two of the most exceptional achievements of natural product synthesis. In subsequent years, two distinct biosynthetic pathways were identified in aerobic and anaerobic organisms. For these biosynthetic pathways, selectivity for Co(II) over other divalent metal ions with similar ionic radii and coordination chemistry remains an open question with three competing hypotheses proposed: metal affinity, tetrapyrrole distortion, and product inhibition. A 20 step biosynthetic route to convert 5-aminolevulinic acid (ALA) to vitamin B12 was elucidated in aerobic organisms in the 1990s, where cobalt is inserted relatively late in the pathway by the CobNST multi-protein complex. This chapter includes a mechanistic proposal for this reaction, but the majority of the proposal is based upon analogy to the ChlDHI magnesium chelatase complex as critical data for the cobalt chelatase is lacking. Later, in the 2010s, a distinct 21 step pathway from ALA to vitamin B12 was reported in anaerobic organisms, where cobalt is inserted early in the pathway by the enzyme CbiK. A recent study strongly suggests that the cobalt affinity of CbiK is the origin of cobalt selectivity for CbiK, but several important mechanistic questions remain unanswered. In general, it is expected that significant insight into the cobalt insertion mechanisms of CobNST and CbiK could be derived from additional structural, spectroscopic, and computational data.
Collapse
Affiliation(s)
- J A Morris
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| | - B S Lickey
- Department of Chemistry, University of Vermont, Burlington, VT, United States
| | - M D Liptak
- Department of Chemistry, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
19
|
Liu Q, Lin B, Tao Y. Improved methylation in E. coli via an efficient methyl supply system driven by betaine. Metab Eng 2022; 72:46-55. [DOI: 10.1016/j.ymben.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
|
20
|
Stasiuk R, Krucoń T, Matlakowska R. Biosynthesis of Tetrapyrrole Cofactors by Bacterial Community Inhabiting Porphyrine-Containing Shale Rock (Fore-Sudetic Monocline). Molecules 2021; 26:6746. [PMID: 34771152 PMCID: PMC8587615 DOI: 10.3390/molecules26216746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study describes for the first time the comprehensive characterization of tetrapyrrole cofactor biosynthetic pathways developed for bacterial community (BC) inhabiting shale rock. Based on the genomic and proteomic metadata, we have detailed the biosynthesis of siroheme, heme, cobalamin, and the major precursor uroporphyrinogen III by a deep BC living on a rock containing sedimentary tetrapyrrole compounds. The obtained results showed the presence of incomplete heme and cobalamin biosynthesis pathways in the studied BC. At the same time, the production of proteins containing these cofactors, such as cytochromes, catalases and sulfite reductase, was observed. The results obtained are crucial for understanding the ecology of bacteria inhabiting shale rock, as well as their metabolism and potential impact on the biogeochemistry of these rocks. Based on the findings, we hypothesize that the bacteria may use primary or modified sedimentary porphyrins and their degradation products as precursors for synthesizing tetrapyrrole cofactors. Experimental testing of this hypothesis is of course necessary, but its evidence would point to an important and unique phenomenon of the tetrapyrrole ring cycle on Earth involving bacteria.
Collapse
Affiliation(s)
- Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| |
Collapse
|
21
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
22
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
23
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
24
|
Kampers LFC, Koehorst JJ, van Heck RJA, Suarez-Diez M, Stams AJM, Schaap PJ. A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration. BMC Microbiol 2021; 21:9. [PMID: 33407113 PMCID: PMC7789669 DOI: 10.1186/s12866-020-02058-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 is a metabolically versatile, HV1-certified, genetically accessible, and thus interesting microbial chassis for biotechnological applications. However, its obligate aerobic nature hampers production of oxygen sensitive products and drives up costs in large scale fermentation. The inability to perform anaerobic fermentation has been attributed to insufficient ATP production and an inability to produce pyrimidines under these conditions. Addressing these bottlenecks enabled growth under micro-oxic conditions but does not lead to growth or survival under anoxic conditions. RESULTS Here, a data-driven approach was used to develop a rational design for a P. putida KT2440 derivative strain capable of anaerobic respiration. To come to the design, data derived from a genome comparison of 1628 Pseudomonas strains was combined with genome-scale metabolic modelling simulations and a transcriptome dataset of 47 samples representing 14 environmental conditions from the facultative anaerobe Pseudomonas aeruginosa. CONCLUSIONS The results indicate that the implementation of anaerobic respiration in P. putida KT2440 would require at least 49 additional genes of known function, at least 8 genes encoding proteins of unknown function, and 3 externally added vitamins.
