1
|
Solmaz I, Yalnızoğlu D, Dursun A, Çıkı K, Akar HT, Özgül RK, Koşukçu C, Sezer A, Çağdaş D, Esenboğa S, Özbek B, Aygün D, Yılmaz DY, Parlak Ş, Göçmen R, Oğuz KK, Anlar B. Phenotypic diversity in NAXE mutations. Neurol Sci 2025; 46:2819-2828. [PMID: 39937421 DOI: 10.1007/s10072-025-08006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND/AIM NAD(P)HX epimerase (NAXE) gene mutations have been associated with early onset progressive encephalopathy. We present three patients with NAXE gene mutations and different initial manifestations. CASES Patient(P)1 was a 30 month-old boy whose neurological regression started after an infection and progressed, ultimately leading to death one year later. His brain magnetic resonance imaging (MRI) findings were suggesting metabolic stroke. P2, nine year-old sister of P1, had mild developmental delay since birth, seizures after age 5 years and pellagra-like skin lesions. P3 was a 15 year old female presenting multifocal neurological signs progressing over months and leading to respiratory insufficiency. Her initial MRI was normal but inflammatory lesions appeared three months after the onset of symptoms. Laboratory investigations including biochemical, serological and metabolic tests, and brain biopsy were unrevealing. Clinical presentation of P1 and P3 initially suggested autoimmune neurological disease, but no response to immunotherapy was obtained. Two different types of variants c.641T > G; p.Ile214Ser and c.128 C > A, p.Ser43* were detected in NAXE in these patients' two unrelated families. All patients were given mitochondrial cocktail including niacin. DISCUSSION NAXE plays an important role in the electron donors for the mitochondrial respiratory chain. Mutations result in accumulation of toxic metabolites, disruption of energy production, and possibly cell death. P1-3 displayed different ages of onset, different clinical courses and MRI findings unreported previously, suggesting immune-mediated encephalitis and metabolic stroke in P1, and an inflammatory process in P3. NAXE mutations should be considered in progressive central nervous system symptoms.
Collapse
Affiliation(s)
- Ismail Solmaz
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
- Department of Pediatric Neurology, Etlik City Hospital, Ankara, Turkey.
| | - Dilek Yalnızoğlu
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ali Dursun
- Department of Pediatric Metabolism, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kısmet Çıkı
- Department of Pediatric Metabolism, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Halil Tuna Akar
- Department of Pediatric Metabolism, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Can Koşukçu
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Abdullah Sezer
- Department of Medical Genetics, Etlik City Hospital, Ankara, Turkey
| | - Deniz Çağdaş
- Department of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Saliha Esenboğa
- Department of Pediatric Immunology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Begüm Özbek
- Department of Pediatric Immunology, Institute of Child Health, Health Science Institute, Hacettepe University, Ankara, Turkey
| | - Damla Aygün
- Institute of Child Health, Hacettepe University, Ankara, Turkey
| | | | - Şafak Parlak
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rahşan Göçmen
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kader Karlı Oğuz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
- Division of Neuroradiology, Department of Radiology, University of California Medical Center, Sacramento, USA
| | - Banu Anlar
- Department of Pediatric Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Alamri SH, Haque S, Alghamdi BS, Tayeb HO, Azhari S, Farsi RM, Elmokadem A, Alamri TA, Harakeh S, Prakash A, Kumar V. Comprehensive mapping of mutations in TDP-43 and α-Synuclein that affect stability and binding. J Biomol Struct Dyn 2025; 43:1818-1830. [PMID: 38126188 DOI: 10.1080/07391102.2023.2293258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Abnormal aggregation and amyloid inclusions of TAR DNA-binding protein 43 (TDP-43) and α-Synuclein (α-Syn) are frequently co-observed in amyotrophic lateral sclerosis, Parkinson's disease, and Alzheimer's disease. Several reports showed TDP-43 C-terminal domain (CTD) and α-Syn interact with each other and the aggregates of these two proteins colocalized together in different cellular and animal models. Molecular dynamics simulation was conducted to elucidate the stability of the TDP-43 and Syn complex structure. The interfacial mutations in protein complexes changes the stability and binding affinity of the protein that may cause diseases. Here, we have utilized the computational saturation mutagenesis approach including structure-based stability and binding energy calculations to compute the systemic effects of missense mutations of TDP-43 CTD and α-Syn on protein stability and binding affinity. Most of the interfacial mutations of CTD and α-Syn were found to destabilize the protein and reduced the protein binding affinity. The results thus shed light on the functional consequences of missense mutations observed in TDP-43 associated proteinopathies and may provide the mechanisms of co-morbidities involving these two proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sultan H Alamri
- Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Badra S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Mind and Brain Studies Initiative, Neuroscience Research Unit, Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shereen Azhari
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abear Elmokadem
- Department of Hematology/Pediatric Oncology, King Abdulaziz University Hospital, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Turki A Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Jeddah, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Gurgaon, India
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, India
| |
Collapse
|
3
|
Li P, Liao Z, Zhang B, Yin L, Li W, Jiang HS. Bicarbonate use reduces the photorespiration in Ottelia alismoides adapting to the CO 2-fluctuated aquatic systems. PHYSIOLOGIA PLANTARUM 2025; 177:e70085. [PMID: 39876775 DOI: 10.1111/ppl.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/12/2025] [Indexed: 01/30/2025]
Abstract
Underwater CO2 concentration fluctuates extremely in natural water bodies. Under low CO2, the unique CO2 concentrating mechanism in aquatic plants, bicarbonate use, can suppress photorespiration. However, it remains unknown (1) to what extent bicarbonate use reduces photorespiration, (2) how exactly photorespiration varies between bicarbonate-users and CO2-obligate users under CO2-fluctuated environments, and (3) what are differences in Rubisco characteristics between these two types of aquatic plants. In the present study, the bicarbonate user Ottelia alismoides and its phylogenetically close CO2-obligate user Blyxa japonica were chosen to answer these questions. The results showed that bicarbonate use saved ~13% carbon loss under low CO2 via decreasing photorespiration in O. alismoides. Through bicarbonate use, the photorespiration of O. alismoides was kept stable both under high and low underwater CO2 concentrations, while the photorespiration significantly increased in the CO2-obligate user B. japonica under low CO2. However, B. japonica showed a significantly higher photosynthesis rate than O. alsimoides when CO2 was sufficient. These differences could be related to the kinetic characteristics of Rubisco showing a higher carboxylation turnover rate (Kcat) in B. japonica, and the similar affinity to CO2 (Kc) and specificity factor (Sc/o) in these two species that might be determined by the variation of six amino acid residuals in Rubisco large subunit sequences, especially the site 281 (A vs. S) and 282 (H vs. F). All these differences in photorespiration and kinetic characteristics of Rubisco could explain the distribution patterns of bicarbonate users and CO2-obligate users in the field.
Collapse
Affiliation(s)
- Pengpeng Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Life and Health Sciences, Hainan University, Haikou, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- One Health Institute, Hainan University, Haikou, China
| | - Zuying Liao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, School of Life and Health Sciences, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
4
|
Oh ZG, Robison TA, Loh DH, Ang WSL, Ng JZY, Li FW, Gunn LH. Unique biogenesis and kinetics of hornwort Rubiscos revealed by synthetic biology systems. MOLECULAR PLANT 2024; 17:1833-1849. [PMID: 39491367 DOI: 10.1016/j.molp.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Hornworts are the only land plants that employ a pyrenoid to optimize Rubisco's CO2 fixation, yet hornwort Rubisco remains poorly characterized. Here we assembled the hornwort Anthoceros agrestis Rubisco (AaRubisco) using the Arabidopsis thaliana SynBio expression system and observed the formation of stalled intermediates, prompting us to develop a new SynBio system with A. agrestis cognate chaperones. We successfully assembled AaRubisco and Rubisco from three other hornwort species. Unlike A. thaliana Rubisco, AaRubisco assembly is not dependent on RbcX or Raf2. Kinetic characterization reveals that hornwort Rubiscos exhibit a range of catalytic rates (3-10 s-1), but with similar affinity (∼30 μM) and specificity (∼70) for CO2. These results suggest that hornwort Rubiscos do not comply with the long-held canonical catalytic trade-off observed in other land plants, providing experimental support that Rubisco kinetics may be phylogenetically constrained. Unexpectedly, we observed a 50% increase in AaRubisco catalytic rates when RbcX was removed from our SynBio system, without any reduction in specificity. Structural biology, biochemistry, and proteomic analysis suggest that subtle differences in Rubisco large-subunit interactions, when RbcX is absent during biogenesis, increases the accessibility of active sites and catalytic turnover rate. Collectively, this study uncovered a previously unknown Rubisco kinetic parameter space and provides a SynBio chassis to expand the survey of other Rubisco kinetics. Our discoveries will contribute to developing new approaches for engineering Rubisco with superior kinetics.
