1
|
Pang H, Fan F, Zheng J, Xiao H, Tan Z, Song J, Kan B, Liu H. Three-dimensional structures of Vibrio cholerae typing podophage VP1 in two states. Structure 2024; 32:2364-2374.e2. [PMID: 39471801 DOI: 10.1016/j.str.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Lytic podophages (VP1-VP5) play crucial roles in subtyping Vibrio cholerae O1 biotype El Tor. However, until now no structures of these phages have been available, which hindered our understanding of the molecular mechanisms of infection and DNA release. Here, we determined the cryoelectron microscopy (cryo-EM) structures of mature and DNA-ejected VP1 structures at near-atomic and subnanometer resolutions, respectively. The VP1 head is composed of 415 copies of the major capsid protein gp7 and 11 turret-shaped spikes. The VP1 tail consists of an adapter, a nozzle, a slender ring, and a tail needle, and is flanked by three extended fibers I and six trimeric fibers II. Conformational changes of fiber II in DNA-ejected VP1 may cause the release of the tail needle and core proteins, forming an elongated tail channel. Our structures provide insights into the molecular mechanisms of infection and DNA release for podophages with a tail needle.
Collapse
Affiliation(s)
- Hao Pang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Fenxia Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jing Zheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Zhixue Tan
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China
| | - Jingdong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China.
| | - Biao Kan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, School of Physics and Electronics, Hunan Normal University, Changsha 410082, China.
| |
Collapse
|
2
|
Podgorski JM, Freeman K, Gosselin S, Huet A, Conway JF, Bird M, Grecco J, Patel S, Jacobs-Sera D, Hatfull G, Gogarten JP, Ravantti J, White SJ. A structural dendrogram of the actinobacteriophage major capsid proteins provides important structural insights into the evolution of capsid stability. Structure 2023; 31:282-294.e5. [PMID: 36649709 PMCID: PMC10071307 DOI: 10.1016/j.str.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023]
Abstract
Many double-stranded DNA viruses, including tailed bacteriophages (phages) and herpesviruses, use the HK97-fold in their major capsid protein to make the capsomers of the icosahedral viral capsid. After the genome packaging at near-crystalline densities, the capsid is subjected to a major expansion and stabilization step that allows it to withstand environmental stresses and internal high pressure. Several different mechanisms for stabilizing the capsid have been structurally characterized, but how these mechanisms have evolved is still not understood. Using cryo-EM structure determination of 10 capsids, structural comparisons, phylogenetic analyses, and Alphafold predictions, we have constructed a detailed structural dendrogram describing the evolution of capsid structural stability within the actinobacteriophages. We show that the actinobacteriophage major capsid proteins can be classified into 15 groups based upon their HK97-fold.
Collapse
Affiliation(s)
- Jennifer M Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Krista Freeman
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Sophia Gosselin
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary Bird
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - John Grecco
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Shreya Patel
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Johann Peter Gogarten
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06268-3125, USA
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Simon J White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125, Storrs, CT 06269-3125, USA.
| |
Collapse
|
3
|
A Capsid Structure of Ralstonia solanacearum podoviridae GP4 with a Triangulation Number T = 9. Viruses 2022; 14:v14112431. [PMID: 36366529 PMCID: PMC9698820 DOI: 10.3390/v14112431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
GP4, a new Ralstonia solanacearum phage, is a short-tailed phage. Few structures of Ralstonia solanacearum phages have been resolved to near-atomic resolution until now. Here, we present a 3.7 Å resolution structure of the GP4 head by cryo-electron microscopy (cryo-EM). The GP4 head contains 540 copies of major capsid protein (MCP) gp2 and 540 copies of cement protein (CP) gp1 arranged in an icosahedral shell with a triangulation number T = 9. The structures of gp2 and gp1 show a canonical HK97-like fold and an Ig-like fold, respectively. The trimeric CPs stick on the surface of the head along the quasi-threefold axis of the icosahedron generating a sandwiched three-layer electrostatic complementary potential, thereby enhancing the head stability. The assembly pattern of the GP4 head provides a platform for the further exploration of the interaction between Ralstonia solanacearum and corresponding phages.
Collapse
|
4
|
King J. Using T4 Genetics and Laemmli's Development of High Resolution SDS Gel Electrophoresis to Reveal Structural Protein Interactions Controlling Protein Folding and Phage Self-Assembly. J Biol Chem 2022; 298:102463. [PMID: 36067882 PMCID: PMC9576892 DOI: 10.1016/j.jbc.2022.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/03/2022] Open
Abstract
One of the most transformative experimental techniques in the rise of modern molecular biology and biochemistry was the development of high resolution Sodium Dodecyl Sulfate (SDS) poly acrylamide gel electrophoresis, which allowed separation of proteins - including structural proteins - in complex mixtures according to their molecular weights. Its development was intimately tied to investigations of the control of virus assembly within phage-infected cells. The method was developed by Ulrich K. Laemmli working in the virus structural group led by Aaron Klug at the famed Medical Research Council Laboratory for Molecular Biology (LMB) at Cambridge, UK. While Laemmli was tackling T4 head assembly, I sat at the next bench working on T4 tail assembly. To date, Laemmli's original paper has been cited almost 300,000 times. His gel procedure and our cooperation allowed us to sort out the sequential protein-protein interactions controlling the viral self-assembly pathways. It is still not fully appreciated that this control involved protein conformational change induced by interaction with an edge of the growing structure. Subsequent efforts of my students and I to understand how temperature sensitive mutations interfered with assembly were important in revealing the intracellular off-pathway aggregation processes competing with productive protein folding. These misfolding processes slowed the initial productivity of the biotechnology industry. The article below describes the scientific origin, context and sociology that supported these advances in protein biochemistry, protein expression, and virus assembly. The cooperation and collaboration that was integral to both the LMB culture and phage genetics fields were key to these endeavors.
Collapse
|
5
|
Hryc CF, Baker ML. AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps. iScience 2022; 25:104496. [PMID: 35733789 PMCID: PMC9207676 DOI: 10.1016/j.isci.2022.104496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
With the advent of new artificial intelligence and machine learning algorithms, predictive modeling can, in some cases, produce structures on par with experimental methods. The combination of predictive modeling and experimental structure determination by electron cryomicroscopy (cryoEM) offers a tantalizing approach for producing robust atomic models of macromolecular assemblies. Here, we apply AlphaFold2 to a set of community standard data sets and compare the results with the corresponding reference maps and models. Moreover, we present three unique case studies from previously determined cryoEM density maps of viruses. Our results show that AlphaFold2 can not only produce reasonably accurate models for analysis and additional hypotheses testing, but can also potentially yield incorrect structures if not properly validated with experimental data. Whereas we outline numerous shortcomings and potential pitfalls of predictive modeling, the obvious synergy between predictive modeling and cryoEM will undoubtedly result in new computational modeling tools.
