1
|
Quinlan JA, Sabbineni S, Robey RW, Lipsey CC, Inglut CT, Thomas JR, Walker JR, Zhou W, Huang HC, Gottesman MM. Identification of NanoLuciferase Substrates Transported by Human ABCB1 and ABCG2 and Their Zebrafish Homologs at the Blood-Brain Barrier. Mol Pharmacol 2024; 106:278-286. [PMID: 39322411 PMCID: PMC11585257 DOI: 10.1124/molpharm.123.000811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024] Open
Abstract
ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, ABCB1 and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by ABCB1, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, that are expressed at the zebrafish BBB. We evaluated the luminescence and transporter substrate status of 16 NanoLuc substrates. We identified eight substrates that were efficiently pumped out by ABCB1, six by Abcb4, seven by ABCG2, and seven by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter. SIGNIFICANCE STATEMENT: The ATP-binding cassette (ABC) transporters ABCB1 and ABCG2 at the blood-brain barrier (BBB) hinder pharmacological treatment of brain-related diseases. Consequently, there is a need for tools to identify BBB disruptors. This study screened 16 NanoLuciferase substrates, identifying the brightest and those that were transported by human and zebrafish ABC transporters at the BBB. This work supports and complements development of a transgenic zebrafish model, in which NanoLuciferase is expressed within glial cells, enabling detection of BBB disruption.
Collapse
Affiliation(s)
- John A Quinlan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Sashank Sabbineni
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Robert W Robey
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Crystal C Lipsey
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Collin T Inglut
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Joanna R Thomas
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Joel R Walker
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Wenhui Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| | - Michael M Gottesman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland (J.A.Q., C.T.I., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (J.A.Q., S.S., R.W.R., C.C.L., C.T.I., J.R.T., M.M.G.); and Promega Corporation, San Luis Obispo, California (J.R.W., W.Z.)
| |
Collapse
|
2
|
Thomas JR, Frye WJE, Robey RW, Gottesman MM. Progress in characterizing ABC multidrug transporters in zebrafish. Drug Resist Updat 2024; 72:101035. [PMID: 38141369 PMCID: PMC10843779 DOI: 10.1016/j.drup.2023.101035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Zebrafish have proved to be invaluable for modeling complex physiological processes shared by all vertebrate animals. Resistance of cancers and other diseases to drug treatment can occur owing to expression of the ATP-dependent multidrug transporters ABCB1, ABCG2, and ABCC1, either because of expression of these transporters by the target cells to reduce intracellular concentrations of cytotoxic drugs at barrier sites such as the blood-brain barrier (BBB) to limit penetration of drugs into privileged compartments, or by affecting the absorption, distribution, and excretion of drugs administered orally, through the skin, or directly into the bloodstream. We describe the drug specificity, cellular localization, and function of zebrafish orthologs of multidrug resistance ABC transporters with the goal of developing zebrafish models to explore the physiological and pathophysiological functions of these transporters. Finally, we provide context demonstrating the utility of zebrafish in studying cancer drug resistance. Our ultimate goal is to improve treatment of cancer and other diseases which are affected by ABC multidrug resistance transporters.
Collapse
Affiliation(s)
- Joanna R Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J E Frye
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Inglut CT, Quinlan JA, Robey RW, Thomas JR, Walker JR, Zhou W, Huang HC, Gottesman MM. Identification of NanoLuciferase Substrates Transported by Human ABCB1 and ABCG2 and their Zebrafish Homologs at the Blood-Brain Barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563277. [PMID: 37986908 PMCID: PMC10659404 DOI: 10.1101/2023.10.20.563277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.
Collapse
Affiliation(s)
| | | | - Robert W. Robey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Joanna R. Thomas
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Joel R. Walker
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Wenhui Zhou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| | - Michael M. Gottesman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742 (C.T.I., J.A.Q., H.-C.H.); Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892 (C.T.I., J.A.Q., R.W.R, J.R.T, M.M.G.), Promega Corporation, San Luis Obispo, CA, 93401 (J.R.W., W.Z.)
| |
Collapse
|
4
|
Gottesman MM, Robey RW, Ambudkar SV. New mechanisms of multidrug resistance: an introduction to the Cancer Drug Resistance special collection. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:590-595. [PMID: 37842242 PMCID: PMC10571052 DOI: 10.20517/cdr.2023.86] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
Cancer Drug Resistance publishes contributions to understanding the biology and consequences of mechanisms that interfere with successful treatment of cancer. Since virtually all patients who die of metastatic cancer have multidrug-resistant tumors, improved treatment will require an understanding of the mechanisms of resistance to design therapies that circumvent these mechanisms, exploit these mechanisms, or inactivate these multidrug resistance mechanisms. One example of a resistance mechanism is the expression of ATP-binding cassette efflux pumps, but unfortunately, inhibition of these transporters has not proved to be the solution to overcome multidrug resistance in cancer. Other mechanisms that confer multidrug resistance, and the confluence of multiple different mechanisms (multifactorial multidrug resistance) have been identified, and it is the goal of this Special Collection to expand this catalog of potential multidrug resistance mechanisms, to explore novel ways to overcome resistance, and to present thoughtful reviews on the problem of multidrug resistance in cancer.
Collapse
Affiliation(s)
- Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
5
|
Liu J, Fu L, Yin F, Yin L, Song X, Guo H, Liu J. Diosmetin Maintains Barrier Integrity by Reducing the Expression of ABCG2 in Colonic Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37269551 DOI: 10.1021/acs.jafc.3c00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Crohn's disease (CD) is a relapsing and chronic inflammatory bowel disease. Recent advances have highlighted that dysfunction of the barrier function formed by a polarized monolayer of columnar epithelial cells plays a crucial role in the pathophysiology of CD. At present, we reported that diosmetin increased cell viability by reducing the levels of TNFα and IL-6 in lipopolysaccharide (LPS)-treated colonic epithelial Caco-2 cells. Meanwhile, diosmetin conferred a direct effect on maintaining barrier integrity by reducing epithelial permeability and increasing the expression of proteins associated with tight junctions, including zonula occludens-l (ZO-1), occludin, and claudin-1, in LPS-treated Caco-2 cells and in 2,4,6-trinitrobenzene sulfonic acid-induced CD mice. Additionally, diosmetin decreased the protein content of adenosine triphosphate-binding cassette efflux transporter G2 (ABCG2) in vitro and in vivo. Over-expression of ABCG2 had an important impact on the epithelial permeability and barrier-related protein levels induced by LPS in Caco-2 cells. At the same time, Ko143, a specific ABCG2 inhibitor, dramatically enhanced the role of diosmetin in ZO-1 and occludin proteins in LPS-treated Caco-2 cells. Mechanically, diosmetin significantly attenuated the role of LPS in the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (PKB/AKT), and cAMP-response element binding protein (CREB) in Caco-2 cells. The AMPK inhibitor Compound C obviously prevented the effect of diosmetin on ZO-1 and occludin expression in LPS-treated Caco-2 cells. Taken together, the results of this study suggest that AMPK/AKT/CREB-mediated ABCG2 expression plays a crucial role in diosmetin, improving the barrier dysfunction in CD.
