1
|
Huang Y, Yang L, Yang S, Chen H, Lou C, Tang Y, Lin X, He Q. Shape-Directed Dynamic Assembly of Active Colloidal Metamachines. ACS NANO 2025; 19:4754-4767. [PMID: 39854017 DOI: 10.1021/acsnano.4c15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Modularly organizing active micromachines into high-grade metamachines makes a great leap for operating the microscopic world in a biomimetic way. However, modulating the nonreciprocal interactions among different colloidal motors through chemical reactions to achieve the controllable construction of active colloidal metamachines with specific dynamic properties remains challenging. Here, we report the phototactic active colloidal metamachines constructed by shape-directed dynamic self-assembly of chemically driven peanut-shaped TiO2 colloidal motors and Janus spherical Pt/SiO2 colloidal motors. The long-range diffusiophoretic attraction generated by the photocatalytic reaction dominates the sensing and collision of peanut TiO2 motors with Janus Pt/SiO2 motors. The coupling of local chemical concentration gradient fields between the two types of motors generates short-range site-selective interactions, promoting the shape-directed assembly toward active colloidal metamachines with well-defined spatial configurations. Metamachines, made of colloidal motors, exhibit configuration-dependent kinematics. The colloidal metamachines can be reversibly reconstructed by adjusting lighting conditions and can move phototactically along a predetermined path under the structured light field. Such chemically driven colloidal metamachines that integrate multiple active agents provide a significant avenue for fabricating active soft matter materials and intelligent robotic systems with advanced applications.
Collapse
Affiliation(s)
- Yang Huang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Sipeng Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hao Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Celi Lou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yunqing Tang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiankun Lin
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
2
|
Ahmed S, Perez-Mercader J. Interactions and Oscillatory Dynamics of Chemically Powered Soft Swimmers. J Phys Chem B 2025; 129:554-562. [PMID: 39714313 PMCID: PMC11726663 DOI: 10.1021/acs.jpcb.4c07069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
We report the interactions and dynamics of chemically powered soft swimmers that undergo autonomous oscillatory motion. The interaction of autonomous entities is the basis for the development of collective behaviors among biological organisms. Collective behaviors enable organisms to efficiently attain food and coordinate against threats. The basis of these behaviors is the interaction between nearest neighbors. Mimicking these interactions in artificial systems would enable their organization for the performance of complex tasks. Oscillatory phenomena are also ubiquitous in nature. Hence artificial oscillatory systems can serve as the most direct mimics and models of many biological systems. In this work, we report the interactions and dynamics of oscillatory swimmers propelled by the nonlinear oscillatory Belousov-Zhabotinsky (BZ) reaction. Individually, these swimmers displace by undergoing nonfully reciprocal oscillatory motion in conjunction with the BZ reaction. We find that, in addition to their individual oscillatory motion, multiple BZ swimmers exhibit successive oscillatory changes in their inter swimmer distance. This oscillatory attraction and repulsion between adjacent swimmers occurs in conjunction with the BZ waves and oxidation state of the catalyst. The effect of swimmer size and number on these dynamic interactions is interrogated. The level of chemical synchronization between multiple swimmers is determined. This work is a starting point for the design of collective behaviors utilizing autonomous chemically propelled soft swimmers.
Collapse
Affiliation(s)
- Suzanne Ahmed
- Department
of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, North Carolina 27401, United States
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Juan Perez-Mercader
- Department
of Earth and Planetary Sciences and Origins of Life Initiative, Harvard University, 20 Oxford Street, Cambridge, Massachusetts 02138, United States
- Santa
Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
3
|
Hardikar AV, Hauser AW, Hopkins TM, Sacanna S, Chaikin PM. Osmotic and phoretic competition explains chemotaxic assembly and sorting. Proc Natl Acad Sci U S A 2024; 121:e2410840121. [PMID: 39541356 PMCID: PMC11588119 DOI: 10.1073/pnas.2410840121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Microscale objects responding to chemical gradients by migrating toward or away from a preferred species is a simple yet constitutive mechanism by which transport occurs in biological organisms. Synthetic chemotaxis provides key physical descriptions of simplified systems that can be used in biological models, or in the creation of advanced responsive material systems. In this article, we provide a quantitative framework for understanding synthetic chemotaxis of microparticles which involves a competition between phoresis and osmosis. We present separate quantitative measurements of phoresis and osmosis acting on individual taxing particles, finding that phoresis follows the long-predicted [Formula: see text] scaling while the osmotic contribution depends on the geometry and details of the system, and must be solved on a case-by-case basis. Through this, we are able to develop a more accurate picture of particle transport at the single particle level. Equipped with this approach, we go on to describe how high concentrations of particles in a symmetric chemical gradient grow close-packed hives that reach a steady-state size tunable through light intensity or particle size. Last, we demonstrate that mixed particles experiencing the same chemical gradient will selectively migrate toward or away depending on the nature of the particle surface, thereby locally sorting out a particular species. We anticipate these results will be important in describing both biological and synthetic chemotaxis in phoretic systems and should bring a wealth of studies that take advantage of competing osmotic flows to illicit unexpected dynamic active behavior.
Collapse
Affiliation(s)
- Aditya V. Hardikar
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY10003
| | - Adam W. Hauser
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY10003
- Department of Chemistry, New York University, New York, NY10003
| | | | - Stefano Sacanna
- Department of Chemistry, New York University, New York, NY10003
| | - Paul M. Chaikin
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY10003
| |
Collapse
|
4
|
Basharat M, Zhang J, Yu N, Li R, Zhang Y, Wang Y, Gao Y. In-situ isomerization and reversible self-assembly of photoresponsive polymeric colloidal molecules enabled by ON and OFF light control. J Colloid Interface Sci 2024; 680:278-285. [PMID: 39566415 DOI: 10.1016/j.jcis.2024.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Photocatalytic colloids enable light-triggered nonequilibrium interactions and are emerging as key components for the self-assembly of colloidal molecules (CMs) out of equilibrium. However, the material choices have largely been limited to inorganic substances and the potential for reconfiguring structures through dynamic light control remains underexplored, despite light being a convenient handle for tuning nonequilibrium interactions. Here, we introduce photoresponsive N,O-containing covalent organic polymer (NOCOP) colloids, which display multi-wavelength triggered fluorescence and switchable diffusiophoretic interactions with the addition of triethanolamine. Our system can form various flexible structures, including ABn-type molecules and linear chains. By varying the relative sizes of active to passive colloids, we significantly increase the structural diversity of A2B2-type molecules. Most importantly, we demonstrate in-situ transitions between different isomeric configurations and the reversible assembly of various structures, enabled by on-demand light ON and OFF control of diffusiophoretic interactions. Our work introduces a new photoresponsive colloidal system and a novel strategy for constructing and reconfiguring colloidal assemblies, with promising applications in microrobotics, optical devices, and smart materials.
Collapse
Affiliation(s)
- Majid Basharat
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Jiayu Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Nan Yu
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Ruiyao Li
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yiyang Zhang
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China
| | - Yufeng Wang
- Department of Chemistry, the University of Hong Kong, Hong Kong 999077, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Nanhai Avenue 3688, Shenzhen 518060, China.
| |
Collapse
|
5
|
Ozkan MC, McNeill JM, Mallouk TE. Zombie diatoms: acoustically powered diatom frustule bio-templated microswimmers. SOFT MATTER 2024; 20:8012-8016. [PMID: 39356282 DOI: 10.1039/d4sm00943f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Frustules, or the silica based cell walls of diatomaceous algae Aulacoseira granulata, provide large numbers of reliably cylindrical microstructures with an inner cavity and surface chemistry suitable for constructing bubble-based, acoustically-powered micro-swimmers. In this way, microswimmers can be made in a scalable, accessible and low-cost manner, enabling studies of their individual and collective behavior as active colloids.