Collapse
Affiliation(s)
- Corey F. Hryc
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Matthew L. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School at The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
6
|
Predicting the capsid architecture of phages from metagenomic data. Comput Struct Biotechnol J 2022; 20:721-732. [PMID: 35140890 PMCID: PMC8814770 DOI: 10.1016/j.csbj.2021.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
Tailed phages are viruses that infect bacteria and are the most abundant biological entities on Earth. Their ecological, evolutionary, and biogeochemical roles in the planet stem from their genomic diversity. Known tailed phage genomes range from 10 to 735 kilobase pairs thanks to the size variability of the protective protein capsids that store them. However, the role of tailed phage capsids’ diversity in ecosystems is unclear. A fundamental gap is the difficulty of associating genomic information with viral capsids in the environment. To address this problem, here, we introduce a computational approach to predict the capsid architecture (T-number) of tailed phages using the sequence of a single gene—the major capsid protein. This approach relies on an allometric model that relates the genome length and capsid architecture of tailed phages. This allometric model was applied to isolated phage genomes to generate a library that associated major capsid proteins and putative capsid architectures. This library was used to train machine learning methods, and the most computationally scalable model investigated (random forest) was applied to human gut metagenomes. Compared to isolated phages, the analysis of gut data reveals a large abundance of mid-sized (T = 7) capsids, as expected, followed by a relatively large frequency of jumbo-like tailed phage capsids (T ≥ 25) and small capsids (T = 4) that have been under-sampled. We discussed how to increase the method’s accuracy and how to extend the approach to other viruses. The computational pipeline introduced here opens the doors to monitor the ongoing evolution and selection of viral capsids across ecosystems.
Collapse
|
7
|
Cui N, Yang F, Zhang JT, Sun H, Chen Y, Yu RC, Chen ZP, Jiang YL, Han SJ, Xu X, Li Q, Zhou CZ. Capsid Structure of Anabaena Cyanophage A-1(L). J Virol 2021; 95:e0135621. [PMID: 34549983 PMCID: PMC8610606 DOI: 10.1128/jvi.01356-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/19/2021] [Indexed: 01/09/2023] Open
Abstract
A-1(L) is a freshwater cyanophage with a contractile tail that specifically infects Anabaena sp. PCC 7120, one of the model strains for molecular studies of cyanobacteria. Although isolated for half a century, its structure remains unknown, which limits our understanding on the interplay between A-1(L) and its host. Here we report the 3.35 Å cryo-EM structure of A-1(L) capsid, representing the first near-atomic resolution structure of a phage capsid with a T number of 9. The major capsid gp4 proteins assemble into 91 capsomers, including 80 hexons: 20 at the center of the facet and 60 at the facet edge, in addition to 11 identical pentons. These capsomers further assemble into the icosahedral capsid, via gradually increasing curvatures. Different from the previously reported capsids of known-structure, A-1(L) adopts a noncovalent chainmail structure of capsid stabilized by two kinds of mortise-and-tenon inter-capsomer interactions: a three-layered interface at the pseudo 3-fold axis combined with the complementarity in shape and electrostatic potential around the 2-fold axis. This unique capsomer construction enables A-1(L) to possess a rigid capsid, which is solely composed of the major capsid proteins with an HK97 fold. IMPORTANCE Cyanobacteria are the most abundant photosynthetic bacteria, contributing significantly to the biomass production, O2 generation, and CO2 consumption on our planet. Their community structure and homeostasis in natural aquatic ecosystems are largely regulated by the corresponding cyanophages. In this study, we solved the structure of cyanophage A-1(L) capsid at near-atomic resolution and revealed a unique capsid construction. This capsid structure provides the molecular details for better understanding the assembly of A-1(L), and a structural platform for future investigation and application of A-1(L) in combination with its host Anabaena sp. PCC 7120. As the first isolated freshwater cyanophage that infects the genetically tractable model cyanobacterium, A-1(L) should become an ideal template for the genetic engineering and synthetic biology studies.
Collapse
Affiliation(s)
- Ning Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Feng Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun-Tao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Rong-Cheng Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhi-Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong-Liang Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Shu-Jing Han
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xudong Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
8
|
High Resolution Structure of the Mature Capsid of Ralstonia solanacearum Bacteriophage ϕRSA1 by Cryo-Electron Microscopy. Int J Mol Sci 2021; 22:ijms222011053. [PMID: 34681713 PMCID: PMC8538268 DOI: 10.3390/ijms222011053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
The ϕRSA1 bacteriophage has been isolated from Ralstonia solanacearum, a gram negative bacteria having a significant economic impact on many important crops. We solved the three-dimensional structure of the ϕRSA1 mature capsid to 3.9 Å resolution by cryo-electron microscopy. The capsid shell, that contains the 39 kbp of dsDNA genome, has an icosahedral symmetry characterized by an unusual triangulation number of T = 7, dextro. The ϕRSA1 capsid is composed solely of the polymerization of the major capsid protein, gp8, which exhibits the typical “Johnson” fold first characterized in E. coli bacteriophage HK97. As opposed to the latter, the ϕRSA1 mature capsid is not stabilized by covalent crosslinking between its subunits, nor by the addition of a decoration protein. We further describe the molecular interactions occurring between the subunits of the ϕRSA1 capsid and their relationships with the other known bacteriophages.
Collapse
|
9
|
Kamiya R, Uchiyama J, Matsuzaki S, Murata K, Iwasaki K, Miyazaki N. Acid-stable capsid structure of Helicobacter pylori bacteriophage KHP30 by single-particle cryoelectron microscopy. Structure 2021; 30:300-312.e3. [PMID: 34597601 DOI: 10.1016/j.str.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/04/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.