Collapse
Affiliation(s)
- Jinfan Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Lu Fu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Li Yin
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | - Xiaomei Song
- Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, People's Republic of China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, People's Republic of China
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| |
Collapse
|
6
|
Sun Y, Zabihi M, Li Q, Li X, Kim BJ, Ubogu EE, Raja SN, Wesselmann U, Zhao C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. ADVANCED THERAPEUTICS 2023; 6:2200150. [PMID: 37649593 PMCID: PMC10465108 DOI: 10.1002/adtp.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/20/2023]
Abstract
Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mahmood Zabihi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xiaosi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon J. Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa AL 35487, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| | - Eroboghene E. Ubogu
- Division of Neuromuscular Disease, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Srinivasa N. Raja
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ursula Wesselmann
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, and Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Consortium for Neuroengineering and Brain-Computer Interfaces, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| |
Collapse
|
7
|
Bausart M, Bozzato E, Joudiou N, Koutsoumpou X, Manshian B, Préat V, Gallez B. Mismatch between Bioluminescence Imaging (BLI) and MRI When Evaluating Glioblastoma Growth: Lessons from a Study Where BLI Suggested "Regression" while MRI Showed "Progression". Cancers (Basel) 2023; 15:cancers15061919. [PMID: 36980804 PMCID: PMC10047859 DOI: 10.3390/cancers15061919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Orthotopic glioblastoma xenografts are paramount for evaluating the effect of innovative anti-cancer treatments. In longitudinal studies, tumor growth (or regression) of glioblastoma can only be monitored by noninvasive imaging. For this purpose, bioluminescence imaging (BLI) has gained popularity because of its low cost and easy access. In the context of the development of new nanomedicines for treating glioblastoma, we were using luciferase-expressing GL261 cell lines. Incidentally, using BLI in a specific GL261 glioblastoma model with cells expressing both luciferase and the green fluorescent protein (GL261-luc-GFP), we observed an apparent spontaneous regression. By contrast, the magnetic resonance imaging (MRI) analysis revealed that the tumors were actually growing over time. For other models (GL261 expressing only luciferase and U87 expressing both luciferase and GFP), data from BLI and MRI correlated well. We found that the divergence in results coming from different imaging modalities was not due to the tumor localization nor the penetration depth of light but was rather linked to the instability in luciferase expression in the viral construct used for the GL261-luc-GFP model. In conclusion, the use of multi-modality imaging prevents possible errors in tumor growth evaluation, and checking the stability of luciferase expression is mandatory when using BLI as the sole imaging modality.
Collapse
Affiliation(s)
- Mathilde Bausart
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Elia Bozzato
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Nicolas Joudiou
- Nuclear and Electron Spin Technologies (NEST) Platform, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Xanthippi Koutsoumpou
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Bella Manshian
- Department of Imaging and Pathology, Translational Cell and Tissue Research Unit, Katholiek Universiteit Leuven (KULeuven), 3000 Leuven, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials (ADDB) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance (REMA) Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
8
|
An optimized bioluminescent substrate for non-invasive imaging in the brain. Nat Chem Biol 2023; 19:731-739. [PMID: 36759751 DOI: 10.1038/s41589-023-01265-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Bioluminescence imaging (BLI) allows non-invasive visualization of cells and biochemical events in vivo and thus has become an indispensable technique in biomedical research. However, BLI in the central nervous system remains challenging because luciferases show relatively poor performance in the brain with existing substrates. Here, we report the discovery of a NanoLuc substrate with improved brain performance, cephalofurimazine (CFz). CFz paired with Antares luciferase produces greater than 20-fold more signal from the brain than the standard combination of D-luciferin with firefly luciferase. At standard doses, Antares-CFz matches AkaLuc-AkaLumine/TokeOni in brightness, while occasional higher dosing of CFz can be performed to obtain threefold more signal. CFz should allow the growing number of NanoLuc-based indicators to be applied to the brain with high sensitivity. Using CFz, we achieve video-rate non-invasive imaging of Antares in brains of freely moving mice and demonstrate non-invasive calcium imaging of sensory-evoked activity in genetically defined neurons.
Collapse
|
9
|
Giacomini KM, Yee SW, Koleske ML, Zou L, Matsson P, Chen EC, Kroetz DL, Miller MA, Gozalpour E, Chu X. New and Emerging Research on Solute Carrier and ATP Binding Cassette Transporters in Drug Discovery and Development: Outlook From the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:540-561. [PMID: 35488474 PMCID: PMC9398938 DOI: 10.1002/cpt.2627] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels. At the basic level, we describe the available crystal structures of membrane transporters in both the solute carrier (SLC) and ATP binding cassette superfamilies, which has been enabled by the development of cryogenic electron microscopy methods. Next, we describe new research on lysosomal and mitochondrial transporters as well as recently deorphaned transporters in the SLC superfamily. The translational section includes a summary of proteomic research, which has led to a quantitative understanding of transporter levels in various cell types and tissues and new methods to modulate transporter function, such as allosteric modulators and targeted protein degraders of transporters. The section ends with a review of the effect of the gut microbiome on modulation of transporter function followed by a presentation of 3D cell cultures, which may enable in vivo predictions of transporter function. In the clinical section, we describe new genomic and pharmacogenomic research, highlighting important polymorphisms in transporters that are clinically relevant to many drugs. Finally, we describe new clinical tools, which are becoming increasingly available to enable precision medicine, with the application of tissue-derived small extracellular vesicles and real-world biomarkers.
