1
|
Arakawa Y, Arakawa A, Vural S, He M, Vollmer S, Prinz JC. Down-Regulation of HLA-C Expression on Melanocytes May Contribute to the Therapeutic Efficacy of UVB Phototherapy in Psoriasis. Int J Mol Sci 2025; 26:2858. [PMID: 40243413 PMCID: PMC11988605 DOI: 10.3390/ijms26072858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
UVB phototherapy effectively treats psoriasis. Although it suppresses both innate and adaptive immunity, it remains unclear why UVB irradiation is primarily effective for T-cell-mediated but not inflammatory skin diseases of other etiologies. Using a Vα3S1/Vβ13S1 T-cell receptor (TCR) from a lesional psoriatic CD8+ T-cell clone, we recently demonstrated that in psoriasis, the major psoriasis risk allele HLA-C*06:02 mediates an autoimmune response of CD8+ T-cells against melanocytes by presenting a melanocyte autoantigen. We now investigate the effect of UVB irradiation on melanocyte immunogenicity using the psoriatic Vα3S1/Vβ13S1 TCR in a reporter assay. The immunogenicity of melanocytes for the Vα3S1/Vβ13S1 TCR depended on the up-regulation of HLA-C expression by IFN-γ. UVB irradiation reduced the stimulatory capacity of IFN-γ-conditioned melanocytes for the Vα3S1/Vβ13S1 TCR by suppressing key IFN-γ-induced MHC-class I transcriptional regulators (STAT1, IRF1, NLRC5), the HLA-C-specific transcription factor Oct1, and by inducing miR-148a, which specifically inhibits HLA-C expression. This resulted in the suppression of the IFN-γ-induced expression of HLA-class I molecules and, in particular, an almost complete loss of HLA-C expression. We conclude that suppression of the inflammatory increase in HLA-class I expression and antigen-presentation may contribute to the efficacy of UVB phototherapy in T-cell-mediated skin diseases. The pronounced downregulation of HLA-C on melanocytes could render psoriasis, as HLA-C-associated disease, particularly susceptible to this effect.
Collapse
Affiliation(s)
- Yukiyasu Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Akiko Arakawa
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Seçil Vural
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Mengwen He
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Sigrid Vollmer
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| | - Jörg C Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University Munich, D-80337 Munich, Germany
| |
Collapse
|
2
|
Arumugam T, Adimulam T, Gokul A, Ramsuran V. Variation within the non-coding genome influences genetic and epigenetic regulation of the human leukocyte antigen genes. Front Immunol 2024; 15:1422834. [PMID: 39355248 PMCID: PMC11442197 DOI: 10.3389/fimmu.2024.1422834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024] Open
Abstract
Variation within the non-coding genome may influence the regulation and expression of important genes involved in immune control such as the human leukocyte antigen (HLA) system. Class I and Class II HLA molecules are essential for peptide presentation which is required for T lymphocyte activation. Single nucleotide polymorphisms within non-coding regions of HLA Class I and Class II genes may influence the expression of these genes by affecting the binding of transcription factors and chromatin modeling molecules. Furthermore, an interplay between genetic and epigenetic factors may also influence HLA expression. Epigenetic factors such as DNA methylation and non-coding RNA, regulate gene expression without changing the DNA sequence. However, genetic variation may promote or allow genes to escape regulation by epigenetic factors, resulting in altered expression. The HLA system is central to most diseases, therefore, understanding the role of genetics and epigenetics on HLA regulation will tremendously impact healthcare. The knowledge gained from these studies may lead to novel and cost-effective diagnostic approaches and therapeutic interventions. This review discusses the role of non-coding variants on HLA regulation. Furthermore, we discuss the interplay between genetic and epigenetic factors on the regulation of HLA by evaluating literature based on polymorphisms within DNA methylation and miRNA regulatory sites within class I and Class II HLA genes. We also provide insight into the importance of the HLA non-coding genome on disease, discuss ethnic-specific differences across the HLA region and provide guidelines for future HLA studies.
Collapse
Affiliation(s)
- Thilona Arumugam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Anmol Gokul
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- School of Laboratory Medicine, Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| |
Collapse
|
3
|
Sartoris S, Del Pozzo G. Exploring the HLA complex in autoimmunity: From the risk haplotypes to the modulation of expression. Clin Immunol 2024; 265:110266. [PMID: 38851519 DOI: 10.1016/j.clim.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The genes mapping at the HLA region show high density, strong linkage disequilibrium and high polymorphism, which affect the association of HLA class I and class II genes with autoimmunity. We focused on the HLA haplotypes, genomic structures consisting of an array of specific alleles showing some degrees of genetic association with different autoimmune disorders. GWASs in many pathologies have identified variants in either the coding loci or the flanking regulatory regions, both in linkage disequilibrium in haplotypes, that are frequently associated with increased risk and may influence gene expression. We discuss the relevance of the HLA gene expression because the level of surface heterodimers determines the number of complexes presenting self-antigen and, thus, the strength of pathogenic autoreactive T cells immune response.
Collapse
Affiliation(s)
- Silvia Sartoris
- Dept. of Medicine, Section of Immunology University of Verona School of Medicine, Verona, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso" National Research Council (CNR), Naples, Italy.
| |
Collapse
|
4
|
Mizutani A, Suzuki S, Shigenari A, Sato T, Tanaka M, Kulski JK, Shiina T. Nucleotide alterations in the HLA-C class I gene can cause aberrant splicing and marked changes in RNA levels in a polymorphic context-dependent manner. Front Immunol 2024; 14:1332636. [PMID: 38327766 PMCID: PMC10847315 DOI: 10.3389/fimmu.2023.1332636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Polymorphisms of HLA genes, which play a crucial role in presenting peptides with diverse sequences in their peptide-binding pockets, are also thought to affect HLA gene expression, as many studies have reported associations between HLA gene polymorphisms and their expression levels. In this study, we devised an ectopic expression assay for the HLA class I genes in the context of the entire gene, and used the assay to show that the HLA-C*03:03:01 and C*04:01:01 polymorphic differences observed in association studies indeed cause different levels of RNA expression. Subsequently, we investigated the C*03:23N null allele, which was previously noted for its reduced expression, attributed to an alternate exon 3 3' splice site generated by G/A polymorphism at position 781 within the exon 3. We conducted a thorough analysis of the splicing patterns of C*03:23N, and revealed multiple aberrant splicing, including the exon 3 alternative splicing, which overshadowed its canonical counterpart. After confirming a significant reduction in RNA levels caused by the G781A alteration in our ectopic assay, we probed the function of the G-rich sequence preceding the canonical exon 3 3' splice site. Substituting the G-rich sequence with a typical pyrimidine-rich 3' splice site sequence on C*03:23N resulted in a marked elevation in RNA levels, likely due to the enhanced preference for the canonical exon 3 3' splice site over the alternate site. However, the same substitution led to a reduction in RNA levels for C*03:03:01. These findings suggested the dual roles of the G-rich sequence in RNA expression, and furthermore, underscore the importance of studying polymorphism effects within the framework of the entire gene, extending beyond conventional mini-gene reporter assays.
Collapse
Affiliation(s)
- Akiko Mizutani
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tadayuki Sato
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
5
|
Kang JB, Shen AZ, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta KA, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Luo Y, Sakaue S, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. Nat Genet 2023; 55:2255-2268. [PMID: 38036787 PMCID: PMC10787945 DOI: 10.1038/s41588-023-01586-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues. To mitigate technical confounding, we developed scHLApers, a pipeline to accurately quantify single-cell HLA expression using personalized reference genomes. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B and T cells. For example, a T cell HLA-DQA1 eQTL ( rs3104371 ) is strongest in cytotoxic cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B Kang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z Shen
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R C Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin N Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics and Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Mark J Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Velastegui E, Vera E, Vanden Berghe W, Muñoz MS, Orellana-Manzano A. "HLA-C: evolution, epigenetics, and pathological implications in the major histocompatibility complex". Front Genet 2023; 14:1206034. [PMID: 37465164 PMCID: PMC10350511 DOI: 10.3389/fgene.2023.1206034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
HLA-C, a gene located within the major histocompatibility complex, has emerged as a prominent target in biomedical research due to its involvement in various diseases, including cancer and autoimmune disorders; even though its recent addition to the MHC, the interaction between HLA-C and KIR is crucial for immune responses, particularly in viral infections. This review provides an overview of the structure, origin, function, and pathological implications of HLA-C in the major histocompatibility complex. In the last decade, we systematically reviewed original publications from Pubmed, ScienceDirect, Scopus, and Google Scholar. Our findings reveal that genetic variations in HLA-C can determine susceptibility or resistance to certain diseases. However, the first four exons of HLA-C are particularly susceptible to epigenetic modifications, which can lead to gene silencing and alterations in immune function. These alterations can manifest in diseases such as alopecia areata and psoriasis and can also impact susceptibility to cancer and the effectiveness of cancer treatments. By comprehending the intricate interplay between genetic and epigenetic factors that regulate HLA-C expression, researchers may develop novel strategies for preventing and treating diseases associated with HLA-C dysregulation.
Collapse
Affiliation(s)
- Erick Velastegui
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Edwin Vera
- Escuela Politécnica Nacional, Departamento de Ciencias de los Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Quito, Ecuador
| | - Wim Vanden Berghe
- Epigenetic Signaling Lab, Faculty Biomedical Sciences, PPES, University of Antwerp, Antwerp, Belgium
| | - Mindy S. Muñoz
- Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Orellana-Manzano
- Escuela Superior Politécnica del Litoral, Laboratorio para investigaciones biomédicas, Facultad de Ciencias de la Vida (FCV), Guayaquil, Ecuador
| |
Collapse
|
7
|
Kang JB, Shen AZ, Sakaue S, Luo Y, Gurajala S, Nathan A, Rumker L, Aguiar VRC, Valencia C, Lagattuta K, Zhang F, Jonsson AH, Yazar S, Alquicira-Hernandez J, Khalili H, Ananthakrishnan AN, Jagadeesh K, Dey K, Daly MJ, Xavier RJ, Donlin LT, Anolik JH, Powell JE, Rao DA, Brenner MB, Gutierrez-Arcelus M, Raychaudhuri S. Mapping the dynamic genetic regulatory architecture of HLA genes at single-cell resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.14.23287257. [PMID: 36993194 PMCID: PMC10055604 DOI: 10.1101/2023.03.14.23287257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The human leukocyte antigen (HLA) locus plays a critical role in complex traits spanning autoimmune and infectious diseases, transplantation, and cancer. While coding variation in HLA genes has been extensively documented, regulatory genetic variation modulating HLA expression levels has not been comprehensively investigated. Here, we mapped expression quantitative trait loci (eQTLs) for classical HLA genes across 1,073 individuals and 1,131,414 single cells from three tissues, using personalized reference genomes to mitigate technical confounding. We identified cell-type-specific cis-eQTLs for every classical HLA gene. Modeling eQTLs at single-cell resolution revealed that many eQTL effects are dynamic across cell states even within a cell type. HLA-DQ genes exhibit particularly cell-state-dependent effects within myeloid, B, and T cells. Dynamic HLA regulation may underlie important interindividual variability in immune responses.