Collapse
Affiliation(s)
- Mehmed C Ozkan
- Department of Chemistry, 231 S. 34 Street, Philadelphia, PA 19104, USA.
| | - Jeffrey M McNeill
- Department of Chemistry, 3000 Broadway, Havemeyer Hall, New York, NY 10027, USA.
| | - Thomas E Mallouk
- Department of Chemistry, 231 S. 34 Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Sapre A, Bhattacharyya R, Sen A. A Cautionary Perspective on Hydrogel-Induced Concentration Gradient Generation for Studying Chemotaxis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40131-40138. [PMID: 39021097 DOI: 10.1021/acsami.4c04930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The achievement of consistent and static chemical gradients is critically important in the study of diffusion and chemotaxis at the micro- and nanoscales. In this context, a number of groups have reported on hydrogel-based systems for generating concentration gradients. Here, we analyze the behavior of agarose and gelatin-based hydrogels in hybridization chambers of different heights. Our focus is on the issues that are caused by the presence of robust bulk fluid flows in such systems due to the solutes present in the hydrogel and/or the surrounding fluid. We describe the key insights derived from these experiments, offering practical guidelines for establishing gradients using hydrogel-based systems and make the community aware of different variables that can make the experiments nonreproducible and prone to misinterpretations.
Collapse
Affiliation(s)
- Aditya Sapre
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rik Bhattacharyya
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Boniface D, Leyva SG, Pagonabarraga I, Tierno P. Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts. Nat Commun 2024; 15:5666. [PMID: 38971861 PMCID: PMC11227538 DOI: 10.1038/s41467-024-49977-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in this field is now shifting towards exploring the fascinating dynamics of active and passive mixtures. Here we realize active colloidal rafts, composed of a single catalytic particle encircled by several shells of passive microspheres, and assembled via light-activated chemophoresis. We show that the cluster propulsion mechanism transits from diffusiophoretic to diffusioosmotic as the number of colloidal shells increases. Using the Lorentz reciprocal theorem, we demonstrate that in large clusters self-propulsion emerges by considering the hydrodynamic flow via the diffusioosmotic response of the substrate. The dynamics in our active colloidal rafts are governed by the interplay between phoretic and osmotic effects. Thus, our work highlights their importance in understanding the rich physics of active catalytic systems.
Collapse
Affiliation(s)
- Dolachai Boniface
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Sergi G Leyva
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028, Barcelona, Spain.
- University of Barcelona Institute of Complex Systems (UBICS), 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Wu X, Xue H, Fink Z, Helms BA, Ashby PD, Omar AK, Russell TP. Oversaturating Liquid Interfaces with Nanoparticle-Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403790. [PMID: 38589294 DOI: 10.1002/anie.202403790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Assemblies of nanoparticles at liquid interfaces hold promise as dynamic "active" systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
9
|
Chen L, Feng K, Zhang X, Gong J, Qu J, Niu R. Ion-Exchange Enabled Dual-Functional Swarms with Reconfigurability and Magnetic Controllability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308318. [PMID: 38258396 DOI: 10.1002/smll.202308318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Indexed: 01/24/2024]
Abstract
In nature, many organisms are capable of self-organizing into collective groups through local communications to perform complex tasks that individuals cannot complete. To date, the reported artificial microswarms either rely on toxic chemical reactions for communication or lack the hierarchical controllability and functionality, which is unfavorable for practical applications. To this end, this exploits the ion-exchange reaction enabled hierarchical swarm composed of cationic ion exchange resin and magnetic microspheres of internal information exchange. The swarm is reconfigurable under magnetic fields, generating ordered structures of controllable mobilities and even reversed hierarchy, able to navigate in confined and complex environments. Moreover, the swarm shows interesting communications among each other, such as merging, splitting, and member exchange, forming multi-leader groups, living crystals, and complex vortices. Furthermore, the swarm functions as a dual-functional microreactor, which can load, transport, and release drugs in a pH-enhanced manner, as well as effectively degrade antibiotics via light-enhanced Fenton-like reaction in polluted water. The organized structure of the swarm greatly improves the drug loading/transport efficiency and the local concentration of catalysts for fast pollutant removal. This design lays the foundation for the design of dual-functional micro/nanorobots for intelligent drug delivery and advanced environmental remediation.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Kai Feng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xinle Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Ran Niu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Chen J, Hu J, Kapral R. Chemical Logic Gates on Active Colloids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305695. [PMID: 38450886 PMCID: PMC11095161 DOI: 10.1002/advs.202305695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/28/2023] [Indexed: 03/08/2024]
Abstract
Recent studies have shown that active colloidal motors using enzymatic reactions for propulsion hold special promise for applications in fields ranging from biology to material science. It will be desirable to have active colloids with capability of computation so that they can act autonomously to sense their surroundings and alter their own dynamics. It is shown how small chemical networks that make use of enzymatic chemical reactions on the colloid surface can be used to construct motor-based chemical logic gates. The basic features of coupled enzymatic reactions that are responsible for propulsion and underlie the construction and function of chemical gates are described using continuum theory and molecular simulation. Examples are given that show how colloids with specific chemical logic gates, can perform simple sensing tasks. Due to the diverse functions of different enzyme gates, operating alone or in circuits, the work presented here supports the suggestion that synthetic motors using such gates could be designed to operate in an autonomous way in order to complete complicated tasks.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Jia‐Qi Hu
- Department of PhysicsHangzhou Normal UniversityHangzhou311121China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
11
|
Cui D, Yan Z, Chen X, Liu J, Wang W. Electroosmotic flow spin tracers near chemical nano/micromotors. NANOSCALE 2024; 16:2847-2851. [PMID: 38258465 DOI: 10.1039/d3nr05910c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We report the first experimental observation of tracer spinning in place alongside chemically powered individual nano/micromotors. The torques are primarily generated by the electroosmotic flow on the motor surface. Such spinning is observed in various combinations of nano/micromotors and tracers of different shapes, sizes and chemical compositions.
Collapse
Affiliation(s)
- Donghao Cui
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Zuyao Yan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Xiaowen Chen
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Jiayu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| | - Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
12
|
Yu N, Shah ZH, Yang M, Gao Y. Morphology-Tailored Dynamic State Transition in Active-Passive Colloidal Assemblies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0304. [PMID: 38269028 PMCID: PMC10807723 DOI: 10.34133/research.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Mixtures of active self-propelled and passive colloidal particles promise rich assembly and dynamic states that are beyond reach via equilibrium routes. Yet, controllable transition between different dynamic states remains rare. Here, we reveal a plethora of dynamic behaviors emerging in assemblies of chemically propelled snowman-like active colloids and passive spherical particles as the particle shape, size, and composition are tuned. For example, assembles of one or more active colloids with one passive particle exhibit distinct translating or orbiting states while those composed of one active colloid with 2 passive particles display persistent "8"-like cyclic motion or hopping between circling states around one passive particle in the plane and around the waist of 2 passive ones out of the plane, controlled by the shape of the active colloid and the size of the passive particles, respectively. These morphology-tailored dynamic transitions are in excellent agreement with state diagrams predicted by mesoscale dynamics simulations. Our work discloses new dynamic states and corresponding transition strategies, which promise new applications of active systems such as micromachines with functions that are otherwise impossible.