Collapse
Affiliation(s)
- Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Sook W. Yee
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Megan L. Koleske
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ling Zou
- Pharmacokinetics and Drug MetabolismAmgen Inc.South San FranciscoCaliforniaUSA
| | - Pär Matsson
- Department of PharmacologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eugene C. Chen
- Department of Drug Metabolism and PharmacokineticsGenentech, Inc.South San FranciscoCaliforniaUSA
| | - Deanna L. Kroetz
- Department of Bioengineering and Therapeutic SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Miles A. Miller
- Center for Systems BiologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Elnaz Gozalpour
- Drug Safety and MetabolismIMED Biotech UnitSafety and ADME Translational Sciences DepartmentAstraZeneca R&DCambridgeUK
| | - Xiaoyan Chu
- Department of ADME and Discovery ToxicologyMerck & Co. IncKenilworthNew JerseyUSA
| |
Collapse
|
10
|
Kim M, Gupta SK, Zhang W, Talele S, Mohammad AS, Laramy J, Mladek AC, Zhang S, Sarkaria JN, Elmquist WF. Factors Influencing Luciferase-Based Bioluminescent Imaging in Preclinical Models of Brain Tumor. Drug Metab Dispos 2022; 50:277-286. [PMID: 34887255 PMCID: PMC8969130 DOI: 10.1124/dmd.121.000597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Bioluminescent imaging (BLI) is a powerful tool in biomedical research to measure gene expression and tumor growth. The current study examined factors that influence the BLI signal, specifically focusing on the tissue distribution of two luciferase substrates, D-luciferin and CycLuc1. D-luciferin, a natural substrate of firefly luciferase, has been reported to have limited brain distribution, possibly due to the efflux transporter, breast cancer resistance protein (Bcrp), at the blood-brain barrier. CycLuc1, a synthetic analog of D-luciferin, has a greater BLI signal at lower doses than D-luciferin, especially in the brain. Our results indicate that limited brain distribution of D-luciferin and CycLuc1 is predominantly dictated by their low intrinsic permeability across the cell membrane, where the efflux transporter, Bcrp, plays a relatively minor role. Both genetic ablation and pharmacological inhibition of Bcrp decreased the systemic clearance of both luciferase substrates, significantly increasing exposure in the blood and, hence, in organs and tissues. These data also indicate that the biodistribution of luciferase substrates can be differentially influenced in luciferase-bearing tissues, leading to a "tissue-dependent" BLI signal. The results of this study point to the need to consider multiple mechanisms that influence the distribution of luciferase substrates. SIGNIFICANCE STATEMENT: Bioluminescence is used to monitor many biological processes, including tumor growth. This study examined the pharmacokinetics, brain distribution, and the role of active efflux transporters on the luciferase substrates D-luciferin and CycLuc1. CycLuc1 has a more sustained systemic circulation time (longer half-life) that can provide an advantage for the superior imaging outcome of CycLuc1 over D-luciferin. The disparity in imaging intensities between brain and peripheral sites is due to low intrinsic permeability of these luciferase substrates across the blood-brain barrier.
Collapse
Affiliation(s)
- Minjee Kim
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Shiv K Gupta
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Afroz S Mohammad
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Janice Laramy
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Ann C Mladek
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Shuangling Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - Jann N Sarkaria
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota (M.K., W.Z., S.T., A.S.M., J.L., S.Z., W.F.E.) and Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (S.K.G., A.C.M., J.N.S.)
| |
Collapse
|
11
|
Chen L, Chen Z, Zheng S, Fan L, Zhu L, Yu J, Tang C, Liu Q, Xiong Y. Study on mechanism of elemene reversing tumor multidrug resistance based on luminescence pharmacokinetics in tumor cells in vitro and in vivo. RSC Adv 2020; 10:34928-34937. [PMID: 35514396 PMCID: PMC9056898 DOI: 10.1039/d0ra00184h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/28/2020] [Indexed: 01/10/2023] Open
Abstract
While elemene (ELE) can reverse tumor multidrug resistance (MDR), the mechanisms for ELE reversing MDR remain unclear. Numerous studies have suggested that the efflux functionality of ATP-binding cassette (ABC) transporters, not their quantity, is more relevant to tumor MDR. However, no appropriate methods exist for real-time detection of the intracellular drug efflux caused by ABC transporters in vitro, especially in vivo, which hinders the examination of MDR reversal mechanisms. This study directly investigates the correlation between efflux functionality of ABC transporters and MDR reversal via ELE, using d-luciferin potassium salt (d-luc) as the chemotherapeutic substitute to study the intracellular drug efflux. Here, a luciferase reporter assay system combined with bioluminescence imaging confirmed that the efflux of d-luc from MCF-7/DOXFluc cells in vitro and in vivo was significantly reduced by ELE and when combined with Doxorubicin (DOX), ELE showed a synergistically anti-tumor effect in vitro and in vivo. Additionally, the luminescence pharmacokinetics of d-luc in MCF-7/DOXFluc cells and pharmacodynamics of the combined ELE and DOX in vivo showed a great correlation, implying that d-luc might be used as a probe to study ABC transporters-mediated efflux in order to explore mechanisms of traditional Chinese medicines reversing MDR.
Collapse
Affiliation(s)
- Liying Chen
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Zhi Chen
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
- The First People's Hospital of Jiande Jiande 311600 Zhejiang China
| | - Shuang Zheng
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Luhui Fan
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Lixin Zhu
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
- Zhejiang Institute for Food and Drug Control Hangzhou 310004 Zhejiang China
| | - Jiandong Yu
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Chaoyuan Tang
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| | - Qi Liu
- Department of Dermatology, Johns Hopkins University School of Medicine Baltimore MD 21231 USA
| | - Yang Xiong
- Department of Pharmaceutical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University Hangzhou 311400 Zhejiang China
| |
Collapse
|
12
|
Endo M, Ozawa T. Advanced Bioluminescence System for In Vivo Imaging with Brighter and Red-Shifted Light Emission. Int J Mol Sci 2020; 21:E6538. [PMID: 32906768 PMCID: PMC7555964 DOI: 10.3390/ijms21186538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
In vivo bioluminescence imaging (BLI), which is based on luminescence emitted by the luciferase-luciferin reaction, has enabled continuous monitoring of various biochemical processes in living animals. Bright luminescence with a high signal-to-background ratio, ideally red or near-infrared light as the emission maximum, is necessary for in vivo animal experiments. Various attempts have been undertaken to achieve this goal, including genetic engineering of luciferase, chemical modulation of luciferin, and utilization of bioluminescence resonance energy transfer (BRET). In this review, we overview a recent advance in the development of a bioluminescence system for in vivo BLI. We also specifically examine the improvement in bioluminescence intensity by mutagenic or chemical modulation on several beetle and marine luciferase bioluminescence systems. We further describe that intramolecular BRET enhances luminescence emission, with recent attempts for the development of red-shifted bioluminescence system, showing great potency in in vivo BLI. Perspectives for future improvement of bioluminescence systems are discussed.