Collapse
Affiliation(s)
- Zhen Guo Oh
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Tanner Ashton Robison
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA
| | - Dan Hong Loh
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | | | - Fay-Wei Li
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA.
| | - Laura Helen Gunn
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; Department of Cell and Molecular Biology, Uppsala University, 751 24 Uppsala, Sweden.
| |
Collapse
|
5
|
Schweiger AH, Schweiger JMI. Significant Links Between Photosynthetic Capacity, Atmospheric CO 2 and the Diversification of C 3 Plants During the Last 80 Million Years. Ecol Lett 2024; 27:e14523. [PMID: 39380337 DOI: 10.1111/ele.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024]
Abstract
Changing CO2 concentrations will continue to affect plant growth with consequences for ecosystem functioning. The adaptive capacity of C3 photosynthesis to changing CO2 concentrations is, however, insufficiently investigated so far. Here, we focused on the phylogenetic dynamics of maximum carboxylation rate (Vcmax) and maximum electron transport rate (Jmax)-two key determinants of photosynthetic capacity in C3 plants-and their relation to deep-time dynamics in species diversification, speciation and atmospheric CO2 concentrations during the last 80 million years. We observed positive relationships between photosynthetic capacity and species diversification as well as speciation rates. We furthermore observed a shift in the relationships between photosynthetic capacity, evolutionary dynamics and prehistoric CO2 fluctuations about 30 million years ago. From this, we deduce strong links between photosynthetic capacity and evolutionary dynamics in C3 plants. We furthermore conclude that low CO2 environments in prehistory might have changed adaptive processes within the C3 photosynthetic pathway.
Collapse
Affiliation(s)
- Andreas H Schweiger
- Institute of Landscape and Plant Ecology, Department of Plant Ecology, University of Hohenheim, Stuttgart, Germany
| | | |
Collapse
|
6
|
Zhou F, Feng W, Mou K, Yu Z, Zeng Y, Zhang W, Zhou Y, Li Y, Gao H, Xu K, Feng C, Jing Y, Li H. Genome-Wide Analysis and Expression Profiling of Soybean RbcS Family in Response to Plant Hormones and Functional Identification of GmRbcS8 in Soybean Mosaic Virus. Int J Mol Sci 2024; 25:9231. [PMID: 39273180 PMCID: PMC11395302 DOI: 10.3390/ijms25179231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Rubisco small subunit (RbcS), a core component with crucial effects on the structure and kinetic properties of the Rubisco enzyme, plays an important role in response to plant growth, development, and various stresses. Although Rbcs genes have been characterized in many plants, their muti-functions in soybeans remain elusive. In this study, a total of 11 GmRbcS genes were identified and subsequently divided into three subgroups based on a phylogenetic relationship. The evolutionary analysis revealed that whole-genome duplication has a profound effect on GmRbcSs. The cis-acting elements responsive to plant hormones, development, and stress-related were widely found in the promoter region. Expression patterns based on the RT-qPCR assay exhibited that GmRbcS genes are expressed in multiple tissues, and notably Glyma.19G046600 (GmRbcS8) exhibited the highest expression level compared to other members, especially in leaves. Moreover, differential expressions of GmRbcS genes were found to be significantly regulated by exogenous plant hormones, demonstrating their potential functions in diverse biology processes. Finally, the function of GmRbcS8 in enhancing soybean resistance to soybean mosaic virus (SMV) was further determined through the virus-induced gene silencing (VIGS) assay. All these findings establish a strong basis for further elucidating the biological functions of RbcS genes in soybeans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yan Jing
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| | - Haiyan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (F.Z.); (W.F.); (K.M.); (Z.Y.); (Y.Z.); (W.Z.); (Y.Z.); (Y.L.); (H.G.); (K.X.); (C.F.)
| |
Collapse
|
7
|
Gerbino KR, Borin JM, Ardell SM, Lee JJ, Corbett KD, Meyer JR. Bacteriophage Φ21's receptor-binding protein evolves new functions through destabilizing mutations that generate non-genetic phenotypic heterogeneity. Virus Evol 2024; 10:veae049. [PMID: 39170727 PMCID: PMC11336670 DOI: 10.1093/ve/veae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
How viruses evolve to expand their host range is a major question with implications for predicting the next pandemic. Gain-of-function experiments have revealed that host-range expansions can occur through relatively few mutations in viral receptor-binding proteins, and the search for molecular mechanisms that explain such expansions is underway. Previous research on expansions of receptor use in bacteriophage λ has shown that mutations that destabilize λ's receptor-binding protein cause it to fold into new conformations that can utilize novel receptors but have weakened thermostability. These observations led us to hypothesize that other viruses may take similar paths to expand their host range. Here, we find support for our hypothesis by studying another virus, bacteriophage 21 (Φ21), which evolves to use two new host receptors within 2 weeks of laboratory evolution. By measuring the thermodynamic stability of Φ21 and its descendants, we show that as Φ21 evolves to use new receptors and expands its host range, it becomes less stable and produces viral particles that are genetically identical but vary in their thermostabilities. Next, we show that this non-genetic heterogeneity between particles is directly associated with receptor use innovation, as phage particles with more derived receptor-use capabilities are more unstable and decay faster. Lastly, by manipulating the expression of protein chaperones during Φ21 infection, we demonstrate that heterogeneity in receptor use of phage particles arises during protein folding. Altogether, our results provide support for the hypothesis that viruses can evolve new receptor-use tropisms through mutations that destabilize the receptor-binding protein and produce multiple protein conformers.
Collapse
Affiliation(s)
- Krista R Gerbino
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Joshua M Borin
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Sarah M Ardell
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Justin J Lee
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Kevin D Corbett
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| | - Justin R Meyer
- School of Biological Sciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States
| |
Collapse
|
8
|
Chisholm LO, Orlandi KN, Phillips SR, Shavlik MJ, Harms MJ. Ancestral Reconstruction and the Evolution of Protein Energy Landscapes. Annu Rev Biophys 2024; 53:127-146. [PMID: 38134334 PMCID: PMC11192866 DOI: 10.1146/annurev-biophys-030722-125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
A protein's sequence determines its conformational energy landscape. This, in turn, determines the protein's function. Understanding the evolution of new protein functions therefore requires understanding how mutations alter the protein energy landscape. Ancestral sequence reconstruction (ASR) has proven a valuable tool for tackling this problem. In ASR, one phylogenetically infers the sequences of ancient proteins, allowing characterization of their properties. When coupled to biophysical, biochemical, and functional characterization, ASR can reveal how historical mutations altered the energy landscape of ancient proteins, allowing the evolution of enzyme activity, altered conformations, binding specificity, oligomerization, and many other protein features. In this article, we review how ASR studies have been used to dissect the evolution of energy landscapes. We also discuss ASR studies that reveal how energy landscapes have shaped protein evolution. Finally, we propose that thinking about evolution from the perspective of an energy landscape can improve how we approach and interpret ASR studies.
Collapse
Affiliation(s)
- Lauren O Chisholm
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Kona N Orlandi
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Sophia R Phillips
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael J Shavlik
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Michael J Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA;
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
9
|
Li M, Tang H, Qing R, Wang Y, Liu J, Wang R, Lyu S, Ma L, Xu P, Zhang S, Tao F. Design of a water-soluble transmembrane receptor kinase with intact molecular function by QTY code. Nat Commun 2024; 15:4293. [PMID: 38858360 PMCID: PMC11164701 DOI: 10.1038/s41467-024-48513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Membrane proteins are critical to biological processes and central to life sciences and modern medicine. However, membrane proteins are notoriously challenging to study, mainly owing to difficulties dictated by their highly hydrophobic nature. Previously, we reported QTY code, which is a simple method for designing water-soluble membrane proteins. Here, we apply QTY code to a transmembrane receptor, histidine kinase CpxA, to render it completely water-soluble. The designed CpxAQTY exhibits expected biophysical properties and highly preserved native molecular function, including the activities of (i) autokinase, (ii) phosphotransferase, (iii) phosphatase, and (iv) signaling receptor, involving a water-solubilized transmembrane domain. We probe the principles underlying the balance of structural stability and activity in the water-solubilized transmembrane domain. Computational approaches suggest that an extensive and dynamic hydrogen-bond network introduced by QTY code and its flexibility may play an important role. Our successful functional preservation further substantiates the robustness and comprehensiveness of QTY code.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanze Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiongqin Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shan Lyu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lina Ma
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Ivontsin LA, Mashkovtseva EV, Nartsissov YR. Molecular Dynamics Simulations of the Mutated Proton-Transferring a-Subunit of E. coli F oF 1-ATP Synthase. Int J Mol Sci 2024; 25:5143. [PMID: 38791189 PMCID: PMC11121307 DOI: 10.3390/ijms25105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The membrane Fo factor of ATP synthase is highly sensitive to mutations in the proton half-channel leading to the functional blocking of the entire protein. To identify functionally important amino acids for the proton transport, we performed molecular dynamic simulations on the selected mutants of the membrane part of the bacterial FoF1-ATP synthase embedded in a native lipid bilayer: there were nine different mutations of a-subunit residues (aE219, aH245, aN214, aQ252) in the inlet half-channel. The structure proved to be stable to these mutations, although some of them (aH245Y and aQ252L) resulted in minor conformational changes. aH245 and aN214 were crucial for proton transport as they directly facilitated H+ transfer. The substitutions with nonpolar amino acids disrupted the transfer chain and water molecules or neighboring polar side chains could not replace them effectively. aE219 and aQ252 appeared not to be determinative for proton translocation, since an alternative pathway involving a chain of water molecules could compensate the ability of H+ transmembrane movement when they were substituted. Thus, mutations of conserved polar residues significantly affected hydration levels, leading to drastic changes in the occupancy and capacity of the structural water molecule clusters (W1-W3), up to their complete disappearance and consequently to the proton transfer chain disruption.