Collapse
Affiliation(s)
- Ryosuke Kamiya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan; Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shigenobu Matsuzaki
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kenji Iwasaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan.
| |
Collapse
|
10
|
Johnson JE, Olson AJ. Icosahedral virus structures and the protein data bank. J Biol Chem 2021; 296:100554. [PMID: 33744290 PMCID: PMC8081926 DOI: 10.1016/j.jbc.2021.100554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
The structural study of icosahedral viruses has a long and impactful history in both crystallographic methodology and molecular biology. The evolution of the Protein Data Bank has paralleled and supported these studies providing readily accessible formats dealing with novel features associated with viral particle symmetries and subunit interactions. This overview describes the growth in size and complexity of icosahedral viruses from the first early studies of small RNA plant viruses and human picornaviruses up to the larger and more complex bacterial phage, insect, and human disease viruses such as Zika, hepatitis B, Adeno and Polyoma virus. The analysis of icosahedral viral capsid protein domain folds has shown striking similarities, with the beta jelly roll motif observed across multiple evolutionarily divergent species. The icosahedral symmetry of viruses drove the development of noncrystallographic symmetry averaging as a powerful phasing method, and the constraints of maintaining this symmetry resulted in the concept of quasi-equivalence in viral structures. Symmetry also played an important early role in demonstrating the power of cryo-electron microscopy as an alternative to crystallography in generating atomic resolution structures of these viruses. The Protein Data Bank has been a critical resource for assembling and disseminating these structures to a wide community, and the virus particle explorer (VIPER) was developed to enable users to easily generate and view complete viral capsid structures from their asymmetric building blocks. Finally, we share a personal perspective on the early use of computer graphics to communicate the intricacies, interactions, and beauty of these virus structures.
Collapse
Affiliation(s)
- John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
| | - Arthur J Olson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
11
|
Blundell TL, Chaplin AK. The resolution revolution in X-ray diffraction, Cryo-EM and other Technologies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 160:2-4. [PMID: 33485852 DOI: 10.1016/j.pbiomolbio.2021.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Tom L Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
12
|
Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci 2021; 30:70-82. [PMID: 32881101 PMCID: PMC7737788 DOI: 10.1002/pro.3943] [Citation(s) in RCA: 5201] [Impact Index Per Article: 1300.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
UCSF ChimeraX is the next-generation interactive visualization program from the Resource for Biocomputing, Visualization, and Informatics (RBVI), following UCSF Chimera. ChimeraX brings (a) significant performance and graphics enhancements; (b) new implementations of Chimera's most highly used tools, many with further improvements; (c) several entirely new analysis features; (d) support for new areas such as virtual reality, light-sheet microscopy, and medical imaging data; (e) major ease-of-use advances, including toolbars with icons to perform actions with a single click, basic "undo" capabilities, and more logical and consistent commands; and (f) an app store for researchers to contribute new tools. ChimeraX includes full user documentation and is free for noncommercial use, with downloads available for Windows, Linux, and macOS from https://www.rbvi.ucsf.edu/chimerax.
Collapse
Affiliation(s)
- Eric F. Pettersen
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas D. Goddard
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Conrad C. Huang
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Elaine C. Meng
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gregory S. Couch
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Tristan I. Croll
- Cambridge Institute for Medical Research, Department of HaematologyUniversity of CambridgeCambridgeUK
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
13
|
Luque A, Benler S, Lee DY, Brown C, White S. The Missing Tailed Phages: Prediction of Small Capsid Candidates. Microorganisms 2020; 8:E1944. [PMID: 33302408 PMCID: PMC7762592 DOI: 10.3390/microorganisms8121944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022] Open
Abstract
Tailed phages are the most abundant and diverse group of viruses on the planet. Yet, the smallest tailed phages display relatively complex capsids and large genomes compared to other viruses. The lack of tailed phages forming the common icosahedral capsid architectures T = 1 and T = 3 is puzzling. Here, we extracted geometrical features from high-resolution tailed phage capsid reconstructions and built a statistical model based on physical principles to predict the capsid diameter and genome length of the missing small-tailed phage capsids. We applied the model to 3348 isolated tailed phage genomes and 1496 gut metagenome-assembled tailed phage genomes. Four isolated tailed phages were predicted to form T = 3 icosahedral capsids, and twenty-one metagenome-assembled tailed phages were predicted to form T < 3 capsids. The smallest capsid predicted was a T = 4/3 ≈ 1.33 architecture. No tailed phages were predicted to form the smallest icosahedral architecture, T = 1. We discuss the feasibility of the missing T = 1 tailed phage capsids and the implications of isolating and characterizing small-tailed phages for viral evolution and phage therapy.
Collapse
Affiliation(s)
- Antoni Luque
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
- Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA
| | - Sean Benler
- National Center for Biotechnology Information (NCBI), Bethesda, MD 20894, USA;
| | - Diana Y. Lee
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Computational Science Research Center, San Diego State University, San Diego, CA 92182, USA
| | - Colin Brown
- Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; (D.Y.L.); (C.B.)
- Department of Physics, San Diego State University, San Diego, CA 92182, USA
| | - Simon White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
14
|
Podgorski J, Calabrese J, Alexandrescu L, Jacobs-Sera D, Pope W, Hatfull G, White S. Structures of Three Actinobacteriophage Capsids: Roles of Symmetry and Accessory Proteins. Viruses 2020; 12:v12030294. [PMID: 32182721 PMCID: PMC7150772 DOI: 10.3390/v12030294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Here, we describe the structure of three actinobacteriophage capsids that infect Mycobacterium smegmatis. The capsid structures were resolved to approximately six angstroms, which allowed confirmation that each bacteriophage uses the HK97-fold to form their capsid. One bacteriophage, Rosebush, may have a novel variation of the HK97-fold. Four novel accessory proteins that form the capsid head along with the major capsid protein were identified. Two of the accessory proteins were minor capsid proteins and showed some homology, based on bioinformatic analysis, to the TW1 bacteriophage. The remaining two accessory proteins are decoration proteins that are located on the outside of the capsid and do not resemble any previously described bacteriophage decoration protein. SDS-PAGE and mass spectrometry was used to identify the accessory proteins and bioinformatic analysis of the accessory proteins suggest they are used in many actinobacteriophage capsids.
Collapse
Affiliation(s)
- Jennifer Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Joshua Calabrese
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Lauren Alexandrescu
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
| | - Deborah Jacobs-Sera
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Welkin Pope
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Graham Hatfull
- Clapp Hall, Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA; (D.J.-S.); (W.P.); (G.H.)
| | - Simon White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Unit-3125. Storrs, CT 06269-3125, USA; (J.P.); (J.C.); (L.A.)