Collapse
Affiliation(s)
- Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Ruben J A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
25
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Heterologous expression of cobalamin dependent class-III enzymes. Protein Expr Purif 2021; 177:105743. [PMID: 32871253 PMCID: PMC7585037 DOI: 10.1016/j.pep.2020.105743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022]
Abstract
The family of cobalamin class-III dependent enzymes is composed of the reductive dehalogenases (RDases) and related epoxyqueuosine reductases. RDases are crucial for the energy conserving process of organohalide respiration. These enzymes have the ability to reductively cleave carbon-halogen bonds, present in a number of environmentally hazardous pollutants, making them of significant interest for bioremediation applications. Unfortunately, it is difficult to obtain sufficient yields of pure RDase isolated from organohalide respiring bacteria for biochemical studies. Hence, robust heterologous expression systems are required that yield the active holo-enzyme which requires both iron-sulphur cluster and cobalamin incorporation. We present a comparative study of the heterologous expression strains Bacillus megaterium, Escherichia coli HMS174(DE3), Shimwellia blattae and a commercial strain of Vibrio natrigenes, for cobalamin class-III dependent enzymes expression. The Nitratireductor pacificus pht-3B reductive dehalogenase (NpRdhA) and the epoxyqueuosine reductase from Streptococcus thermophilus (StoQ) were used as model enzymes. We also analysed whether co-expression of the cobalamin transporter BtuB, supports increased cobalamin incorporation into these enzymes in E. coli. We conclude that while expression in Bacillus megaterium resulted in the highest levels of cofactor incorporation, co-expression of BtuB in E. coli presents an appropriate balance between cofactor incorporation and protein yield in both cases.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Karl A P Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK; Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
26
|
Akdoğan M, Çelik E. Enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer by recombinant Bacillus megaterium in fed-batch bioreactors. Bioprocess Biosyst Eng 2020; 44:403-416. [PMID: 32995978 DOI: 10.1007/s00449-020-02452-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated in a wide variety of microorganisms as intracellular carbon and energy storage compounds. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most valuable biopolymers because of its superior mechanical properties. Here, we developed a bioprocess utilizing recombinant Bacillus megaterium strain for PHBV over-production from glucose, without any precursor addition. PHA production was performed in a controlled bioreactor by batch and fed-batch modes using wild-type B. megaterium and rec-B. megaterium cells overexpressing the native phaC gene. The effect of oxygen transfer rate on biomass formation and PHA accumulation was also investigated, under different dissolved oxygen levels. Structural and thermal properties of PHA were characterized by GC-FID, 1H-NMR, TGA and DSC analyses. Significantly, the copolymer produced from glucose as the carbon source in rec-B. megaterium was composed of 58 mol% of 3-hydroxyvalerate monomers. After 66 h, rec-B. megaterium cells in fed-batch fermentation with a pre-determined growth rate µ0 = 0.1 h-1 produced the highest CDW (7.7 g L-1) and PHA concentration (6.1 g L-1). Moreover, an exponential glucose feeding profile resulted in 2.2-fold increase in PHA yield compared to batch cultivation. Overall, this study paves the way to an enhanced biopolymer production process in B. megaterium cells, where the highest product yield on cell was obtained as YP/X = 0.8 g g-1.