Collapse
Affiliation(s)
- Joyce B. Kang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Amber Z. Shen
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Yang Luo
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Saisriram Gurajala
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Vitor R. C. Aguiar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristian Valencia
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology and the Center for Health Artificial Intelligence, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anna Helena Jonsson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Seyhan Yazar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hamed Khalili
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Kushal Dey
- Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | - Mark J. Daly
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ramnik J. Xavier
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura T. Donlin
- Hospital for Special Surgery, New York, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Jennifer H. Anolik
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael B. Brenner
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Maria Gutierrez-Arcelus
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Aguiar VRC, Castelli EC, Single RM, Bashirova A, Ramsuran V, Kulkarni S, Augusto DG, Martin MP, Gutierrez-Arcelus M, Carrington M, Meyer D. Comparison between qPCR and RNA-seq reveals challenges of quantifying HLA expression. Immunogenetics 2023; 75:249-262. [PMID: 36707444 PMCID: PMC9883133 DOI: 10.1007/s00251-023-01296-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023]
Abstract
Human leukocyte antigen (HLA) class I and II loci are essential elements of innate and acquired immunity. Their functions include antigen presentation to T cells leading to cellular and humoral immune responses, and modulation of NK cells. Their exceptional influence on disease outcome has now been made clear by genome-wide association studies. The exons encoding the peptide-binding groove have been the main focus for determining HLA effects on disease susceptibility/pathogenesis. However, HLA expression levels have also been implicated in disease outcome, adding another dimension to the extreme diversity of HLA that impacts variability in immune responses across individuals. To estimate HLA expression, immunogenetic studies traditionally rely on quantitative PCR (qPCR). Adoption of alternative high-throughput technologies such as RNA-seq has been hampered by technical issues due to the extreme polymorphism at HLA genes. Recently, however, multiple bioinformatic methods have been developed to accurately estimate HLA expression from RNA-seq data. This opens an exciting opportunity to quantify HLA expression in large datasets but also brings questions on whether RNA-seq results are comparable to those by qPCR. In this study, we analyze three classes of expression data for HLA class I genes for a matched set of individuals: (a) RNA-seq, (b) qPCR, and (c) cell surface HLA-C expression. We observed a moderate correlation between expression estimates from qPCR and RNA-seq for HLA-A, -B, and -C (0.2 ≤ rho ≤ 0.53). We discuss technical and biological factors which need to be accounted for when comparing quantifications for different molecular phenotypes or using different techniques.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil ,Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Erick C. Castelli
- Molecular Genetics and Bioinformatics Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University, Botucatu, SP Brazil
| | - Richard M. Single
- Department of Mathematics and Statistics, University of Vermont, Burlington, VT USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Veron Ramsuran
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa ,School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Smita Kulkarni
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Danillo G. Augusto
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC USA ,Programa de Pós-Graduação em Genética, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD USA ,Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA ,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA USA
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP Brazil
| |
Collapse
|
9
|
Sharif K, Ben-Shabat N, Mahagna M, Shani U, Watad A, Cohen AD, Amital H. Inflammatory Bowel Diseases Are Associated with Polymyositis and Dermatomyositis-A Retrospective Cohort Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58121727. [PMID: 36556929 PMCID: PMC9781532 DOI: 10.3390/medicina58121727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Background and Objectives: Polymyositis and dermatomyositis (PM/DM) are classified as polygenic autoimmune diseases, whereas inflammatory bowel disease (IBD) is considered a polygenic autoinflammatory disease. In the literature, several cases exist reporting the co-occurrence of both conditions. At the molecular level, PM/DM and IBD share common genetic determinants including interferon regulatory factor and vitamin D receptor susceptibility loci. Accumulating evidence underline several indicators that confer poor prognosis in IBD, including antinuclear antibody positivity and the presence of other autoimmune diseases, therefore the aim of this study is to assess the association between these entities. Materials and Methods: This is a population-based retrospective study using data retrieved from a large electronic medical record in Israel, the Clalit health registry. The sample included PM/DM patients and age- and sex-frequency matched controls. The prevalence of IBD in PM/DM was compared between the two groups and logistic regression was applied to control for confounding variables. Predictors of IBD in patients with PM/DM were also explored. Results: Our study included 12,278 subjects with 2085 PM/DM patients and 10,193 age- and sex- frequency-matched controls. The incidence of IBD in patients with PM/DM was significantly higher even after controlling for various confounding variables (OR of 1.73, 95% CI 1.05-2.86, p-value = 0.033). Anti-nuclear antibodies (ANA) positivity was found to be an independent predictor for IBD diagnosis in patients with PM/DM (OR 3.67, 95% CI 1.01-13.36, p = 0.048). Conclusion: Our analysis reports an association between IBD and PM/DM. Such association could point towards a common pathophysiological background. Further research is needed to further describe the clinical courses and whether a unique therapeutic approach is warranted.
Collapse
Affiliation(s)
- Kassem Sharif
- Department of Gastroenterology, Sheba Medical Centre, Tel-Hashomer 5265601, Israel
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6209813, Israel
| | - Niv Ben-Shabat
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6209813, Israel
| | - Muhammad Mahagna
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6209813, Israel
| | - Uria Shani
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6209813, Israel
| | - Abdulla Watad
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6209813, Israel
- Section of Musculoskeletal Disease, NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Institute of Molecular Medicine, University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Arnon D. Cohen
- Chief Physicians Office, Clalit Health Services, Tel Aviv 6209813, Israel
- Siaal Research Center for Family Medicine and Primary Care, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Howard Amital
- Department of Medicine B, Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer 5262100, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6209813, Israel
- Correspondence: ; Tel.: +972-3-5302661; Fax: +972-3-5304796
| |
Collapse
|
10
|
Johansson T, Partanen J, Saavalainen P. HLA allele-specific expression: Methods, disease associations, and relevance in hematopoietic stem cell transplantation. Front Immunol 2022; 13:1007425. [PMID: 36248878 PMCID: PMC9554311 DOI: 10.3389/fimmu.2022.1007425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn’s disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes. Additionally, analyzing HLA allele-specific expression and allele-specific expression loss provide important information for predicting efficacies of novel immune cell therapies. Here, we review available RNA sequencing-based approaches and computational tools for NGS to quantify HLA allele-specific expression. Moreover, we explore recent studies reporting disease associations with differential HLA expression. Finally, we discuss the role of allele-specific expression in HSCT and how considering the expression quantification in recipient-donor matching could improve the outcome of HSCT.
Collapse
Affiliation(s)
- Tiira Johansson
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
- *Correspondence: Tiira Johansson,
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Translational Immunology Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Genetics Research Program, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
11
|
Sharif-zak M, Abbasi-Jorjandi M, Asadikaram G, Ghoreshi ZAS, Rezazadeh-Jabalbarzi M, Rashidinejad H. Influence of Disease Severity and Gender on HLA-C Methylation in COVID-19 Patients. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY. TRANSACTION A, SCIENCE 2022; 46:1309-1316. [PMID: 35912367 PMCID: PMC9325662 DOI: 10.1007/s40995-022-01334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
In the pathophysiology of COVID-19, immunomodulatory factors play a vital role. Viruses have epigenetic effects on various genes, particularly methylation. Explaining the changes in immunological factor methylation levels during viral infections requires substantial consideration. HLA-C is a crucial determinant of immune function and NK cell activity and is primarily implicated in viral infections. This research focused on studying HLA-C methylation in COVID-19 patients with different severity. Peripheral blood samples were collected from 470 patients (235 men and 235 women) with RT-qPCR-confirmed COVID-19 test and classified into moderate, severe, and critical groups based on WHO criteria. Also, one hundred (50 men and 50 women) healthy subjects were selected as the control group. Peripheral blood mononuclear cells were used for DNA extraction, and the methylation-specific PCR (MSP) method and gel electrophoresis were used to determine the methylation status of the HLA-C. Significant statistical differences in HLA-C methylation were observed among cases and controls and various stages of the disease. HLA-C methylation in men and women has decreased in all stages (p < 0.05). In comparison with control, HLA-C methylation in both genders were as follows: moderate (women: 41.0%, men: 52.33%), severe (women: 43.42%, men: 64.86%), critical (women: 42.33%, men: 60.07%), and total patients (women: 45.52%, men: 56.97%). Furthermore, the methylation levels in men were higher than in women in all groups (p < 0.05). Significantly, among all groups, the severe group of men participants showed the highest methylation percentage (p < 0.05). No significant differences were detected for different disease severity in the women group (p > 0.1). This study found that HLA-C methylation was significantly lower in COVID-19 patients with different disease severity. There were also significant differences in HLA-C methylation between men and women patients with different severity. Therefore, during managing viral infections, particularly COVID-19, it is critical to consider patient gender and disease severity.