- Correspondence:
| |
Collapse
|
15
|
Hrebík D, Štveráková D, Škubník K, Füzik T, Pantůček R, Plevka P. Structure and genome ejection mechanism of Staphylococcus aureus phage P68. SCIENCE ADVANCES 2019; 5:eaaw7414. [PMID: 31663016 PMCID: PMC6795507 DOI: 10.1126/sciadv.aaw7414] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 06/01/2023]
Abstract
Phages infecting Staphylococcus aureus can be used as therapeutics against antibiotic-resistant bacterial infections. However, there is limited information about the mechanism of genome delivery of phages that infect Gram-positive bacteria. Here, we present the structures of native S. aureus phage P68, genome ejection intermediate, and empty particle. The P68 head contains 72 subunits of inner core protein, 15 of which bind to and alter the structure of adjacent major capsid proteins and thus specify attachment sites for head fibers. Unlike in the previously studied phages, the head fibers of P68 enable its virion to position itself at the cell surface for genome delivery. The unique interaction of one end of P68 DNA with one of the 12 portal protein subunits is disrupted before the genome ejection. The inner core proteins are released together with the DNA and enable the translocation of phage genome across the bacterial membrane into the cytoplasm.
Collapse
Affiliation(s)
- Dominik Hrebík
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Dana Štveráková
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Karel Škubník
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
16
|
Jin H, Jiang YL, Yang F, Zhang JT, Li WF, Zhou K, Ju J, Chen Y, Zhou CZ. Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1. Structure 2019; 27:1508-1516.e3. [DOI: 10.1016/j.str.2019.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
|
17
|
Urzhumtsev AG, Lunin VY. Introduction to crystallographic refinement of macromolecular atomic models. CRYSTALLOGR REV 2019. [DOI: 10.1080/0889311x.2019.1631817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexandre G. Urzhumtsev
- Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, Illkirch, France
- Département de Physique, Faculté des Sciences et des Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Vladimir Y. Lunin
- Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
18
|
Duda RL, Teschke CM. The amazing HK97 fold: versatile results of modest differences. Curr Opin Virol 2019; 36:9-16. [PMID: 30856581 PMCID: PMC6626583 DOI: 10.1016/j.coviro.2019.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
dsDNA Bacteriophages, some dsDNA archaeal viruses and the Herpesviruses share many features including a common capsid assembly pathway and coat protein fold. The coat proteins of these viruses, which have the HK97 fold, co-assemble with a free or attached scaffolding protein and other capsid proteins into a precursor capsid, known as a procapsid or prohead. The procapsid is a metastable state that increases in stability as a result of morphological changes that occur during the dsDNA packaging reaction. We review evidence from several systems indicating that proper contacts acquired in the assembly of the procapsid are critical to forming the correct morphology in the mature capsid.
Collapse
Affiliation(s)
- Robert L Duda
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| | - Carolyn M Teschke
- Departments of Molecular and Cell Biology, and Chemistry, University of Connecticut, Storrs, CT, 06269-3125, United States.
| |
Collapse
|
19
|
Chen M, Baker ML. Automation and assessment of de novo modeling with Pathwalking in near atomic resolution cryoEM density maps. J Struct Biol 2018; 204:555-563. [DOI: 10.1016/j.jsb.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 01/30/2023]
|
20
|
Afonine PV, Poon BK, Read RJ, Sobolev OV, Terwilliger TC, Urzhumtsev A, Adams PD. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr D Struct Biol 2018; 74:531-544. [PMID: 29872004 PMCID: PMC6096492 DOI: 10.1107/s2059798318006551] [Citation(s) in RCA: 2055] [Impact Index Per Article: 293.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/27/2018] [Indexed: 02/23/2023] Open
Abstract
This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.
Collapse
Affiliation(s)
- Pavel V. Afonine
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Billy K. Poon
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Randy J. Read
- Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, England
| | - Oleg V. Sobolev
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Thomas C. Terwilliger
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Alexandre Urzhumtsev
- Faculté des Sciences et Technologies, Université de Lorraine, BP 239, 54506 Vandoeuvre-les-Nancy, France
- Centre for Integrative Biology, IGBMC, CNRS–INSERM–UdS, 1 Rue Laurent Fries, BP 10142, 67404 Illkirch, France
| | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
21
|
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 2018; 27:14-25. [PMID: 28710774 PMCID: PMC5734306 DOI: 10.1002/pro.3235] [Citation(s) in RCA: 3348] [Impact Index Per Article: 478.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
UCSF ChimeraX is next-generation software for the visualization and analysis of molecular structures, density maps, 3D microscopy, and associated data. It addresses challenges in the size, scope, and disparate types of data attendant with cutting-edge experimental methods, while providing advanced options for high-quality rendering (interactive ambient occlusion, reliable molecular surface calculations, etc.) and professional approaches to software design and distribution. This article highlights some specific advances in the areas of visualization and usability, performance, and extensibility. ChimeraX is free for noncommercial use and is available from http://www.rbvi.ucsf.edu/chimerax/ for Windows, Mac, and Linux.
Collapse
Affiliation(s)
- Thomas D. Goddard
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Conrad C. Huang
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Elaine C. Meng
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Eric F. Pettersen
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Gregory S. Couch
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - John H. Morris
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| | - Thomas E. Ferrin
- Department of Pharmaceutical ChemistryUniversity of California San FranciscoSan FranciscoCalifornia94143
| |
Collapse
|
22
|
Dou H, Burrows DW, Baker ML, Ju T. Flexible Fitting of Atomic Models into Cryo-EM Density Maps Guided by Helix Correspondences. Biophys J 2017. [PMID: 28636906 DOI: 10.1016/j.bpj.2017.04.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although electron cryo-microscopy (cryo-EM) has recently achieved resolutions of better than 3 Å, at which point molecular modeling can be done directly from the density map, analysis and annotation of a cryo-EM density map still primarily rely on fitting atomic or homology models to the density map. In this article, we present, to our knowledge, a new method for flexible fitting of known or modeled protein structures into cryo-EM density maps. Unlike existing methods that are guided by local density gradients, our method is guided by correspondences between the α-helices in the density map and model, and does not require an initial rigid-body fitting step. Compared with current methods on both simulated and experimental density maps, our method not only achieves greater accuracy for proteins with large deformations but also runs as fast or faster than many of the other flexible fitting routines.
Collapse
Affiliation(s)
- Hang Dou
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri.
| | - Derek W Burrows
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
23
|
Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly. J Mol Biol 2017; 429:2474-2489. [PMID: 28705762 DOI: 10.1016/j.jmb.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/25/2017] [Accepted: 07/06/2017] [Indexed: 01/28/2023]
Abstract
Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly.