Collapse
Affiliation(s)
- Murat Akdoğan
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Beytepe, 06800, Ankara, Turkey. .,Institute of Science, Bioengineering Division, Hacettepe University, Beytepe, 06800, Ankara, Turkey.
| |
Collapse
|
27
|
Halliwell T, Fisher K, Payne KAP, Rigby SEJ, Leys D. Catabolic Reductive Dehalogenase Substrate Complex Structures Underpin Rational Repurposing of Substrate Scope. Microorganisms 2020; 8:microorganisms8091344. [PMID: 32887524 PMCID: PMC7565698 DOI: 10.3390/microorganisms8091344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Reductive dehalogenases are responsible for the reductive cleavage of carbon-halogen bonds during organohalide respiration. A variety of mechanisms have been proposed for these cobalamin and [4Fe-4S] containing enzymes, including organocobalt, radical, or cobalt-halide adduct based catalysis. The latter was proposed for the oxygen-tolerant Nitratireductor pacificus pht-3B catabolic reductive dehalogenase (NpRdhA). Here, we present the first substrate bound NpRdhA crystal structures, confirming a direct cobalt–halogen interaction is established and providing a rationale for substrate preference. Product formation is observed in crystallo due to X-ray photoreduction. Protein engineering enables rational alteration of substrate preference, providing a future blue print for the application of this and related enzymes in bioremediation.
Collapse
Affiliation(s)
- Tom Halliwell
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - Karl Fisher
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - Karl A. P. Payne
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
- Future Biomanufacturing Research Hub (FutureBRH), Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
| | - David Leys
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (T.H.); (K.F.); (K.A.P.P.); (S.E.J.R.)
- Correspondence: ; Tel.: +44-161-306-51-50
| |
Collapse
|
28
|
Minimal cobalt metabolism in the marine cyanobacterium Prochlorococcus. Proc Natl Acad Sci U S A 2020; 117:15740-15747. [PMID: 32576688 DOI: 10.1073/pnas.2001393117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite very low concentrations of cobalt in marine waters, cyanobacteria in the genus Prochlorococcus retain the genetic machinery for the synthesis and use of cobalt-bearing cofactors (cobalamins) in their genomes. We explore cobalt metabolism in a Prochlorococcus isolate from the equatorial Pacific Ocean (strain MIT9215) through a series of growth experiments under iron- and cobalt-limiting conditions. Metal uptake rates, quantitative proteomic measurements of cobalamin-dependent enzymes, and theoretical calculations all indicate that Prochlorococcus MIT9215 can sustain growth with less than 50 cobalt atoms per cell, ∼100-fold lower than minimum iron requirements for these cells (∼5,100 atoms per cell). Quantitative descriptions of Prochlorococcus cobalt limitation are used to interpret the cobalt distribution in the equatorial Pacific Ocean, where surface concentrations are among the lowest measured globally but Prochlorococcus biomass is high. A low minimum cobalt quota ensures that other nutrients, notably iron, will be exhausted before cobalt can be fully depleted, helping to explain the persistence of cobalt-dependent metabolism in marine cyanobacteria.
Collapse
|
29
|
Sun L, Rasmussen PK, Bai Y, Chen X, Cai T, Wang J, Guo X, Xie Z, Ding X, Niu L, Zhu N, You X, Kirpekar F, Yang F. Proteomic Changes of Klebsiella pneumoniae in Response to Colistin Treatment and crrB Mutation-Mediated Colistin Resistance. Antimicrob Agents Chemother 2020; 64:e02200-19. [PMID: 32229491 PMCID: PMC7269499 DOI: 10.1128/aac.02200-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A β-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.