Collapse
Affiliation(s)
- Nan Yu
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Zameer H. Shah
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yongxiang Gao
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
13
|
McNeill J, Mallouk TE. Acoustically Powered Nano- and Microswimmers: From Individual to Collective Behavior. ACS NANOSCIENCE AU 2023; 3:424-440. [PMID: 38144701 PMCID: PMC10740144 DOI: 10.1021/acsnanoscienceau.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
Micro- and nanoscopic particles that swim autonomously and self-assemble under the influence of chemical fuels and external fields show promise for realizing systems capable of carrying out large-scale, predetermined tasks. Different behaviors can be realized by tuning swimmer interactions at the individual level in a manner analogous to the emergent collective behavior of bacteria and mammalian cells. However, the limited toolbox of weak forces with which to drive these systems has made it difficult to achieve useful collective functions. Here, we review recent research on driving swimming and particle self-organization using acoustic fields, which offers capabilities complementary to those of the other methods used to power microswimmers. With either chemical or acoustic propulsion (or a combination of the two), understanding individual swimming mechanisms and the forces that arise between individual particles is a prerequisite to harnessing their interactions to realize collective phenomena and macroscopic functionality. We discuss here the ingredients necessary to drive the motion of microscopic particles using ultrasound, the theory that describes that behavior, and the gaps in our understanding. We then cover the combination of acoustically powered systems with other cross-compatible driving forces and the use of ultrasound in generating collective behavior. Finally, we highlight the demonstrated applications of acoustically powered microswimmers, and we offer a perspective on the state of the field, open questions, and opportunities. We hope that this review will serve as a guide to students beginning their work in this area and motivate others to consider research in microswimmers and acoustic fields.
Collapse
Affiliation(s)
- Jeffrey
M. McNeill
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Thomas E. Mallouk
- Department of Chemistry, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Wang W. Open Questions of Chemically Powered Nano- and Micromotors. J Am Chem Soc 2023; 145:27185-27197. [PMID: 38063192 DOI: 10.1021/jacs.3c09223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Chemically powered nano- and micromotors are microscopic devices that convert chemical energy into motion. Interest in these motors has grown over the past 20 years because they exhibit interesting collective behaviors and have found potential uses in biomedical and environmental applications. Understanding how these motors operate both individually and collectively and how environments affect their operation is of both fundamental and applied significance. However, there are still significant gaps in our knowledge. This Perspective highlights several open questions regarding the propulsion mechanisms of, interactions among, and impact of confinements on nano- and micromotors driven by self-generated chemical gradients. These questions are based on my own experience as an experimentalist. For each open question, I describe the problem and its significance, analyze the status-quo, identify the bottleneck problem, and propose potential solutions. An underlying theme for these questions is the interplay among reaction kinetics, physicochemical distributions, and fluid flows. Unraveling this interplay requires careful measurements as well as a close collaboration between experimentalists and theoreticians/numerical experts. The interdisciplinary nature of these challenges suggests that their solutions could bring new revelations and opportunities across disciplines such as colloidal sciences, material sciences, soft matter physics, robotics, and beyond.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China, 518055
| |
Collapse
|
15
|
Shi A, Wu H, Schwartz DK. Nanomotor-enhanced transport of passive Brownian particles in porous media. SCIENCE ADVANCES 2023; 9:eadj2208. [PMID: 38039361 PMCID: PMC10691774 DOI: 10.1126/sciadv.adj2208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
Artificial micro/nanomotors are expected to perform tasks in interface-rich and species-rich environments for biomedical and environmental applications. In these highly confined and interconnected pore spaces, active species may influence the motion of coexisting passive participants in unexpected ways. Using three-dimensional super-resolution single-nanoparticle tracking, we observed enhanced motion of passive nanoparticles due to the presence of dilute well-separated nanomotors in an interconnected pore space. This enhancement acted at distances that are large compared to the sizes of the particles and cavities, in contrast with the insignificant effect on the passive particles with the same dilute concentration of nanomotors in an unconfined liquid. Experiments and simulations suggested an amplification of hydrodynamic coupling between self-propelled and passive nanoparticles in the interconnected confined environment, which enhanced the effective energy for passive particles to escape cavities through small holes. This finding represents an emergent behavior of confined nanomotors and suggests new strategies for the development of antifouling membranes and drug delivery systems.
Collapse
Affiliation(s)
- Anni Shi
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Haichao Wu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
16
|
Wang H, Liu C, Yang X, Ji F, Song W, Zhang G, Wang L, Zhu Y, Yu S, Zhang W, Li T. Multimode microdimer robot for crossing tissue morphological barrier. iScience 2023; 26:108320. [PMID: 38026188 PMCID: PMC10665815 DOI: 10.1016/j.isci.2023.108320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Swimming microrobot energized by magnetic fields exhibits remotely propulsion and modulation in complex biological experiment with high precision. However, achieving high environment adaptability and multiple tasking capability in one configuration is still challenging. Here, we present a strategy that use oriented magnetized Janus spheres to assemble the microdimer robots with two magnetic distribution configurations of head-to-side configuration (HTS-config) and head-to-head configuration (HTH-config), achieving performance of multiple tasks through multimode transformation and locomotion. Modulating the magnetic frequency enables multimode motion transformation between tumbling, rolling, and swing motion with different velocities. The dual-asynchronization mechanisms of HTS-config and HTH-config robot dependent on magnetic dipole-dipole angle are investigated by molecular dynamic simulation. In addition, the microdimer robot can transport cell crossing morphological rugae or complete drug delivery on tissues by switching motion modes. This microdimer robot can provide versatile motion modes to address environmental variations or multitasking requirements.
Collapse
Affiliation(s)
- Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Xiaopeng Yang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Fengtong Ji
- Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Wenping Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of Harbin Institute of Technology Chongqing, Chongqing, China
| | - Guangyu Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Shimin Yu
- College of Engineering, Ocean University of China, Qingdao, China
| | - Weiwei Zhang
- School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- Chongqing Research Institute of Harbin Institute of Technology Chongqing, Chongqing, China
| |
Collapse
|
17
|
Ikram M, Peng G, Hassan QU, Basharat M, Li Y, Zeb S, Gao Y. Photoactive and Intrinsically Fuel Sensing Metal-Organic Framework Motors for Tailoring Collective Behaviors of Active-Passive Colloids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301625. [PMID: 37093209 DOI: 10.1002/smll.202301625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Microorganisms display nonequilibrium predator-prey behaviors, such as chasing-escaping and schooling via chemotactic interactions. Even though artificial systems have revealed such biomimetic behaviors, switching between them by control over chemotactic interactions is rare. Here, a spindle-like iron-based metal-organic framework (MOF) colloidal motor which self-propels in glucose and H2 O2 , triggered by UV light is reported. These motors display intrinsic UV light-triggered fuel-dependent chemotactic interactions, which are used to tailor the collective dynamics of active-passive colloidal mixtures. In particular, the mixtures of active MOF motors with passive colloids exhibit distinctive "chasing-escaping" or "schooling" behaviors, depending on glucose or hydrogen peroxide being used as the fuel. The transition in the collective behaviors is attributed to an alteration in the sign of ionic diffusiophoretic interactions, resulting from a change in the ionic clouds produced. This study offers a new strategy on tuning the communication between active and passive colloids, which holds substantial potentials for fundamental research in active matter and practical applications in cargo delivery, chemical sensing, and particle segregation.