Collapse
|
24
|
Abstract
Recently, dozens of virus structures have been solved to resolutions between 2.5 and 5.0 Å by means of electron cryomicroscopy. With these structures we are now firmly within the "atomic age" of electron cryomicroscopy, as these studies can reveal atomic details of protein and nucleic acid topology and interactions between specific residues. This improvement in resolution has been the result of direct electron detectors and image processing advances. Although enforcing symmetry facilitates reaching near-atomic resolution with fewer particle images, it unfortunately obscures some biologically interesting components of a virus. New approaches on relaxing symmetry and exploring structure dynamics and heterogeneity of viral assemblies have revealed important insights into genome packaging, virion assembly, cell entry, and other stages of the viral life cycle. In the future, novel methods will be required to reveal yet-unknown structural conformations of viruses, relevant to their biological activities. Ultimately, these results hold the promise of answering many unresolved questions linking structural diversity of viruses to their biological functions.
Collapse
Affiliation(s)
- Jason T Kaelber
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.,National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Corey F Hryc
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030;
| | - Wah Chiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.,National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.,Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030;
| |
Collapse
|
25
|
Visualizing Adsorption of Cyanophage P-SSP7 onto Marine Prochlorococcus. Sci Rep 2017; 7:44176. [PMID: 28281671 PMCID: PMC5345008 DOI: 10.1038/srep44176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Marine cyanobacteria perform roughly a quarter of global carbon fixation, and cyanophages that infect them liberate some of this carbon during infection and cell lysis. Studies of the cyanobacterium Prochlorococcus MED4 and its associated cyanophage P-SSP7 have revealed complex gene expression dynamics once infection has begun, but the initial cyanophage-host interactions remain poorly understood. Here, we used single particle cryo-electron tomography (cryo-ET) to investigate cyanophage-host interactions in this model system, based on 170 cyanophage-to-host adsorption events. Subtomogram classification and averaging revealed three main conformations characterized by different angles between the phage tail and the cell surface. Namely, phage tails were (i) parallel to, (ii) ~45 degrees to, or (iii) perpendicular to the cell surface. Furthermore, different conformations of phage tail fibers correlated with the aforementioned orientations of the tails. We also observed density beyond the tail tip in vertically-oriented phages that had penetrated the cell wall, capturing the final stage of adsorption. Together, our data provide a quantitative characterization of the orientation of phages as they adsorb onto cells, and suggest that cyanophages that abut their cellular targets are only transiently in the “perpendicular” orientation required for successful infection.
Collapse
|
26
|
Abstract
Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.
Collapse
|
27
|
Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IJL, Gronenborn AM, Polenova T, Zhang P. CryoEM Structure Refinement by Integrating NMR Chemical Shifts with Molecular Dynamics Simulations. J Phys Chem B 2017; 121:3853-3863. [PMID: 28181439 DOI: 10.1021/acs.jpcb.6b13105] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Single particle cryoEM has emerged as a powerful method for structure determination of proteins and complexes, complementing X-ray crystallography and NMR spectroscopy. Yet, for many systems, the resolution of cryoEM density map has been limited to 4-6 Å, which only allows for resolving bulky amino acids side chains, thus hindering accurate model building from the density map. On the other hand, experimental chemical shifts (CS) from solution and solid state MAS NMR spectra provide atomic level data for each amino acid within a molecule or a complex; however, structure determination of large complexes and assemblies based on NMR data alone remains challenging. Here, we present a novel integrated strategy to combine the highly complementary experimental data from cryoEM and NMR computationally by molecular dynamics simulations to derive an atomistic model, which is not attainable by either approach alone. We use the HIV-1 capsid protein (CA) C-terminal domain as well as the large capsid assembly to demonstrate the feasibility of this approach, termed NMR CS-biased cryoEM structure refinement.
Collapse
Affiliation(s)
- Juan R Perilla
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Manman Lu
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Guangjin Hou
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States
| | - Tatyana Polenova
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania 15260, United States.,Division of Structural Biology, University of Oxford, The Henry Wellcome Building for Genomic Medicine , Headington, Oxford OX3 7BN, U.K.,Electron Bio-Imaging Centre, Diamond Light Sources, Harwell Science and Innovation Campus , Didcot OX11 0DE, U.K
| |
Collapse
|
28
|
DiMaio F, Chiu W. Tools for Model Building and Optimization into Near-Atomic Resolution Electron Cryo-Microscopy Density Maps. Methods Enzymol 2016; 579:255-76. [PMID: 27572730 PMCID: PMC5103630 DOI: 10.1016/bs.mie.2016.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool for high-resolution structural biology research. The ultimate outcome of a cryoEM study is an atomic model of a macromolecule or its complex with interacting partners. This chapter describes a variety of algorithms and software to build a de novo model based on the cryoEM 3D density map, to optimize the model with the best stereochemistry restraints and finally to validate the model with proper protocols. The full process of atomic structure determination from a cryoEM map is described. The tools outlined in this chapter should prove extremely valuable in revealing atomic interactions guided by cryoEM data.
Collapse
Affiliation(s)
- F DiMaio
- University of Washington, Seattle, WA, United States; Institute for Protein Design, University of Washington, Seattle, WA, United States.
| | - W Chiu
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
29
|
Chen M, Baldwin PR, Ludtke SJ, Baker ML. De Novo modeling in cryo-EM density maps with Pathwalking. J Struct Biol 2016; 196:289-298. [PMID: 27436409 DOI: 10.1016/j.jsb.2016.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 11/26/2022]
Abstract
As electron cryo-microscopy (cryo-EM) can now frequently achieve near atomic resolution, accurate interpretation of these density maps in terms of atomistic detail has become paramount in deciphering macromolecular structure and function. However, there are few software tools for modeling protein structure from cryo-EM density maps in this resolution range. Here, we present an extension of our original Pathwalking protocol, which can automatically trace a protein backbone directly from a near-atomic resolution (3-6Å) density map. The original Pathwalking approach utilized a Traveling Salesman Problem solver for backbone tracing, but manual adjustment was still required during modeling. In the new version, human intervention is minimized and we provide a more robust approach for backbone modeling. This includes iterative secondary structure identification, termini detection and the ability to model multiple subunits without prior segmentation. Overall, the new Pathwalking procedure provides a more complete and robust tool for annotating protein structure function in near-atomic resolution density maps.
Collapse
Affiliation(s)
- Muyuan Chen
- Program in Structural and Computational Biology and Molecular Biophysics, United States; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Philip R Baldwin
- Department of Psychology, United States; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Matthew L Baker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
30
|
Extensive subunit contacts underpin herpesvirus capsid stability and interior-to-exterior allostery. Nat Struct Mol Biol 2016; 23:531-9. [PMID: 27111889 PMCID: PMC4899274 DOI: 10.1038/nsmb.3212] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Abstract
The herpesvirus capsid is a complex protein assembly that includes hundreds of copies of four major subunits and lesser numbers of several minor proteins, all of which are essential for infectivity. Cryo-electron microscopy is uniquely suited for studying interactions that govern the assembly and function of such large functional complexes. Here we report two high-quality capsid structures, from human herpes simplex virus type 1 (HSV-1) and the animal pseudorabies virus (PRV), imaged inside intact virions at ~7-Å resolution. From these, we developed a complete model of subunit and domain organization and identified extensive networks of subunit contacts that underpin capsid stability and form a pathway that may signal the completion of DNA packaging from the capsid interior to outer surface, thereby initiating nuclear egress. Differences in the folding and orientation of subunit domains between herpesvirus capsids suggest that common elements have been modified for specific functions.