Collapse
Affiliation(s)
- Leonid A. Ivontsin
- Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya Street, Moscow 115404, Russia;
| | - Elena V. Mashkovtseva
- Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya Street, Moscow 115404, Russia;
| | - Yaroslav R. Nartsissov
- Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya Street, Moscow 115404, Russia;
- Biomedical Research Group, BiDiPharma GmbH, 5 Bültbek, 22962 Siek, Germany
| |
Collapse
|
11
|
Strobel HM, Labador SD, Basu D, Sane M, Corbett KD, Meyer JR. Viral Receptor-Binding Protein Evolves New Function through Mutations That Cause Trimer Instability and Functional Heterogeneity. Mol Biol Evol 2024; 41:msae056. [PMID: 38586942 PMCID: PMC10999833 DOI: 10.1093/molbev/msae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
When proteins evolve new activity, a concomitant decrease in stability is often observed because the mutations that confer new activity can destabilize the native fold. In the conventional model of protein evolution, reduced stability is considered a purely deleterious cost of molecular innovation because unstable proteins are prone to aggregation and are sensitive to environmental stressors. However, recent work has revealed that nonnative, often unstable protein conformations play an important role in mediating evolutionary transitions, raising the question of whether instability can itself potentiate the evolution of new activity. We explored this question in a bacteriophage receptor-binding protein during host-range evolution. We studied the properties of the receptor-binding protein of bacteriophage λ before and after host-range evolution and demonstrated that the evolved protein is relatively unstable and may exist in multiple conformations with unique receptor preferences. Through a combination of structural modeling and in vitro oligomeric state analysis, we found that the instability arises from mutations that interfere with trimer formation. This study raises the intriguing possibility that protein instability might play a previously unrecognized role in mediating host-range expansions in viruses.
Collapse
Affiliation(s)
- Hannah M Strobel
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sweetzel D Labador
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Dwaipayan Basu
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mrudula Sane
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Justin R Meyer
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO 2 assimilation in plants. Proc Natl Acad Sci U S A 2024; 121:e2321050121. [PMID: 38442173 PMCID: PMC10945770 DOI: 10.1073/pnas.2321050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - David M Emms
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
13
|
Yang J, Liang K, Ke H, Zhang Y, Meng Q, Gao L, Fan J, Li G, Zhou H, Xiao J, Lei X. Enzymatic Degradation of Deoxynivalenol with the Engineered Detoxification Enzyme Fhb7. JACS AU 2024; 4:619-634. [PMID: 38425922 PMCID: PMC10900206 DOI: 10.1021/jacsau.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
In the era of global climate change, the increasingly severe Fusarium head blight (FHB) and deoxynivalenol (DON) contamination have caused economic losses and brought food and feed safety concerns. Recently, an FHB resistance gene Fhb7 coding a glutathione-S transferase (GST) to degrade DON by opening the critical toxic epoxide moiety was identified and opened a new window for wheat breeding and DON detoxification. However, the poor stability of Fhb7 and the elusiveness of the catalytic mechanism hinder its practical application. Herein, we report the first structure of Fhb7 at 2.41 Å and reveal a unique catalytic mechanism of epoxide opening transformation in GST family proteins. Furthermore, variants V29P and M10 showed that 5.5-fold and 266.7-fold longer half-life time than wild-type, respectively, were identified. These variants offer broad substrate scope, and the engineered biosafe Bacillus subtilis overexpressing the variants shows excellent DON degradation performance, exhibiting potential at bacterium engineering to achieve DON detoxification in the feed and biomedicine industry. This work provides a profound mechanistic insight into the enzymatic activities of Fhb7 and paves the way for further utilizing Fhb7-related enzymes in crop breeding and DON detoxification by synthetic biology.
Collapse
Affiliation(s)
- Jun Yang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Kai Liang
- School
of Life Sciences, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuebin Zhang
- Laboratory
of Molecular Modeling and Design, State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qian Meng
- Analytical
Research Center for Organic and Biological Molecules, State Key Laboratory
of Drug Research, Shanghai Institute of
Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Lei Gao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junping Fan
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Guohui Li
- Laboratory
of Molecular Modeling and Design, State Key Laboratory of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hu Zhou
- Analytical
Research Center for Organic and Biological Molecules, State Key Laboratory
of Drug Research, Shanghai Institute of
Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China
| | - Junyu Xiao
- School
of Life Sciences, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Academy
for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute
for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
14
|
Bloxham CJ, Hulme KD, Fierro F, Fercher C, Pegg CL, O'Brien SL, Foster SR, Short KR, Furness SGB, Reichelt ME, Niv MY, Thomas WG. Cardiac human bitter taste receptors contain naturally occurring variants that alter function. Biochem Pharmacol 2024; 219:115932. [PMID: 37989413 DOI: 10.1016/j.bcp.2023.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Bitter taste receptors (T2R) are a subfamily of G protein-coupled receptors that enable humans to detect aversive and toxic substances. The ability to discern bitter compounds varies between individuals and is attributed mainly to naturally occurring T2R polymorphisms. T2Rs are also expressed in numerous non-gustatory tissues, including the heart, indicating potential contributions to cardiovascular physiology. In this study. T2Rs that have previously been identified in human cardiac tissues (T2Rs - 10, 14, 30, 31, 46 and 50) and their naturally occurring polymorphisms were functionally characterised. The ligand-dependent signaling responses of some T2R variants were completely abolished (T2R30 Leu252 and T2R46 Met228), whereas other receptor variants had moderate changes in their maximal response, but not potency, relative to wild type. Using a cAMP fluorescent biosensor, we reveal the productive coupling of T2R14, but not the T2R14 Phe201 variant, to endogenous Gαi. Modeling revealed that these variants resulted in altered interactions that generally affected ligand binding (T2R30 Leu252) or Gα protein interactions (T2R46 Met228 and T2R14 Phe201), rather than receptor structural stability. Interestingly, this study is the first to show a difference in signaling for T2R50 Tyr203 (rs1376251) which has been associated with cardiovascular disease. The observation of naturally occurring functional variation in the T2Rs with the greatest expression in the heart is important, as their discovery should prove useful in deciphering the role of T2Rs within the cardiovascular system.
Collapse
Affiliation(s)
- Conor J Bloxham
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, QLD, Australia; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Katina D Hulme
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, QLD, Australia; Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Fabrizio Fierro
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Israel
| | - Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, QLD, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, QLD, Australia
| | - Shannon L O'Brien
- Institute of Metabolism and Systems Research, University of Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, United Kingdom
| | - Simon R Foster
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, QLD, Australia; QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, QLD, Australia
| | - Sebastian G B Furness
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, QLD, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Melissa E Reichelt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, QLD, Australia
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Israel
| | - Walter G Thomas
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, QLD, Australia.
| |
Collapse
|
15
|
Arya R, Tripathi P, Nayak K, Ganesh J, Bihani SC, Ghosh B, Prashar V, Kumar M. Insights into the evolution of mutations in SARS-CoV-2 non-spike proteins. Microb Pathog 2023; 185:106460. [PMID: 37995880 DOI: 10.1016/j.micpath.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The COVID-19 pandemic has been driven by the emergence of SARS-CoV-2 variants with mutations across all the viral proteins. Although mutations in the spike protein have received significant attention, understanding the prevalence and potential impact of mutations in other viral proteins is essential for comprehending the evolution of SARS-CoV-2. Here, we conducted a comprehensive analysis of approximately 14 million sequences of SARS-CoV-2 deposited in the GISAID database until December 2022 to identify prevalent mutations in the non-spike proteins at the global and country levels. Additionally, we evaluated the energetics of each mutation to better understand their impact on protein stability. While the consequences of many mutations remain unclear, we discuss potential structural and functional significance of some mutations. Our study highlights the ongoing evolutionary process of SARS-CoV-2 and underscores the importance of understanding changes in non-spike proteins.
Collapse
Affiliation(s)
- Rimanshee Arya
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Preeti Tripathi
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Karthik Nayak
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Janani Ganesh
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Biplab Ghosh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Beamline Development & Application Section, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Vishal Prashar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Mukesh Kumar
- Protein Crystallography Section, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
16
|
Bouvier JW, Kelly S. Response to Tcherkez and Farquhar: Rubisco adaptation is more limited by phylogenetic constraint than by catalytic trade-off. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154021. [PMID: 37392528 DOI: 10.1016/j.jplph.2023.154021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Rubisco is the primary entry point for carbon into the biosphere. It has been widely proposed that rubisco is highly constrained by catalytic trade-offs due to correlations between the enzyme's kinetic traits across species. In previous work, we have shown that the strength of these correlations, and thus the strength of catalytic trade-offs, have been overestimated due to the presence of phylogenetic signal in the kinetic trait data (Bouvier et al., 2021). We demonstrated that only the trade-offs between the Michaelis constant for CO2 and carboxylase turnover, and between the Michaelis constants for CO2 and O2 were robust to phylogenetic effects. We further demonstrated that phylogenetic constraints have limited rubisco adaptation to a greater extent than the combined action of catalytic trade-offs. Recently, however, our claims have been contested by Tcherkez and Farquhar (2021), who have argued that the phylogenetic signal we detect in rubisco kinetic traits is an artefact of species sampling, the use of rbcL-based trees for phylogenetic inference, laboratory-to-laboratory variability in kinetic measurements, and homoplasy of the C4 trait. In the present article, we respond to these criticisms on a point-by-point basis and conclusively show that all are unfounded. As such, we stand by our original conclusions. Namely, although rubisco kinetic evolution has been limited by biochemical trade-offs, these are not absolute and have been previously overestimated due to phylogenetic biases. Instead, rubisco adaptation has in fact been more limited by phylogenetic constraint.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, United Kingdom.
| |
Collapse
|
17
|
Peccati F, Alunno-Rufini S, Jiménez-Osés G. Accurate Prediction of Enzyme Thermostabilization with Rosetta Using AlphaFold Ensembles. J Chem Inf Model 2023; 63:898-909. [PMID: 36647575 PMCID: PMC9930118 DOI: 10.1021/acs.jcim.2c01083] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thermostability enhancement is a fundamental aspect of protein engineering as a biocatalyst's half-life is key for its industrial and biotechnological application, particularly at high temperatures and under harsh conditions. Thermostability changes upon mutation originate from modifications of the free energy of unfolding (ΔGu), making thermostabilization extremely challenging to predict with computational methods. In this contribution, we combine global conformational sampling with energy prediction using AlphaFold and Rosetta to develop a new computational protocol for the quantitative prediction of thermostability changes upon laboratory evolution of acyltransferase LovD and lipase LipA. We highlight how using an ensemble of protein conformations rather than a single three-dimensional model is mandatory for accurate thermostability predictions. By comparing our approaches with existing ones, we show that ensembles based on AlphaFold models provide more accurate and robust calculated thermostability trends than ensembles based solely on crystallographic structures as the latter introduce a strong distortion (scaffold bias) in computed thermostabilities. Eliminating this bias is critical for computer-guided enzyme design and evaluating the effect of multiple mutations on protein stability.