Collapse
Affiliation(s)
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| |
Collapse
|
13
|
Fukuchi M, Saito R, Maki S, Hagiwara N, Nakajima Y, Mitazaki S, Izumi H, Mori H. Visualization of activity-regulated BDNF expression in the living mouse brain using non-invasive near-infrared bioluminescence imaging. Mol Brain 2020; 13:122. [PMID: 32894176 PMCID: PMC7487487 DOI: 10.1186/s13041-020-00665-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
Altered levels of brain-derived neurotrophic factor (BDNF) have been reported in neurologically diseased human brains. Therefore, it is important to understand how the expression of BDNF is controlled under pathophysiological as well as physiological conditions. Here, we report a method to visualize changes in BDNF expression in the living mouse brain using bioluminescence imaging (BLI). We previously generated a novel transgenic mouse strain, Bdnf-Luciferase (Luc), to monitor changes in Bdnf expression; however, it was difficult to detect brain-derived signals in the strain using BLI with d-luciferin, probably because of incomplete substrate distribution and light penetration. We demonstrate that TokeOni, which uniformly distributes throughout the whole mouse body after systematic injection and produces a near-infrared bioluminescence light, was suitable for detecting signals from the brain of the Bdnf-Luc mouse. We clearly detected brain-derived bioluminescence signals that crossed the skin and skull after intraperitoneal injection of TokeOni. However, repeated BLI using TokeOni should be limited, because repeated injection of TokeOni on the same day reduced the bioluminescence signal, presumably by product inhibition. We successfully visualized kainic acid-induced Bdnf expression in the hippocampus and sensory stimulation-induced Bdnf expression in the visual cortex. Taken together, non-invasive near-infrared BLI using Bdnf-Luc mice with TokeOni allowed us to evaluate alterations in BDNF levels in the living mouse brain. This will enable better understanding of the involvement of BDNF expression in the pathogenesis and pathophysiology of neurological diseases.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033 Japan
| | - Ryohei Saito
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | - Shojiro Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 Japan
| | - Nami Hagiwara
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033 Japan
| | - Yumena Nakajima
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033 Japan
| | - Satoru Mitazaki
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma 370-0033 Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194 Japan
| |
Collapse
|
14
|
Lusvarghi S, Robey RW, Gottesman MM, Ambudkar SV. Multidrug transporters: recent insights from cryo-electron microscopy-derived atomic structures and animal models. F1000Res 2020; 9. [PMID: 32055397 PMCID: PMC6961416 DOI: 10.12688/f1000research.21295.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
P-glycoprotein, ABCG2, and MRP1 are members of the ATP-binding cassette (ABC) transporter superfamily that utilize energy from ATP-binding and hydrolysis to efflux a broad range of chemically dissimilar substrates including anticancer drugs. As a consequence, they play an important role in the pharmacokinetics and bioavailability of many drugs; in particular, their role in multidrug resistance in cancer cells as well as at the blood-brain barrier has been the subject of studies for decades. However, the atomic structures of these transporters in the presence of substrates or modulators and at different stages of the ATP-hydrolysis cycle have only recently been resolved by using cryo-electron microscopy. In addition, new animal models have shed new light on our understanding of the role of these transporters at the blood-brain barrier. This new information should open doors for the design of novel chemotherapeutics and treatments to bypass recognition by ABC drug pumps to overcome clinical drug resistance. In this review, we discuss the most recent advances in our understanding of ligand interactions and mechanistic aspects of drug transport based on atomic structures of these transporters as well as the development of new in vivo models to study their role in clinical drug resistance in cancer.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| | - Robert W Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr., Bethesda, MD, 20892, USA
| |
Collapse
|
15
|
Mairinger S, Zoufal V, Wanek T, Traxl A, Filip T, Sauberer M, Stanek J, Kuntner C, Pahnke J, Müller M, Langer O. Influence of breast cancer resistance protein and P-glycoprotein on tissue distribution and excretion of Ko143 assessed with PET imaging in mice. Eur J Pharm Sci 2018; 115:212-222. [PMID: 29360507 PMCID: PMC5884419 DOI: 10.1016/j.ejps.2018.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 12/12/2022]
Abstract
Ko143 is a reference inhibitor of the adenosine triphosphate-binding cassette (ABC) transporter breast cancer resistance protein (humans: ABCG2, rodents: Abcg2) for in vitro and in vivo use. Previous in vitro data indicate that Ko143 binds specifically to ABCG2/Abcg2, suggesting a potential utility of Ko143 as a positron emission tomography (PET) tracer to assess the density (abundance) of ABCG2 in different tissues. In this work we radiolabeled Ko143 with carbon-11 (11C) and performed small-animal PET experiments with [11C]Ko143 in wild-type, Abcg2(-/-), Abcb1a/b(-/-) and Abcb1a/b(-/-)Abcg2(-/-) mice to assess the influence of Abcg2 and Abcb1a/b on tissue distribution and excretion of [11C]Ko143. [11C]Ko143 was extensively metabolized in vivo and unidentified radiolabeled metabolites were found in all investigated tissues. We detected no significant differences between wild-type and Abcg2(-/-) mice in the distribution of [11C]Ko143-derived radioactivity to Abcg2-expressing organs (brain, liver and kidney). [11C]Ko143 and possibly its radiolabeled metabolites were transported by Abcb1a and not by Abcg2 at the mouse blood-brain barrier. [11C]Ko143-derived radioactivity underwent both hepatobiliary and urinary excretion, with Abcg2 playing a possible role in mediating the transport of radiolabeled metabolites of [11C]Ko143 from the kidney into urine. Experiments in which a pharmacologic dose of unlabeled Ko143 (10 mg/kg) was co-administered with [11C]Ko143 revealed pronounced effects of the vehicle used for Ko143 formulation (containing polyethylene glycol 300 and polysorbate 80) on radioactivity distribution to the brain and the liver, as well as on hepatobiliary and urinary excretion of radioactivity. Our results highlight the challenges associated with the development of PET tracers for ABC transporters and emphasize that inhibitory effects of pharmaceutical excipients on membrane transporters need to be considered when performing in vivo drug-drug interaction studies. Finally, our study illustrates the power of small-animal PET to assess the interaction of drug molecules with membrane transporters on a whole body level.
Collapse
Affiliation(s)
- Severin Mairinger
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Viktoria Zoufal
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Wanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Alexander Traxl
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kuntner
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway; LIED, University of Lübeck, Germany; Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
The Placental Barrier: the Gate and the Fate in Drug Distribution. Pharm Res 2018; 35:71. [DOI: 10.1007/s11095-017-2286-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022]
|
17
|
Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin. Biochem Biophys Res Commun 2017; 495:2152-2157. [PMID: 29273507 DOI: 10.1016/j.bbrc.2017.12.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/27/2023]
Abstract
Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23 μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent Km of 0.36 μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.
Collapse
|
18
|
Noninvasive Evaluation of Cellular Proliferative Activity in Brain Neurogenic Regions in Rats under Depression and Treatment by Enhanced [18F]FLT-PET Imaging. J Neurosci 2017; 36:8123-31. [PMID: 27488633 DOI: 10.1523/jneurosci.0220-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 06/21/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Neural stem cells in two neurogenic regions, the subventricular zone and the subgranular zone (SGZ) of the hippocampal dentate gyrus, can divide and produce new neurons throughout life. Hippocampal neurogenesis is related to emotions, including depression/anxiety, and the therapeutic effects of antidepressants, as well as learning and memory. The establishment of in vivo imaging for proliferative activity of neural stem cells in the SGZ might be used to diagnose depression and to monitor the therapeutic efficacy of antidepressants. Positron emission tomography (PET) imaging with 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT) has been studied to allow visualization of proliferative activity in two neurogenic regions of adult mammals; however, the PET imaging has not been widely used because of lower accumulation of [(18)F]FLT, which does not allow quantitative assessment of the decline in cellular proliferative activity in the SGZ under the condition of depression. We report the establishment of an enhanced PET imaging method with [(18)F]FLT combined with probenecid, an inhibitor of drug transporters at the blood-brain barrier, which can allow the quantitative visualization of neurogenic activity in rats. Enhanced PET imaging allowed us to evaluate reduced cell proliferation in the SGZ of rats with corticosterone-induced depression, and further the recovery of proliferative activity in rats under treatment with antidepressants. This enhanced [(18)F]FLT-PET imaging technique with probenecid can be used to assess the dynamic alteration of neurogenic activity in the adult mammalian brain and may also provide a means for objective diagnosis of depression and monitoring of the therapeutic effect of antidepressant treatment. SIGNIFICANCE STATEMENT Adult hippocampal neurogenesis may play a role in major depression and antidepressant therapy. Establishment of in vivo imaging for hippocampal neurogenic activity may be useful to diagnose depression and monitor the therapeutic efficacy of antidepressants. Positron emission tomography (PET) imaging has been studied to allow visualization of neurogenic activity; however, PET imaging has not been widely used due to the lower accumulation of the PET tracer in the neurogenic regions. Here, we succeeded in establishing highly quantitative PET imaging for neurogenic activity in adult brain with an inhibitor for drug transporter. This enhanced PET imaging allowed evaluation of the decline of neurogenic activity in the hippocampus of rats with depression and the recovery of neurogenic activity by antidepressant treatment.