Collapse
Affiliation(s)
- Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Pernille Kronholm Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Yinlei Bai
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nali Zhu
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| |
Collapse
|
30
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
31
|
Nie H, Jiang K, Jiang L, Huo Z, Ding J, Yan X. Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics 2020; 112:2011-2020. [DOI: 10.1016/j.ygeno.2019.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 01/21/2023]
|
32
|
Nie H, Jiang K, Li N, Jahan K, Jiang L, Huo Z, Yan X. Transcriptome analysis reveals the pigmentation-related genes in two shell color strains of the Manila clam Ruditapes philippinarum. Anim Biotechnol 2020; 32:439-450. [PMID: 31967493 DOI: 10.1080/10495398.2020.1714635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Manila clam, Ruditapes philippinarum, is an ecologically and economically important marine bivalve species. In this study, we conducted transcriptomic sequencing of two different shell color strains (O and Z) before color appearance (uncolored juvenile clam) and pigmented shell color (colored juvenile clam) and investigated the analysis of the differential expression patterns of specific genes associated with pigmentation by RNA-seq and time course qPCR analysis. The transcription level of 16 differentially expressed genes (DEGs) related with shell color was analyzed by qRT-PCR to validate the performance of RNA-seq from Illumina sequence data where most of them were up-regulated. Two genes were down-regulated after the occurrence of zebra clam stripes compared with uncolored zebra clam. The trend of gene expression obtained by qPCR was basically consistent with that of RNA-seq. The synthesis of melanin in bivalves plays potential roles in the pigmentation of the shell and is closely related to the formation of the surface pattern. The porphyrin metabolism combined with tyrosinase and melanogenesis signaling pathway is a novel finding in shell color determination of R. philippinarum. This study sheds light on the pigmentation and coloration mechanism of the Manila clam.
Collapse
Affiliation(s)
- Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Kunyin Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Ning Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Kifat Jahan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China.,Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian Ocean University, Dalian, China
| |
Collapse
|
33
|
Ko YJ, You SK, Kim M, Lee E, Shin SK, Park HM, Oh Y, Han SO. Enhanced Production of 5-aminolevulinic Acid via Flux Redistribution of TCA Cycle toward l-Glutamate in Corynebacterium glutamicum. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0376-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Fujishiro T, Shimada Y, Nakamura R, Ooi M. Structure of sirohydrochlorin ferrochelatase SirB: the last of the structures of the class II chelatase family. Dalton Trans 2019; 48:6083-6090. [PMID: 30778451 DOI: 10.1039/c8dt04727h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal structure of Bacillus subtilis SirB, which catalyses the insertion of Fe2+ into the substrate sirohydrochlorin (SHC) in siroheme biosynthesis, is reported herein as the last of the structures of class II chelatases. The structure of SirB with Co2+ showed that the active site of SirB is located at the N-terminal domain with metal-binding amino acid residues His10, Glu43, and His76, which was also predicted for CbiX, but is distinct from the C-terminal active sites of CbiK and HemH. The biosynthetic model reactions using SirB, Co2+ and uroporphyrin I or protoporphyrin IX as a SHC analogue revealed that SirB showed chelatase activity for uroporphyrin I, but not for protoporphyrin IX. Simulations of tetrapyrroles docking to SirB provided an insight into its tetrapyrrole substrate recognition: SHC and uroporphyrin I were suitably bound beside the Co2+ ion-binding site at the active site cavity; protoporphyrin IX was also docked to the active site but its orientation was different from those of the other two tetrapyrroles. Summarizing the present data, it was proposed that the key structural features for substrate recognition of SirB could be the hydrophobic area at the active site as well as the substituents of the tetrapyrroles.
Collapse
Affiliation(s)
- Takashi Fujishiro
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | | | | | | |
Collapse
|
35
|
Enzyme alchemy: cell-free synthetic biochemistry for natural products. Emerg Top Life Sci 2019; 3:529-535. [PMID: 33523168 DOI: 10.1042/etls20190083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
Cell-free synthetic biochemistry aims to engineer chemical biology by exploiting biosynthetic dexterity outside of the constraints of a living cell. One particular use is for making natural products, where cell-free systems have initially demonstrated feasibility in the biosynthesis of a range of complex natural products classes. This has shown key advantages over total synthesis, such as increased yield, enhanced regioselectivity, use of reduced temperatures and less reaction steps. Uniquely, cell-free synthetic biochemistry represents a new area that seeks to advance upon these efforts and is particularly useful for defining novel synthetic pathways to replace natural routes and optimising the production of complex natural product targets from low-cost precursors. Key challenges and opportunities will include finding solutions to scaled-up cell-free biosynthesis, as well as the targeting of high value and toxic natural products that remain challenging to make either through whole-cell biotransformation platforms or total synthesis routes. Although underexplored, cell-free synthetic biochemistry could also be used to develop 'non-natural' natural products or so-called xenobiotics for novel antibiotics and drugs, which can be difficult to engineer directly within a living cell.