Collapse
Affiliation(s)
- Mohsen Sharif-zak
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojtaba Abbasi-Jorjandi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh-al-Sadat Ghoreshi
- Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Rezazadeh-Jabalbarzi
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hamidreza Rashidinejad
- Department of Cardiology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Regulation of HLA class I expression by non-coding gene variations. PLoS Genet 2022; 18:e1010212. [PMID: 35666741 PMCID: PMC9170083 DOI: 10.1371/journal.pgen.1010212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
The Human Leukocyte Antigen (HLA) is a critical genetic system for different outcomes after solid organ and hematopoietic cell transplantation. Its polymorphism is usually determined by molecular technologies at the DNA level. A potential role of HLA allelic expression remains under investigation in the context of the allogenic immune response between donors and recipients. In this study, we quantified the allelic expression of all three HLA class I loci (HLA-A, B and C) by RNA sequencing and conducted an analysis of expression quantitative traits loci (eQTL) to investigate whether HLA expression regulation could be associated with non-coding gene variations. HLA-B alleles exhibited the highest expression levels followed by HLA-C and HLA-A alleles. The max fold expression variation was observed for HLA-C alleles. The expression of HLA class I loci of distinct individuals demonstrated a coordinated and paired expression of both alleles of the same locus. Expression of conserved HLA-A~B~C haplotypes differed in distinct PBMC's suggesting an individual regulated expression of both HLA class I alleles and haplotypes. Cytokines TNFα /IFNβ, which induced a very similar upregulation of HLA class I RNA and cell surface expression across alleles did not modify the individually coordinated expression at the three HLA class I loci. By identifying cis eQTLs for the HLA class I genes, we show that the non-coding eQTLs explain 29%, 13%, and 31% of the respective HLA-A, B, C expression variance in unstimulated cells, and 9%, 23%, and 50% of the variance in cytokine-stimulated cells. The eQTLs have significantly higher effect sizes in stimulated cells compared to unstimulated cells for HLA-B and HLA-C genes expression. Our data also suggest that the identified eQTLs are independent from the coding variation which defines HLA alleles and thus may be influential on intra-allele expression variability although they might not represent the causal eQTLs.
Collapse
|
13
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Genome-wide analysis provides genetic evidence that ACE2 influences COVID-19 risk and yields risk scores associated with severe disease. Nat Genet 2022; 54:382-392. [PMID: 35241825 PMCID: PMC9005345 DOI: 10.1038/s41588-021-01006-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/17/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2–2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10−8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10−13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone. Genome-wide meta-analysis of SARS-CoV-2 susceptibility and severity phenotypes in up to 756,646 samples identifies a rare protective variant proximal to ACE2. A 6-SNP genetic risk score provides additional predictive power when added to known risk factors.
Collapse
|
15
|
Naito T, Okada Y. HLA imputation and its application to genetic and molecular fine-mapping of the MHC region in autoimmune diseases. Semin Immunopathol 2022; 44:15-28. [PMID: 34786601 PMCID: PMC8837514 DOI: 10.1007/s00281-021-00901-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Variations of human leukocyte antigen (HLA) genes in the major histocompatibility complex region (MHC) significantly affect the risk of various diseases, especially autoimmune diseases. Fine-mapping of causal variants in this region was challenging due to the difficulty in sequencing and its inapplicability to large cohorts. Thus, HLA imputation, a method to infer HLA types from regional single nucleotide polymorphisms, has been developed and has successfully contributed to MHC fine-mapping of various diseases. Different HLA imputation methods have been developed, each with its own advantages, and recent methods have been improved in terms of accuracy and computational performance. Additionally, advances in HLA reference panels by next-generation sequencing technologies have enabled higher resolution and a more reliable imputation, allowing a finer-grained evaluation of the association between sequence variations and disease risk. Risk-associated variants in the MHC region would affect disease susceptibility through complicated mechanisms including alterations in peripheral responses and central thymic selection of T cells. The cooperation of reliable HLA imputation methods, informative fine-mapping, and experimental validation of the functional significance of MHC variations would be essential for further understanding of the role of the MHC in the immunopathology of autoimmune diseases.
Collapse
Affiliation(s)
- Tatsuhiko Naito
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Osaka, Suita, 565-0871, Japan.
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Osaka, Suita, 565-0871, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
16
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
17
|
Shen Y, Zhang J. Tight Regulation of Major Histocompatibility Complex I for the Spatial and Temporal Expression in the Hippocampal Neurons. Front Cell Neurosci 2021; 15:739136. [PMID: 34658795 PMCID: PMC8517433 DOI: 10.3389/fncel.2021.739136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The expression and function of immune molecules, such as major histocompatibility complex (MHC), within the developing and adult brain have been discovered over the past few years. Studies utilizing classical class I MHC knockout animals suggest that these molecules, in fact, play essential roles in the establishment, function, and modification of synapses in the CNS. Altered neuronal expression of class I MHC, as has been reported in pathological conditions, leads to aberrations in neuronal development and repair. In the hippocampus, cellular and molecular mechanisms that regulate synaptic plasticity have heretofore been extensively studied. It is for this reason that multiple studies directed at better understanding the expression, regulation, and function of class I MHC within the hippocampus have been undertaken. Since several previous reviews have addressed the roles of class I MHC in the formation and function of hippocampal connections, the present review will focus on describing the spatial and temporal expression of class I MHC in developing, healthy adult, and aging hippocampus. Herein, we also review current literatures exploring mechanisms that regulate class I MHC expression in murine hippocampus. With this review, we aim to facilitate a deeper mechanistic understanding into the complex tight regulation of MHC I expression in hippocampus, which are needed as we explore the potential for targeting MHC I for therapeutic intervention in normal aging and in neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Yuqing Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China.,Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Aguiar VRC, Augusto DG, Castelli EC, Hollenbach JA, Meyer D, Nunes K, Petzl-Erler ML. An immunogenetic view of COVID-19. Genet Mol Biol 2021; 44:e20210036. [PMID: 34436508 PMCID: PMC8388242 DOI: 10.1590/1678-4685-gmb-2021-0036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Meeting the challenges brought by the COVID-19 pandemic requires an interdisciplinary approach. In this context, integrating knowledge of immune function with an understanding of how genetic variation influences the nature of immunity is a key challenge. Immunogenetics can help explain the heterogeneity of susceptibility and protection to the viral infection and disease progression. Here, we review the knowledge developed so far, discussing fundamental genes for triggering the innate and adaptive immune responses associated with a viral infection, especially with the SARS-CoV-2 mechanisms. We emphasize the role of the HLA and KIR genes, discussing what has been uncovered about their role in COVID-19 and addressing methodological challenges of studying these genes. Finally, we comment on questions that arise when studying admixed populations, highlighting the case of Brazil. We argue that the interplay between immunology and an understanding of genetic associations can provide an important contribution to our knowledge of COVID-19.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Danillo G. Augusto
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
- Universidade Federal do Paraná, Departamento de Genética, Curitiba,
PR, Brazil
| | - Erick C. Castelli
- Universidade Estadual Paulista, Faculdade de Medicina de Botucatu,
Departamento de Patologia, Botucatu, SP, Brazil
| | - Jill A. Hollenbach
- University of California, UCSF Weill Institute for Neurosciences,
Department of Neurology, San Francisco, CA, USA
| | - Diogo Meyer
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Kelly Nunes
- Universidade de São Paulo, Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | | |
Collapse
|
19
|
Relevance of Polymorphic KIR and HLA Class I Genes in NK-Cell-Based Immunotherapies for Adult Leukemic Patients. Cancers (Basel) 2021; 13:cancers13153767. [PMID: 34359667 PMCID: PMC8345033 DOI: 10.3390/cancers13153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Immunotherapies are promising approaches to curing different acute leukemias. Natural killer (NK) cells are lymphocytes that are efficient in the elimination of leukemic cells. NK-cell-based immunotherapies are particularly attractive, but the landscape of the heterogeneity of NK cells must be deciphered. This review provides an overview of the polymorphic KIR and HLA class I genes that modulate the NK cell repertoire and how these markers can improve the outcomes of patients with acute leukemia. A better knowledge of these genetic markers that are linked to NK cell subsets that are efficient against hematological diseases will optimize hematopoietic stem-cell donor selection and NK immunotherapy design. Abstract Since the mid-1990s, the biology and functions of natural killer (NK) cells have been deeply investigated in healthy individuals and in people with diseases. These effector cells play a particularly crucial role after allogeneic hematopoietic stem-cell transplantation (HSCT) through their graft-versus-leukemia (GvL) effect, which is mainly mediated through polymorphic killer-cell immunoglobulin-like receptors (KIRs) and their cognates, HLA class I ligands. In this review, we present how KIRs and HLA class I ligands modulate the structural formation and the functional education of NK cells. In particular, we decipher the current knowledge about the extent of KIR and HLA class I gene polymorphisms, as well as their expression, interaction, and functional impact on the KIR+ NK cell repertoire in a physiological context and in a leukemic context. In addition, we present the impact of NK cell alloreactivity on the outcomes of HSCT in adult patients with acute leukemia, as well as a description of genetic models of KIRs and NK cell reconstitution, with a focus on emergent T-cell-repleted haplo-identical HSCT using cyclosphosphamide post-grafting (haplo-PTCy). Then, we document how the immunogenetics of KIR/HLA and the immunobiology of NK cells could improve the relapse incidence after haplo-PTCy. Ultimately, we review the emerging NK-cell-based immunotherapies for leukemic patients in addition to HSCT.
Collapse
|
20
|
Prinz JC. Antigen Processing, Presentation, and Tolerance: Role in Autoimmune Skin Diseases. J Invest Dermatol 2021; 142:750-759. [PMID: 34294386 DOI: 10.1016/j.jid.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 10/20/2022]
Abstract
Autoreactive T cells pose a constant risk for the emergence of autoimmune skin diseases in genetically predisposed individuals carrying certain HLA risk alleles. Immune tolerance mechanisms are opposed by broad HLA-presented self-immunopeptidomes, a predefined repertoire of polyspecific TCRs, the continuous generation of new antibody specificities by somatic recombination of Ig genes in B cells, and heightened proinflammatory reactivity. Increased autoantigen presentation by HLA molecules, cross-activation of pathogen-induced T cells against autologous structures, altered metabolism of self-proteins, and excessive production of proinflammatory signals may all contribute to the breakdown of immune tolerance and the development of autoimmune skin diseases.