Collapse
Affiliation(s)
- Francesca Peccati
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain,
| | - Sara Alunno-Rufini
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain
| | - Gonzalo Jiménez-Osés
- Basque
Research and Technology Alliance (BRTA), Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Technology Park, Building
800, 48160Derio, Spain,Ikerbasque, Basque
Foundation for Science, 48013Bilbao, Spain,
| |
Collapse
|
18
|
Iqbal WA, Lisitsa A, Kapralov MV. Predicting plant Rubisco kinetics from RbcL sequence data using machine learning. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:638-650. [PMID: 36094849 PMCID: PMC9833099 DOI: 10.1093/jxb/erac368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is responsible for the conversion of atmospheric CO2 to organic carbon during photosynthesis, and often acts as a rate limiting step in the later process. Screening the natural diversity of Rubisco kinetics is the main strategy used to find better Rubisco enzymes for crop engineering efforts. Here, we demonstrate the use of Gaussian processes (GPs), a family of Bayesian models, coupled with protein encoding schemes, for predicting Rubisco kinetics from Rubisco large subunit (RbcL) sequence data. GPs trained on published experimentally obtained Rubisco kinetic datasets were applied to over 9000 sequences encoding RbcL to predict Rubisco kinetic parameters. Notably, our predicted kinetic values were in agreement with known trends, e.g. higher carboxylation turnover rates (Kcat) for Rubisco enzymes from C4 or crassulacean acid metabolism (CAM) species, compared with those found in C3 species. This is the first study demonstrating machine learning approaches as a tool for screening and predicting Rubisco kinetics, which could be applied to other enzymes.
Collapse
Affiliation(s)
- Wasim A Iqbal
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Alexei Lisitsa
- Department of Computer Science, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | | |
Collapse
|
19
|
Eliminating host-guest incompatibility via enzyme mining enables the high-temperature production of N-acetylglucosamine. iScience 2022; 26:105774. [PMID: 36636338 PMCID: PMC9829697 DOI: 10.1016/j.isci.2022.105774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/09/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The host-guest incompatibility between a production host and non-native enzymes has posed an arduous challenge for synthetic biology, particularly between mesophile-derived enzymes and a thermophilic chassis. In the present study, we develop a thermophilic enzyme mining strategy comprising an automated co-evolution-based screening pipeline (http://cem.sjtu.edu.cn), computation-based enzyme characterization, and gene synthesis-based function validation. Using glucosamine-6-phosphate acetyltransferase (GNA1) as an example, we successfully mined four novel GNA1s with excellent thermostabilities and catalytic performances. Calculation and analysis based on AlphaFold2-generated structures were also conducted to uncover the mechanism underlying their excellent properties. Finally, our mined GNA1s were used to enable the high-temperature N-acetylglucosamine (GlcNAc) production with high titers of up to 119.3 g/L, with the aid of systems metabolic engineering and temperature programming. This study demonstrates the effectiveness of the enzyme mining strategy, highlighting the application prospects of mining new enzymes from massive databases and providing an effective solution for tackling host-guest incompatibility.
Collapse
|
20
|
Han K, Lee H, Kang TG, Lee J, Kim SK. Direct and efficient elimination of ethyl carbamate by engineered Saccharomyces cerevisiae displaying urethanase. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Iyengar BR, Wagner A. Bacterial Hsp90 predominantly buffers but does not potentiate the phenotypic effects of deleterious mutations during fluorescent protein evolution. Genetics 2022; 222:iyac154. [PMID: 36227141 PMCID: PMC9713429 DOI: 10.1093/genetics/iyac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022] Open
Abstract
Chaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype. On the other hand, they can potentiate the effects of mutations and thus enhance the phenotypic changes caused by a mutation. We study that how the bacterial Hsp90 chaperone (HtpG) affects the evolution of green fluorescent protein. To this end, we performed directed evolution of green fluorescent protein under low and high cellular concentrations of Hsp90. Specifically, we evolved green fluorescent protein under both stabilizing selection for its ancestral (green) phenotype and directional selection toward a new (cyan) phenotype. While Hsp90 did only affect the rate of adaptive evolution transiently, it did affect the phenotypic effects of mutations that occurred during adaptive evolution. Specifically, Hsp90 allowed strongly deleterious mutations to accumulate in evolving populations by buffering their effects. Our observations show that the role of a chaperone for adaptive evolution depends on the organism and the trait being studied.
Collapse
Affiliation(s)
- Bharat Ravi Iyengar
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- Institute for Evolution and Biodiversity, Westfalian Wilhelms—University of Münster, 48149 Münster, Germany
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM 87501, USA
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| |
Collapse
|
22
|
Shin J, Kim S, Park W, Jin KC, Kim SK, Kweon DH. Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose. J Microbiol Biotechnol 2022; 32:1471-1478. [PMID: 36437520 PMCID: PMC9720067 DOI: 10.4014/jmb.2209.09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seungjoo Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea,
S.K. Kim Phone: +82-31-670-3261 Fax: +82-31-675-3108 E-mail:
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding authors D.H. Kweon Phone: +82-31-290-7869 Fax: +82-31-290-7870 E-mail:
| |
Collapse
|
23
|
Xue B, Li R, Ma H, Rahaman A, Kumar V. Comprehensive mapping of mutations in the C9ORF72 that affect folding and binding to SMCR8 protein. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
25
|
Almeida de Jesus D, Batista DM, Monteiro EF, Salzman S, Carvalho LM, Santana K, André T. Structural changes and adaptative evolutionary constraints in FLOWERING LOCUS T and TERMINAL FLOWER1-like genes of flowering plants. Front Genet 2022; 13:954015. [PMID: 36246591 PMCID: PMC9556947 DOI: 10.3389/fgene.2022.954015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of flowering is a crucial event in the evolutionary history of angiosperms. The production of flowers is regulated through the integration of different environmental and endogenous stimuli, many of which involve the activation of different genes in a hierarchical and complex signaling network. The FLOWERING LOCUS T/TERMINAL FLOWER 1 (FT/TFL1) gene family is known to regulate important aspects of flowering in plants. To better understand the pivotal events that changed FT and TFL1 functions during the evolution of angiosperms, we reconstructed the ancestral sequences of FT/TFL1-like genes and predicted protein structures through in silico modeling to identify determinant sites that evolved in both proteins and allowed the adaptative diversification in the flowering phenology and developmental processes. In addition, we demonstrate that the occurrence of destabilizing mutations in residues located at the phosphatidylcholine binding sites of FT structure are under positive selection, and some residues of 4th exon are under negative selection, which is compensated by the occurrence of stabilizing mutations in key regions and the P-loop to maintain the overall protein stability. Our results shed light on the evolutionary history of key genes involved in the diversification of angiosperms.
Collapse
Affiliation(s)
- Deivid Almeida de Jesus
- Institute of Biology Genetics Graduate Program, Federal University of Rio de Janeiro Rio de Janeiro, Rio de Janeiro, Brazil
| | - Darlisson Mesquista Batista
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará Santarém, Pará, Santarém, Brazil
| | - Elton Figueira Monteiro
- Programa de Pós-Graduação em Biodiversidade, Universidade Federal do Oeste do Pará Santarém, Pará, Santarém, Brazil
| | - Shayla Salzman
- School of Integrative Plant Sciences. Section of Plant Biology. Cornell University Ithaca, New York, NY, United States
| | - Lucas Miguel Carvalho
- Center for Computing in Engineering and Sciences, State University of Campinas. Campinas, São Paulo, Brazil
| | - Kauê Santana
- Institute of Biodiversity, Federal University of Western Pará Santarém Pará, Santarém, Brazil
- *Correspondence: Kauê Santana, ; Thiago André,
| | - Thiago André
- Botany Department, University of Brasília, Brasília, Brazil
- *Correspondence: Kauê Santana, ; Thiago André,
| |
Collapse
|
26
|
Haworth M, Marino G, Loreto F, Centritto M. The evolution of diffusive and biochemical capacities for photosynthesis was predominantly shaped by [CO 2] with a smaller contribution from [O 2]. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156606. [PMID: 35691351 DOI: 10.1016/j.scitotenv.2022.156606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The atmospheric concentration of carbon dioxide ([CO2]) and oxygen ([O2]) directly influence rates of photosynthesis (PN) and photorespiration (RPR) through the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). Levels of [CO2] and [O2] have varied over Earth history affecting rates of both CO2 uptake and loss, alongside associated transpirative water-loss. The availability of CO2 has likely acted as a stronger selective pressure than [O2] due to the greater specificity of RubisCO for CO2. The role of [O2], and the interaction of [O2] and [CO2], in plant evolutionary history is less understood. We exposed twelve phylogenetically diverse species to combinations of sub-ambient, ambient and super-ambient [O2] and [CO2] to examine the biochemical and diffusive components of PN and the possible role of [O2] as a selective pressure. Photosynthesis, photosynthetic capacity and stomatal, mesophyll and total conductance to CO2 were higher in the derived eudicot and monocot angiosperms than the more basal ferns, gymnosperms and basal angiosperms which originated in atmospheres characterised by higher CO2:O2 ratios. The ratio of RPR:PN was lower in the monocots, consistent with greater carboxylation capacity and higher stomatal and mesophyll conductance making easier CO2 delivery to chloroplasts. The effect of [O2] and [CO2] on PN/RPR was less evident in more derived species with a higher conductance to CO2. The effect of [O2] was less apparent at high [CO2], suggesting that atmospheric [O2] may only have exerted a strong selective pressure on plant photosynthetic processes during periods characterised by low atmospheric CO2:O2 ratios. Current rising [CO2] will predominantly enhance PN rates in species with low diffusive conductance to CO2.