Collapse
|
31
|
Liu Z, Guo F, Wang F, Li TC, Jiang W. 2.9 Å Resolution Cryo-EM 3D Reconstruction of Close-Packed Virus Particles. Structure 2016; 24:319-28. [PMID: 26777413 DOI: 10.1016/j.str.2015.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023]
Abstract
Single-particle cryoelectron microscopy typically discards close-packed particle images as unusable data. Here, we report an image processing strategy and case study of obtaining near-atomic resolution 3D reconstructions from close-packed particles. Multiple independent de novo initial models were constructed to determine and cross-validate the particle parameters. The particles with consistent views were further refined including not only Euler angles and center positions but also defocus, astigmatism, beam tilt, and overall and anisotropic magnification. We demonstrated this strategy with a 2.9 Å resolution reconstruction of a 1.67 MDa virus-like particle of a circovirus, PCV2, recorded on 86 photographic films. The map resolution was further validated with a phase-randomization test and local resolution assessment, and the atomic model was validated with MolProbity and EMRinger. Close-packed virus particles were thus shown not only to be useful for high-resolution 3D reconstructions but also to allow data collection at significantly improved throughput for near-atomic resolution reconstructions.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Fei Guo
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Feng Wang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Lawson CL, Patwardhan A, Baker ML, Hryc C, Garcia ES, Hudson BP, Lagerstedt I, Ludtke SJ, Pintilie G, Sala R, Westbrook JD, Berman HM, Kleywegt GJ, Chiu W. EMDataBank unified data resource for 3DEM. Nucleic Acids Res 2015; 44:D396-403. [PMID: 26578576 PMCID: PMC4702818 DOI: 10.1093/nar/gkv1126] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023] Open
Abstract
Three-dimensional Electron Microscopy (3DEM) has become a key experimental method in structural biology for a broad spectrum of biological specimens from molecules to cells. The EMDataBank project provides a unified portal for deposition, retrieval and analysis of 3DEM density maps, atomic models and associated metadata (emdatabank.org). We provide here an overview of the rapidly growing 3DEM structural data archives, which include maps in EM Data Bank and map-derived models in the Protein Data Bank. In addition, we describe progress and approaches toward development of validation protocols and methods, working with the scientific community, in order to create a validation pipeline for 3DEM data.
Collapse
Affiliation(s)
- Catherine L Lawson
- Department of Chemistry and Chemical Biology and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854, USA
| | - Ardan Patwardhan
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew L Baker
- Verna and Marrs McLean Department of Biochemistry & Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 70030, USA
| | - Corey Hryc
- Verna and Marrs McLean Department of Biochemistry & Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 70030, USA
| | - Eduardo Sanz Garcia
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Brian P Hudson
- Department of Chemistry and Chemical Biology and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854, USA
| | - Ingvar Lagerstedt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry & Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 70030, USA
| | - Grigore Pintilie
- Verna and Marrs McLean Department of Biochemistry & Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 70030, USA
| | - Raul Sala
- Department of Chemistry and Chemical Biology and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854, USA
| | - John D Westbrook
- Department of Chemistry and Chemical Biology and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854, USA
| | - Helen M Berman
- Department of Chemistry and Chemical Biology and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, NJ 08854, USA
| | - Gerard J Kleywegt
- Protein Data Bank in Europe, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry & Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 70030, USA
| |
Collapse
|
33
|
Ercius P, Alaidi O, Rames MJ, Ren G. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5638-63. [PMID: 26087941 PMCID: PMC4710474 DOI: 10.1002/adma.201501015] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/22/2015] [Indexed: 05/23/2023]
Abstract
Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated.
Collapse
Affiliation(s)
- Peter Ercius
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Osama Alaidi
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Matthew J. Rames
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | - Gang Ren
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Xu X, Yan C, Wohlhueter R, Ivanov I. Integrative Modeling of Macromolecular Assemblies from Low to Near-Atomic Resolution. Comput Struct Biotechnol J 2015; 13:492-503. [PMID: 26557958 PMCID: PMC4588362 DOI: 10.1016/j.csbj.2015.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023] Open
Abstract
While conventional high-resolution techniques in structural biology are challenged by the size and flexibility of many biological assemblies, recent advances in low-resolution techniques such as cryo-electron microscopy (cryo-EM) and small angle X-ray scattering (SAXS) have opened up new avenues to define the structures of such assemblies. By systematically combining various sources of structural, biochemical and biophysical information, integrative modeling approaches aim to provide a unified structural description of such assemblies, starting from high-resolution structures of the individual components and integrating all available information from low-resolution experimental methods. In this review, we describe integrative modeling approaches, which use complementary data from either cryo-EM or SAXS. Specifically, we focus on the popular molecular dynamics flexible fitting (MDFF) method, which has been widely used for flexible fitting into cryo-EM maps. Second, we describe hybrid molecular dynamics, Rosetta Monte-Carlo and minimum ensemble search (MES) methods that can be used to incorporate SAXS into pseudoatomic structural models. We present concise descriptions of the two methods and their most popular alternatives, along with select illustrative applications to protein/nucleic acid assemblies involved in DNA replication and repair.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Chunli Yan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Robert Wohlhueter
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| | - Ivaylo Ivanov
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
35
|
Abstract
First discovered in bacteriophage HK97, biological chainmail is a highly stable system formed by concatenated protein rings. Each subunit of the ring contains the HK97-like fold, which is characterized by its submarine-like shape with a 5-stranded β sheet in the axial (A) domain, spine helix in the peripheral (P) domain, and an extended (E) loop. HK97 capsid consists of covalently-linked copies of just one HK97-like fold protein and represents the most effective strategy to form highly stable chainmail needed for dsDNA genome encapsidation. Recently, near-atomic resolution structures enabled by cryo electron microscopy (cryoEM) have revealed a range of other, more complex variants of this strategy for constructing dsDNA viruses. The first strategy, exemplified by P22-like phages, is the attachment of an insertional (I) domain to the core 5-stranded β sheet of the HK97-like fold. The atomic models of the Bordetella phage BPP-1 showcases an alternative topology of the classic HK97 topology of the HK97-like fold, as well as the second strategy for constructing stable capsids, where an auxiliary jellyroll protein dimer serves to cement the non-covalent chainmail formed by capsid protein subunits. The third strategy, found in lambda-like phages, uses auxiliary protein trimers to stabilize the underlying non-covalent chainmail near the 3-fold axis. Herpesviruses represent highly complex viruses that use a combination of these strategies, resulting in four-level hierarchical organization including a non-covalent chainmail formed by the HK97-like fold domain found in the floor region. A thorough understanding of these structures should help unlock the enigma of the emergence and evolution of dsDNA viruses and inform bioengineering efforts based on these viruses.