Collapse
|
36
|
Kieninger C, Deery E, Lawrence AD, Podewitz M, Wurst K, Nemoto-Smith E, Widner FJ, Baker JA, Jockusch S, Kreutz CR, Liedl KR, Gruber K, Warren MJ, Kräutler B. The Hydrogenobyric Acid Structure Reveals the Corrin Ligand as an Entatic State Module Empowering B 12 Cofactors for Catalysis. Angew Chem Int Ed Engl 2019; 58:10756-10760. [PMID: 31115943 PMCID: PMC6771967 DOI: 10.1002/anie.201904713] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 11/09/2022]
Abstract
The B12 cofactors instill a natural curiosity regarding the primordial selection and evolution of their corrin ligand. Surprisingly, this important natural macrocycle has evaded molecular scrutiny, and its specific role in predisposing the incarcerated cobalt ion for organometallic catalysis has remained obscure. Herein, we report the biosynthesis of the cobalt-free B12 corrin moiety, hydrogenobyric acid (Hby), a compound crafted through pathway redesign. Detailed insights from single-crystal X-ray and solution structures of Hby have revealed a distorted helical cavity, redefining the pattern for binding cobalt ions. Consequently, the corrin ligand coordinates cobalt ions in desymmetrized "entatic" states, thereby promoting the activation of B12 -cofactors for their challenging chemical transitions. The availability of Hby also provides a route to the synthesis of transition metal analogues of B12 .
Collapse
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Emi Nemoto-Smith
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Florian J Widner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Joseph A Baker
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | | - Christoph R Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020, Innsbruck, Austria
| | - Karl Gruber
- Institute for Molecular Biosciences, University of Graz, Austria
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
37
|
Kieninger C, Deery E, Lawrence AD, Podewitz M, Wurst K, Nemoto‐Smith E, Widner FJ, Baker JA, Jockusch S, Kreutz CR, Liedl KR, Gruber K, Warren MJ, Kräutler B. Die Hydrogenobyrsäure‐Struktur enthüllt den Corrin‐Liganden als entatisches Zustandsmodul zur Steigerung der Katalyseaktivität von B
12
‐Cofaktoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| | - Evelyne Deery
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Andrew D. Lawrence
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck 6020 Innsbruck Österreich
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck 6020 Innsbruck Österreich
| | - Emi Nemoto‐Smith
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Florian J. Widner
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| | - Joseph A. Baker
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | | | - Christoph R. Kreutz
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences (CMBI)University of Innsbruck 6020 Innsbruck Österreich
| | - Karl Gruber
- Institute for Molecular BiosciencesUniversity of Graz Österreich
| | - Martin J. Warren
- School of BiosciencesUniversity of Kent Canterbury CT2 7NJ Großbritannien
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular BiosciencesUniversity of Innsbruck 6020 Innsbruck Österreich
| |
Collapse
|
38
|
Seo SO, Schmidt-Dannert C. Development of a synthetic cumate-inducible gene expression system for Bacillus. Appl Microbiol Biotechnol 2018; 103:303-313. [DOI: 10.1007/s00253-018-9485-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
|
39
|
Li B, Bridwell-Rabb J. Aerobic Enzymes and Their Radical SAM Enzyme Counterparts in Tetrapyrrole Pathways. Biochemistry 2018; 58:85-93. [PMID: 30365306 DOI: 10.1021/acs.biochem.8b00906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microorganisms have lifestyles and metabolism adapted to environmental niches, which can be very broad or highly restricted. Molecular oxygen (O2) is currently variably present in microenvironments and has driven adaptation and microbial differentiation over the course of evolution on Earth. Obligate anaerobes use enzymes and cofactors susceptible to low levels of O2 and are restricted to O2-free environments, whereas aerobes typically take advantage of O2 as a reactant in many biochemical pathways and may require O2 for essential biochemical reactions. In this Perspective, we focus on analogous enzymes found in tetrapyrrole biosynthesis, modification, and degradation that are catalyzed by O2-sensitive radical S-adenosylmethionine (SAM) enzymes and by O2-dependent metalloenzymes. We showcase four transformations for which aerobic organisms use O2 as a cosubstrate but anaerobic organisms do not. These reactions include oxidative decarboxylation, methyl and methylene oxidation, ring formation, and ring cleavage. Furthermore, we highlight biochemically uncharacterized enzymes implicated in reactions that resemble those catalyzed by the parallel aerobic and anaerobic enzymes. Intriguingly, several of these reactions require insertion of an oxygen atom into the substrate, which in aerobic enzymes is facilitated by activation of O2 but in anaerobic organisms requires an alternative mechanism.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