Collapse
Affiliation(s)
- Matthew Haworth
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy.
| | - Giovanni Marino
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Francesco Loreto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Mauro Centritto
- National Research Council of Italy - Institute of Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; ENI-CNR Water Research Centre "Hypatia of Alexandria", Research Centre Metapontum Agrobios, Metaponto, Italy
| |
Collapse
|
27
|
Mintoff D, Pace NP, Borg I. Interpreting the spectrum of gamma-secretase complex missense variation in the context of hidradenitis suppurativa—An in-silico study. Front Genet 2022; 13:962449. [PMID: 36118898 PMCID: PMC9478468 DOI: 10.3389/fgene.2022.962449] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a disease of the pilosebaceous unit characterized by recurrent nodules, abscesses and draining tunnels with a predilection to intertriginous skin. The pathophysiology of HS is complex. However, it is known that inflammation and hyperkeratinization at the hair follicle play crucial roles in disease manifestation. Genetic and environmental factors are considered the main drivers of these two pathophysiological processes. Despite a considerable proportion of patients having a positive family history of disease, only a minority of patients suffering from HS have been found to harbor monogenic variants which segregate to affected kindreds. Most of these variants are in the ɣ secretase complex (GSC) protein-coding genes. In this manuscript, we set out to characterize the burden of missense pathogenic variants in healthy reference population using large scale genomic dataset thereby providing a standard for comparing genomic variation in GSC protein-coding genes in the HS patient cohort.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Nikolai P. Pace
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- *Correspondence: Nikolai P. Pace,
| | - Isabella Borg
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Centre for Molecular Biology and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
28
|
Gröhs Ferrareze PA, Zimerman RA, Franceschi VB, Caldana GD, Netz PA, Thompson CE. Molecular evolution and structural analyses of the spike glycoprotein from Brazilian SARS-CoV-2 genomes: the impact of selected mutations. J Biomol Struct Dyn 2022; 41:3110-3128. [PMID: 35594172 DOI: 10.1080/07391102.2022.2076154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has reached by February 2022 more than 380 million cases and 5.5 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the hACE2 cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in RBD have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this work, we identified 48 sites under selective pressures, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified 28 sites found not to be conditionally independent, such as E484K-N501Y. The molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for enhanced binding affinity between the spike RBD and hACE2 in P.1 and P.2 lineages (specially with L452V). Structural changes were also identified in the hACE molecule when interacting with B.1.1.7 RDB. Despite some destabilizing substitutions, a stabilizing effect was identified for the majority of the positively selected mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patrícia Aline Gröhs Ferrareze
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | - Vinícius Bonetti Franceschi
- Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriel Dickin Caldana
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paulo Augusto Netz
- Graduate Program in Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.,Center of Biotechnology, Graduate Program in Cell and Molecular Biology (PPGBCM), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Kędzior M, Garcia AK, Li M, Taton A, Adam ZR, Young JN, Kaçar B. Resurrected Rubisco suggests uniform carbon isotope signatures over geologic time. Cell Rep 2022; 39:110726. [PMID: 35476992 DOI: 10.1016/j.celrep.2022.110726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The earliest geochemical indicators of microbes-and the enzymes that powered them-extend back ∼3.8 Ga on Earth. Paleobiologists often attempt to understand these indicators by assuming that the behaviors of extant microbes and enzymes are uniform with those of their predecessors. This consistency in behavior seems at odds with our understanding of the inherent variability of living systems. Here, we examine whether a uniformitarian assumption for an enzyme thought to generate carbon isotope indicators of biological activity, RuBisCO, can be corroborated by independently studying the history of changes recorded within RuBisCO's genetic sequences. We resurrected a Precambrian-age RuBisCO by engineering its ancient DNA inside a cyanobacterium genome and measured the engineered organism's fitness and carbon-isotope-discrimination profile. Results indicate that Precambrian uniformitarian assumptions may be warranted but with important caveats. Experimental studies illuminating early innovations are crucial to explore the molecular foundations of life's earliest traces.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Amanda K Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Meng Li
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Arnaud Taton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zachary R Adam
- NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Geosciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA 98195, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; NASA Center for Early Life and Evolution, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
30
|
Lin MT, Salihovic H, Clark FK, Hanson MR. Improving the efficiency of Rubisco by resurrecting its ancestors in the family Solanaceae. SCIENCE ADVANCES 2022; 8:eabm6871. [PMID: 35427154 PMCID: PMC9012466 DOI: 10.1126/sciadv.abm6871] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants and photosynthetic organisms have a remarkably inefficient enzyme named Rubisco that fixes atmospheric CO2 into organic compounds. Understanding how Rubisco has evolved in response to past climate change is important for attempts to adjust plants to future conditions. In this study, we developed a computational workflow to assemble de novo both large and small subunits of Rubisco enzymes from transcriptomics data. Next, we predicted sequences for ancestral Rubiscos of the (nightshade) family Solanaceae and characterized their kinetics after coexpressing them in Escherichia coli. Predicted ancestors of C3 Rubiscos were identified that have superior kinetics and excellent potential to help plants adapt to anthropogenic climate change. Our findings also advance understanding of the evolution of Rubisco's catalytic traits.
Collapse
|
31
|
Blazanin M, Lam WT, Vasen E, Chan BK, Turner PE. Decay and damage of therapeutic phage OMKO1 by environmental stressors. PLoS One 2022; 17:e0263887. [PMID: 35196336 PMCID: PMC8865689 DOI: 10.1371/journal.pone.0263887] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Antibiotic resistant bacterial pathogens are increasingly prevalent, driving the need for alternative approaches to chemical antibiotics when treating infections. One such approach is bacteriophage therapy: the use of bacteria-specific viruses that lyse (kill) their host cells. Just as the effect of environmental conditions (e.g. elevated temperature) on antibiotic efficacy is well-studied, the effect of environmental stressors on the potency of phage therapy candidates demands examination. Therapeutic phage OMKO1 infects and kills the opportunistic human pathogen Pseudomonas aeruginosa. Here, we used phage OMKO1 as a model to test how environmental stressors can lead to damage and decay of virus particles. We assessed the effects of elevated temperatures, saline concentrations, and urea concentrations. We observed that OMKO1 particles were highly tolerant to different saline concentrations, but decayed more rapidly at elevated temperatures and under high concentrations of urea. Additionally, we found that exposure to elevated temperature reduced the ability of surviving phage particles to suppress the growth of P. aeruginosa, suggesting a temperature-induced damage. Our findings demonstrate that OMKO1 is highly tolerant to a range of conditions that could be experienced inside and outside the human body, while also showing the need for careful characterization of therapeutic phages to ensure that environmental exposure does not compromise their expected potency, dosing, and pharmacokinetics.
Collapse
Affiliation(s)
- Michael Blazanin
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- * E-mail:
| | - Wai Tin Lam
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Emma Vasen
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Benjamin K. Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States of America
| |
Collapse
|
32
|
Iyengar BR, Wagner A. GroEL/S overexpression helps to purge deleterious mutations and reduce genetic diversity during adaptive protein evolution. Mol Biol Evol 2022; 39:6540901. [PMID: 35234895 PMCID: PMC9188349 DOI: 10.1093/molbev/msac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL + GroES) affects the evolution of green fluorescent protein (GFP). To this end we subjected GFP to multiple rounds of mutation and selection for its color phenotype in four replicate E. coli populations, and studied its evolutionary dynamics through high-throughput sequencing and mutant engineering. We evolved GFP both under stabilizing selection for its ancestral (green) phenotype, and to directional selection for a new (cyan) phenotype. We did so both under low and high expression of the chaperone GroE. In contrast to previous work, we observe that GroE does not just buffer but also helps purge deleterious (fluorescence reducing) mutations from evolving populations. In doing so, GroE helps reduce the genetic diversity of evolving populations. In addition, it causes phenotypic heterogeneity in mutants with the same genotype, helping to enhance their fluorescence in some cells, and reducing it in others. Our observations show that chaperones can affect adaptive evolution in more than one way.