Collapse
Affiliation(s)
- Jörg Christoph Prinz
- Department of Dermatology and Allergy, University Hospital, Ludwig-Maximilian-University of Munich, Munich, Germany.
| |
Collapse
|
21
|
Horowitz JE, Kosmicki JA, Damask A, Sharma D, Roberts GHL, Justice AE, Banerjee N, Coignet MV, Yadav A, Leader JB, Marcketta A, Park DS, Lanche R, Maxwell E, Knight SC, Bai X, Guturu H, Sun D, Baltzell A, Kury FSP, Backman JD, Girshick AR, O'Dushlaine C, McCurdy SR, Partha R, Mansfield AJ, Turissini DA, Li AH, Zhang M, Mbatchou J, Watanabe K, Gurski L, McCarthy SE, Kang HM, Dobbyn L, Stahl E, Verma A, Sirugo G, Ritchie MD, Jones M, Balasubramanian S, Siminovitch K, Salerno WJ, Shuldiner AR, Rader DJ, Mirshahi T, Locke AE, Marchini J, Overton JD, Carey DJ, Habegger L, Cantor MN, Rand KA, Hong EL, Reid JG, Ball CA, Baras A, Abecasis GR, Ferreira MA. Genome-wide analysis in 756,646 individuals provides first genetic evidence that ACE2 expression influences COVID-19 risk and yields genetic risk scores predictive of severe disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33619501 PMCID: PMC7899471 DOI: 10.1101/2020.12.14.20248176] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 enters host cells by binding angiotensin-converting enzyme 2 (ACE2). Through a genome-wide association study, we show that a rare variant (MAF = 0.3%, odds ratio 0.60, P=4.5×10-13) that down-regulates ACE2 expression reduces risk of COVID-19 disease, providing human genetics support for the hypothesis that ACE2 levels influence COVID-19 risk. Further, we show that common genetic variants define a risk score that predicts severe disease among COVID-19 cases.
Collapse
Affiliation(s)
- J E Horowitz
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J A Kosmicki
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Damask
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D Sharma
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - G H L Roberts
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | | | - N Banerjee
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M V Coignet
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A Yadav
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | | | - A Marcketta
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D S Park
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - R Lanche
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - E Maxwell
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S C Knight
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - X Bai
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - H Guturu
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - D Sun
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Baltzell
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - F S P Kury
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Backman
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A R Girshick
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - C O'Dushlaine
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S R McCurdy
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - R Partha
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A J Mansfield
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D A Turissini
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A H Li
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M Zhang
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - J Mbatchou
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K Watanabe
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Gurski
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S E McCarthy
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - H M Kang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - L Dobbyn
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - E Stahl
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - G Sirugo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - M D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Jones
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - S Balasubramanian
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K Siminovitch
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - W J Salerno
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - A R Shuldiner
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - D J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - A E Locke
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J Marchini
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - J D Overton
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | | | - L Habegger
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M N Cantor
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - K A Rand
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - E L Hong
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - J G Reid
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - C A Ball
- AncestryDNA, 1300 West Traverse Parkway, Lehi, UT 84043, USA
| | - A Baras
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - G R Abecasis
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| | - M A Ferreira
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY 10591, USA
| |
Collapse
|
22
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
23
|
Johansson T, Yohannes DA, Koskela S, Partanen J, Saavalainen P. HLA RNA Sequencing With Unique Molecular Identifiers Reveals High Allele-Specific Variability in mRNA Expression. Front Immunol 2021; 12:629059. [PMID: 33717155 PMCID: PMC7949471 DOI: 10.3389/fimmu.2021.629059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
The HLA gene complex is the most important single genetic factor in susceptibility to most diseases with autoimmune or autoinflammatory origin and in transplantation matching. Most studies have focused on the vast allelic variation in these genes; only a few studies have explored differences in the expression levels of HLA alleles. In this study, we quantified mRNA expression levels of HLA class I and II genes from peripheral blood samples of 50 healthy individuals. The gene- and allele-specific mRNA expression was assessed using unique molecular identifiers, which enabled PCR bias removal and calculation of the number of original mRNA transcripts. We identified differences in mRNA expression between different HLA genes and alleles. Our results suggest that HLA alleles are differentially expressed and these differences in expression levels are quantifiable using RNA sequencing technology. Our method provides novel insights into HLA research, and it can be applied to quantify expression differences of HLA alleles in various tissues and to evaluate the role of this type of variation in transplantation matching and susceptibility to autoimmune diseases.
Collapse
Affiliation(s)
- Tiira Johansson
- Research Programs Unit, Translational Immunology Program, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Dawit A. Yohannes
- Research Programs Unit, Translational Immunology Program, University of Helsinki, Helsinki, Finland
| | - Satu Koskela
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Päivi Saavalainen
- Research Programs Unit, Translational Immunology Program, University of Helsinki, Helsinki, Finland
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| |
Collapse
|
24
|
Srivastava AK, Chand Yadav T, Khera HK, Mishra P, Raghuwanshi N, Pruthi V, Prasad R. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021; 118:102614. [PMID: 33578119 DOI: 10.1016/j.jaut.2021.102614] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023]
Abstract
Psoriasis is an inflammatory skin disease with complex pathogenesis and multiple etiological factors. Besides the essential role of autoreactive T cells and constellation of cytokines, the discovery of IL-23/Th17 axis as a central signaling pathway has unraveled the mechanism of accelerated inflammation in psoriasis. This has provided insights into psoriasis pathogenesis and revolutionized the development of effective biological therapies. Moreover, genome-wide association studies have identified several candidate genes and susceptibility loci associated with this disease. Although involvement of cellular innate and adaptive immune responses and dysregulation of immune cells have been implicated in psoriasis initiation and maintenance, there is still a lack of unifying mechanism for understanding the pathogenesis of this disease. Emerging evidence suggests that psoriasis is a high-mortality disease with additional burden of comorbidities, which adversely affects the treatment response and overall quality of life of patients. Furthermore, changing trends of psoriasis-associated comorbidities and shared patterns of genetic susceptibility, risk factors and pathophysiological mechanisms manifest psoriasis as a multifactorial systemic disease. This review highlights the recent progress in understanding the crucial role of different immune cells, proinflammatory cytokines and microRNAs in psoriasis pathogenesis. In addition, we comprehensively discuss the involvement of various complex signaling pathways and their interplay with immune cell markers to comprehend the underlying pathophysiological mechanism, which may lead to exploration of new therapeutic targets and development of novel treatment strategies to reduce the disastrous nature of psoriasis and associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar Srivastava
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harvinder Kour Khera
- Tata Institute for Genetics and Society, Centre at InStem, Bangalore, 560065, Karnataka, India; Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune, 411057, Maharashtra, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
25
|
Hu Y, Pei W, Hu Y, Li P, Sun C, Du J, Zhang Y, Miao F, Zhang A, Shen Y, Zhang J. MiR34a Regulates Neuronal MHC Class I Molecules and Promotes Primary Hippocampal Neuron Dendritic Growth and Branching. Front Cell Neurosci 2020; 14:573208. [PMID: 33192317 PMCID: PMC7655649 DOI: 10.3389/fncel.2020.573208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
In the immune system, Major Histocompatibility Complex class I (MHC-I) molecules are located on the surface of most nucleated cells in vertebrates where they mediate immune responses. Accumulating evidence indicates that MHC-I molecules are also expressed in the central nervous system (CNS) where they play important roles that are significantly different from their immune functions. Classical MHC-I molecules are temporally and spatially expressed in the developing and adult CNS, where they participate in the synaptic formation, remodeling and plasticity. Therefore, clarifying the regulation of MHC-I expression is necessary to develop an accurate understanding of its function in the CNS. Here, we show that microRNA 34a (miR34a), a brain enriched noncoding RNA, is temporally expressed in developing hippocampal neurons, and its expression is significantly increased after MHC-I protein abundance is decreased in the hippocampus. Computational algorithms identify putative miR34a target sites in the 3′UTR of MHC-I mRNA, and here we demonstrate direct targeting of miR34a to MHC-I mRNA using a dual-luciferase reporter assay system. MiR34a targeting can decrease constitutive MHC-I expression in both Neuro-2a neuroblastoma cells and primary hippocampal neurons. Finally, miR34a mediated reduction of MHC-I results in increased dendritic growth and branching in cultured hippocampal neurons. Taken together, our findings identify miR34a as a novel regulator of MHC-I for shaping neural morphology in developing hippocampal neurons.
Collapse
Affiliation(s)
- Yue Hu
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Wenqin Pei
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Hu
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ping Li
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Chen Sun
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jiawei Du
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Ying Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Fengqin Miao
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Yuqing Shen
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Medical School, Southeast University, Nanjing, China.,Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
26
|
Souza AS, Sonon P, Paz MA, Tokplonou L, Lima THA, Porto IOP, Andrade HS, Silva NDSB, Veiga-Castelli LC, Oliveira MLG, Sadissou IA, Massaro JD, Moutairou KA, Donadi EA, Massougbodji A, Garcia A, Ibikounlé M, Meyer D, Sabbagh A, Mendes-Junior CT, Courtin D, Castelli EC. Hla-C genetic diversity and evolutionary insights in two samples from Brazil and Benin. HLA 2020; 96:468-486. [PMID: 32662221 DOI: 10.1111/tan.13996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Human leukocyte antigen-C (HLA-C) is a classical HLA class I molecule that binds and presents peptides to cytotoxic T lymphocytes in the cell surface. HLA-C has a dual function because it also interacts with Killer-cell immunoglobulin-like receptors (KIR) receptors expressed in natural killer and T cells, modulating their activity. The structure and diversity of the HLA-C regulatory regions, as well as the relationship among variants along the HLA-C locus, are poorly addressed, and few population-based studies explored the HLA-C variability in the entire gene in different population samples. Here we present a molecular and bioinformatics method to evaluate the entire HLA-C diversity, including regulatory sequences. Then, we applied this method to survey the HLA-C diversity in two population samples with different demographic histories, one highly admixed from Brazil with major European contribution, and one from Benin with major African contribution. The HLA-C promoter and 3'UTR were very polymorphic with the presence of few, but highly divergent haplotypes. These segments also present conserved sequences that are shared among different primate species. Nucleotide diversity was higher in other segments rather than exons 2 and 3, particularly around exon 5 and the second half of the 3'UTR region. We detected evidence of balancing selection on the entire HLA-C locus and positive selection in the HLA-C leader peptide, for both populations. HLA-C motifs previously associated with KIR interaction and expression regulation are similar between both populations. Each allele group is associated with specific regulatory sequences, reflecting the high linkage disequilibrium along the entire HLA-C locus in both populations.