Collapse
Affiliation(s)
- Muhammad Ikram
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, 450000, China
| | - Guogan Peng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qadeer Ul Hassan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Majid Basharat
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yurou Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shah Zeb
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
18
|
Sun Y, Pan R, Chen Y, Wang Y, Sun L, Wang N, Ma X, Wang GP. Efficient Preparation of a Magnetic Helical Carbon Nanomotor for Targeted Anticancer Drug Delivery. ACS NANOSCIENCE AU 2023; 3:94-102. [PMID: 37101464 PMCID: PMC10125355 DOI: 10.1021/acsnanoscienceau.2c00042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 04/28/2023]
Abstract
The applications of nanomotors in the biomedical field have been attracting extensive attention. However, it remains a challenge to fabricate nanomotors in a facile way and effectively load drugs for active targeted therapy. In this work, we combine the microwave heating method and chemical vapor deposition (CVD) to fabricate magnetic helical nanomotors efficiently. The microwave heating method can accelerate intermolecular movement, which converts kinetic energy into heat energy and shortens the preparation time of the catalyst used for carbon nanocoil (CNC) synthesis by 15 times. Fe3O4 nanoparticles are in situ nucleated on the CNC surface by the microwave heating method to fabricate magnetically driven CNC/Fe3O4 nanomotors. In addition, we achieved precise control of the magnetically driven CNC/Fe3O4 nanomotors through remote manipulation of magnetic fields. Anticancer drug doxorubicin (DOX) is then efficiently loaded onto the nanomotors via π-π stacking interactions. Finally, the drug-loaded CNC/Fe3O4@DOX nanomotor can accurately accomplish cell targeting under external magnetic field control. Under short-time irradiation of near-infrared light, DOX can be quickly released onto target cells to effectively kill the cells. More importantly, CNC/Fe3O4@DOX nanomotors allow for single-cell or cell-cluster-targeted anticancer drug delivery, providing a dexterous platform to potentially perform many medically relevant tasks in vivo. The efficient preparation method and application in drug delivery are beneficial for future industrial production and provide inspiration for advanced micro/nanorobotic systems using the CNC as a carrier for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Yanming Sun
- College
of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China
| | - Renjie Pan
- College
of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China
| | - Yuduo Chen
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
- Sauvage
Laboratory for Smart Materials, Harbin Institute
of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yong Wang
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
- Sauvage
Laboratory for Smart Materials, Harbin Institute
of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Lei Sun
- College
of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China
| | - Neng Wang
- College
of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China
| | - Xing Ma
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
- Sauvage
Laboratory for Smart Materials, Harbin Institute
of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Guo Ping Wang
- College
of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China
| |
Collapse
|
19
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
20
|
Wang L, Simmchen J. Determination of the swimming mechanism of Au@TiO 2 active matter and implications on active-passive interactions. SOFT MATTER 2023; 19:540-549. [PMID: 36541522 DOI: 10.1039/d2sm01097f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Non-equilibrium dynamic assembly attracts considerable attention due to the possibility of forming diverse structures that can potentially lead to functional materials. Despite significant progress in understanding and modelling, the complexity of the system implies that different phases of the assembly formation are governed by different interactions. It is clear that both, hydrodynamic and chemical interactions stem from the activity of the particle, but correlation to specific chemical species remains not yet understood. Here, we investigate the origin of the main driving forces for light-driven Au@TiO2 micromotors and look at the implication this causes for the interactions between active and passive particles. We develop precision experimental measurements of the photochemical reaction rate, which are correlated with the observed speed of Au@TiO2 micromotors. The comparison with two distinct models allows the conclusion that the dominant propulsion mechanism of the active particles is self-electrophoresis based on the self-generated H+ gradient. We verify this assumption by adding salt and confirm the dependence of the expected swimming behaviour on salt concentration and investigate the consequences for raft formation in COMSOL simulations.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
| | - Juliane Simmchen
- Department of Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.
- Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
21
|
Tripathi AK, Tlusty T. Gauging Nanoswimmer Dynamics via the Motion of Large Bodies. PHYSICAL REVIEW LETTERS 2022; 129:254502. [PMID: 36608228 DOI: 10.1103/physrevlett.129.254502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Nanoswimmers are ubiquitous in biotechnology and nanotechnology but are extremely challenging to measure due to their minute size and driving forces. A simple method is proposed for detecting the elusive physical features of nanoswimmers by observing how they affect the motion of much larger, easily traceable particles. Modeling the swimmers as hydrodynamic force dipoles, we find direct, easy-to-calibrate relations between the observable power spectrum and diffusivity of the tracers and the dynamic characteristics of the swimmers-their force dipole moment and correlation times.
Collapse
Affiliation(s)
- Ashwani Kr Tripathi
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Volpe G, Bechinger C, Cichos F, Golestanian R, Löwen H, Sperl M, Volpe G. Active matter in space. NPJ Microgravity 2022; 8:54. [PMID: 36434006 PMCID: PMC9700843 DOI: 10.1038/s41526-022-00230-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
In the last 20 years, active matter has been a highly dynamic field of research, bridging fundamental aspects of non-equilibrium thermodynamics with applications to biology, robotics, and nano-medicine. Active matter systems are composed of units that can harvest and harness energy and information from their environment to generate complex collective behaviours and forms of self-organisation. On Earth, gravity-driven phenomena (such as sedimentation and convection) often dominate or conceal the emergence of these dynamics, especially for soft active matter systems where typical interactions are of the order of the thermal energy. In this review, we explore the ongoing and future efforts to study active matter in space, where low-gravity and microgravity conditions can lift some of these limitations. We envision that these studies will help unify our understanding of active matter systems and, more generally, of far-from-equilibrium physics both on Earth and in space. Furthermore, they will also provide guidance on how to use, process and manufacture active materials for space exploration and colonisation.
Collapse
Affiliation(s)
- Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom.
| | - Clemens Bechinger
- Physics Department, University of Konstanz, 78457, Konstanz, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Earth Sciences, Leipzig University, 04103, Leipzig, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077, Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, United Kingdom
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170, Köln, Germany
| | - Giovanni Volpe
- Physics Department, University of Gothenburg, 41296, Gothenburg, Sweden
| |
Collapse
|
23
|
Wu Y, Boymelgreen A, Yossifon G. Micromotor-mediated label-free cargo manipulation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Sun M, Chan KF, Zhang Z, Wang L, Wang Q, Yang S, Chan SM, Chiu PWY, Sung JJY, Zhang L. Magnetic Microswarm and Fluoroscopy-Guided Platform for Biofilm Eradication in Biliary Stents. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201888. [PMID: 35474246 DOI: 10.1002/adma.202201888] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Biofilm eradication from medical implants is of fundamental importance, and the treatment of biofilm-associated pathogen infections on inaccessible biliary stents remains challenging. Magnetically driven microrobots with controlled motility, accessibility to the tiny lumen, and swarm enhancement effects can physically disrupt the deleterious biostructures while not developing drug resistance. Magnetic urchin-like capsule robots (MUCRs) loaded with magnetic liquid metal droplets (MLMDs, antibacterial agents) are designed using natural sunflower pollen, and the therapeutic effect of swarming MUCR@MLMDs is explored for eradicating complex mixtures of bacterial biofilm within biliary stents collected from patients. The external magnetic field triggers the emergence of the microswarm and induces MLMDs to transform their shape into spheroids and rods with sharp edges. The inherent natural microspikes of MUCRs and the obtained sharp edges of MLMDs actively rupture the dense biological matrix and multiple species of embedded bacterial cells by exerting mechanical force, finally achieving synergistic biofilm eradication. The microswarm is precisely and rapidly deployed into the biliary stent via endoscopy in 10 min. Notably, fluoroscopy imaging is used to track and navigate the locomotion of microswarm in biliary stents in real-time. The microswarm has great potential for treating bacterial biofilm infections associated with medical implants.