40
|
Tavares NK, VanDrisse CM, Escalante-Semerena JC. Rhodobacterales use a unique L-threonine kinase for the assembly of the nucleotide loop of coenzyme B 12. Mol Microbiol 2018; 110:239-261. [PMID: 30098062 DOI: 10.1111/mmi.14100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several of the enzymes involved in the conversion of adenosylcobyric acid (AdoCby) to adenosylcobamide (AdoCba) are yet to be identified and characterized in some cobamide (Cba)-producing prokaryotes. Using a bioinformatics approach, we identified the bluE gene (locus tag RSP_0788) of Rhodobacter sphaeroides 2.4.1 as a putative functional homolog of the L-threonine kinase enzyme (PduX, EC 2.7.1.177) of S. enterica. In AdoCba, (R)-1-aminopropan-2-ol O-phosphate (AP-P) links the nucleotide loop to the corrin ring; most known AdoCba producers derive AP-P from L-Thr-O-3-phosphate (L-Thr-P). Here, we show that RsBluE has L-Thr-independent ATPase activity in vivo and in vitro. We used 31 P-NMR spectroscopy to show that RsBluE generates L-Thr-P at the expense of ATP and is unable to use L-Ser as a substrate. BluE from R. sphaeroides or Rhodobacter capsulatus restored AdoCba biosynthesis in S. enterica ΕpduX and R. sphaeroides ΕbluE mutant strains. R. sphaeroides ΕbluE strains exhibited a decreased pigment phenotype that was restored by complementation with BluE. Finally, phylogenetic analyses revealed that bluE was restricted to the genomes of a few Rhodobacterales that appear to have a preference for a specific form of Cba, namely Coᴽ-(ᴽ-5,6-dimethylbenzimidazolyl-Coᵦ-adenosylcobamide (a.k.a. adenosylcobalamin, AdoCbl; coenzyme B12 , CoB12 ).
Collapse
|
41
|
Ghosh R, Roth E, Abou-Aisha K, Saegesser R, Autenrieth C. The monofunctional cobalamin biosynthesis enzyme precorrin-3B synthase (CobZRR) is essential for anaerobic photosynthesis in Rhodospirillum rubrum but not for aerobic dark metabolism. MICROBIOLOGY-SGM 2018; 164:1416-1431. [PMID: 30222098 DOI: 10.1099/mic.0.000718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The in vivo physiological role of the gene cobZ, which encodes precorrin-3B synthase, which catalyzes the initial porphyrin ring contraction step of cobalamin biosynthesis via the cob pathway, has been demonstrated here for the first time. Cobalamin is known to be essential for an early step of bacteriochlorophyll biosynthesis in anoxygenic purple bacteria. The cobZ (cobZRR) gene of the purple bacterium Rhodospirillum rubrum was localized to a 23.5 kb insert of chromosomal DNA contained on the cosmid pSC4. pSC4 complemented several mutants of bacteriochlorophyll and carotenoid biosynthesis, due to the presence of the bchCX and crtCDEF genes at one end of the cosmid insert, flanking cobZRR. A second gene, citB/tcuB, immediately downstream of cobZRR, shows homologies to both a tricarballylate oxidoreductase (tcuB) and a gene (citB) involved in signal transduction during citrate uptake. CobZRR shows extensive homology to the N-terminal domain of the bifunctional CobZ from Rhodobacter capsulatus, and the R. rubrum citB/tcuB gene is homologous to the CobZ C-terminal domain. A mutant, SERGK25, containing a terminatorless kanamycin interposon inserted into cobZRR, could not grow by anaerobic photosynthesis, but grew normally under dark, aerobic and microaerophilic conditions with succinate and fructose as carbon sources. The anaerobic in vivo activity of CobZ indicates that it does not require oxygen as a substrate. The mutant excreted large amounts of protoporphyrin IX-monomethylester, a brown precursor of bacteriochlorophyll biosynthesis. The mutant was complemented either by the cobZRR gene in trans, or when exogenous cobalamin was added to the medium. A deletion mutant of tcuB/citB did not exhibit the cob phenotype. Thus, a role for tcuB/citB in cobalamin biosynthesis could not be confirmed.