Collapse
|
19
|
Saidijam M, Karimi Dermani F, Sohrabi S, Patching SG. Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 2017; 48:506-532. [PMID: 28481715 DOI: 10.1080/00498254.2017.1328148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. Efflux proteins at the blood-brain barrier provide a mechanism for export of waste products of normal metabolism from the brain and help to maintain brain homeostasis. They also prevent entry into the brain of a wide range of potentially harmful compounds such as drugs and xenobiotics. 2. Conversely, efflux proteins also hinder delivery of therapeutic drugs to the brain and central nervous system used to treat brain tumours and neurological disorders. For bypassing efflux proteins, a comprehensive understanding of their structures, functions and molecular mechanisms is necessary, along with new strategies and technologies for delivery of drugs across the blood-brain barrier. 3. We review efflux proteins at the blood-brain barrier, classified as either ATP-binding cassette (ABC) transporters (P-gp, BCRP, MRPs) or solute carrier (SLC) transporters (OATP1A2, OATP1A4, OATP1C1, OATP2B1, OAT3, EAATs, PMAT/hENT4 and MATE1). 4. This includes information about substrate and inhibitor specificity, structural organisation and mechanism, membrane localisation, regulation of expression and activity, effects of diseases and conditions and the principal technique used for in vivo analysis of efflux protein activity: positron emission tomography (PET). 5. We also performed analyses of evolutionary relationships, membrane topologies and amino acid compositions of the proteins, and linked these to structure and function.
Collapse
Affiliation(s)
- Massoud Saidijam
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Fatemeh Karimi Dermani
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Sareh Sohrabi
- a Department of Molecular Medicine and Genetics , Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan , Iran and
| | - Simon G Patching
- b School of BioMedical Sciences and the Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds , UK
| |
Collapse
|
20
|
Fricke IB, Schelhaas S, Zinnhardt B, Viel T, Hermann S, Couillard-Després S, Jacobs AH. In vivo bioluminescence imaging of neurogenesis - the role of the blood brain barrier in an experimental model of Parkinson's disease. Eur J Neurosci 2017; 45:975-986. [PMID: 28194885 DOI: 10.1111/ejn.13540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/29/2017] [Accepted: 02/06/2017] [Indexed: 01/01/2023]
Abstract
Bioluminescence imaging in transgenic mice expressing firefly luciferase in Doublecortin+ (Dcx) neuroblasts might serve as a powerful tool to study the role of neurogenesis in models of brain injury and neurodegeneration using non-invasive, longitudinal in vivo imaging. Therefore, we aimed to use BLI in B6(Cg)-Tyrc-2J/J Dcx-Luc (Doublecortin-Luciferase, Dcx-Luc) mice to investigate its suitability to assess neurogenesis in a unilateral injection model of Parkinson's disease. We further aimed to assess the blood brain barrier leakage associated with the intranigral 6-OHDA injection to evaluate its impact on substrate delivery and bioluminescence signal intensity. Two weeks after lesion, we observed an increase in bioluminescence signal in the ipsilateral hippocampal region in both, 6-OHDA and vehicle injected Dcx-Luc mice. At the same time, no corresponding increase in Dcx+ neuroblast numbers could be observed in the dentate gyrus of C57Bl6 mice. Blood brain barrier leakage was observed in the hippocampal region and in the degenerating substantia nigra of C57Bl6 mice in vivo using T1 weighted Magnetic Resonance Imaging with Gadovist® and ex vivo using Evans Blue Fluorescence Reflectance Imaging and mouse Immunoglobulin G staining. Our data suggests a BLI signal dependency on blood brain barrier permeability, underlining a major pitfall of substrate/tracer dependent imaging in invasive disease models.
Collapse
Affiliation(s)
- Inga B Fricke
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,Imaging Neuroinflammation in Neurodegenerative Diseases (INMiND) EU FP7 Consortium, Münster, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,Imaging Neuroinflammation in Neurodegenerative Diseases (INMiND) EU FP7 Consortium, Münster, Germany
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,Imaging Neuroinflammation in Neurodegenerative Diseases (INMiND) EU FP7 Consortium, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Sébastien Couillard-Després
- Imaging Neuroinflammation in Neurodegenerative Diseases (INMiND) EU FP7 Consortium, Münster, Germany.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Institute of Experimental Neuroregeneration, Paracelsus Medical University, Salzburg, Austria
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,Imaging Neuroinflammation in Neurodegenerative Diseases (INMiND) EU FP7 Consortium, Münster, Germany.,Department of Geriatrics and Neurology, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
21
|
Mann A, Han H, Eyal S. Imaging transporters: Transforming diagnostic and therapeutic development. Clin Pharmacol Ther 2016; 100:479-488. [PMID: 27327047 DOI: 10.1002/cpt.416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows noninvasive assessment of drug distribution across pharmacological barriers. Thus, it plays an increasingly important role in efforts to understand the interactions of molecules with membrane transporters during drug development and in clinical pharmacology. We describe established and emerging imaging modalities utilized for studying transporter expression and function. We further present examples of how molecular imaging could provide insights into the contribution of transporters to drug disposition and effects.