Collapse
Affiliation(s)
- Mengmeng Sun
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Kai Fung Chan
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
| | - Zifeng Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
| | - Qinglong Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Philip Wai Yan Chiu
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
25
|
Wang Z, Yan Y, Li C, Yu Y, Cheng S, Chen S, Zhu X, Sun L, Tao W, Liu J, Wang F. Fluidity-Guided Assembly of Au@Pt on Liposomes as a Catalase-Powered Nanomotor for Effective Cell Uptake in Cancer Cells and Plant Leaves. ACS NANO 2022; 16:9019-9030. [PMID: 35709532 DOI: 10.1021/acsnano.2c00327] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fluidity of the liposomes is essential to nanoparticle-membrane interactions. We herein report a liposomal nanomotor system by controlling the self-assembly behavior of gold core-platinum shell nanoparticles (Au@Pt) on liposomes. Au@Pt can aggregate immediately on fluid-phase dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes, forming an uneven distribution. By control of the lipid phase and fluidity, either using pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) above its phase transition temperature or adding cholesterol as an adjuvant to DPPC lipids, we precisely control the assembly of Au@Pt on liposomes. Au@Pt maintained high catalase-like activity on the liposomal surface, promoting the decomposition of H2O2 and the movement of the liposomal nanomotors. Finally, we demonstrate that liposomal nanomotors are biocompatible and they can speed up the cellular uptake in mammalian HepG2 cancer cells and Nicotiana tabacum (Nb) plant leaves. This liposomal nanomotor system is expected to be further investigated in biomedicine and plant nanotechnology.
Collapse
Affiliation(s)
- Zhenfeng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Shuai Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Xiaojun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Liping Sun
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Wei Tao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P.R. China
| |
Collapse
|
26
|
Li Q, Liu L, Huo H, Su L, Wu Y, Lin H, Ge X, Mu J, Zhang X, Zheng L, Song J. Nanosized Janus AuNR-Pt Motor for Enhancing NIR-II Photoacoustic Imaging of Deep Tumor and Pt 2+ Ion-Based Chemotherapy. ACS NANO 2022; 16:7947-7960. [PMID: 35536639 DOI: 10.1021/acsnano.2c00732] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthetic micro/nanomotors have great potential in deep tissue imaging and in vivo drug delivery because of their active motion ability. However, applying nanomotors with a size less than 100 nm to in vivo imaging and therapy is one of the core changes in this field. Herein, a nanosized hydrogen peroxide (H2O2)-driven Janus gold nanorod-platinum (JAuNR-Pt) nanomotor is developed for enhancing the second near-infrared region (NIR-II) photoacoustic (PA) imaging of deep tissues of tumors and for effective tumor treatment. The JAuNR-Pt nanomotor is prepared by depositing platinum (Pt) on one end of a gold nanorod with varying proportions of Pt shell coverage, including 10%, 25%, 50%, 75%, and 100%. The JAuNR-Pt nanomotor with Pt shell coverage proportions of 50% exhibits the highest diffusion coefficient (De), and it can rapidly move in the presence of H2O2. The self-propulsion of JAuNR-Pt nanomotor enhances cellular uptake, accelerates lysosomal escape, and facilitates continuous release of cytotoxic Pt2+ ions to the nucleus, causing DNA damage and cell apoptosis. The JAuNR-Pt nanomotor presents deep penetration and enhanced accumulation in tumors as well as high tumor treatment effect. Therefore, this work displays deep tumor imaging and an excellent antitumor effect, providing an effective tool for accurate diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Qingqing Li
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Luntao Liu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongqi Huo
- Department of Nuclear Medicine, Han Dan Central Hospital, Handan, Hebei 056001, P. R. China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ying Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hongxin Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007 P. R. China
| | - Xiaoguang Ge
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jing Mu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, P. R. China
| | - Xuan Zhang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Liting Zheng
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jibin Song
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, College of Chemical Engineering, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
27
|
Ashaju A, Wood JA, Lammertink RGH. Electrocatalytic Reaction Induced Colloidal Accumulation: The Role of Dielectrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3040-3050. [PMID: 35230108 PMCID: PMC8928468 DOI: 10.1021/acs.langmuir.1c01938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
A surface-driven flow is generated during the electrocatalytic reaction of a platinum-gold bielectrode within hydrogen peroxide. This flow can be experimentally visualized and quantified using micrometer-sized particles that are transported by a flow field. Tracer particles, which possess an inherent surface charge, also interact with the induced electric field and exhibit a collective behavior at the surface of the electrodes where they accumulate. The underlying mechanism for the accumulation dynamics demonstrated by these catalytic pump systems has so far been lacking. In this work, the accumulation dynamics and kinetics were experimentally investigated. With use of numerical simulations, we demonstrate that the self-driven particle accumulation is controlled by a positive dielectrophoretic force, mediated by the reaction-induced electric and flow field. These results contribute to the fundamental knowledge on immobilized bimetallic systems.
Collapse
|
28
|
Peng Y, Xu P, Duan S, Liu J, Moran JL, Wang W. Generic Rules for Distinguishing Autophoretic Colloidal Motors. Angew Chem Int Ed Engl 2022; 61:e202116041. [PMID: 34994039 DOI: 10.1002/anie.202116041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/28/2022]
Abstract
Distinguishing the operating mechanisms of nano- and micromotors powered by chemical gradients, i.e. "autophoresis", holds the key for fundamental and applied reasons. In this article, we propose and experimentally confirm that the speeds of a self-diffusiophoretic colloidal motor scale inversely to its population density but not for self-electrophoretic motors, because the former is an ion source and thus increases the solution ionic strength over time while the latter does not. They also form clusters in visually distinguishable and quantifiable ways. This pair of rules is simple, powerful, and insensitive to the specific material composition, shape or size of a colloidal motor, and does not require any measurement beyond typical microscopy. These rules are not only useful in clarifying the operating mechanisms of typical autophoretic micromotors, but also in predicting the dynamics of unconventional ones that are yet to be experimentally realized, even those involving enzymes.
Collapse
Affiliation(s)
- Yixin Peng
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Pengzhao Xu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Shifang Duan
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Jiayu Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | | | - Wei Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
29
|
Lei L, Wang S, Zhou X, Ghellab SE, Lin G, Gao Y. Self-Organization of Binary Colloidal Mixtures via Diffusiohporesis. Front Chem 2022; 10:803906. [PMID: 35360529 PMCID: PMC8960120 DOI: 10.3389/fchem.2022.803906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/02/2022] [Indexed: 01/23/2023] Open
Abstract
Catalytic activity of the colloids and chemotactic response to gradients of the chemicals in the solution leads to effective interaction between catalytic colloids. In this paper, we simulate mixtures of active and passive colloids via a Brownian dynamics algorithm. These particles interact via phoretic interactions, which are determined by two independent parameters, surface activity and surface mobility. We find rich dynamic structures by tuning passive colloids’ surface mobility, size, and area fractions, which include schools of active colloids with exclusion zone, yolk/shell cluster, and stable active–passive alloys to motile clusters. Dynamical cluster can also be formed due to the nonreciprocity of the phoretic interaction. Increasing the size ratio of passive colloids to active colloids favors the phase separation of active and passive colloids, resulting in yolk/shell structure. Increasing the area fraction of active colloids tends to transfer from dynamical clusters into stable alloys. The simulated binary active colloid systems exhibit intriguing nonequilibrium phenomena that mimic the dynamic organizations of active/passive systems.
Collapse
Affiliation(s)
- Lijie Lei
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Shuo Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Xuemao Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | | | - Guanhua Lin
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yongxiang Gao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- *Correspondence: Yongxiang Gao,
| |
Collapse
|
30
|
|
31
|
Huang H, Cui RF, Kou J, Wen Z, Chen JX. The dynamics of chemically propelled dimer motor on a pinning substrate. Phys Chem Chem Phys 2022; 24:11986-11991. [DOI: 10.1039/d2cp00583b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of self-propelled micro-motors, in a thin fluid film containing an attractive substrate, is investigated by means of a particle-based simulation. A chemically powered sphere dimer, consisting of a...