Collapse
Affiliation(s)
- Andreia S Souza
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paulin Sonon
- Laboratório de Biologia Molecular, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Michelle A Paz
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Léonidas Tokplonou
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin.,Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin
| | - Thálitta H A Lima
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Iane O P Porto
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Heloisa S Andrade
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Nayane Dos S B Silva
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luciana C Veiga-Castelli
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Maria Luiza G Oliveira
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Ibrahim Abiodoun Sadissou
- Laboratório de Biologia Molecular, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Juliana Doblas Massaro
- Laboratório de Biologia Molecular, Programa de Imunologia Básica e Aplicada (IBA), Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Kabirou A Moutairou
- Laboratoire de Biologie et Physiologie Cellulaire, Université d'Abomey-Calavi, Cotonou, Benin
| | - Eduardo A Donadi
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Achille Massougbodji
- Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Cotonou, Benin
| | - André Garcia
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France
| | - Moudachirou Ibikounlé
- Département de Zoologie, Faculté des Sciences et Techniques, Université d'Abomey-Calavi, Cotonou, Benin
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, University of São Paulo (USP), São Paulo, Brazil
| | - Audrey Sabbagh
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France
| | - Celso T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - David Courtin
- Institut de Recherche pour le Développement (IRD), UMR 261 MERIT, Université de Paris, Paris, France
| | - Erick C Castelli
- Molecular Genetics and Bioinformatics Laboratory-Experimental Research Unity, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Genetics Program, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.,Pathology Program, School of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
27
|
Vargas LDB, Dourado RM, Amorim LM, Ho B, Calonga-Solís V, Issler HC, Marin WM, Beltrame MH, Petzl-Erler ML, Hollenbach JA, Augusto DG. Single Nucleotide Polymorphism in KIR2DL1 Is Associated With HLA-C Expression in Global Populations. Front Immunol 2020; 11:1881. [PMID: 32983108 PMCID: PMC7478174 DOI: 10.3389/fimmu.2020.01881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Regulation of NK cell activity is mediated through killer-cell immunoglobulin-like receptors (KIR) ability to recognize human leukocyte antigen (HLA) class I molecules as ligands. Interaction of KIR and HLA is implicated in viral infections, autoimmunity, and reproduction and there is growing evidence of the coevolution of these two independently segregating gene families. By leveraging KIR and HLA-C data from 1000 Genomes consortium we observed that the KIR2DL1 variant rs2304224 * T is associated with lower expression of HLA-C in individuals carrying the ligand HLA-C2 (p = 0.0059). Using flow cytometry, we demonstrated that this variant is also associated with higher expression of KIR2DL1 on the NK cell surface (p = 0.0002). Next, we applied next generation sequencing to analyze KIR2DL1 sequence variation in 109 Euro and 75 Japanese descendants. Analyzing the extended haplotype homozygosity, we show signals of positive selection for rs4806553 * G and rs687000 * G, which are in linkage disequilibrium with rs2304224 * T. Our results suggest that lower expression of HLA-C2 ligands might be compensated for higher expression of the receptor KIR2DL1 and bring new insights into the coevolution of KIR and HLA.
Collapse
Affiliation(s)
- Luciana de Brito Vargas
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Renata M Dourado
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Leonardo M Amorim
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Brenda Ho
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Verónica Calonga-Solís
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Hellen C Issler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Marcia H Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil.,Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Suzuki H, Joshita S, Hirayama A, Shinji A, Mukawa K, Sako M, Yoshimura N, Suga T, Umemura T, Ashihara N, Yamazaki T, Ota M. Polymorphism at rs9264942 is associated with HLA-C expression and inflammatory bowel disease in the Japanese. Sci Rep 2020; 10:12424. [PMID: 32709981 PMCID: PMC7381613 DOI: 10.1038/s41598-020-69370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 11/09/2022] Open
Abstract
An expression quantitative trait locus (eQTL) single-nucleotide polymorphism (SNP) at rs9264942 was earlier associated with human leukocyte antigen (HLA)-C expression in Europeans. HLA-C has also been related to inflammatory bowel disease (IBD) risk in the Japanese. This study examined whether an eQTL SNP at rs9264942 could regulate HLA-C expression and whether four SNP haplotypes, including the eQTL SNP at rs9264942 and three SNPs at rs2270191, rs3132550, and rs6915986 of IBD risk carried in the HLA-C*12:02~B*52:01~DRB1*15:02 allele, were associated with IBD in the Japanese. HLA-C expression on CD3e+CD8a+ lymphocytes was significantly higher for the CC or CT genotype than for the TT genotype of rs9264942. The TACC haplotype of the four SNPs was associated with a strong susceptibility to ulcerative colitis (UC) but protection against Crohn’s disease (CD) as well as with disease clinical outcome. While UC protectivity was significant but CD susceptibility was not for the CGTT haplotype, the significance of UC protectivity disappeared but CD susceptibility reached significance for the CGCT haplotype. In conclusion, our findings support that the eQTL SNP at rs9264942 regulates HLA-C expression in the Japanese and suggest that the four SNPs, which are in strong linkage disequilibrium, may be surrogate marker candidates of a particular HLA haplotype, HLA-C*12:02~B*52:01~DRB1*15:02, related to IBD susceptibility and disease outcome.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Atsuhiro Hirayama
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Inflammatory Bowel Disease, Yokohama City University Medical Center, Yokohama, Japan
| | - Akihiro Shinji
- Department of Medical Oncology, Japanese Red Cross Society Suwa Red Cross Hospital, Suwa, Japan
| | - Kenji Mukawa
- Department of Gastroenterology, Japanese Red Cross Society Suwa Red Cross Hospital, Suwa, Japan
| | - Minako Sako
- Center for Inflammatory Bowel Disease, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Naoki Yoshimura
- Center for Inflammatory Bowel Disease, Tokyo Yamate Medical Center, Tokyo, Japan
| | - Tomoaki Suga
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Takeji Umemura
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.,Department of Life Innovation, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Norihiro Ashihara
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Masao Ota
- Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
29
|
Malnati MS, Biswas P, Ugolotti E, Di Marco E, Sironi F, Parolini F, Garbarino L, Mazzocco M, Zipeto D, Biassoni R. A fast and reliable method for detecting SNP rs67384697 (Hsa-miR-148a binding site) by a single run of allele-specific real-time PCR. HLA 2020; 96:312-322. [PMID: 32530084 DOI: 10.1111/tan.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
Surface expression of human leukocyte antigen (HLA)-class I molecules is critical for modulating T/natural killer lymphocytes' effector functions. Among HLA molecules, HLA-C, the most recently evolved form of class I antigens, is subjected to both transcriptional and multiple post-transcriptional regulation mechanisms affecting its cell surface expression. Among the latter a region placed in the 3' untranslated region of HLA-C transcript contains the single nucleotide polymorphism (SNP) rs67384697 "G-ins/del" that has been found to be strictly associated with surface levels of HLA-C allomorphs because of the effect on the binding site of a microRNA (Hsa-miR-148a). Higher expression of HLA-C has been proved to influence HIV-1 infection via a better control of viremia and a slower disease progression. More importantly, the analysis of SNP rs67384697 "G-ins/del" combined with the evaluation of the HLA-Bw4/-Bw6 C1/C2 supratype, as well as the killer immunoglobulin-like receptor genetic asset, has proved to be pivotal in defining the status of Elite Controllers in the Caucasian population. Here we describe a new reliable and fast method of allele-specific real-time PCR to monitor the integrity/disruption of the binding site of the microRNA Hsa-miR-148a in a high-throughput format that can be easily applied to studies involving large cohorts of individuals.
Collapse
Affiliation(s)
- Mauro S Malnati
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Priscilla Biswas
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Elisabetta Ugolotti
- Translational Research Department, Laboratory Medicine, Diagnostics and Services, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Eddi Di Marco
- Translational Research Department, Laboratory Medicine, Diagnostics and Services, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Sironi
- Unit of Human Virology, Division of Immunology, Transplantation and Infectious Diseases IRCCS Ospedale San Raffaele, Milan, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Lucia Garbarino
- Histocompatibility Laboratory, Galliera Hospital, Genoa, Italy
| | | | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Roberto Biassoni
- Translational Research Department, Laboratory Medicine, Diagnostics and Services, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
30
|
Chitnis NS, Shieh M, Monos D. Regulatory noncoding RNAs and the major histocompatibility complex. Hum Immunol 2020; 82:532-540. [PMID: 32636038 DOI: 10.1016/j.humimm.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
The Major Histocompatibility Complex (MHC) is a 4 Mbp genomic region located on the short arm of chromosome 6. The MHC region contains many key immune-related genes such as Human Leukocyte Antigens (HLAs). There has been a growing realization that, apart from MHC encoded proteins, RNAs derived from noncoding regions of the MHC-specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs)-play a significant role in cellular regulation. Furthermore, regulatory noncoding RNAs (ncRNAs) derived from other parts of the genome fine-tune the expression of many immune-related MHC proteins. Although the field of ncRNAs of the MHC is a research area that is still in its infancy, ncRNA regulation of MHC genes has already been shown to be vital for immune function, healthy pregnancy and cellular homeostasis. Dysregulation of this intricate network of ncRNAs can lead to serious perturbations in homeostasis and subsequent disease.
Collapse
Affiliation(s)
- Nilesh Sunil Chitnis
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mengkai Shieh
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dimitri Monos
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Yamamoto F, Suzuki S, Mizutani A, Shigenari A, Ito S, Kametani Y, Kato S, Fernandez-Viña M, Murata M, Morishima S, Morishima Y, Tanaka M, Kulski JK, Bahram S, Shiina T. Capturing Differential Allele-Level Expression and Genotypes of All Classical HLA Loci and Haplotypes by a New Capture RNA-Seq Method. Front Immunol 2020; 11:941. [PMID: 32547543 PMCID: PMC7272581 DOI: 10.3389/fimmu.2020.00941] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
The highly polymorphic human major histocompatibility complex (MHC) also known as the human leukocyte antigen (HLA) encodes class I and II genes that are the cornerstone of the adaptive immune system. Their unique diversity (>25,000 alleles) might affect the outcome of any transplant, infection, and susceptibility to autoimmune diseases. The recent rapid development of new next-generation sequencing (NGS) methods provides the opportunity to study the influence/correlation of this high level of HLA diversity on allele expression levels in health and disease. Here, we describe the NGS capture RNA-Seq method that we developed for genotyping all 12 classical HLA loci (HLA-A, HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-DRB3, HLA-DRB4, and HLA-DRB5) and assessing their allelic imbalance by quantifying their allele RNA levels. This is a target enrichment method where total RNA is converted to a sequencing-ready complementary DNA (cDNA) library and hybridized to a complex pool of RNA-specific HLA biotinylated oligonucleotide capture probes, prior to NGS. This method was applied to 161 peripheral blood mononuclear cells and 48 umbilical cord blood cells of healthy donors. The differential allelic expression of 10 HLA loci (except for HLA-DRA and HLA-DPA1) showed strong significant differences (P < 2.1 × 10-15). The results were corroborated by independent methods. This newly developed NGS method could be applied to a wide range of biological and medical questions including graft rejections and HLA-related diseases.