Collapse
|
33
|
Strobel HM, Horwitz EK, Meyer JR. Viral protein instability enhances host-range evolvability. PLoS Genet 2022; 18:e1010030. [PMID: 35176040 PMCID: PMC8890733 DOI: 10.1371/journal.pgen.1010030] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/02/2022] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
Viruses are highly evolvable, but what traits endow this property? The high mutation rates of viruses certainly play a role, but factors that act above the genetic code, like protein thermostability, are also expected to contribute. We studied how the thermostability of a model virus, bacteriophage λ, affects its ability to evolve to use a new receptor, a key evolutionary transition that can cause host-range evolution. Using directed evolution and synthetic biology techniques we generated a library of host-recognition protein variants with altered stabilities and then tested their capacity to evolve to use a new receptor. Variants fell within three stability classes: stable, unstable, and catastrophically unstable. The most evolvable were the two unstable variants, whereas seven of eight stable variants were significantly less evolvable, and the two catastrophically unstable variants could not grow. The slowly evolving stable variants were delayed because they required an additional destabilizing mutation. These results are particularly noteworthy because they contradict a widely supported contention that thermostabilizing mutations enhance evolvability of proteins by increasing mutational robustness. Our work suggests that the relationship between thermostability and evolvability is more complex than previously thought, provides evidence for a new molecular model of host-range expansion evolution, and identifies instability as a potential predictor of viral host-range evolution.
Collapse
Affiliation(s)
- Hannah M. Strobel
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Elijah K. Horwitz
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Justin R. Meyer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
34
|
Casola C, Li J. Beyond RuBisCO: convergent molecular evolution of multiple chloroplast genes in C 4 plants. PeerJ 2022; 10:e12791. [PMID: 35127287 PMCID: PMC8801178 DOI: 10.7717/peerj.12791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/22/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The recurrent evolution of the C4 photosynthetic pathway in angiosperms represents one of the most extraordinary examples of convergent evolution of a complex trait. Comparative genomic analyses have unveiled some of the molecular changes associated with the C4 pathway. For instance, several key enzymes involved in the transition from C3 to C4 photosynthesis have been found to share convergent amino acid replacements along C4 lineages. However, the extent of convergent replacements potentially associated with the emergence of C4 plants remains to be fully assessed. Here, we conducted an organelle-wide analysis to determine if convergent evolution occurred in multiple chloroplast proteins beside the well-known case of the large RuBisCO subunit encoded by the chloroplast gene rbcL. METHODS Our study was based on the comparative analysis of 43 C4 and 21 C3 grass species belonging to the PACMAD clade, a focal taxonomic group in many investigations of C4 evolution. We first used protein sequences of 67 orthologous chloroplast genes to build an accurate phylogeny of these species. Then, we inferred amino acid replacements along 13 C4 lineages and 9 C3 lineages using reconstructed protein sequences of their reference branches, corresponding to the branches containing the most recent common ancestors of C4-only clades and C3-only clades. Pairwise comparisons between reference branches allowed us to identify both convergent and non-convergent amino acid replacements between C4:C4, C3:C3 and C3:C4 lineages. RESULTS The reconstructed phylogenetic tree of 64 PACMAD grasses was characterized by strong supports in all nodes used for analyses of convergence. We identified 217 convergent replacements and 201 non-convergent replacements in 45/67 chloroplast proteins in both C4 and C3 reference branches. C4:C4 branches showed higher levels of convergent replacements than C3:C3 and C3:C4 branches. Furthermore, we found that more proteins shared unique convergent replacements in C4 lineages, with both RbcL and RpoC1 (the RNA polymerase beta' subunit 1) showing a significantly higher convergent/non-convergent replacements ratio in C4 branches. Notably, more C4:C4 reference branches showed higher numbers of convergent vs. non-convergent replacements than C3:C3 and C3:C4 branches. Our results suggest that, in the PACMAD clade, C4 grasses experienced higher levels of molecular convergence than C3 species across multiple chloroplast genes. These findings have important implications for our understanding of the evolution of the C4 photosynthesis pathway.
Collapse
Affiliation(s)
- Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
- Interdisciplinary Graduate Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, United States of America
| | - Jingjia Li
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
35
|
Recombination of Single Beneficial Substitutions Obtained from Protein Engineering by Computer-Assisted Recombination (CompassR). Methods Mol Biol 2022; 2461:9-18. [PMID: 35727441 DOI: 10.1007/978-1-0716-2152-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A large number of beneficial substitutions can be obtained from a successful directed enzyme evolution campaign and/or (semi)rational design. It is expected that the recombination of some beneficial substitutions leads to a much higher degree of performance through synergistic effect. However, systematic recombination studies show that poorly performing variants are often obtained after recombination of three to four individual beneficial substitutions and this limits protein engineers to exploit nature's potential in generating better performing enzymes. Computer-assisted Recombination (CompassR) strategy allows the recombination of identified beneficial substitutions in an effective and efficient manner in order to generate active enzymes with improved performance. Here, we describe in detail the CompassR procedure with an example of recombining four substitutions and discuss some important practical issues that should be considered (such as the selection of protein structures, number of FoldX runs, evaluation of calculations) for application of the CompassR rule. The core part of this protocol (system setup, ΔΔGfold calculation, and CompassR application) is transferable to other enzymes and any recombination of single beneficial substitutions.
Collapse
|
36
|
Kselíková V, Singh A, Bialevich V, Čížková M, Bišová K. Improving microalgae for biotechnology - From genetics to synthetic biology - Moving forward but not there yet. Biotechnol Adv 2021; 58:107885. [PMID: 34906670 DOI: 10.1016/j.biotechadv.2021.107885] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/28/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Microalgae are a diverse group of photosynthetic organisms that can be exploited for the production of different compounds, ranging from crude biomass and biofuels to high value-added biochemicals and synthetic proteins. Traditionally, algal biotechnology relies on bioprospecting to identify new highly productive strains and more recently, on forward genetics to further enhance productivity. However, it has become clear that further improvements in algal productivity for biotechnology is impossible without combining traditional tools with the arising molecular genetics toolkit. We review recent advantages in developing high throughput screening methods, preparing genome-wide mutant libraries, and establishing genome editing techniques. We discuss how algae can be improved in terms of photosynthetic efficiency, biofuel and high value-added compound production. Finally, we critically evaluate developments over recent years and explore future potential in the field.
Collapse
Affiliation(s)
- Veronika Kselíková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Anjali Singh
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Vitali Bialevich
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Mária Čížková
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic
| | - Kateřina Bišová
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Laboratory of Cell Cycles of Algae, 379 81 Třeboň, Czech Republic.
| |
Collapse
|
37
|
Caetano-Anollés G, Aziz MF, Mughal F, Caetano-Anollés D. Tracing protein and proteome history with chronologies and networks: folding recapitulates evolution. Expert Rev Proteomics 2021; 18:863-880. [PMID: 34628994 DOI: 10.1080/14789450.2021.1992277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION While the origin and evolution of proteins remain mysterious, advances in evolutionary genomics and systems biology are facilitating the historical exploration of the structure, function and organization of proteins and proteomes. Molecular chronologies are series of time events describing the history of biological systems and subsystems and the rise of biological innovations. Together with time-varying networks, these chronologies provide a window into the past. AREAS COVERED Here, we review molecular chronologies and networks built with modern methods of phylogeny reconstruction. We discuss how chronologies of structural domain families uncover the explosive emergence of metabolism, the late rise of translation, the co-evolution of ribosomal proteins and rRNA, and the late development of the ribosomal exit tunnel; events that coincided with a tendency to shorten folding time. Evolving networks described the early emergence of domains and a late 'big bang' of domain combinations. EXPERT OPINION Two processes, folding and recruitment appear central to the evolutionary progression. The former increases protein persistence. The later fosters diversity. Chronologically, protein evolution mirrors folding by combining supersecondary structures into domains, developing translation machinery to facilitate folding speed and stability, and enhancing structural complexity by establishing long-distance interactions in novel structural and architectural designs.