Collapse
Affiliation(s)
- A Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - H Han
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - S Eyal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel. .,The David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
22
|
Pagan F, Hebron M, Valadez EH, Torres-Yaghi Y, Huang X, Mills RR, Wilmarth BM, Howard H, Dunn C, Carlson A, Lawler A, Rogers SL, Falconer RA, Ahn J, Li Z, Moussa C. Nilotinib Effects in Parkinson's disease and Dementia with Lewy bodies. JOURNAL OF PARKINSON'S DISEASE 2016; 6:503-17. [PMID: 27434297 PMCID: PMC5008228 DOI: 10.3233/jpd-160867] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND We evaluated the effects of low doses of the tyrosine kinase Abelson (Abl) inhibitor Nilotinib, on safety and pharmacokinetics in Parkinson's disease dementia or dementia with Lewy bodies. OBJECTIVES The primary outcomes of this study were safety and tolerability; pharmacokinetics and target engagement were secondary, while clinical outcomes were exploratory. METHODS Twelve subjects were randomized into 150 mg (n = 5) or 300 mg (n = 7) groups and received Nilotinib orally every day for 24 weeks. RESULTS This study shows that 150 mg and 300 mg doses of Nilotinib appear to be safe and tolerated in subjects with advanced Parkinson's disease. Nilotinib is detectable in the cerebrospinal fluid (CSF) and seems to engage the target Abl. Motor and cognitive outcomes suggest a possible beneficial effect on clinical outcomes. The CSF levels of homovanillic acid are significantly increased between baseline and 24 weeks of treatment. Exploratory CSF biomarkers were measured. CONCLUSIONS This small proof-of-concept study lacks a placebo group and participants were not homogenous, resulting in baseline differences between and within groups. This limits the interpretations of the biomarker and clinical data, and any conclusions should be drawn cautiously. Nonetheless, the collective observations suggest that it is warranted to evaluate the safety and efficacy of Nilotinib in larger randomized, double-blind, placebo-controlled trials.
Collapse
Affiliation(s)
- Fernando Pagan
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Michaeline Hebron
- Department of Neurology, Laboratory for Dementia and Parkinsonism, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Georgetown University Medical Center, Washington, DC, USA
| | - Ellen H. Valadez
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Yasar Torres-Yaghi
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Xu Huang
- Department of Neurology, Laboratory for Dementia and Parkinsonism, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Georgetown University Medical Center, Washington, DC, USA
| | - Reversa R. Mills
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Barbara M. Wilmarth
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Hellen Howard
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Connell Dunn
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Alexis Carlson
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Abigail Lawler
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Sean L. Rogers
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Ramsey A. Falconer
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Jaeil Ahn
- Department of Biostatistics, Georgetown University Medical Center, Washington, DC, USA
| | - Zhaoxia Li
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| | - Charbel Moussa
- Department of Neurology, Laboratory for Dementia and Parkinsonism, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Georgetown University Medical Center, Washington, DC, USA
- Department of Neurology, National Parkinson’s Foundation Center for Excellence, Translational Neurotherapeutics Program. Movement Disorders Program. MedStar Georgetown Hospital Washington, DC, USA
| |
Collapse
|
23
|
Tung JK, Berglund K, Gutekunst CA, Hochgeschwender U, Gross RE. Bioluminescence imaging in live cells and animals. NEUROPHOTONICS 2016; 3:025001. [PMID: 27226972 PMCID: PMC4874058 DOI: 10.1117/1.nph.3.2.025001] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 05/13/2023]
Abstract
The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment.
Collapse
Affiliation(s)
- Jack K. Tung
- Georgia Institute of Technology, Coulter Department of Biomedical Engineering, 313 Ferst Drive, Room 2127, Atlanta, Georgia 30332, United States
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Ken Berglund
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Claire-Anne Gutekunst
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
| | - Ute Hochgeschwender
- Central Michigan University, College of Medicine and Neuroscience Program, Department of Neuroscience, 1280 S. East Campus Street, Mt. Pleasant, Michigan 48859, United States
| | - Robert E. Gross
- Georgia Institute of Technology, Coulter Department of Biomedical Engineering, 313 Ferst Drive, Room 2127, Atlanta, Georgia 30332, United States
- Emory University, Department of Neurosurgery, 101 Woodruff Circle, WMRB Rm 6337, Atlanta, Georgia 30322, United States
- Address all correspondence to: Robert E. Gross, E-mail:
| |
Collapse
|
24
|
Bioluminescent imaging of ABCG2 efflux activity at the blood-placenta barrier. Sci Rep 2016; 6:20418. [PMID: 26853103 PMCID: PMC4745077 DOI: 10.1038/srep20418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/04/2016] [Indexed: 11/09/2022] Open
Abstract
Physiologic barriers such as the blood placenta barrier (BPB) and the blood brain barrier protect the underlying parenchyma from pathogens and toxins. ATP-binding cassette (ABC) transporters are transmembrane proteins found at these barriers, and function to efflux xenobiotics and maintain chemical homeostasis. Despite the plethora of ex vivo and in vitro data showing the function and expression of ABC transporters, no imaging modality exists to study ABC transporter activity in vivo at the BPB. In the present study, we show that in vitro models of the placenta possess ABCG2 activity and can specifically transport D-luciferin, the endogenous substrate of firefly luciferase. To test ABCG2 transport activity at the BPB, we devised a breeding strategy to generate a bioluminescent pregnant mouse model to demonstrate transporter function in vivo. We found that coadministering the ABCG2 inhibitors Ko143 and gefitinib with D-luciferin increased bioluminescent signal from fetuses and placentae, whereas the control P-gp inhibitor DCPQ had no effect. We believe that our bioluminescent pregnant mouse model will facilitate greater understanding of the BPB and ABCG2 activity in health and disease.
Collapse
|
25
|
Kumar JS, Miller Jenkins LM, Gottesman MM, Hall MD. The Drug Excipient Cyclodextrin Interacts With d-Luciferin and Interferes With Bioluminescence Imaging. Mol Imaging 2016; 15:15/0/1536012115625225. [PMID: 27030398 PMCID: PMC4982550 DOI: 10.1177/1536012115625225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
Cyclodextrins are well-characterized, barrel-shaped molecules that can solubilize organic small molecules in aqueous solution via host–guest interactions. As such, cyclodextrins are used as excipients for experimental therapeutics in vivo. We observed unanticipated modifications to bioluminescence imaging (BLI) signal intensity when 2-hydroxy-propyl-β-cyclodextrin (HPCD) was coinjected as an excipient. We hypothesized that HPCD binds d-luciferin and interferes with the BLI signal. Using luciferase-expressing cell lines, we showed that HPCD lowers the BLI signal in a concentration-dependent manner. Flow cytometry revealed that HPCD resulted in reduced cellular accumulation of d-luciferin, and mass spectrometry revealed d-luciferin HPCD species, confirming a direct interaction. In vivo imaging using a luciferase mouse model demonstrated that HPCD reduced luciferin-mediated BLI compared to luciferin alone. The implications of using HPCD as an excipient in BLI studies are discussed.