Collapse
Affiliation(s)
- Fumiko Yamamoto
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Akiko Mizutani
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Science, Teikyo Heisei University, Toshima-ku, Tokyo, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Sayaka Ito
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shunichi Kato
- Division of Hematopoietic Cell Transplantation, Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Japan
| | - Marcelo Fernandez-Viña
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
- Histocompatibility, Immunogenetics, and Disease Profiling Laboratory, Stanford Blood Center, Stanford Health Care, Palo Alto, CA, United States
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Yasuo Morishima
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Jerzy K Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, The University of Western Australia Medical School, Crawley, WA, Australia
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR_S 1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire OMICARE, Laboratoire International Associé INSERM FJ-HLA-Japan, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Faculté de Médecine, Université de Strasbourg, Service d'Immunologie Biologique, Nouvel Hôpital Civil, Strasbourg, France
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
32
|
Drabbels JJM, Welleweerd R, van Rooy I, Johnsen GM, Staff AC, Haasnoot GW, Westerink N, Claas FHJ, Rozemuller E, Eikmans M. HLA-G whole gene amplification reveals linkage disequilibrium between the HLA-G 3'UTR and coding sequence. HLA 2020; 96:179-185. [PMID: 32307888 PMCID: PMC7384165 DOI: 10.1111/tan.13909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/25/2022]
Abstract
Polymorphic sites in the HLA-G gene may influence expression and function of the protein. Knowledge of the association between high-resolution HLA-G alleles and 3-prime untranslated (3'UTR) haplotypes is useful for studies on the role of HLA-G in transplantation, pregnancy, and cancer. We developed a next generation sequencing (NGS)-based typing assay enabling full phasing over the whole HLA-G gene sequence with inclusion of the 3'UTR region. DNA from 171 mother-child pairs (342 samples) was studied for: (a) HLA-G allele information by the NGSgo-AmpX HLA-G assay, (b) 3'UTR haplotype information by an in-house developed sequence-based typing method of a 699/713 base pair region in the 3'UTR, and (c) the full phase HLA-G gene sequence, by combining primers from both assays. The mother to child inheritance allowed internal verification of newly identified alleles and of association between coding and UTR regions. The NGSgo workflow compatible with Illumina platforms was employed. Data was interpreted using NGSengine software. In 99.4% of all alleles analyzed, the extended typing was consistent with the separate allele and 3'UTR typing methods. After repeated analysis of four samples that showed discrepancy, consistency reached 100%. A high-linkage disequilibrium between IPD-IMGT/HLA Database-defined HLA-G alleles and the extended 3'UTR region was identified (D' = 0.994, P < .0001). Strong associations were found particularly between HLA-G*01:04 and UTR-3, between HLA-G*01:01:03 and UTR-7, and between HLA-G*01:03:01 and UTR-5 (for all: r = 1). Six novel HLA-G alleles and three novel 3'UTR haplotype variants were identified, of which three and one, respectively, were verified in the offspring.
Collapse
Affiliation(s)
- Jos J M Drabbels
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Guro M Johnsen
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Obstetrics and Gyneacology, Oslo University Hospital, Oslo, Norway
| | - Anne Cathrine Staff
- Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Division of Obstetrics and Gyneacology, Oslo University Hospital, Oslo, Norway
| | - Geert W Haasnoot
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Frans H J Claas
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Michael Eikmans
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
34
|
Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, Jackson S, Tan L, Wong SQ, Hollizeck S, Michalak EM, Siddle HV, McCabe MT, Prinjha RK, Guerra GR, Solomon BJ, Sandhu S, Dawson SJ, Beavis PA, Tothill RW, Cullinane C, Lehner PJ, Sutherland KD, Dawson MA. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019; 36:385-401.e8. [PMID: 31564637 PMCID: PMC6876280 DOI: 10.1016/j.ccell.2019.08.008] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/26/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022]
Abstract
Loss of MHC class I (MHC-I) antigen presentation in cancer cells can elicit immunotherapy resistance. A genome-wide CRISPR/Cas9 screen identified an evolutionarily conserved function of polycomb repressive complex 2 (PRC2) that mediates coordinated transcriptional silencing of the MHC-I antigen processing pathway (MHC-I APP), promoting evasion of T cell-mediated immunity. MHC-I APP gene promoters in MHC-I low cancers harbor bivalent activating H3K4me3 and repressive H3K27me3 histone modifications, silencing basal MHC-I expression and restricting cytokine-induced upregulation. Bivalent chromatin at MHC-I APP genes is a normal developmental process active in embryonic stem cells and maintained during neural progenitor differentiation. This physiological MHC-I silencing highlights a conserved mechanism by which cancers arising from these primitive tissues exploit PRC2 activity to enable immune evasion.
Collapse
Affiliation(s)
- Marian L Burr
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| | - Christina E Sparbier
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Kah Lok Chan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Yih-Chih Chan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Ariena Kersbergen
- ACRF Cancer Biology and Stem Cell Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Enid Y N Lam
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | | | - Dane Vassiliadis
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Omer Gilan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Susan Jackson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia
| | - Lavinia Tan
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Stephen Q Wong
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sebastian Hollizeck
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Ewa M Michalak
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Hannah V Siddle
- Department of Biological Sciences, University of Southampton, Southampton, UK; Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Michael T McCabe
- Epigenetics Research Unit, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA
| | - Rab K Prinjha
- Epigenetics Research Unit, Oncology R&D, GlaxoSmithKline, Collegeville, PA, USA; Epigenetics Research Unit, GlaxoSmithKline, Stevenage, UK
| | - Glen R Guerra
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Benjamin J Solomon
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Parkville, Australia
| | - Paul A Beavis
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Richard W Tothill
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Parkville, Australia; Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Carleen Cullinane
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J Lehner
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cell Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Centre for Cancer Research, University of Melbourne, Parkville, Australia.
| |
Collapse
|
35
|
Ashton JJ, Latham K, Beattie RM, Ennis S. Review article: the genetics of the human leucocyte antigen region in inflammatory bowel disease. Aliment Pharmacol Ther 2019; 50:885-900. [PMID: 31518029 DOI: 10.1111/apt.15485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 08/10/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The human leucocyte antigen (HLA) complex, located at chromosome 6p21.3 is a highly polymorphic region containing the classical class I and II HLA genes. The region is highly associated with inflammatory bowel disease (IBD), largely through genome-wide association studies (GWAS). AIMS To review the role of HLA in immune function, summarise data on risk/protective HLA genotypes for IBD, discuss the role of HLA in IBD pathogenesis, treatment and examine limitations that might be addressed by future research. METHODS An organised search strategy was used to collate articles describing HLA genes in IBD, including Crohn's disease and ulcerative colitis. RESULTS All classical HLA genes with variation (including HLA-A, B, C, DRB1, DQA1, DQB1, DPA1 and DPB1) harbour IBD-associated genotypes. The most implicated gene is HLA-DRB1, with HLA-DRB1*03:01 the most associated risk allele in both Crohn's disease and ulcerative colitis. Elucidating precise disease associations is challenging due to high linkage disequilibrium between HLA genotypes. The mechanisms by which risk alleles cause disease are multifactorial, with the best evidence indicating structural and electrostatic alteration impacting antigen binding and downstream signalling. Adverse medication events have been associated with HLA genotypes including with thiopurines (pancreatitis) and anti-TNF agents (antibody formation). CONCLUSIONS The HLA complex is associated with multiple risk/protective alleles for IBD. Future research utilising long-read technology, ascertainment of zygosity and integration in disease modelling will improve the functional understanding and clinical translation of genetic findings.
Collapse
Affiliation(s)
- James J Ashton
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK.,Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Katy Latham
- Anthony Nolan Research Institute, University College London, London, UK
| | - Robert Mark Beattie
- Department of Paediatric Gastroenterology, Southampton Children's Hospital, Southampton, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
36
|
Hu G, Ma L, Dong F, Hu X, Liu S, Sun H. Inhibition of microRNA‑124‑3p protects against acute myocardial infarction by suppressing the apoptosis of cardiomyocytes. Mol Med Rep 2019; 20:3379-3387. [PMID: 31432169 DOI: 10.3892/mmr.2019.10565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 02/19/2019] [Indexed: 11/05/2022] Open
Abstract
The aims of the present study were to investigate the roles and underlying mechanisms of microRNA‑124‑3p (miR‑124‑3p) in the progression of acute myocardial infarction (AMI). The expression of miR‑124‑3p was determined via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). TargetScan analysis and a luciferase reporter assay were conducted to reveal the association between miR‑124‑3p and nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) repressing factor (NKRF). To investigate the role of miR‑124‑3p in AMI, a cell model of myocardial hypoxic/ischemic injury was established by subjecting H9c2 cardiac cells to hypoxia for 48 h. The viability of cells was determined using an MTT assay, and cell apoptosis was analyzed by flow cytometry. Additionally, the expression levels of inflammatory factors [tumor necrosis factor‑α (TNF‑α), interleukin (IL)‑1β and IL‑6] were measured via ELISA. Furthermore, gene and protein expression levels were determined by performing RT‑qPCR and western blot analyses, respectively. It was revealed that the expression of miR‑124‑3p was significantly increased in the blood of patients with AMI and hypoxia‑treated H9c2 cells. Additionally, it was demonstrated that NKRF was a direct target of miR‑124‑3p. The hypoxia‑induced decrease in the viability of H9c2 cells and increase in cell apoptosis were eliminated by the downregulation of miR‑124‑3p. Furthermore, hypoxia significantly increased the levels of TNF‑α, IL‑1β and IL‑6, whereas miR‑124‑3p downregulation eliminated these effects. Downregulated expression of B‑cell lymphoma 2, pro‑caspase 3 and pro‑caspase 9 protein, and upregulated expression of cleaved caspases 3 and 9 was observed in hypoxic H9c2 cells; the altered expression of these proteins was suppressed by miR‑124‑3p inhibitor. Additionally, miR‑124‑3p inhibitor suppressed the hypoxia‑induced activation of the NF‑κB signaling pathway in H9c2 cells. Furthermore, it was demonstrated that the various effects of miR‑124‑3p inhibitor on H9c2 cells were eliminated by the small interfering RNA‑mediated downregulation of NKRF. In conclusion, the results of the present study indicated that miR‑124‑3p downregulation protected against AMI via inhibition of inflammatory responses and the apoptosis of cardiomyocytes by regulating the NKRF/NF‑κB pathway.