Collapse
Affiliation(s)
- Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA.,California NanoSystems Institute (CNSI), University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Joshua Chiou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
36
|
San Martín C. Transmission electron microscopy and the molecular structure of icosahedral viruses. Arch Biochem Biophys 2015; 581:59-67. [PMID: 26072114 DOI: 10.1016/j.abb.2015.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/16/2022]
Abstract
The field of structural virology developed in parallel with methodological advances in X-ray crystallography and cryo-electron microscopy. At the end of the 1970s, crystallography yielded the first high resolution structure of an icosahedral virus, the T=3 tomato bushy stunt virus at 2.9Å. It took longer to reach near-atomic resolution in three-dimensional virus maps derived from electron microscopy data, but this was finally achieved, with the solution of complex icosahedral capsids such as the T=25 human adenovirus at ∼3.5Å. Both techniques now work hand-in-hand to determine those aspects of virus assembly and biology that remain unclear. This review examines the trajectory followed by EM imaging techniques in showing the molecular structure of icosahedral viruses, from the first two-dimensional negative staining images of capsids to the latest sophisticated techniques that provide high resolution three-dimensional data, or snapshots of the conformational changes necessary to complete the infectious cycle.
Collapse
Affiliation(s)
- Carmen San Martín
- Department of Macromolecular Structure and NanoBioMedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
37
|
Suhanovsky MM, Teschke CM. Nature's favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 2015; 479-480:487-97. [PMID: 25864106 PMCID: PMC4424165 DOI: 10.1016/j.virol.2015.02.055] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023]
Abstract
For many (if not all) bacterial and archaeal tailed viruses and eukaryotic Herpesvirdae the HK97-fold serves as the major architectural element in icosahedral capsid formation while still enabling the conformational flexibility required during assembly and maturation. Auxiliary proteins or Δ-domains strictly control assembly of multiple, identical, HK97-like subunits into procapsids with specific icosahedral symmetries, rather than aberrant non-icosahedral structures. Procapsids are precursor structures that mature into capsids in a process involving release of auxiliary proteins (or cleavage of Δ-domains), dsDNA packaging, and conformational rearrangement of the HK97-like subunits. Some coat proteins built on the ubiquitous HK97-fold also have accessory domains or loops that impart specific functions, such as increased monomer, procapsid, or capsid stability. In this review, we analyze the numerous HK97-like coat protein structures that are emerging in the literature (over 40 at time of writing) by comparing their topology, additional domains, and their assembly and misassembly reactions.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA.
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA; Department of Chemistry, University of Connecticut, 91N. Eagleville Rd. Storrs, CT 06269-3125, USA.
| |
Collapse
|
38
|
Casjens SR, Hendrix RW. Bacteriophage lambda: Early pioneer and still relevant. Virology 2015; 479-480:310-30. [PMID: 25742714 PMCID: PMC4424060 DOI: 10.1016/j.virol.2015.02.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Accepted: 02/05/2015] [Indexed: 12/14/2022]
Abstract
Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112, USA; Biology Department, University of Utah, Salt Lake City, UT 84112, USA.
| | - Roger W Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
39
|
Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
40
|
Abstract
Regulated interactions between proteins govern signaling pathways within and between cells. Structural studies on protein complexes formed reversibly and/or transiently illustrate the remarkable diversity of interactions, both in terms of interfacial size and nature. In recent years, "domain-peptide" interactions have gained much greater recognition and may be viewed as both pre-translational and posttranslational-dependent functional switches. Our understanding of the multistep regulation of auto-inhibited multidomain proteins has also grown. Their activity may be understood as the "combinatorial" output of multiple input signals, including phosphorylation, location, and mechanical force. The prospects for bridging the gap between the new "systems biology" data and the traditional "reductionist" data are also discussed.
Collapse
Affiliation(s)
- Robert C Liddington
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,
| |
Collapse
|
41
|
Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:136-53. [PMID: 25615868 PMCID: PMC4304694 DOI: 10.1107/s1399004714021683] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/01/2014] [Indexed: 11/24/2022]
Abstract
The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.