Collapse
Affiliation(s)
- Jeyan S Kumar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA NCATS Chemical Genomics Center, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
26
|
Bakhsheshian J, Wei BR, Hall MD, Simpson RM, Gottesman MM. In Vivo Bioluminescent Imaging of ATP-Binding Cassette Transporter-Mediated Efflux at the Blood-Brain Barrier. Methods Mol Biol 2016; 1461:227-39. [PMID: 27424909 PMCID: PMC10758286 DOI: 10.1007/978-1-4939-3813-1_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We provide a detailed protocol for imaging ATP-binding cassette subfamily G member 2 (ABCG2) function at the blood-brain barrier (BBB) of transgenic mice. D-Luciferin is specifically transported by ABCG2 found on the apical side of endothelial cells at the BBB. The luciferase-luciferin enzymatic reaction produces bioluminescence, which allows a direct measurement of ABCG2 function at the BBB. Therefore bioluminescence imaging (BLI) correlates with ABCG2 function at the BBB and this can be measured by administering luciferin in a mouse model that expresses luciferase in the brain parenchyma. BLI allows for a relatively low-cost alternative for studying transporter function in vivo compared to other strategies such as positron emission tomography. This method for imaging ABCG2 function at the BBB can be used to investigate pharmacokinetic inhibition of the transporter.
Collapse
Affiliation(s)
- Joshua Bakhsheshian
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Yasuda K, Cline C, Lin YS, Scheib R, Ganguly S, Thirumaran RK, Chaudhry A, Kim RB, Schuetz EG. In Vivo Imaging of Human MDR1 Transcription in the Brain and Spine of MDR1-Luciferase Reporter Mice. Drug Metab Dispos 2015; 43:1646-54. [PMID: 26281846 PMCID: PMC4613952 DOI: 10.1124/dmd.115.065078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/12/2015] [Indexed: 01/16/2023] Open
Abstract
P-glycoprotein (Pgp) [the product of the MDR1 (ABCB1) gene] at the blood-brain barrier (BBB) limits central nervous system (CNS) entry of many prescribed drugs, contributing to the poor success rate of CNS drug candidates. Modulating Pgp expression could improve drug delivery into the brain; however, assays to predict regulation of human BBB Pgp are lacking. We developed a transgenic mouse model to monitor human MDR1 transcription in the brain and spinal cord in vivo. A reporter construct consisting of ∼10 kb of the human MDR1 promoter controlling the firefly luciferase gene was used to generate a transgenic mouse line (MDR1-luc). Fluorescence in situ hybridization localized the MDR1-luciferase transgene on chromosome 3. Reporter gene expression was monitored with an in vivo imaging system following D-luciferin injection. Basal expression was detectable in the brain, and treatment with activators of the constitutive androstane, pregnane X, and glucocorticoid receptors induced brain and spinal MDR1-luc transcription. Since D-luciferin is a substrate of ABCG2, the feasibility of improving D-luciferin brain accumulation (and luciferase signal) was tested by coadministering the dual ABCB1/ABCG2 inhibitor elacridar. The brain and spine MDR1-luc signal intensity was increased by elacridar treatment, suggesting enhanced D-luciferin brain bioavailability. There was regional heterogeneity in MDR1 transcription (cortex > cerebellum) that coincided with higher mouse Pgp protein expression. We confirmed luciferase expression in brain vessel endothelial cells by ex vivo analysis of tissue luciferase protein expression. We conclude that the MDR1-luc mouse provides a unique in vivo system to visualize MDR1 CNS expression and regulation.
Collapse
Affiliation(s)
- Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Cynthia Cline
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Yvonne S Lin
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Rachel Scheib
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Samit Ganguly
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Ranjit K Thirumaran
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Amarjit Chaudhry
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Richard B Kim
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (K.Y., C.C., R.S., S.G., R.K.T., A.C., E.G.S.); Department of Medicine, Division of Clinical Pharmacology, University of Western Ontario, London, Ontario, Canada (R.B.K.); and Department of Pharmaceutics, The University of Washington, Seattle, Washington (Y.S.L.)
| |
Collapse
|
28
|
MBL-II-141, a chromone derivative, enhances irinotecan (CPT-11) anticancer efficiency in ABCG2-positive xenografts. Oncotarget 2015; 5:11957-70. [PMID: 25474134 PMCID: PMC4323000 DOI: 10.18632/oncotarget.2566] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022] Open
Abstract
ABCG2 is responsible for the multidrug resistance (MDR) phenotype, and strongly modulates cancer outcomes. Its high expression at a number of physiological barriers, including blood-brain and intestinal barriers, impacts on drug pharmacokinetics parameters. We characterized MBL-II-141, a specific and potent ABCG2 inhibitor. Combination of 10 mg/kg MBL-II-141 with the anticancer agent CPT-11 completely blocked the growth of 90% freshly implanted ABCG2-positive tumors. Moreover, the same combination slowed the growth of already established tumors. As required for preclinical development, we defined the main pharmacokinetics parameters of MBL-II-141 and its influence on the kinetics of CPT-11 and its active metabolite SN-38 in mice. MBL-II-141 distribution into the brain occurred at a low, but detectable, level. Interestingly, preliminary data suggested that MBL-II-141 is well tolerated (at 50 mg/kg) and absorbed upon force-feeding. MBL-II-141 induced a potent sensitization of ABCG2-positive xenografts to CPT-11 through in vivo ABCG2 inhibition. MBL-II-141 strongly increased CPT-11 levels in the brain, and therefore would be a valuable agent to improve drug distribution into the brain to efficiently treat aggressive gliomas. Safety and other pharmacological data strongly support the reglementary preclinical development of MBL-II-141.
Collapse
|
29
|
Weidner LD, Zoghbi SS, Lu S, Shukla S, Ambudkar SV, Pike VW, Mulder J, Gottesman MM, Innis RB, Hall MD. The Inhibitor Ko143 Is Not Specific for ABCG2. J Pharmacol Exp Ther 2015; 354:384-93. [PMID: 26148857 PMCID: PMC4538874 DOI: 10.1124/jpet.115.225482] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Lora D Weidner
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Suneet Shukla
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Suresh V Ambudkar
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Jan Mulder
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Michael M Gottesman
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| | - Matthew D Hall
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland (L.D.W., S.S.Z., S.L., V.W.P., R.B.I.); Karolinska Institutet, Department of Neuroscience, Stockholm, Sweden (L.D.W., J.M.); and Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (S.S., S.V.A., M.M.G., M.D.H.)