Collapse
|
32
|
Liebchen B, Mukhopadhyay AK. Interactions in active colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083002. [PMID: 34788232 DOI: 10.1088/1361-648x/ac3a86] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The past two decades have seen a remarkable progress in the development of synthetic colloidal agents which are capable of creating directed motion in an unbiased environment at the microscale. These self-propelling particles are often praised for their enormous potential to self-organize into dynamic nonequilibrium structures such as living clusters, synchronized super-rotor structures or self-propelling molecules featuring a complexity which is rarely found outside of the living world. However, the precise mechanisms underlying the formation and dynamics of many of these structures are still barely understood, which is likely to hinge on the gaps in our understanding of how active colloids interact. In particular, besides showing comparatively short-ranged interactions which are well known from passive colloids (Van der Waals, electrostatic etc), active colloids show novel hydrodynamic interactions as well as phoretic and substrate-mediated 'osmotic' cross-interactions which hinge on the action of the phoretic field gradients which are induced by the colloids on other colloids in the system. The present article discusses the complexity and the intriguing properties of these interactions which in general are long-ranged, non-instantaneous, non-pairwise and non-reciprocal and which may serve as key ingredients for the design of future nonequilibrium colloidal materials. Besides providing a brief overview on the state of the art of our understanding of these interactions a key aim of this review is to emphasize open key questions and corresponding open challenges.
Collapse
Affiliation(s)
- Benno Liebchen
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Aritra K Mukhopadhyay
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
33
|
Zhang T, Deng Y, Zhou B, Liu J, Su Y, Li M, Zhang W. Reconfigurable Disk-like Microswarm under a Sawtooth Magnetic Field. MICROMACHINES 2021; 12:mi12121529. [PMID: 34945379 PMCID: PMC8708609 DOI: 10.3390/mi12121529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022]
Abstract
Swarming robotic systems, which stem from insect swarms in nature, exhibit a high level of environmental adaptability and enhanced tasking capabilities for targeted delivery and micromanipulation. Here, we present a strategy that reconfigures paramagnetic nanoparticles into microswarms energized by a sawtooth magnetic field. A rotary-stepping magnetic-chain mechanism is proposed to address the forming principle of disk-like swarms. Based on programming the sawtooth field, the microswarm can perform reversible transformations between a disk, an ellipse and a ribbon, as well as splitting and merging. In addition, the swarms can be steered in any direction with excellent maneuverability and a high level of pattern stability. Under accurate manipulation of a magnetic microswarm, multiple microparts with complicated shapes were successfully combined into a complete assembly. This reconfigurable swarming microrobot may shed light on the understanding of complex morphological transformations in living systems and provide future practical applications of microfabrication and micromanipulation.
Collapse
Affiliation(s)
- Tao Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Yuguo Deng
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Bo Zhou
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Jiayu Liu
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Yufeng Su
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- Correspondence: (M.L.); (W.Z.)
| | - Weiwei Zhang
- School of Mechanical Engineering, Zhengzhou University, Zhengzhou 450001, China; (T.Z.); (Y.D.); (B.Z.); (J.L.); (Y.S.)
- Correspondence: (M.L.); (W.Z.)
| |
Collapse
|
34
|
Wang Z, Xu W, Wang Z, Lyu D, Mu Y, Duan W, Wang Y. Polyhedral Micromotors of Metal-Organic Frameworks: Symmetry Breaking and Propulsion. J Am Chem Soc 2021; 143:19881-19892. [PMID: 34788029 DOI: 10.1021/jacs.1c09439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Colloidal micromotors can autonomously propel due to their broken symmetry that leads to unbalanced local mechanical forces. Most commonly, micromotors are synthesized to possess a Janus structure or its variants, having two components distinct in shape, composition, or surface joined together on opposite sides. Here, we report on an alternative approach for creating micromotors, where microcrystals of metal-organic frameworks (MOFs) with various polyhedral shapes are propelled under an AC electric field. In these cases, symmetry breaking is realized by orienting the polyhedral particles in a unique direction to generate uneven electrohydrodynamic flow. The particle orientations are controlled by a delicate competition between the electric and gravitational forces exerted on the particle, which we rationalize using experiments and a theoretical model. Furthermore, by leveraging the MOF types and shapes, or surface properties, we show that the propulsion of MOF motors can be tuned or reversed. Because of the flexibility in designing MOFs and their one-step scalable synthesis, our strategy is simple yet versatile for making well-defined functional micromotors.
Collapse
Affiliation(s)
- Zhisheng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Wei Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Zuochen Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Dengping Lyu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yijiang Mu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Wendi Duan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
35
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
36
|
Verma B, Gumfekar SP, Sabapathy M. A critical review on micro‐ and nanomotors: Application towards wastewater treatment. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bharti Verma
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | - Sarang P. Gumfekar
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | | |
Collapse
|
37
|
Chemically-powered swimming and diffusion in the microscopic world. Nat Rev Chem 2021; 5:500-510. [PMID: 37118434 DOI: 10.1038/s41570-021-00281-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
The past decade has seen intriguing reports and heated debates concerning the chemically-driven enhanced motion of objects ranging from small molecules to millimetre-size synthetic robots. These objects, in solutions in which chemical reactions were occurring, were observed to diffuse (spread non-directionally) or swim (move directionally) at rates exceeding those expected from Brownian motion alone. The debates have focused on whether observed enhancement is an experimental artefact or a real phenomenon. If the latter were true, then we would also need to explain how the chemical energy is converted into mechanical work. In this Perspective, we summarize and discuss recent observations and theories of active diffusion and swimming. Notably, the chemomechanical coupling and magnitude of diffusion enhancement are strongly size-dependent and should vanish as the size of the swimmers approaches the molecular scale. We evaluate the reliability of common techniques to measure diffusion coefficients and finish by considering the potential applications and chemical to mechanical energy conversion efficiencies of typical nanoswimmers and microswimmers.
Collapse
|
38
|
Shandilya E, Dasgupta B, Maiti S. Interconnectivity between Surface Reactivity and Self-Assembly of Kemp Elimination Catalyzing Nanorods. Chemistry 2021; 27:7831-7836. [PMID: 33769607 DOI: 10.1002/chem.202100450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/08/2022]
Abstract
Understanding the fundamental facts behind dynamicity of catalytic processes has been a longstanding quest across disciplines. Herein, we report self-assembly of catalytically active gold nanorods that can be regulated by tuning its reactivity towards a proton transfer reaction at different pH. Unlike substrate-induced templating and co-operativity, the enhanced aggregation rate is due to alteration of catalytic surface charge only during reactivity as negatively charged transition state of reactant (5-nitrobenzisoxazole) is formed on positively charged nanorod while undergoing a concerted E2-pathway. Herein, enhanced diffusivity during catalytic processes might also act as an additional contributing factor. Furthermore, we have also shown that nanosized hydrophobic cavities of clustered nanorods can also efficiently accelerate the rate of an aromatic nucleophilic substitution reaction, which also demonstrates a catalytic phenomenon that can lead to cascading of other reactions where substrates and products of the starting reactions are not directly involved.
Collapse
Affiliation(s)
- Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Basundhara Dasgupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli, 140306, India
| |
Collapse
|
39
|
Arslanova A, Dugyala VR, Reichel EK, Reddy N, Fransaer J, Clasen C. 'Sweeping rods': cargo transport by self-propelled bimetallic microrods moving perpendicular to their long axis. SOFT MATTER 2021; 17:2369-2373. [PMID: 33606868 DOI: 10.1039/d1sm00042j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A possible application of self-propelling particles is the transport of microscopic cargo. Maximizing the collection and transport efficiency of particulate matter requires the area swept by the moving particle to be as large as possible. One such particle geometry are rods propelled perpendicular to their long axis, that act as "sweepers" for collecting particles. Here we report on the required Janus coating to achieve such motion, and on the dynamics of the collection and transport of microscopic cargo by sideways propelled Janus rods.