Collapse
Affiliation(s)
- Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Fei Long
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Robert A. Nicholls
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Jaan Toots
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Paul Emsley
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| | - Garib Murshudov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England
| |
Collapse
|
42
|
Serwer P, Wright ET, Chang JT, Liu X. Enhancing and initiating phage-based therapies. BACTERIOPHAGE 2014; 4:e961869. [PMID: 26713220 PMCID: PMC4588221 DOI: 10.4161/21597073.2014.961869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 02/02/2023]
Abstract
Drug development has typically been a primary foundation of strategy for systematic, long-range management of pathogenic cells. However, drug development is limited in speed and flexibility when response is needed to changes in pathogenic cells, especially changes that produce drug-resistance. The high replication speed and high diversity of phages are potentially useful for increasing both response speed and response flexibility when changes occur in either drug resistance or other aspects of pathogenic cells. We present strategy, with some empirical details, for (1) using modern molecular biology and biophysics to access these advantages during the phage therapy of bacterial infections, and (2) initiating use of phage capsid-based drug delivery vehicles (DDVs) with procedures that potentially overcome both drug resistance and other present limitations in the use of DDVs for the therapy of neoplasms. The discussion of phage therapy includes (a) historical considerations, (b) changes that appear to be needed in clinical tests if use of phage therapy is to be expanded, (c) recent work on novel phages and its potential use for expanding the capabilities of phage therapy and (d) an outline for a strategy that encompasses both theory and practice for expanding the applications of phage therapy. The discussion of DDVs starts by reviewing current work on DDVs, including work on both liposomal and viral DDVs. The discussion concludes with some details of the potential use of permeability constrained phage capsids as DDVs.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Elena T Wright
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | - Juan T Chang
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| | - Xiangan Liu
- Department of Biochemistry and Molecular Biology; Baylor College of Medicine; Houston, TX USA
| |
Collapse
|
43
|
Si D, He J. Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions. Structure 2014; 22:1665-76. [DOI: 10.1016/j.str.2014.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 10/24/2022]
|
44
|
Capsid expansion mechanism of bacteriophage T7 revealed by multistate atomic models derived from cryo-EM reconstructions. Proc Natl Acad Sci U S A 2014; 111:E4606-14. [PMID: 25313071 DOI: 10.1073/pnas.1407020111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Many dsDNA viruses first assemble a DNA-free procapsid, using a scaffolding protein-dependent process. The procapsid, then, undergoes dramatic conformational maturation while packaging DNA. For bacteriophage T7 we report the following four single-particle cryo-EM 3D reconstructions and the derived atomic models: procapsid (4.6-Å resolution), an early-stage DNA packaging intermediate (3.5 Å), a later-stage packaging intermediate (6.6 Å), and the final infectious phage (3.6 Å). In the procapsid, the N terminus of the major capsid protein, gp10, has a six-turn helix at the inner surface of the shell, where each skewed hexamer of gp10 interacts with two scaffolding proteins. With the exit of scaffolding proteins during maturation the gp10 N-terminal helix unfolds and swings through the capsid shell to the outer surface. The refolded N-terminal region has a hairpin that forms a novel noncovalent, joint-like, intercapsomeric interaction with a pocket formed during shell expansion. These large conformational changes also result in a new noncovalent, intracapsomeric topological linking. Both interactions further stabilize the capsids by interlocking all pentameric and hexameric capsomeres in both DNA packaging intermediate and phage. Although the final phage shell has nearly identical structure to the shell of the DNA-free intermediate, surprisingly we found that the icosahedral faces of the phage are slightly (∼4 Å) contracted relative to the faces of the intermediate, despite the internal pressure from the densely packaged DNA genome. These structures provide a basis for understanding the capsid maturation process during DNA packaging that is essential for large numbers of dsDNA viruses.
Collapse
|
45
|
Bell DC, Mankin M, Day RW, Erdman N. Successful application of Low Voltage Electron Microscopy to practical materials problems. Ultramicroscopy 2014; 145:56-65. [DOI: 10.1016/j.ultramic.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/25/2014] [Accepted: 03/08/2014] [Indexed: 11/17/2022]
|
46
|
Campbell MG, Kearney BM, Cheng A, Potter CS, Johnson JE, Carragher B, Veesler D. Near-atomic resolution reconstructions using a mid-range electron microscope operated at 200 kV. J Struct Biol 2014; 188:183-7. [PMID: 25278130 DOI: 10.1016/j.jsb.2014.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/21/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
A new era has begun for single particle cryo-electron microscopy (cryoEM) which can now compete with X-ray crystallography for determination of protein structures. The development of direct detectors constitutes a revolution that has led to a wave of near-atomic resolution cryoEM reconstructions. However, regardless of the sample studied, virtually all high-resolution reconstructions reported to date have been achieved using high-end microscopes. We demonstrate that the new generation of direct detectors coupled to a widely used mid-range electron microscope also enables obtaining cryoEM maps of sufficient quality for de novo modeling of protein structures of different sizes and symmetries. We provide an outline of the strategy used to achieve a 3.7 Å resolution reconstruction of Nudaurelia capensis ω virus and a 4.2 Å resolution reconstruction of the Thermoplasma acidophilum T20S proteasome.
Collapse
|
47
|
Four levels of hierarchical organization, including noncovalent chainmail, brace the mature tumor herpesvirus capsid against pressurization. Structure 2014; 22:1385-98. [PMID: 25220471 DOI: 10.1016/j.str.2014.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 11/24/2022]
Abstract
Like many double-stranded DNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved noncovalently in the much larger gammaherpesvirus capsid is unknown. Our cryoelectron microscopy structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1,378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (∼280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) One hundred sixty-two belts concatenate to form noncovalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization.
Collapse
|
48
|
An atomic model of brome mosaic virus using direct electron detection and real-space optimization. Nat Commun 2014; 5:4808. [PMID: 25185801 PMCID: PMC4155512 DOI: 10.1038/ncomms5808] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/24/2014] [Indexed: 12/11/2022] Open
Abstract
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure. Recent developments in cryo-electron microscopy have enabled structure determination of large protein complexes at almost atomic resolution. Wang et al. combine some of these technologies into an effective workflow, and demonstrate the protocol by solving the atomic structure of an icosahedral RNA virus.
Collapse
|
49
|
Rames M, Yu Y, Ren G. Optimized negative staining: a high-throughput protocol for examining small and asymmetric protein structure by electron microscopy. J Vis Exp 2014:e51087. [PMID: 25145703 PMCID: PMC4710468 DOI: 10.3791/51087] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Collapse
Affiliation(s)
- Matthew Rames
- Lawrence Berkeley National Laboratory, The Molecular Foundry
| | - Yadong Yu
- Lawrence Berkeley National Laboratory, The Molecular Foundry
| | - Gang Ren
- Lawrence Berkeley National Laboratory, The Molecular Foundry;
| |
Collapse
|
50
|
Gipson P, Baker ML, Raytcheva D, Haase-Pettingell C, Piret J, King JA, Chiu W. Protruding knob-like proteins violate local symmetries in an icosahedral marine virus. Nat Commun 2014; 5:4278. [PMID: 24985522 PMCID: PMC4102127 DOI: 10.1038/ncomms5278] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/03/2014] [Indexed: 02/02/2023] Open
Abstract
Marine viruses play crucial roles in shaping the dynamics of oceanic microbial communities and in the carbon cycle on Earth. Here we report a 4.7-Å structure of a cyanobacterial virus, Syn5, by electron cryo-microscopy and modelling. A Cα backbone trace of the major capsid protein (gp39) reveals a classic phage protein fold. In addition, two knob-like proteins protruding from the capsid surface are also observed. Using bioinformatics and structure analysis tools, these proteins are identified to correspond to gp55 and gp58 (each with two copies per asymmetric unit). The non 1:1 stoichiometric distribution of gp55/58 to gp39 breaks all expected local symmetries and leads to non-quasi-equivalence of the capsid subunits, suggesting a role in capsid stabilization. Such a structural arrangement has not yet been observed in any known virus structures.
Collapse
Affiliation(s)
- Preeti Gipson
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew L Baker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Desislava Raytcheva
- 1] Department of Microbiology, Northeastern University, Boston, Massachusetts 02115, USA [2] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Cameron Haase-Pettingell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jacqueline Piret
- Department of Microbiology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Jonathan A King
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|