Collapse
Affiliation(s)
- Robin Ghosh
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Erik Roth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Khaled Abou-Aisha
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
- †Present address: Department of Microbiology and Biotechnology, German University in Cairo, Egypt
| | - Rudolf Saegesser
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Caroline Autenrieth
- Department of Bioenergetics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| |
Collapse
|
42
|
Neumann-Schaal M, Metzendorf NG, Troitzsch D, Nuss AM, Hofmann JD, Beckstette M, Dersch P, Otto A, Sievers S. Tracking gene expression and oxidative damage of O 2-stressed Clostridioides difficile by a multi-omics approach. Anaerobe 2018; 53:94-107. [PMID: 29859941 DOI: 10.1016/j.anaerobe.2018.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O2 is based on a complex and far-reaching adjustment of global gene expression which leads to only a slight change in phenotype.
Collapse
Affiliation(s)
- Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole G Metzendorf
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Daniel Troitzsch
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Aaron Mischa Nuss
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Andreas Otto
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Susanne Sievers
- Department of Microbial Physiology and Molecular Biology, Institute of Microbiology, University of Greifswald, 17489, Greifswald, Germany.
| |
Collapse
|
43
|
Lawrence AD, Nemoto-Smith E, Deery E, Baker JA, Schroeder S, Brown DG, Tullet JMA, Howard MJ, Brown IR, Smith AG, Boshoff HI, Barry CE, Warren MJ. Construction of Fluorescent Analogs to Follow the Uptake and Distribution of Cobalamin (Vitamin B 12) in Bacteria, Worms, and Plants. Cell Chem Biol 2018; 25:941-951.e6. [PMID: 29779954 DOI: 10.1016/j.chembiol.2018.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/18/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
Abstract
Vitamin B12 is made by only certain prokaryotes yet is required by a number of eukaryotes such as mammals, fish, birds, worms, and Protista, including algae. There is still much to learn about how this nutrient is trafficked across the domains of life. Herein, we describe ways to make a number of different corrin analogs with fluorescent groups attached to the main tetrapyrrole-derived ring. A further range of analogs were also constructed by attaching similar fluorescent groups to the ribose ring of cobalamin, thereby generating a range of complete and incomplete corrinoids to follow uptake in bacteria, worms, and plants. By using these fluorescent derivatives we were able to demonstrate that Mycobacterium tuberculosis is able to acquire both cobyric acid and cobalamin analogs, that Caenorhabditis elegans takes up only the complete corrinoid, and that seedlings of higher plants such as Lepidium sativum are also able to transport B12.
Collapse
Affiliation(s)
- Andrew D Lawrence
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Emi Nemoto-Smith
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Evelyne Deery
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Joseph A Baker
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Susanne Schroeder
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - David G Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Ian R Brown
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Helena I Boshoff
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Clifton E Barry
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20850, USA
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
44
|
Rapid acquisition and model-based analysis of cell-free transcription-translation reactions from nonmodel bacteria. Proc Natl Acad Sci U S A 2018; 115:E4340-E4349. [PMID: 29666238 PMCID: PMC5948957 DOI: 10.1073/pnas.1715806115] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.