| |
Collapse
|
30
|
Sajja RK, Cucullo L. Altered glycaemia differentially modulates efflux transporter expression and activity in hCMEC/D3 cell line. Neurosci Lett 2015; 598:59-65. [PMID: 25982326 DOI: 10.1016/j.neulet.2015.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/18/2015] [Accepted: 05/09/2015] [Indexed: 11/29/2022]
Abstract
The unique phenotype of blood-brain barrier (BBB) endothelium is partly maintained by abundant expression of ATP-binding cassette superfamily of efflux transporters that strictly restrict the CNS access to toxic substances including xenobiotics in circulation. Previously, we have shown that diabetes-related altered glycemic conditions differentially affect and compromise BBB integrity. However, the impact of diabetes on BBB efflux transporters is less understood. In this study, we examined the effects of single or repeated episodes of hypo-and hyperglycemia on major BBB efflux transporters expression/function in human cerebromicrovascular endothelial cell line (hCMEC/D3). Cells were exposed to normal (5.5 mM), hypo (2.2 mM) or hyper (25 or 35 mM)-glycemic media containing D-glucose for 12h (acute) or two 3h episodes/day of hypo- or hyperglycemia with an intercalated 2h normalglycemic exposure for 3 days ("glycemic variability", see Methods). Acute hypoglycemic exposure (12h) up-regulated BBB endothelial mRNA and protein expression of P-glycoprotein, BCRP and other multidrug resistance associated proteins (MRP1 and 4) paralleled by an increase in transporter-specific efflux activity (∼ 2-fold vs. control). Although, 12h hyperglycemia did not affect the efflux transporter expression (except for MRP4), a significant increase in BCRP activity was observed. By contrast, DNA microarray data revealed that repeated hyperglycemic episodes (but not hypoglycemia) significantly up-regulate P-glycoprotein expression and activity. Thus, this study suggests a differential impact of altered glycemic conditions on major BBB drug efflux transporters expression/function, sensitive to the length of exposure (acute vs. repeated), with an implication for altered CNS drug disposition in diabetic population.
Collapse
Affiliation(s)
- Ravi K Sajja
- Center for Blood-Brain Barrier Research, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Center for Blood-Brain Barrier Research, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
31
|
Mann A, Semenenko I, Meir M, Eyal S. Molecular Imaging of Membrane Transporters' Activity in Cancer: a Picture is Worth a Thousand Tubes. AAPS JOURNAL 2015; 17:788-801. [PMID: 25823669 DOI: 10.1208/s12248-015-9752-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/09/2015] [Indexed: 01/22/2023]
Abstract
Molecular imaging allows the non-invasive assessment of membrane transporter expression and function in living subjects. Such technologies have the potential to become diagnostic and prognostic tools, allowing detection, localization, and prediction of response of tumors and their metastases to therapy. Beyond tumors, imaging can also help understand the role of transporters in adverse drug effects and drug clearance. Here, we review molecular imaging technologies that monitor transporter-mediated processes. We emphasize emerging probe substrates and potential clinical applications of imaging the function of membrane transporters in cancer.
Collapse
Affiliation(s)
- Aniv Mann
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University, Room 613, Ein Kerem, Jerusalem, 91120, Israel
| | | | | | | |
Collapse
|
32
|
Chang KE, Wei BR, Madigan JP, Hall MD, Simpson RM, Zhuang Z, Gottesman MM. The protein phosphatase 2A inhibitor LB100 sensitizes ovarian carcinoma cells to cisplatin-mediated cytotoxicity. Mol Cancer Ther 2014; 14:90-100. [PMID: 25376608 DOI: 10.1158/1535-7163.mct-14-0496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite early positive response to platinum-based chemotherapy, the majority of ovarian carcinomas develop resistance and progress to fatal disease. Protein phosphatase 2A (PP2A) is a ubiquitous phosphatase involved in the regulation of DNA-damage response (DDR) and cell-cycle checkpoint pathways. Recent studies have shown that LB100, a small-molecule inhibitor of PP2A, sensitizes cancer cells to radiation-mediated DNA damage. We hypothesized that LB100 could sensitize ovarian cancer cells to cisplatin treatment. We performed in vitro studies in SKOV-3, OVCAR-8, and PEO1, -4, and -6 ovarian cancer lines to assess cytotoxicity potentiation, cell-death mechanism(s), cell-cycle regulation, and DDR signaling. In vivo studies were conducted in an intraperitoneal metastatic mouse model using SKOV-3/f-Luc cells. LB100 sensitized ovarian carcinoma lines to cisplatin-mediated cell death. Sensitization via LB100 was mediated by abrogation of cell-cycle arrest induced by cisplatin. Loss of the cisplatin-induced checkpoint correlated with decreased Wee1 expression, increased cdc2 activation, and increased mitotic entry (p-histone H3). LB100 also induced constitutive hyperphosphorylation of DDR proteins (BRCA1, Chk2, and γH2AX), altered the chronology and persistence of JNK activation, and modulated the expression of 14-3-3 binding sites. In vivo, cisplatin sensitization via LB100 significantly enhanced tumor growth inhibition and prevented disease progression after treatment cessation. Our results suggest that LB100 sensitizes ovarian cancer cells to cisplatin in vitro and in vivo by modulation of the DDR pathway and cell-cycle checkpoint abrogation.
Collapse
Affiliation(s)
- Ki-Eun Chang
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - James P Madigan
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Matthew D Hall
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
33
|
Aswendt M, Adamczak J, Tennstaedt A. A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Front Cell Neurosci 2014; 8:226. [PMID: 25177269 PMCID: PMC4132298 DOI: 10.3389/fncel.2014.00226] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/22/2014] [Indexed: 12/17/2022] Open
Abstract
Transplanted stem cells can induce and enhance functional recovery in experimental stroke. Invasive analysis has been extensively used to provide detailed cellular and molecular characterization of the stroke pathology and engrafted stem cells. But post mortem analysis is not appropriate to reveal the time scale of the dynamic interplay between the cell graft, the ischemic lesion and the endogenous repair mechanisms. This review describes non-invasive imaging techniques which have been developed to provide complementary in vivo information. Recent advances were made in analyzing simultaneously different aspects of the cell graft (e.g., number of cells, viability state, and cell fate), the ischemic lesion (e.g., blood-brain-barrier consistency, hypoxic, and necrotic areas) and the neuronal and vascular network. We focus on optical methods, which permit simple animal preparation, repetitive experimental conditions, relatively medium-cost instrumentation and are performed under mild anesthesia, thus nearly under physiological conditions. A selection of recent examples of optical intrinsic imaging, fluorescence imaging and bioluminescence imaging to characterize the stroke pathology and engrafted stem cells are discussed. Special attention is paid to novel optimal reporter genes/probes for genetic labeling and tracking of stem cells and appropriate transgenic animal models. Requirements, advantages and limitations of these imaging platforms are critically discussed and placed into the context of other non-invasive techniques, e.g., magnetic resonance imaging and positron emission tomography, which can be joined with optical imaging in multimodal approaches.
Collapse
Affiliation(s)
| | | | - Annette Tennstaedt
- In-vivo-NMR Laboratory, Max Planck Institute for Neurological Research, KölnGermany
| |
Collapse
|
34
|
Adams ST, Miller SC. Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 2014; 21:112-20. [PMID: 25078002 DOI: 10.1016/j.cbpa.2014.07.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/28/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023]
Abstract
The light-emitting chemical reaction catalyzed by the enzyme firefly luciferase is widely used for noninvasive imaging in live mice. However, photon emission from the luciferase is crucially dependent on the chemical properties of its substrate, D-luciferin. In this review, we describe recent work to replace the natural luciferase substrate with synthetic analogs that extend the scope of bioluminescence imaging.
Collapse
Affiliation(s)
- Spencer T Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|