Collapse
Affiliation(s)
- Alina Arslanova
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Erwin Konrad Reichel
- Institute for Microelectronics and Microsensors, Johannes Kepler University, Altenberger Strasse 69, Linz 4040, Austria
| | - Naveen Reddy
- Faculty of Engineering Technology, University of Hasselt, Martelarenlaan 42, Hasselt 3500, Belgium and IMO-IMOMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
40
|
Chen JX, Yuan R, Cui R, Qiao L. The dynamics and self-assembly of chemically self-propelled sphere dimers. NANOSCALE 2021; 13:1055-1060. [PMID: 33393558 DOI: 10.1039/d0nr06368a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of chemically powered sphere dimers at the micro- and nano-scales confined in a quasi-two-dimensional geometry are investigated. The dimer consists of a Janus particle and a non-catalytic sphere. A chemical reaction taking place on the catalytic surface of the Janus particle creates asymmetric concentration gradients that give rise to the self-propulsion of both rotation and translation of the dimer. Due to the chemical interactions, ensembles of dimers spontaneously form anti-parallel aligned doublets that exhibit the same rotation direction and lose translational motion. The chirality of the dimer plays an important role in the process of doublet formation. The study displays new collective dynamics and structures when both translational and rotational self-propulsion occur.
Collapse
Affiliation(s)
- Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|
41
|
Kumar S, Ghosh A, Chaudhuri J, Timung S, Dasmahapatra AK, Bandyopadhyay D. Self-organized spreading of droplets to fluid toroids. J Colloid Interface Sci 2020; 578:738-748. [DOI: 10.1016/j.jcis.2020.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
|
42
|
Naeem S, Mujtaba J, Naeem F, Xu K, Huang G, Solovev AA, Zhang J, Mei Y. Catalytic/magnetic assemblies of rolled-up tubular nanomembrane-based micromotors. RSC Adv 2020; 10:36526-36530. [PMID: 35517949 PMCID: PMC9057022 DOI: 10.1039/d0ra07347d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 01/23/2023] Open
Abstract
Nano/-micromotors self-assembling into static and dynamic clusters are of considerable promise to study smart, interactive, responsive, and adaptive nano/-micromaterials that can mimic spatio-temporal patterns, swarming, and collective behaviors widely observed in nature. Previously, the dynamic self-assembly of bubble-propelled catalytic micromotors initiated by capillary forces has been reported. This manuscript shows novel self-assembly modes of magnetic/catalytic Ti/FeNi/Pt tubular micromotors. When chemical fuel (hydrogen peroxide) is added it is decomposed on contact with Pt catalyst into oxygen and water. Here, the non-bubbling motion and autonomous assembly of catalytic/magnetic nanomembranes, i.e. without nucleation/generation of oxygen bubbles, are shown. Moreover, magnetic Ti/FeNi/Pt micromotors are spun using an external magnetic field and they form dynamic clusters balanced by attractive magnetic and repulsive hydrodynamic interactions. Micromotors form dynamic clusters, undergo precession and rapidly propagate through the solution.
Collapse
Affiliation(s)
- Sumayyah Naeem
- State Key Laboratory for Modification of Chemical Fibers, Polymer Material Science and Engineering, Donghua University Shanghai 201620 China
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Jawayria Mujtaba
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Farah Naeem
- State Key Laboratory for Modification of Chemical Fibers, Polymer Material Science and Engineering, Donghua University Shanghai 201620 China
- Department of Materials Science, Fudan University Shanghai 200433 China
| | - Kailiang Xu
- Department of Electronic Engineering, Fudan University Shanghai 200433 China
| | - Gaoshan Huang
- Department of Materials Science, Fudan University Shanghai 200433 China
| | | | - Jing Zhang
- College of Science, Donghua University Shanghai 201620 China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University Shanghai 200433 China
| |
Collapse
|
43
|
Lu X, Shen H, Wei Y, Ge H, Wang J, Peng H, Liu W. Ultrafast Growth and Locomotion of Dandelion-Like Microswarms with Tubular Micromotors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003678. [PMID: 32830425 DOI: 10.1002/smll.202003678] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Dynamic assembly and cooperation represent future frontiers for next generations of advanced micro/nano robots, but the required local interaction and communication cannot be directly translated from macroscale robots through the minimization because of tremendous technological challenges. Here, an ultrafast growth and locomotion methodology is presented for dandelion-like microswarms assembled from catalytic tubular micromotors. With ultrasound oscillation of self-generated bubbles, such microswarms could overcome the tremendous and chaotic drag force from extensive and disordered bubble generation in single units. Tubular MnO2 micromotor individuals headed by self-generated oxygen bubbles are ultrasonically driven to swim rapidly in surfactant-free H2 O2 solutions. A large bubble core fused from multiple microbubbles is excited to oscillate and the resultant local intensified acoustic field attracts the individual micromotors to school around it, leading to a simultaneous growth of dandelion-like microswarms. The bubble-carried micromotor groups driven by ultrasound could swarm at a zigzag pattern with an average speed of up to 50 mm s-1 , which is validated in low H2 O2 concentrations. Additionally, such superfast locomotion could be ultrasonically modulated on demand. The ultrafast microswarm growth and locomotion strategy offers a new paradigm for constructing distinct dynamic assemblies and rapid transmission of artificial microrobots, paving the way to a myriad of promising applications.
Collapse
Affiliation(s)
- Xiaolong Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Hui Shen
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Ying Wei
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Hongbin Ge
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| | - Joseph Wang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hanmin Peng
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, China
| | - Wenjuan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211816, China
| |
Collapse
|
44
|
Popescu MN. Chemically Active Particles: From One to Few on the Way to Many. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6861-6870. [PMID: 32233489 PMCID: PMC7331135 DOI: 10.1021/acs.langmuir.9b03973] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/01/2020] [Indexed: 06/01/2023]
Abstract
Chemically active particles suspended in a liquid solution can achieve self-motility by locally changing the chemical composition of the solution via catalytic reactions at their surfaces. They operate intrinsically out of equilibrium, continuously extracting free energy from the environment to power the dissipative self-motility. The effective interactions involving active particles are, in general, nonreciprocal and anisotropic, even if the particles have simple shapes (e.g., Janus spheres). Accordingly, for chemically active particles a very rich behavior of collective motion and self-assembly may be expected to emerge, including phenomena such as microphase separation in the form of kinetically stable, finite-sized aggregates. Here, I succinctly review a number of recent experimental studies that demonstrate the self-assembly of structures, involving chemically active Janus particles, which exhibit various patterns of motion. These examples illustrate concepts such as "motors made out of motors" (as suggestively named by Fischer [Fischer, P. Nat. Phys. 2018, 14, 1072]). The dynamics of assembly and structure formation observed in these systems can provide benchmark, in-depth testing of the current understanding of motion and effective interactions produced by chemical activity. Finally, one notes that these significant achievements are likely just the beginning of the field. Recently reported particles endowed with time-dependent chemical activity or switchable reaction mechanisms open the way for exciting developments, such as periodic reshaping of self-assembled structures based on man-made internal clocks.