Collapse
Affiliation(s)
- Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA.,C. R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | - M Fayez Aziz
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Fizza Mughal
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, USA
| | - Derek Caetano-Anollés
- Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Can ND, Basturk E, Kizilboga T, Akcay IM, Dingiloglu B, Tatli O, Acar S, Ozfiliz Kilbas P, Elbeyli E, Muratcioglu S, Jannuzzi AT, Gursoy A, Keskin O, Doganay HL, Karademir Yilmaz B, Dinler Doganay G. Interactome analysis of Bag-1 isoforms reveals novel interaction partners in endoplasmic reticulum-associated degradation. PLoS One 2021; 16:e0256640. [PMID: 34428256 PMCID: PMC8384158 DOI: 10.1371/journal.pone.0256640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Bag-1 is a multifunctional protein that regulates Hsp70 chaperone activity, apoptosis, and proliferation. The three major Bag-1 isoforms have different subcellular localizations and partly non-overlapping functions. To identify the detailed interaction network of each isoform, we utilized mass spectrometry-based proteomics and found that interactomes of Bag-1 isoforms contained many common proteins, with variations in their abundances. Bag-1 interactomes were enriched with proteins involved in protein processing and degradation pathways. Novel interaction partners included VCP/p97; a transitional ER ATPase, Rad23B; a shuttling factor for ubiquitinated proteins, proteasome components, and ER-resident proteins, suggesting a role for Bag-1 also in ER-associated protein degradation (ERAD). Bag-1 pull-down from cells and tissues from breast cancer patients validated these interactions and showed cancer-related prominence. Using in silico predictions we detected hotspot residues of Bag-1. Mutations of these residues caused loss of binding to protein quality control elements and impaired proteasomal activity in MCF-7 cells. Following CD147 glycosylation pattern, we showed that Bag-1 downregulated VCP/p97-dependent ERAD. Overall, our data extends the interaction map of Bag-1, and broadens its role in protein homeostasis. Targeting the interaction surfaces revealed in this study might be an effective strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Nisan Denizce Can
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ezgi Basturk
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Tugba Kizilboga
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Izzet Mehmet Akcay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Baran Dingiloglu
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Tatli
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Molecular Biology and Genetics Department, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sevilay Acar
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| | - Pelin Ozfiliz Kilbas
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul, Turkey
| | - Efe Elbeyli
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ayse Tarbin Jannuzzi
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - Attila Gursoy
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | | | - Betul Karademir Yilmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Gizem Dinler Doganay
- Department of Molecular Biology—Genetics and Biotechnology, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
39
|
Garcia AK, Cavanaugh CM, Kacar B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. THE ISME JOURNAL 2021; 15:2183-2194. [PMID: 33846565 PMCID: PMC8319343 DOI: 10.1038/s41396-021-00971-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth's atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Colleen M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- Lunar and Planetary Laboratory and Steward Observatory, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
40
|
Bouvier JW, Emms DM, Rhodes T, Bolton JS, Brasnett A, Eddershaw A, Nielsen JR, Unitt A, Whitney SM, Kelly S. Rubisco Adaptation Is More Limited by Phylogenetic Constraint Than by Catalytic Trade-off. Mol Biol Evol 2021; 38:2880-2896. [PMID: 33739416 PMCID: PMC8233502 DOI: 10.1093/molbev/msab079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rubisco assimilates CO2 to form the sugars that fuel life on earth. Correlations between rubisco kinetic traits across species have led to the proposition that rubisco adaptation is highly constrained by catalytic trade-offs. However, these analyses did not consider the phylogenetic context of the enzymes that were analyzed. Thus, it is possible that the correlations observed were an artefact of the presence of phylogenetic signal in rubisco kinetics and the phylogenetic relationship between the species that were sampled. Here, we conducted a phylogenetically resolved analysis of rubisco kinetics and show that there is a significant phylogenetic signal in rubisco kinetic traits. We re-evaluated the extent of catalytic trade-offs accounting for this phylogenetic signal and found that all were attenuated. Following phylogenetic correction, the largest catalytic trade-offs were observed between the Michaelis constant for CO2 and carboxylase turnover (∼21-37%), and between the Michaelis constants for CO2 and O2 (∼9-19%), respectively. All other catalytic trade-offs were substantially attenuated such that they were marginal (<9%) or non-significant. This phylogenetically resolved analysis of rubisco kinetic evolution also identified kinetic changes that occur concomitant with the evolution of C4 photosynthesis. Finally, we show that phylogenetic constraints have played a larger role than catalytic trade-offs in limiting the evolution of rubisco kinetics. Thus, although there is strong evidence for some catalytic trade-offs, rubisco adaptation has been more limited by phylogenetic constraint than by the combined action of all catalytic trade-offs.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - David M Emms
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Timothy Rhodes
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jai S Bolton
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Amelia Brasnett
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Alice Eddershaw
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Jochem R Nielsen
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Anastasia Unitt
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Spencer M Whitney
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Lindquist P, Madsen JS, Bräuner-Osborne H, Rosenkilde MM, Hauser AS. Mutational Landscape of the Proglucagon-Derived Peptides. Front Endocrinol (Lausanne) 2021; 12:698511. [PMID: 34220721 PMCID: PMC8248487 DOI: 10.3389/fendo.2021.698511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Strong efforts have been placed on understanding the physiological roles and therapeutic potential of the proglucagon peptide hormones including glucagon, GLP-1 and GLP-2. However, little is known about the extent and magnitude of variability in the amino acid composition of the proglucagon precursor and its mature peptides. Here, we identified 184 unique missense variants in the human proglucagon gene GCG obtained from exome and whole-genome sequencing of more than 450,000 individuals across diverse sub-populations. This provides an unprecedented source of population-wide genetic variation data on missense mutations and insights into the evolutionary constraint spectrum of proglucagon-derived peptides. We show that the stereotypical peptides glucagon, GLP-1 and GLP-2 display fewer evolutionary alterations and are more likely to be functionally affected by genetic variation compared to the rest of the gene products. Elucidating the spectrum of genetic variations and estimating the impact of how a peptide variant may influence human physiology and pathophysiology through changes in ligand binding and/or receptor signalling, are vital and serve as the first important step in understanding variability in glucose homeostasis, amino acid metabolism, intestinal epithelial growth, bone strength, appetite regulation, and other key physiological parameters controlled by these hormones.
Collapse
Affiliation(s)
- Peter Lindquist
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S. Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette M. Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexander S. Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
42
|
Yıldız Y, Koşukcu C, Aygün D, Akçaboy M, Öztek Çelebi FZ, Taşcı Yıldız Y, Şahin G, Aytekin C, Yüksel D, Lay İ, Özgül RK, Dursun A. Homozygous missense VPS16 variant is associated with a novel disease, resembling mucopolysaccharidosis-plus syndrome in two siblings. Clin Genet 2021; 100:308-317. [PMID: 34013567 DOI: 10.1111/cge.14002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
Disorders of intracellular trafficking are a group of inherited disorders, which often display multisystem phenotypes. Vacuolar protein sorting (VPS) subunit C, composed of VPS11, VPS18, VPS16, and VPS33A proteins, is involved in tethering of endosomes, lysosomes, and autophagosomes. Our group and others have previously described patients with a specific homozygous missense VPS33A variant, exhibiting a storage disease phenotype resembling mucopolysaccharidosis (MPS), termed "MPS-plus syndrome." Here, we report two siblings from a consanguineous Turkish-Arabic family, who have overlapping features of MPS and intracellular trafficking disorders, including short stature, coarse facies, developmental delay, peripheral neuropathy, splenomegaly, spondylar dysplasia, congenital neutropenia, and high-normal glycosaminoglycan excretion. Whole exome sequencing and familial segregation analyses led to the homozygous NM_022575.3:c.540G>T; p.Trp180Cys variant in VPS16 in both siblings. Multiple bioinformatic methods supported the pathogenicity of this variant. Different monoallelic null VPS16 variants and a homozygous missense VPS16 variant had been previously associated with dystonia. A biallelic intronic, probably splice-altering variant in VPS16, causing an MPS-plus syndrome-like disease has been very recently reported in two individuals. The siblings presented herein display no dystonia, but have features of a multisystem storage disorder, representing a novel MPS-plus syndrome-like disease, associated for the first time with VPS16 missense variants.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Department of Pediatric Metabolic Diseases, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Can Koşukcu
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Damla Aygün
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Meltem Akçaboy
- Department of Pediatrics, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Fatma Zehra Öztek Çelebi
- Department of Pediatrics, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Yasemin Taşcı Yıldız
- Department of Pediatric Radiology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Gülseren Şahin
- Department of Pediatric Gastroenterology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Caner Aytekin
- Department of Pediatric Allergy and Immunology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - Deniz Yüksel
- Department of Pediatric Neurology, Dr. Sami Ulus Training and Research Hospital for Maternity and Child Health, Ankara, Turkey
| | - İncilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Rıza Köksal Özgül
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Ali Dursun
- Division of Pediatric Metabolism, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
43
|
Blanquart S, Groussin M, Le Roy A, Szöllosi GJ, Girard E, Franzetti B, Gouy M, Madern D. Resurrection of Ancestral Malate Dehydrogenases Reveals the Evolutionary History of Halobacterial Proteins : Deciphering Gene Trajectories and Changes in Biochemical Properties. Mol Biol Evol 2021; 38:3754-3774. [PMID: 33974066 PMCID: PMC8382911 DOI: 10.1093/molbev/msab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extreme halophilic Archaea thrive in high salt, where, through proteomic adaptation, they cope with the strong osmolarity and extreme ionic conditions of their environment. In spite of wide fundamental interest, however, studies providing insights into this adaptation are scarce, because of practical difficulties inherent to the purification and characterization of halophilic enzymes. In this work, we describe the evolutionary history of malate dehydrogenases (MalDH) within Halobacteria (a class of the Euryarchaeota phylum). We resurrected nine ancestors along the inferred halobacterial MalDH phylogeny, including the Last Common Ancestral MalDH of Halobacteria (LCAHa) and compared their biochemical properties with those of five modern halobacterial MalDHs. We monitored the stability of these various MalDHs, their oligomeric states and enzymatic properties, as a function of concentration for different salts in the solvent. We found that a variety of evolutionary processes such as amino acid replacement, gene duplication, loss of MalDH gene and replacement owing to horizontal transfer resulted in significant differences in solubility, stability and catalytic properties between these enzymes in the three Halobacteriales, Haloferacales and Natrialbales orders since the LCAHa MalDH.We also showed how a stability trade-off might favor the emergence of new properties during adaptation to diverse environmental conditions. Altogether, our results suggest a new view of halophilic protein adaptation in Archaea.