Collapse
Affiliation(s)
- Guangrong Hu
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lingbo Ma
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fei Dong
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiao Hu
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Sida Liu
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hui Sun
- Emergency Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
37
|
Friedrich M, Jasinski-Bergner S, Lazaridou MF, Subbarayan K, Massa C, Tretbar S, Mueller A, Handke D, Biehl K, Bukur J, Donia M, Mandelboim O, Seliger B. Tumor-induced escape mechanisms and their association with resistance to checkpoint inhibitor therapy. Cancer Immunol Immunother 2019; 68:1689-1700. [PMID: 31375885 DOI: 10.1007/s00262-019-02373-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/28/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy aims to activate the immune system to fight cancer in a very specific and targeted manner. Despite the success of different immunotherapeutic strategies, in particular antibodies directed against checkpoints as well as adoptive T-cell therapy, the response of patients is limited in different types of cancers. This attributes to escape of the tumor from immune surveillance and development of acquired resistances during therapy. In this review, the different evasion and resistance mechanisms that limit the efficacy of immunotherapies targeting tumor-associated antigens presented by major histocompatibility complex molecules on the surface of the malignant cells are summarized. Overcoming these escape mechanisms is a great challenge, but might lead to a better clinical outcome of patients and is therefore currently a major focus of research.
Collapse
Affiliation(s)
- Michael Friedrich
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Karthikeyan Subbarayan
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Sandy Tretbar
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany
| | - Marco Donia
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Ofer Mandelboim
- Department of Immunology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Straße 2, 06110, Halle (Saale), Germany.
| |
Collapse
|
38
|
Aguiar VRC, César J, Delaneau O, Dermitzakis ET, Meyer D. Expression estimation and eQTL mapping for HLA genes with a personalized pipeline. PLoS Genet 2019; 15:e1008091. [PMID: 31009447 PMCID: PMC6497317 DOI: 10.1371/journal.pgen.1008091] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 05/02/2019] [Accepted: 03/13/2019] [Indexed: 01/07/2023] Open
Abstract
The HLA (Human Leukocyte Antigens) genes are well-documented targets of balancing selection, and variation at these loci is associated with many disease phenotypes. Variation in expression levels also influences disease susceptibility and resistance, but little information exists about the regulation and population-level patterns of expression. This results from the difficulty in mapping short reads originated from these highly polymorphic loci, and in accounting for the existence of several paralogues. We developed a computational pipeline to accurately estimate expression for HLA genes based on RNA-seq, improving both locus-level and allele-level estimates. First, reads are aligned to all known HLA sequences in order to infer HLA genotypes, then quantification of expression is carried out using a personalized index. We use simulations to show that expression estimates obtained in this way are not biased due to divergence from the reference genome. We applied our pipeline to the GEUVADIS dataset, and compared the quantifications to those obtained with reference transcriptome. Although the personalized pipeline recovers more reads, we found that using the reference transcriptome produces estimates similar to the personalized pipeline (r ≥ 0.87) with the exception of HLA-DQA1. We describe the impact of the HLA-personalized approach on downstream analyses for nine classical HLA loci (HLA-A, HLA-C, HLA-B, HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). Although the influence of the HLA-personalized approach is modest for eQTL mapping, the p-values and the causality of the eQTLs obtained are better than when the reference transcriptome is used. We investigate how the eQTLs we identified explain variation in expression among lineages of HLA alleles. Finally, we discuss possible causes underlying differences between expression estimates obtained using RNA-seq, antibody-based approaches and qPCR.
Collapse
Affiliation(s)
- Vitor R. C. Aguiar
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jônatas César
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Olivier Delaneau
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanouil T. Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Diogo Meyer
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
39
|
Ferreira SN, Leite MDM, Silveira MSLD, Santos EFD, Silva ALSD, Santos EJMD. MicroRNA layer of MHC in infectious diseases. Hum Immunol 2019; 80:243-247. [PMID: 30769034 DOI: 10.1016/j.humimm.2019.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 01/02/2023]
Abstract
The Major Histocompatibility Complex (MHC) harbors key genes of the immune response that are likely useful as biomarkers for infectious diseases. However, little is known about their microRNAs and what role they play in infections. The present study aimed to describe the miRNA genes in the MHC (MHC-miRNA), their variability and associations with infectious diseases. Additionally, MHC-miRNA host and target genes were also evaluated in associations with infectious diseases. Surveys in several databases and literature reviews identified 48 MHC-miRNA genes, with high SNP and CNV variability able to disrupt MHC-miRNA expression and putatively under selective pressure. Eight MHC-miRNAs were found inside or close regions of classical MHC rearrangements (RCCX and DRB genome organization). The proportion of MHC-miRNAs associated with infections (23%) was higher than the proportion found for the 1917 hsa-miRNA (4%). Additionally, 35 MHC-miRNAs (57%) have at least one of their target genes associated with infectious diseases, while all nine MHC-miRNA whose host genes were associated with infections have also their target genes associated with infections, being host and target genes of five MHC-miRNAs reported to be associated with the same diseases. This finding may reflect a concerted miRNA-mediated immune response mechanism triggered by infection.
Collapse
Affiliation(s)
- Sâmila Natiane Ferreira
- Human and Medical Genetics Laboratory, Federal University of Pará, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Brazil
| | - Mauro de Meira Leite
- Human and Medical Genetics Laboratory, Federal University of Pará, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Brazil
| | | | | | | | - Eduardo José Melo Dos Santos
- Human and Medical Genetics Laboratory, Federal University of Pará, Brazil; Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Brazil.
| |
Collapse
|
40
|
Monos D, Drake J. Perspective: HLA functional elements outside the antigen recognition domains. Hum Immunol 2019; 80:1-4. [DOI: 10.1016/j.humimm.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Petersdorf EW, O'hUigin C. The MHC in the era of next-generation sequencing: Implications for bridging structure with function. Hum Immunol 2019; 80:67-78. [PMID: 30321633 PMCID: PMC6542361 DOI: 10.1016/j.humimm.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.
Collapse
Affiliation(s)
- Effie W Petersdorf
- University of Washington, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, D4-115, Seattle, WA 98109, United States.
| | - Colm O'hUigin
- Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Microbiome and Genetics Core, Building 37, Room 4140B, Bethesda, MD 20852, United States.
| |
Collapse
|
42
|
Tretbar US, Friedrich M, Lazaridou MF, Seliger B. Identification of Immune Modulatory miRNAs by miRNA Enrichment via RNA Affinity Purification. Methods Mol Biol 2019; 1913:81-101. [PMID: 30666600 DOI: 10.1007/978-1-4939-8979-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immune escape by cancer cells can be triggered by aberrant expression of immunological key players, which can be achieved by distinct molecular mechanisms including immune modulatory miRNAs. One suitable method to identify miRNAs that specifically target immune relevant molecules is the miRNA enrichment via RNA affinity purification method named miTRAP (miRNA trapping by RNA in vitro affinity purification). Here, we present a detailed protocol for construct preparation, RNA immobilization via MS2BP-MBP to beads, miRNA enrichment, and elution followed by analysis of the obtained miRNA candidates via qRT-PCR.