Collapse
|
45
|
Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Esteban-Fernández de Ávila B, Huang C, Zhou Z, Li Z, Yin L, Dong H, Fang RH, Zhang X, Zhang L, Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 2020; 5:5/43/eaba6137. [DOI: 10.1126/scirobotics.aba6137] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/30/2020] [Indexed: 12/14/2022]
Abstract
Transforming natural cells into functional biocompatible robots capable of active movement is expected to enhance the functions of the cells and revolutionize the development of synthetic micromotors. However, present cell-based micromotor systems commonly require the propulsion capabilities of rigid motors, external fields, or harsh conditions, which may compromise biocompatibility and require complex actuation equipment. Here, we report on an endogenous enzyme-powered Janus platelet micromotor (JPL-motor) system prepared by immobilizing urease asymmetrically onto the surface of natural platelet cells. This Janus distribution of urease on platelet cells enables uneven decomposition of urea in biofluids to generate enhanced chemophoretic motion. The cell surface engineering with urease has negligible impact on the functional surface proteins of platelets, and hence, the resulting JPL-motors preserve the intrinsic biofunctionalities of platelets, including effective targeting of cancer cells and bacteria. The efficient propulsion of JPL-motors in the presence of the urea fuel greatly enhances their binding efficiency with these biological targets and improves their therapeutic efficacy when loaded with model anticancer or antibiotic drugs. Overall, asymmetric enzyme immobilization on the platelet surface leads to a biogenic microrobotic system capable of autonomous movement using biological fuel. The ability to impart self-propulsion onto biological cells, such as platelets, and to load these cellular robots with a variety of functional components holds considerable promise for developing multifunctional cell-based micromotors for a variety of biomedical applications.
Collapse
Affiliation(s)
- Songsong Tang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Fangyu Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Hua Gong
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Fanan Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jia Zhuang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Emil Karshalev
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Chuying Huang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhengxing Li
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
46
|
Wang W, Lv X, Moran JL, Duan S, Zhou C. A practical guide to active colloids: choosing synthetic model systems for soft matter physics research. SOFT MATTER 2020; 16:3846-3868. [PMID: 32285071 DOI: 10.1039/d0sm00222d] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Synthetic active colloids that harvest energy stored in the environment and swim autonomously are a popular model system for active matter. This emerging field of research sits at the intersection of materials chemistry, soft matter physics, and engineering, and thus cross-talk among researchers from different backgrounds becomes critical yet difficult. To facilitate this interdisciplinary communication, and to help soft matter physicists with choosing the best model system for their research, we here present a tutorial review article that describes, in appropriate detail, six experimental systems of active colloids commonly found in the physics literature. For each type, we introduce their background, material synthesis and operating mechanisms and notable studies from the soft matter community, and comment on their respective advantages and limitations. In addition, the main features of each type of active colloid are summarized into two useful tables. As materials chemists and engineers, we intend for this article to serve as a practical guide, so those who are not familiar with the experimental aspects of active colloids can make more informed decisions and maximize their creativity.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Xianglong Lv
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Jeffrey L Moran
- Department of Mechanical Engineering, George Mason University, Fairfax, USA
| | - Shifang Duan
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Chao Zhou
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
47
|
Wang J, Toebes BJ, Plachokova AS, Liu Q, Deng D, Jansen JA, Yang F, Wilson DA. Self-Propelled PLGA Micromotor with Chemotactic Response to Inflammation. Adv Healthc Mater 2020; 9:e1901710. [PMID: 32142216 DOI: 10.1002/adhm.201901710] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Indexed: 02/01/2023]
Abstract
Local drug delivery systems have recently been developed for multiple diseases that have the requirements of site-specific actions, prolonged delivery periods, and decreased drug dosage to reduce undesirable side effects. The challenge for such systems is to achieve directional and precise delivery in inaccessible narrow lesions, such as periodontal pockets or root canals in deeper portions of the dentinal tubules. The primary strategy to tackle this challenge is fabricating a smart tracking delivery system. Here, drug-loaded biodegradable micromotors showing self-propelled directional movement along a hydrogen peroxide concentration gradient produced by phorbol esters-stimulated macrophages are reported. The drug-loaded poly(lactic-co-glycolic acid) micromotors with asymmetric coverage of enzyme (patch-like enzyme distribution) are prepared by electrospraying and postfunctionalized with catalase via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide coupling. Doxycycline, a common drug for the treatment of periodontal disease, is selected as a model drug, and the release study by high-performance liquid chromatography is shown that both the postfunctionalization step and the presence of hydrogen peroxide have no negative influence on drug release profiles. The movement behavior in the presence of hydrogen peroxide is confirmed by nanoparticle tracking analysis. An in vitro model is designed and confirmed the response efficiency and directional control of the micromotors toward phorbol esters-stimulated macrophages.
Collapse
Affiliation(s)
- Jiamian Wang
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - B. Jelle Toebes
- Institute for Molecules and Materials Radboud University 6525 AJ Nijmegen The Netherlands
| | - Adelina S. Plachokova
- Department of Dentistry – Implantology and PeriodontologyRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Qian Liu
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Dongmei Deng
- Department of Preventive DentistryAcademic Center for Dentistry Amsterdam (ACTA)University of Amsterdam and VUUniversity Amsterdam 1081 LA Amsterdam The Netherlands
| | - John A. Jansen
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Fang Yang
- Department of Dentistry – BiomaterialsRadboud University Medical Center 6525 EX Nijmegen The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials Radboud University 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
48
|
Du S, Wang H, Zhou C, Wang W, Zhang Z. Motor and Rotor in One: Light-Active ZnO/Au Twinned Rods of Tunable Motion Modes. J Am Chem Soc 2020; 142:2213-2217. [PMID: 31957432 DOI: 10.1021/jacs.9b13093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control of the motion of micromachines is the key to achieving their functions for practical applications. The main challenge is that a given micromachine can typically exhibit only one motion mode, i.e., translation or rotation, while having multiple modes of motion resulting from a simple actuation is still rare. Here we designed and synthesized photochemically powered zinc oxide/gold (ZnO/Au) rods that exhibit multiple motion modes. Under homogeneous UV irradiation, these ZnO/Au rods undergo a transition from ballistic motion to persistent rotational motion upon increasing the fuel concentration or the light intensity. In addition, the rods can switch modes from a circular motion to a helical motion and then a straight-line motion by tuning the angle of incident light. We envision that such attractive colloidal micromachines with controllable motions hold considerable promise for diverse practical applications.
Collapse
Affiliation(s)
- Sinan Du
- Center for Soft Condensed Matter Physics and Interdisciplinary Research , Soochow University , Suzhou 215006 , China.,College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Huaguang Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| | - Chao Zhou
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Wei Wang
- School of Materials Science and Engineering , Harbin Institute of Technology (Shenzhen) , Shenzhen 518055 , China
| | - Zexin Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research , Soochow University , Suzhou 215006 , China.,College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , China
| |
Collapse
|
49
|
Hauke F, Löwen H, Liebchen B. Clustering-induced velocity-reversals of active colloids mixed with passive particles. J Chem Phys 2020; 152:014903. [DOI: 10.1063/1.5128641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Frederik Hauke
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
50
|
Wang H, Pumera M. Coordinated behaviors of artificial micro/nanomachines: from mutual interactions to interactions with the environment. Chem Soc Rev 2020; 49:3211-3230. [DOI: 10.1039/c9cs00877b] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The interactions leading to coordinated behaviors of artificial micro/nanomachines are reviewed.
Collapse
Affiliation(s)
- Hong Wang
- School of Chemical Engineering & Technology
- China University of Mining and Technology
- Xuzhou
- P. R. China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots
- Department of Inorganic Chemistry
- University of Chemistry and Technology Prague
- CZ-166 28 Prague
- Czech Republic
| |
Collapse
|