Collapse
|
45
|
Abstract
The biosynthesis of B12, involving up to 30 different enzyme-mediated steps, only occurs in bacteria. Thus, most eukaryotes require an external source of B12, and yet the vitamin appears to have only two functions in eukaryotes: as a cofactor for the enzymes methionine synthase and methylmalonylCoA mutase. These two functions are crucial for normal health in humans, and in particular, the formation of methionine is essential for providing methyl groups for over 100 methylation processes. Interference with the methionine synthase reaction not only depletes the body of methyl groups but also leads to the accumulation of homocysteine, a risk factor for many diseases. The syndrome pernicious anemia, characterized by lack of intrinsic factor, leads to a severe, sometimes fatal form of B12 deficiency. However, there is no sharp cutoff for B12 deficiency; rather, there is a continuous inverse relationship between serum B12 and a variety of undesirable outcomes, including neural tube defects, stroke, and dementia. The brain is particularly vulnerable; in children, inadequate B12 stunts brain and intellectual development. Suboptimal B12 status (serum B12<300pmol/L) is very common, occurring in 30%-60% of the population, in particular in pregnant women and in less-developed countries. Thus, many tens of millions of people in the world may suffer harm from having a poor B12 status. Public health steps are urgently needed to correct this inadequacy.
Collapse
Affiliation(s)
- A David Smith
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Helga Refsum
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
46
|
Boss L, Oehme R, Billig S, Birkemeyer C, Layer G. The Radical SAM enzyme NirJ catalyzes the removal of two propionate side chains during hemed1biosynthesis. FEBS J 2017; 284:4314-4327. [DOI: 10.1111/febs.14307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Linda Boss
- Institute of Biochemistry; Leipzig University; Germany
| | - Ramona Oehme
- Institute of Analytical Chemistry; Leipzig University; Germany
| | - Susan Billig
- Institute of Analytical Chemistry; Leipzig University; Germany
| | | | - Gunhild Layer
- Institute of Biochemistry; Leipzig University; Germany
| |
Collapse
|
47
|
Padmanabhan S, Jost M, Drennan CL, Elías-Arnanz M. A New Facet of Vitamin B 12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu Rev Biochem 2017; 86:485-514. [PMID: 28654327 PMCID: PMC7153952 DOI: 10.1146/annurev-biochem-061516-044500] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5'-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5'-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain;
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2140;
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética, Unidad Asociada al Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
48
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
49
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
50
|
Moore SJ, Lai HE, Needham H, Polizzi KM, Freemont PS. Streptomyces venezuelae TX-TL - a next generation cell-free synthetic biology tool. Biotechnol J 2017; 12. [PMID: 28139884 DOI: 10.1002/biot.201600678] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/09/2017] [Accepted: 01/30/2017] [Indexed: 11/09/2022]
Abstract
Streptomyces venezuelae is a promising chassis in synthetic biology for fine chemical and secondary metabolite pathway engineering. The potential of S. venezuelae could be further realized by expanding its capability with the introduction of its own in vitro transcription-translation (TX-TL) system. TX-TL is a fast and expanding technology for bottom-up design of complex gene expression tools, biosensors and protein manufacturing. Herein, we introduce a S. venezuelae TX-TL platform by reporting a streamlined protocol for cell-extract preparation, demonstrating high-yield synthesis of a codon-optimized sfGFP reporter and the prototyping of a synthetic tetracycline-inducible promoter in S. venezuelae TX-TL based on the tetO-TetR repressor system. The aim of this system is to provide a host for the homologous production of exotic enzymes from Actinobacteria secondary metabolism in vitro. As an example, the authors demonstrate the soluble synthesis of a selection of enzymes (12-70 kDa) from the Streptomyces rimosus oxytetracycline pathway.
Collapse
Affiliation(s)
- Simon J Moore
- Centre for Synthetic Biology and Innovation, South Kensington Campus, London, UK.,Department of Medicine, South Kensington Campus, London, UK
| | - Hung-En Lai
- Centre for Synthetic Biology and Innovation, South Kensington Campus, London, UK.,Department of Medicine, South Kensington Campus, London, UK
| | - Hannah Needham
- Department of Life Science, South Kensington Campus, London, UK
| | - Karen M Polizzi
- Centre for Synthetic Biology and Innovation, South Kensington Campus, London, UK.,Department of Life Science, South Kensington Campus, London, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, South Kensington Campus, London, UK.,Department of Medicine, South Kensington Campus, London, UK
| |
Collapse
|