Collapse
Affiliation(s)
- Uta Sandy Tretbar
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | - Barbara Seliger
- Institute for Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
43
|
|
44
|
Anfossi S, Fu X, Nagvekar R, Calin GA. MicroRNAs, Regulatory Messengers Inside and Outside Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:87-108. [PMID: 29754176 DOI: 10.1007/978-3-319-74470-4_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs (ncRNAs) with typical sequence lengths of 19-25 nucleotides and extraordinary abilities to regulate gene expression. Because miRNAs regulate multiple important biological functions of the cell (proliferation, migration, invasion, apoptosis, differentiation, and drug resistance), their expression is highly controlled. Genetic and epigenetic alterations frequently found in cancer cells can cause aberrant expression of miRNAs and, consequently, of their target genes. The tumor microenvironment can also affect miRNA expression through soluble factors (e.g., cytokines and growth factors) secreted by either tumor cells or non-tumor cells (such as immune and stromal cells). Furthermore, like hormones, miRNAs can be secreted and regulate gene expression in recipient cells. Altered expression levels of miRNAs in cancer cells determine the acquisition of fundamental biological capabilities (hallmarks of cancer) responsible for the development and progression of the disease.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Xiao Fu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rahul Nagvekar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
45
|
Zipeto D, Serena M, Mutascio S, Parolini F, Diani E, Guizzardi E, Muraro V, Lattuada E, Rizzardo S, Malena M, Lanzafame M, Malerba G, Romanelli MG, Tamburin S, Gibellini D. HIV-1-Associated Neurocognitive Disorders: Is HLA-C Binding Stability to β 2-Microglobulin a Missing Piece of the Pathogenetic Puzzle? Front Neurol 2018; 9:791. [PMID: 30298049 PMCID: PMC6160745 DOI: 10.3389/fneur.2018.00791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
AIDS dementia complex (ADC) and HIV-associated neurocognitive disorders (HAND) are complications of HIV-1 infection. Viral infections are risk factors for the development of neurodegenerative disorders. Aging is associated with low-grade inflammation in the brain, i.e., the inflammaging. The molecular mechanisms linking immunosenescence, inflammaging and the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease, are largely unknown. ADC and HAND share some pathological features with AD and may offer some hints on the relationship between viral infections, neuroinflammation, and neurodegeneration. β2-microglobulin (β2m) is an important pro-aging factor that interferes with neurogenesis and worsens cognitive functions. Several studies published in the 80-90s reported high levels of β2m in the cerebrospinal fluid of patients with ADC. High levels of β2m have also been detected in AD. Inflammatory diseases in elderly people are associated with polymorphisms of the MHC-I locus encoding HLA molecules that, by associating with β2m, contribute to cellular immunity. We recently reported that HLA-C, no longer associated with β2m, is incorporated into HIV-1 virions, determining an increase in viral infectivity. We also documented the presence of HLA-C variants more or less stably linked to β2m. These observations led us to hypothesize that some variants of HLA-C, in the presence of viral infections, could determine a greater release and accumulation of β2m, which in turn, may be involved in triggering and/or sustaining neuroinflammation. ADC is the most severe form of HAND. To explore the role of HLA-C in ADC pathogenesis, we analyzed the frequency of HLA-C variants with unstable binding to β2m in a group of patients with ADC. We found a higher frequency of unstable HLA-C alleles in ADC patients, and none of them was harboring stable HLA-C alleles in homozygosis. Our data suggest that the role of HLA-C variants in ADC/HAND pathogenesis deserves further studies. If confirmed in a larger number of samples, this finding may have practical implication for a personalized medicine approach and for developing new therapies to prevent HAND. The exploration of HLA-C variants as risk factors for AD and other neurodegenerative disorders may be a promising field of study.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michela Serena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Simona Mutascio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Parolini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Erica Diani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | | | | | | | - Marina Malena
- U.O.S. Infectious Diseases, AULSS 9 Scaligera, Verona, Italy
| | | | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Davide Gibellini
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
46
|
Integration of Genome-Wide DNA Methylation and Transcription Uncovered Aberrant Methylation-Regulated Genes and Pathways in the Peripheral Blood Mononuclear Cells of Systemic Sclerosis. Int J Rheumatol 2018; 2018:7342472. [PMID: 30245726 PMCID: PMC6139224 DOI: 10.1155/2018/7342472] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective. Systemic sclerosis (SSc) is a systemic connective tissue disease of unknown etiology. Aberrant gene expression and epigenetic modifications in circulating immune cells have been implicated in the pathogenesis of SSc. This study is to delineate the interaction network between gene transcription and DNA methylation in PBMC of SSc patients and to identify methylation-regulated genes which are involved in the pathogenesis of SSc. Methods. Genome-wide mRNA transcription and global DNA methylation analysis were performed on PBMC from 18 SSc patients and 19 matched normal controls (NC) using Illumina BeadChips. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were integrative analyzed to identify methylation-regulated genes and associated molecular pathways. Results. Transcriptome analysis distinguished 453 DEGs (269 up- and 184 downregulated) in SSc from NC. Global DNA methylation analysis identified 925 DMPs located on 618 genes. Integration of the two lists revealed only 20 DEGs which harbor inversely correlated DMPs, including 12 upregulated (ELANE, CTSG, LTBR, C3AR1, CSTA, SPI1, ODF3B, SAMD4A, PLAUR, NFE2, ZYX, and CTSZ) and eight downregulated genes (RUNX3, PRF1, PRKCH, PAG1, RASSF5, FYN, CXCR6, and F2R). These potential methylation-regulated DEGs (MeDEGs) are enriched in the pathways related to immune cell migration, proliferation, activation, and inflammation activities. Using a machine learning algorism, we identified six out of the 20 MeDEGs, including F2R, CXCR6, FYN, LTBR, CTSG, and ELANE, which distinguished SSc from NC with 100% accuracy. Four genes (F2R, FYN, PAG1, and PRKCH) differentially expressed in SSc with interstitial lung disease (ILD) compared to SSc without ILD. Conclusion. The identified MeDEGs may represent novel candidate factors which lead to the abnormal activation of immune regulatory pathways in the pathogenesis of SSc. They may also be used as diagnostic biomarkers for SSc and clinical complications.
Collapse
|
47
|
Li Y, Nowak CM, Withers D, Pertsemlidis A, Bleris L. CRISPR-Based Editing Reveals Edge-Specific Effects in Biological Networks. CRISPR J 2018; 1:286-293. [PMID: 31021219 DOI: 10.1089/crispr.2018.0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Unraveling the properties of biological networks is central to understanding both normal and disease cellular phenotypes. Networks consist of functional elements (nodes) that form a variety of diverse connections (edges), with each node being a hub for multiple edges. Herein, in contrast to node-centric network perturbation and analysis approaches, we present a high-throughput CRISPR-based methodology for delineating the role of network edges. Ablation of network edges using a library targeting 93 miRNA target sites in 71 genes reveals numerous edges that control, with variable importance, cellular growth and survival under stress. To compare the impact of removing nodes versus edges in a biological network, we dissect a specific p53-microRNA pathway. We show that removal of the miR-34a target site from the anti-apoptotic gene BCL2 desensitizes the cell to ectopic delivery of miR-34a in a p53-dependent manner. In summary, we demonstrate that network edges are critical to the function and stability of biological networks. Our results introduce a novel genetic screening opportunity via edge ablation and highlight a new dimension in biological network analysis.
Collapse
Affiliation(s)
- Yi Li
- 1 Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas.,2 Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas
| | - Chance M Nowak
- 2 Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas.,3 Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas
| | - Daniel Withers
- 1 Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas.,2 Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas
| | - Alexander Pertsemlidis
- 4 Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Leonidas Bleris
- 1 Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas.,2 Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas.,3 Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas
| |
Collapse
|
48
|
Ellwanger JH, Zambra FMB, Guimarães RL, Chies JAB. MicroRNA-Related Polymorphisms in Infectious Diseases-Tiny Changes With a Huge Impact on Viral Infections and Potential Clinical Applications. Front Immunol 2018; 9:1316. [PMID: 29963045 PMCID: PMC6010531 DOI: 10.3389/fimmu.2018.01316] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded sequences of non-coding RNA with approximately 22 nucleotides that act posttranscriptionally on gene expression. miRNAs are important gene regulators in physiological contexts, but they also impact the pathogenesis of various diseases. The role of miRNAs in viral infections has been explored by different authors in both population-based as well as in functional studies. However, the effect of miRNA polymorphisms on the susceptibility to viral infections and on the clinical course of these diseases is still an emerging topic. Thus, this review will compile and organize the findings described in studies that evaluated the effects of genetic variations on miRNA genes and on their binding sites, in the context of human viral diseases. In addition to discussing the basic aspects of miRNAs biology, we will cover the studies that investigated miRNA polymorphisms in infections caused by hepatitis B virus, hepatitis C virus, human immunodeficiency virus, Epstein–Barr virus, and human papillomavirus. Finally, emerging topics concerning the importance of miRNA genetic variants will be presented, focusing on the context of viral infectious diseases.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francis Maria Báo Zambra
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafael Lima Guimarães
- Departamento de Genética, Universidade Federal do Pernambuco (UFPE), Recife, Brazil.,Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
49
|
Ramsuran V, Naranbhai V, Horowitz A, Qi Y, Martin MP, Yuki Y, Gao X, Walker-Sperling V, Del Prete GQ, Schneider DK, Lifson JD, Fellay J, Deeks SG, Martin JN, Goedert JJ, Wolinsky SM, Michael NL, Kirk GD, Buchbinder S, Haas D, Ndung'u T, Goulder P, Parham P, Walker BD, Carlson JM, Carrington M. Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells. Science 2018; 359:86-90. [PMID: 29302013 PMCID: PMC5933048 DOI: 10.1126/science.aam8825] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/16/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
The highly polymorphic human leukocyte antigen (HLA) locus encodes cell surface proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease.
Collapse
Affiliation(s)
- Veron Ramsuran
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yuko Yuki
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiaojiang Gao
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Victoria Walker-Sperling
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Steven G Deeks
- Department of Medicine University of California, San Francisco, CA 94143, USA
| | - Jeffrey N Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD 20850, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Gregory D Kirk
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Susan Buchbinder
- Department of Medicine University of California, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
- San Francisco Department of Public Health, HIV Research Section, San Francisco, CA 94102, USA
| | - David Haas
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thumbi Ndung'u
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- African Health Research Institute, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Philip Goulder
- African Health Research Institute, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Peter Parham
- Departments of Structural Biology and Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- African Health Research Institute, Durban, South Africa
- Institute for Medical and Engineering Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
50
|
Pan N, Lu S, Wang W, Miao F, Sun H, Wu S, Nan D, Qiu J, Xu J, Zhang J. Quantification of classical HLA class I mRNA by allele-specific, real-time polymerase chain reaction for most Han individuals. HLA 2017; 91:112-123. [PMID: 29178661 DOI: 10.1111/tan.13186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022]
Abstract
Recent studies have shown that expression levels of different alleles at the same HLA class I locus can vary dramatically, which might have a broad influence on human disease. However, precise quantification of the relative expression level of each HLA allele is challenging, because distinguishing different alleles on the same locus is difficult. Here, we developed a series of allele-specific, real-time polymerase chain reaction assays for quantifying HLA class I allele mRNA in most Han individuals. The alleles of almost all heterozygous genotypes with a frequency higher than 0.5% in our population (78 alleles on HLA-A locus, 124 alleles on HLA-B locus, and 74 alleles on HLA-C locus) were specifically amplified. The specificity of the amplification was strictly validated by setting the corresponding negative control for each allele of each genotype. The amplification efficiency of each reaction was determined, and the slopes of the reactions were compared. This study provides a tool for detecting the comprehensive expression profile of HLA class I alleles and will be useful not only for the investigation of the molecular mechanism underlying HLA allele expression regulation but also for exploration of immunological mechanisms involving HLA expression in the fields of tumour immune evasion, viral infection, auto-immune disorders, and graft vs host disease after haematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- N Pan
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China
| | - S Lu
- Center of Liver Transplantation, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - W Wang
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China
| | - F Miao
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China
| | - H Sun
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China
| | - S Wu
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China.,Stem Cells and Regenerative Medicine Key Laboratory, Liaocheng People's Hospital, Liaocheng, China
| | - D Nan
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China
| | - J Qiu
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China.,The Second Affiliated Hospital of Southeast University, Nanjing, China
| | - J Xu
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China.,Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - J Zhang
- Department of Immunology and Pathogen Biology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|