Collapse
Affiliation(s)
| | - Mathieu Groussin
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France.,Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Aline Le Roy
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Gergely J Szöllosi
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France.,MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Budapest, H-1117, Hungary
| | - Eric Girard
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Bruno Franzetti
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, F-38000, France
| | - Manolo Gouy
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, Villeurbanne, F-69622, France
| | | |
Collapse
|
44
|
Lin MT, Orr DJ, Worrall D, Parry MAJ, Carmo-Silva E, Hanson MR. A procedure to introduce point mutations into the Rubisco large subunit gene in wild-type plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:876-887. [PMID: 33576096 DOI: 10.1111/tpj.15196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 01/22/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic inefficiencies limit the productivity and sustainability of crop production and the resilience of agriculture to future societal and environmental challenges. Rubisco is a key target for improvement as it plays a central role in carbon fixation during photosynthesis and is remarkably inefficient. Introduction of mutations to the chloroplast-encoded Rubisco large subunit rbcL is of particular interest for improving the catalytic activity and efficiency of the enzyme. However, manipulation of rbcL is hampered by its location in the plastome, with many species recalcitrant to plastome transformation, and by the plastid's efficient repair system, which can prevent effective maintenance of mutations introduced with homologous recombination. Here we present a system where the introduction of a number of silent mutations into rbcL within the model plant Nicotiana tabacum facilitates simplified screening via additional restriction enzyme sites. This system was used to successfully generate a range of transplastomic lines from wild-type N. tabacum with stable point mutations within rbcL in 40% of the transformants, allowing assessment of the effect of these mutations on Rubisco assembly and activity. With further optimization the approach offers a viable way forward for mutagenic testing of Rubisco function in planta within tobacco and modification of rbcL in other crops where chloroplast transformation is feasible. The transformation strategy could also be applied to introduce point mutations in other chloroplast-encoded genes.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Dawn Worrall
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Martin A J Parry
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Elizabete Carmo-Silva
- Lancaster Environment Centre, Lancaster University, Library Avenue, Lancaster, LA1 4YQ, UK
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
45
|
Phansopa C, Dunning LT, Reid JD, Christin PA. Lateral Gene Transfer Acts As an Evolutionary Shortcut to Efficient C4 Biochemistry. Mol Biol Evol 2021; 37:3094-3104. [PMID: 32521019 PMCID: PMC7751175 DOI: 10.1093/molbev/msaa143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.
Collapse
Affiliation(s)
- Chatchawal Phansopa
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom.,Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | - Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - James D Reid
- Department of Chemistry, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
46
|
Barrett J, Girr P, Mackinder LCM. Pyrenoids: CO 2-fixing phase separated liquid organelles. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118949. [PMID: 33421532 DOI: 10.1016/j.bbamcr.2021.118949] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Pyrenoids are non-membrane bound organelles found in chloroplasts of algae and hornwort plants that can be seen by light-microscopy. Pyrenoids are formed by liquid-liquid phase separation (LLPS) of Rubisco, the primary CO2 fixing enzyme, with an intrinsically disordered multivalent Rubisco-binding protein. Pyrenoids are the heart of algal and hornwort biophysical CO2 concentrating mechanisms, which accelerate photosynthesis and mediate about 30% of global carbon fixation. Even though LLPS may underlie the apparent convergent evolution of pyrenoids, our current molecular understanding of pyrenoid formation comes from a single example, the model alga Chlamydomonas reinhardtii. In this review, we summarise current knowledge about pyrenoid assembly, regulation and structural organization in Chlamydomonas and highlight evidence that LLPS is the general principle underlying pyrenoid formation across algal lineages and hornworts. Detailed understanding of the principles behind pyrenoid assembly, regulation and structural organization within diverse lineages will provide a fundamental understanding of this biogeochemically important organelle and help guide ongoing efforts to engineer pyrenoids into crops to increase photosynthetic performance and yields.2.
Collapse
Affiliation(s)
- James Barrett
- Department of Biology, University of York, York YO10 5DD, UK
| | - Philipp Girr
- Department of Biology, University of York, York YO10 5DD, UK
| | | |
Collapse
|
47
|
Bernabeu M, Rosselló JA. Molecular Evolution of rbcL in Orthotrichales (Bryophyta): Site Variation, Adaptive Evolution, and Coevolutionary Patterns of Amino Acid Replacements. J Mol Evol 2021; 89:225-237. [PMID: 33611663 DOI: 10.1007/s00239-021-09998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
Molecular evolution of the large subunit of the RuBisCO enzyme is understudied in early diverging land plants. These groups show morphological and eco-physiological adaptations to the uneven and intermittent distribution of water in the terrestrial environment. This might have prompted a continuous fine-tuning of RuBisCO under a selective pressure modifying the species-specific optima for photosynthesis in contrasting microdistributions and environmental niches. To gain a better insight into the molecular evolution of RuBisCO large subunits, the aim of this study was to assess the pattern of evolutionary change in the amino acid residues in a monophyletic group of Bryophyta (Orthotrichaceae). Tests for positive, neutral, or purifying selection at the amino acid level were assessed by comparing rates (ω) of non-synonymous (dN) and synonymous (dS) nucleotide substitutions along a Maximum Likelihood phylogenetic tree. Molecular adaptation tests using likelihood ratio tests, reconstruction of ancestral amino acid sites, and intra-protein coevolution analyses were performed. Variable amino acid sites (39) were unevenly distributed across the LSU. The residues are located on rbcL sites that are highly variable in higher plants and close to key regions implying dimer-dimer (L2L2), RuBisCO-activase interactions, and conformational functions during catalysis. Ten rbcL sites (32, 33, 91, 230, 247, 251, 255, 424, 449 and 475) have been identified by the Bayesian Empirical Bayes inference to be under positive selection and under adaptive evolution under the M8 model. The pattern of amino acid variation suggests that it is not lineage specific, but rather representative of a case of convergent evolution, suggesting recurrent changes that potentially favor the same amino acid substitutions that are likely optimized the RuBisCO activity.
Collapse
Affiliation(s)
- Moisès Bernabeu
- Departament de Genètica, Universitat de València, c/ Doctor Moliner 50, Burjassot, 46100, ,València, Spain
| | - Josep A Rosselló
- Jardín Botánico, ICBiBE, Universitat de València, c/ Quart 80, 46008, València, Spain.
| |
Collapse
|
48
|
Hulme KD, Karawita AC, Pegg C, Bunte MJ, Bielefeldt-Ohmann H, Bloxham CJ, Van den Hoecke S, Setoh YX, Vrancken B, Spronken M, Steele LE, Verzele NA, Upton KR, Khromykh AA, Chew KY, Sukkar M, Phipps S, Short KR. A paucigranulocytic asthma host environment promotes the emergence of virulent influenza viral variants. eLife 2021; 10:61803. [PMID: 33588989 PMCID: PMC7886327 DOI: 10.7554/elife.61803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza virus has a high mutation rate, such that within one host different viral variants can emerge. Evidence suggests that influenza virus variants are more prevalent in pregnant and/or obese individuals due to their impaired interferon response. We have recently shown that the non-allergic, paucigranulocytic subtype of asthma is associated with impaired type I interferon production. Here, we seek to address if this is associated with an increased emergence of influenza virus variants. Compared to controls, mice with paucigranulocytic asthma had increased disease severity and an increased emergence of influenza virus variants. Specifically, PB1 mutations exclusively detected in asthmatic mice were associated with increased polymerase activity. Furthermore, asthmatic host-derived virus led to increased disease severity in wild-type mice. Taken together, these data suggest that at least a subset of patients with asthma may be more susceptible to severe influenza and may be a possible source of new influenza virus variants.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Anjana C Karawita
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Cassandra Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Myrna Jm Bunte
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.,School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Conor J Bloxham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Silvie Van den Hoecke
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yin Xiang Setoh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.,Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Bram Vrancken
- KU Leuven, Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | | | - Lauren E Steele
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Nathalie Aj Verzele
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Kyle R Upton
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Maria Sukkar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Australia; Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, NSW, Australia
| | - Simon Phipps
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
49
|
Asplund-Samuelsson J, Hudson EP. Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes. PLoS Comput Biol 2021; 17:e1008742. [PMID: 33556078 PMCID: PMC7895386 DOI: 10.1371/journal.pcbi.1008742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/19/2021] [Accepted: 01/25/2021] [Indexed: 11/21/2022] Open
Abstract
Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
Collapse
Affiliation(s)
- Johannes Asplund-Samuelsson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| | - Elton P. Hudson
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
50
|
Cummins PL. The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating Mechanisms in Higher Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:662425. [PMID: 34539685 PMCID: PMC8440988 DOI: 10.3389/fpls.2021.662425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 05/20/2023]
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) is the carbon-fixing enzyme present in most photosynthetic organisms, converting CO2 into organic matter. Globally, photosynthetic efficiency in terrestrial plants has become increasingly challenged in recent decades due to a rapid increase in atmospheric CO2 and associated changes toward warmer and dryer environments. Well adapted for these new climatic conditions, the C4 photosynthetic pathway utilizes carbon concentrating mechanisms to increase CO2 concentrations surrounding RuBisCO, suppressing photorespiration from the oxygenase catalyzed reaction with O2. The energy efficiency of C3 photosynthesis, from which the C4 pathway evolved, is thought to rely critically on an uninterrupted supply of chloroplast CO2. Part of the homeostatic mechanism that maintains this constancy of supply involves the CO2 produced as a byproduct of photorespiration in a negative feedback loop. Analyzing the database of RuBisCO kinetic parameters, we suggest that in genera (Flaveria and Panicum) for which both C3 and C4 examples are available, the C4 pathway evolved only from C3 ancestors possessing much lower than the average carboxylase specificity relative to that of the oxygenase reaction (S C/O=S C/S O), and hence, the higher CO2 levels required for development of the photorespiratory CO2 pump (C2 photosynthesis) essential in the initial stages of C4 evolution, while in the later stage (final optimization phase in the Flaveria model) increased CO2 turnover may have occurred, which would have been supported by the higher CO2 levels. Otherwise, C4 RuBisCO kinetic traits remain little changed from the ancestral C3 species. At the opposite end of the spectrum, C3 plants (from Limonium) with higher than average S C/O, which may be associated with the ability of increased CO2, relative to O2, affinity to offset reduced photorespiration and chloroplast CO2 levels, can tolerate high stress environments. It is suggested that, instead of inherently constrained by its kinetic mechanism, RuBisCO possesses the extensive kinetic plasticity necessary for adaptation to changes in photorespiration that occur in the homeostatic regulation of CO2 supply under a broad range of abiotic environmental conditions.
Collapse
|